The effects of high-light stress on chlorophyllfluorescence parameters, D1-protein turnover and t... more The effects of high-light stress on chlorophyllfluorescence parameters, D1-protein turnover and the actual level of this protein were analysed in nitrogen-deficient and nitrogen-replete cells of Chenopodium rubrum L. Changes in the number of atrazine-binding sites and in the D1-protein immunoblot signal indicated that a net loss of D1 protein occurred in high light and was partly reversible in low light. Nitrogen deficiency did not exacerbate these changes. The involvement of D1-protein turnover was shown in pulse-chase experiments with [(35)S]-methionine and by the application of a chloroplastic protein-synthesis inhibitor (chloramphenicol). The slowly reversible non-photochemical fluorescence quenching increased pronouncedly when D1 protein was lost at high irradiances, but its increase was only small when a net loss of D1 protein was produced at moderate irradiances by addition of chloramphenicol. The ratio of variable to maximum fluorescence, Fv/Fm, and the number of atrazine-binding sites were correlated but a proportionality between these parameters could not be observed. We conclude from these results that (i) degradation of D1 protein was not always coupled to its resynthesis, (ii) the actual level of D1 protein reflected the balance between degradation and resynthesis of D1 protein and (iii) changes in the level of D1 protein did not depend on a pronounced increase of the slowly reversible non-photochemical quenching.
During harvest, fleshy berry tomato fruits (Solanum lycopersicum) were wounded at their stem scar... more During harvest, fleshy berry tomato fruits (Solanum lycopersicum) were wounded at their stem scar. Within 3 d, this wound was rapidly sealed by a process covering the wound site with a membranous layer which effectively protects the tomato fruit from excessive water loss, nutrient elution and the entry of pathogens. Chemical analysis of the de novo synthesized stem scar tissue revealed the presence of aromatic and aliphatic components characteristic of the biopolyester suberin. Gene expression patterns associated with suberization were identified at the stem scar region. Changes in the relative abundance of different transcripts suggested a potential involvement of the plant hormone abscisic acid (ABA) in the wound-healing processes. The amount of ABA present in the stem scar tissue showed a significantly increased level during wound healing, whereas ABA-deficient mutants notabilis, flacca and sitiens were largely devoid of this rise in ABA levels. The mutant fruits showed a retarded and less efficient suberization response at the stem scar wound, whereas the rate and strength of this response were positively correlated with ABA content. These results clearly indicate in vivo the involvement of ABA in the suberization-based wound-healing processes at the stem scar tissue of tomato fruits.
A liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed to detect tumor-... more A liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed to detect tumor-promoting diterpene esters of the tigliane and ingenane types within plant extracts. Fractionation on a C 18 high-performance liquid chromatography (HPLC) column was followed by MS-MS-multiple reaction monitoring (MRM) using the precursor→ product ion pairs of m/z 311→293 and 293→265 for phorbol esters. The ion pairs m/z 313→295 and 295→267 were used for ingenol and deoxyphorbol esters. In a second run, the characteristic ions at m/z 311 and 313 were followed in precursor ion scan mode. These quasi-molecular ions were utilized to obtain full scan spectra of the compounds in product ion scan mode. Due to its selectivity, the present on-line method can be applied for plant cultivar selection and plant product control without timeconsuming extraction procedures and complex bioassays.
By comparison with plant-microbe interaction, little is known about the interaction of parasitic ... more By comparison with plant-microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates, and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum) fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant-plant dialog between Cuscuta spp. and its host plants focuses on the incompatible interaction of C. reflexa with tomato.
Cultivation of sugarcane is limited by moderate chilling temperatures of 15° in subtropical areas... more Cultivation of sugarcane is limited by moderate chilling temperatures of 15° in subtropical areas of the world. whereas high temperatures seem to pose less problems. To obtain an overview of the physiological parameters affected. sugarcane plants were grown at 15. 27, and 45° for up to 10 months and photosynthetic parameters of the leaves were determined, namely chlorophyll content, Hill reaction, chlorophyll fluorescence parameters concerning photosystem II and electron transpon activity, and critical temperature of chloroplast membrane organization. In all cases plants grown at 27° were superior to those grown at 15 or 45°. The photosynthetic performance of plants grown at 45° was superior to those grown at 15° in all parameters, when the plants were young (3 months old). With age some adaptation to the unfavourable temperatures proceeded, indicated by a change of photosynthetic propenies in the direction of plants grown at optimal temperature (27"). The adaptation was especially strong for the plants grown at 15°, so that after 9 months their performance was better than that of 45° plants. The conclusions for breeding of more temperature adapted sugarcane plants are discussed.
Cuticular waxes are known to play a pivotal role in limiting transpirational water loss across pr... more Cuticular waxes are known to play a pivotal role in limiting transpirational water loss across primary plant surfaces. The astomatous tomato fruit is an ideal model system that permits the functional characterization of intact cuticular membranes and therefore allows direct correlation of their permeance for water with their qualitative and quantitative composition. The recessive positional sterile (ps) mutation, which occurred spontaneously in tomato (Solanum lycopersicum L.), is characterized by floral organ fusion and positional sterility. Because of a striking phenotypical similarity with the lecer6 wax mutant of tomato, which is defective in very-long-chain fatty acid elongation, ps mutant fruits were analyzed for their cuticular wax and cutin composition. We also examined their cuticular permeance for water following the developmental course of fruit ripening. Wild type and ps mutant fruits showed considerable differences in their cuticular permeance for water, while exhibiting similar quantitative wax accumulation. The ps mutant fruits showed a five-to eightfold increase in water loss per unit time and surface area when compared to the corresponding wild type fruits. The cuticular waxes of ps mutant fruits were characterized by an almost complete absence of n-alkanes and aldehydes, with a concomitant increase in triterpenoids and sterol derivatives. We also noted the occurrence of alkyl esters not present in the wild type. Quantitative and qualitative cutin monomer composition remained largely unaffected. The significant differences in the cuticular wax composition of ps mutant fruits induced a distinct increase of cuticular water permeance. The fruit wax compositional phenotype indicates the ps mutation is responsible for effectively blocking the decarbonylation pathway of wax biosynthesis in epidermal cells of tomato fruits.
Cuticular waxes play a pivotal role in limiting transpirational water loss across the plant surfa... more Cuticular waxes play a pivotal role in limiting transpirational water loss across the plant surface. The correlation between the chemical composition of the cuticular waxes and their function as a transpiration barrier is still unclear. In the present study, intact tomato fruits (Lycopersicon esculentum) are used, due to their astomatous surface, as a novel integrative approach to investigate this composition± function relationship: wax amounts and compositions of tomato were manipulated before measuring unbiased cuticular transpiration. First, successive mechanical and extractive wax-removal steps allowed the selective modi®cation of epi-and intracuticular wax layers. The epicuticular ®lm consisted exclusively of very-long-chain aliphatics, while the intracuticular compartment contained large quantities of pentacyclic triterpenoids as well. Second, applying reverse genetic techniques, a loss-of-function mutation with a transposon insertion in a very-long-chain fatty acid elongase b-ketoacyl-CoA synthase was isolated and characterized. Mutant leaf and fruit waxes were de®cient in n-alkanes and aldehydes with chain lengths beyond C 30, while shorter chains and branched hydrocarbons were not affected. The mutant fruit wax also showed a signi®cant increase in intracuticular triterpenoids. Removal of the epicuticular wax layer, accounting for one-third of the total wax coverage on wild-type fruits, had only moderate effects on transpiration. By contrast, reduction of the intracuticular aliphatics in the mutant to approximately 50% caused a 4-fold increase in permeability. Hence, the main portion of the transpiration barrier is located in the intracuticular wax layer, largely determined by the aliphatic constituents, but modi®ed by the presence of triterpenoids, whereas epicuticular aliphatics play a minor role.
Background Reproducibility of reported antibacterial activities of plant extracts has long remain... more Background Reproducibility of reported antibacterial activities of plant extracts has long remained questionable. Although plant-related factors should be well considered in serious pharmacognostic research, they are often not addressed in many research papers. Here we highlight the challenges in reproducing antibacterial activities of plant extracts. Methods Plants with reported antibacterial activities of interest were obtained from a literature review. Antibacterial activities against Escherichia coli and Klebsiella pneumoniae were tested using extracts' solutions in 10% DMSO and acetone. Compositions of working solutions from both solvents were established using LC-MS analysis. Moreover, the availability of details likely to affect reproducibility was evaluated in articles which reported antibacterial activities of studied plants. Results Inhibition of bacterial growth at MIC of 256-1024 μg/mL was observed in only 15.4% of identical plant species. These values were 4-16-fold higher than those reported earlier. Further, 18.2% of related plant species had MICs of 128-256 μg/mL. Besides, 29.2% and 95.8% of the extracts were soluble to sparingly soluble in 10% DMSO and acetone, respectively. Extracts' solutions in both solvents showed similar qualitative compositions, with differing quantities of corresponding phytochemicals. Details regarding seasons and growth state at collection were missing in 65% and 95% of evaluated articles, respectively. Likewise, solvents used to dissolve the extracts were lacking in 30% of the articles, whereas 40% of them used unidentified bacterial isolates. Conclusion Reproducibility of previously reported activities from plants' extracts is a multi-factorial aspect. Thus, collective approaches are necessary in addressing the highlighted challenges.
Extraction is a key step in studying compounds from plants and other natural sources. The common ... more Extraction is a key step in studying compounds from plants and other natural sources. The common use of high temperatures in pressurized microwave-assisted extraction (PMAE) makes it unsuitable for the extraction of compounds with low or unknown thermal stability. This study aimed at determining the suitability of low-temperature, short-time PMAE in attaining yields comparable to those of prolonged maceration at room temperature. Additionally, we explored the phytochemical differences of the extracts from both techniques. Maceration at room temperature for 24 hr and PMAE at 40-45°C and 10 bar for 30 min were carried out on 18 samples from 14 plant species at a solvent-to-feeds ratio of 10. The PMAE yields of 16 out of 18 samples were within the proportions of 91-139.2% as compared with the respective extracts from maceration. Varying numbers of nonmatching peaks were noted in MS chromatograms of five extract pairs, indicating selective extraction of some compounds. Low-temperature PMAE can attain reasonable extraction efficiency with the added value of sparing compounds of low thermal stability. The method can also enable the recovery of compounds distinct from those obtained by maceration.
Diterpene esters of the phorbol and ingenol types are known to be highly active tumor promoting a... more Diterpene esters of the phorbol and ingenol types are known to be highly active tumor promoting agents that typically occur in members of the Euphorbiaceae. In the present work, Euphorbia leuconeura, a rare indoor plant, is analyzed for its tumor promoting potential. Latex as well as total leaf extracts exhibited Epstein±Barr-virus (EBV) inducing activity comparable to 12-O-tetradecanoyl-phorbol-13-O-acetate, a well known tumor promoter. The activity of individual fractions correlated with their ingenol ester content. Three ingenol esters with EBV inducing activity could be isolated and identi®ed. They belong to the milliamine type of diterpene esters that contain aromatic peptidyl groups. Two of them (milliamines L and M) are already known from E. milii. The third compound is identi®ed as an isomer of milliamine F with a novel 3,20-diester arrangement. The data show a close relationship between E. leuconeura and the more popular indoor plant E. milii whose latex is also used as a powerful molluscicide.
The initial contact between Blumeria graminis f.sp. hordei and its host barley (Hordeum vulgare) ... more The initial contact between Blumeria graminis f.sp. hordei and its host barley (Hordeum vulgare) takes place on epicuticular waxes at the surfaces of aerial plant organs. Here, the extent to which chemical composition, crystal structure and hydrophobicity of cuticular waxes affect fungal prepenetration processes was explored. The leaf surface properties of barley eceriferum (cer) wax mutants were characterized in detail. Barley leaves and artificial surfaces were used to investigate the early events of fungal infection. Even after epicuticular waxes had been stripped away, cer mutant leaf surfaces did not affect fungal prepenetration properties. Removal of total leaf cuticular waxes, however, resulted in a 20% reduction in conidial germination and differentiation. Two major components of barley leaf wax, hexacosanol and hexacosanal, differed considerably in their ability to effectively trigger conidial differentiation on glass surfaces. While hexacosanol, attaining a maximum hydrophobicity with contact angles of no more than 80 degrees, proved to be noninductive, hexacosanal significantly stimulated differentiation in c. 50% of B. graminis conidia, but only at contact angles > 80 degrees. These results, together with an observed inductive effect of highly hydrophobic, wax-free artificial surfaces, provide new insights into the interplay of physical and chemical surface cues involved in triggering prepenetration processes in B. graminis.
Cuticular waxes play a pivotal role in limiting transpirational water loss across the primary pla... more Cuticular waxes play a pivotal role in limiting transpirational water loss across the primary plant surface. The astomatous fruits of the tomato (Lycopersicon esculentum) ‘MicroTom’ and its lecer6 mutant, defective in a β-ketoacyl-coenzyme A synthase, which is involved in very-long-chain fatty acid elongation, were analyzed with respect to cuticular wax load and composition. The developmental course of fruit ripening was followed. Both the ‘MicroTom’ wild type and lecer6 mutant showed similar patterns of quantitative wax accumulation, although exhibiting considerably different water permeances. With the exception of immature green fruits, the lecer6 mutant exhibited about 3- to 8-fold increased water loss per unit time and fruit surface area when compared to the wild type. This was not the case with immature green fruits. The differences in final cuticular barrier properties of tomato fruits in both lines were fully developed already in the mature green to early breaker stage of fruit development. When the qualitative chemical composition of fruit cuticular waxes during fruit ripening was investigated, the deficiency in a β-ketoacyl-coenzyme A synthase in the lecer6 mutant became discernible in the stage of mature green fruits mainly by a distinct decrease in the proportion of n-alkanes of chain lengths > C28 and a concomitant increase in cyclic triterpenoids. This shift in cuticular wax biosynthesis of the lecer6 mutant appears to be responsible for the simultaneously occurring increase of water permeance. Changes in cutin composition were also investigated as a function of developmental stage. This integrative functional approach demonstrates a direct relationship between cuticular transpiration barrier properties and distinct chemical modifications in cuticular wax composition during the course of tomato fruit development.
The effects of high-light stress on chlorophyllfluorescence parameters, D1-protein turnover and t... more The effects of high-light stress on chlorophyllfluorescence parameters, D1-protein turnover and the actual level of this protein were analysed in nitrogen-deficient and nitrogen-replete cells of Chenopodium rubrum L. Changes in the number of atrazine-binding sites and in the D1-protein immunoblot signal indicated that a net loss of D1 protein occurred in high light and was partly reversible in low light. Nitrogen deficiency did not exacerbate these changes. The involvement of D1-protein turnover was shown in pulse-chase experiments with [(35)S]-methionine and by the application of a chloroplastic protein-synthesis inhibitor (chloramphenicol). The slowly reversible non-photochemical fluorescence quenching increased pronouncedly when D1 protein was lost at high irradiances, but its increase was only small when a net loss of D1 protein was produced at moderate irradiances by addition of chloramphenicol. The ratio of variable to maximum fluorescence, Fv/Fm, and the number of atrazine-binding sites were correlated but a proportionality between these parameters could not be observed. We conclude from these results that (i) degradation of D1 protein was not always coupled to its resynthesis, (ii) the actual level of D1 protein reflected the balance between degradation and resynthesis of D1 protein and (iii) changes in the level of D1 protein did not depend on a pronounced increase of the slowly reversible non-photochemical quenching.
During harvest, fleshy berry tomato fruits (Solanum lycopersicum) were wounded at their stem scar... more During harvest, fleshy berry tomato fruits (Solanum lycopersicum) were wounded at their stem scar. Within 3 d, this wound was rapidly sealed by a process covering the wound site with a membranous layer which effectively protects the tomato fruit from excessive water loss, nutrient elution and the entry of pathogens. Chemical analysis of the de novo synthesized stem scar tissue revealed the presence of aromatic and aliphatic components characteristic of the biopolyester suberin. Gene expression patterns associated with suberization were identified at the stem scar region. Changes in the relative abundance of different transcripts suggested a potential involvement of the plant hormone abscisic acid (ABA) in the wound-healing processes. The amount of ABA present in the stem scar tissue showed a significantly increased level during wound healing, whereas ABA-deficient mutants notabilis, flacca and sitiens were largely devoid of this rise in ABA levels. The mutant fruits showed a retarded and less efficient suberization response at the stem scar wound, whereas the rate and strength of this response were positively correlated with ABA content. These results clearly indicate in vivo the involvement of ABA in the suberization-based wound-healing processes at the stem scar tissue of tomato fruits.
A liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed to detect tumor-... more A liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed to detect tumor-promoting diterpene esters of the tigliane and ingenane types within plant extracts. Fractionation on a C 18 high-performance liquid chromatography (HPLC) column was followed by MS-MS-multiple reaction monitoring (MRM) using the precursor→ product ion pairs of m/z 311→293 and 293→265 for phorbol esters. The ion pairs m/z 313→295 and 295→267 were used for ingenol and deoxyphorbol esters. In a second run, the characteristic ions at m/z 311 and 313 were followed in precursor ion scan mode. These quasi-molecular ions were utilized to obtain full scan spectra of the compounds in product ion scan mode. Due to its selectivity, the present on-line method can be applied for plant cultivar selection and plant product control without timeconsuming extraction procedures and complex bioassays.
By comparison with plant-microbe interaction, little is known about the interaction of parasitic ... more By comparison with plant-microbe interaction, little is known about the interaction of parasitic plants with their hosts. Plants of the genus Cuscuta belong to the family of Cuscutaceae and comprise about 200 species, all of which live as stem holoparasites on other plants. Cuscuta spp. possess no roots nor fully expanded leaves and the vegetative portion appears to be a stem only. The parasite winds around plants and penetrates the host stems via haustoria, forming direct connections to the vascular bundles of their hosts to withdraw water, carbohydrates, and other solutes. Besides susceptible hosts, a few plants exist that exhibit an active resistance against infestation by Cuscuta spp. For example, cultivated tomato (Solanum lycopersicum) fends off Cuscuta reflexa by means of a hypersensitive-type response occurring in the early penetration phase. This report on the plant-plant dialog between Cuscuta spp. and its host plants focuses on the incompatible interaction of C. reflexa with tomato.
Cultivation of sugarcane is limited by moderate chilling temperatures of 15° in subtropical areas... more Cultivation of sugarcane is limited by moderate chilling temperatures of 15° in subtropical areas of the world. whereas high temperatures seem to pose less problems. To obtain an overview of the physiological parameters affected. sugarcane plants were grown at 15. 27, and 45° for up to 10 months and photosynthetic parameters of the leaves were determined, namely chlorophyll content, Hill reaction, chlorophyll fluorescence parameters concerning photosystem II and electron transpon activity, and critical temperature of chloroplast membrane organization. In all cases plants grown at 27° were superior to those grown at 15 or 45°. The photosynthetic performance of plants grown at 45° was superior to those grown at 15° in all parameters, when the plants were young (3 months old). With age some adaptation to the unfavourable temperatures proceeded, indicated by a change of photosynthetic propenies in the direction of plants grown at optimal temperature (27"). The adaptation was especially strong for the plants grown at 15°, so that after 9 months their performance was better than that of 45° plants. The conclusions for breeding of more temperature adapted sugarcane plants are discussed.
Cuticular waxes are known to play a pivotal role in limiting transpirational water loss across pr... more Cuticular waxes are known to play a pivotal role in limiting transpirational water loss across primary plant surfaces. The astomatous tomato fruit is an ideal model system that permits the functional characterization of intact cuticular membranes and therefore allows direct correlation of their permeance for water with their qualitative and quantitative composition. The recessive positional sterile (ps) mutation, which occurred spontaneously in tomato (Solanum lycopersicum L.), is characterized by floral organ fusion and positional sterility. Because of a striking phenotypical similarity with the lecer6 wax mutant of tomato, which is defective in very-long-chain fatty acid elongation, ps mutant fruits were analyzed for their cuticular wax and cutin composition. We also examined their cuticular permeance for water following the developmental course of fruit ripening. Wild type and ps mutant fruits showed considerable differences in their cuticular permeance for water, while exhibiting similar quantitative wax accumulation. The ps mutant fruits showed a five-to eightfold increase in water loss per unit time and surface area when compared to the corresponding wild type fruits. The cuticular waxes of ps mutant fruits were characterized by an almost complete absence of n-alkanes and aldehydes, with a concomitant increase in triterpenoids and sterol derivatives. We also noted the occurrence of alkyl esters not present in the wild type. Quantitative and qualitative cutin monomer composition remained largely unaffected. The significant differences in the cuticular wax composition of ps mutant fruits induced a distinct increase of cuticular water permeance. The fruit wax compositional phenotype indicates the ps mutation is responsible for effectively blocking the decarbonylation pathway of wax biosynthesis in epidermal cells of tomato fruits.
Cuticular waxes play a pivotal role in limiting transpirational water loss across the plant surfa... more Cuticular waxes play a pivotal role in limiting transpirational water loss across the plant surface. The correlation between the chemical composition of the cuticular waxes and their function as a transpiration barrier is still unclear. In the present study, intact tomato fruits (Lycopersicon esculentum) are used, due to their astomatous surface, as a novel integrative approach to investigate this composition± function relationship: wax amounts and compositions of tomato were manipulated before measuring unbiased cuticular transpiration. First, successive mechanical and extractive wax-removal steps allowed the selective modi®cation of epi-and intracuticular wax layers. The epicuticular ®lm consisted exclusively of very-long-chain aliphatics, while the intracuticular compartment contained large quantities of pentacyclic triterpenoids as well. Second, applying reverse genetic techniques, a loss-of-function mutation with a transposon insertion in a very-long-chain fatty acid elongase b-ketoacyl-CoA synthase was isolated and characterized. Mutant leaf and fruit waxes were de®cient in n-alkanes and aldehydes with chain lengths beyond C 30, while shorter chains and branched hydrocarbons were not affected. The mutant fruit wax also showed a signi®cant increase in intracuticular triterpenoids. Removal of the epicuticular wax layer, accounting for one-third of the total wax coverage on wild-type fruits, had only moderate effects on transpiration. By contrast, reduction of the intracuticular aliphatics in the mutant to approximately 50% caused a 4-fold increase in permeability. Hence, the main portion of the transpiration barrier is located in the intracuticular wax layer, largely determined by the aliphatic constituents, but modi®ed by the presence of triterpenoids, whereas epicuticular aliphatics play a minor role.
Background Reproducibility of reported antibacterial activities of plant extracts has long remain... more Background Reproducibility of reported antibacterial activities of plant extracts has long remained questionable. Although plant-related factors should be well considered in serious pharmacognostic research, they are often not addressed in many research papers. Here we highlight the challenges in reproducing antibacterial activities of plant extracts. Methods Plants with reported antibacterial activities of interest were obtained from a literature review. Antibacterial activities against Escherichia coli and Klebsiella pneumoniae were tested using extracts' solutions in 10% DMSO and acetone. Compositions of working solutions from both solvents were established using LC-MS analysis. Moreover, the availability of details likely to affect reproducibility was evaluated in articles which reported antibacterial activities of studied plants. Results Inhibition of bacterial growth at MIC of 256-1024 μg/mL was observed in only 15.4% of identical plant species. These values were 4-16-fold higher than those reported earlier. Further, 18.2% of related plant species had MICs of 128-256 μg/mL. Besides, 29.2% and 95.8% of the extracts were soluble to sparingly soluble in 10% DMSO and acetone, respectively. Extracts' solutions in both solvents showed similar qualitative compositions, with differing quantities of corresponding phytochemicals. Details regarding seasons and growth state at collection were missing in 65% and 95% of evaluated articles, respectively. Likewise, solvents used to dissolve the extracts were lacking in 30% of the articles, whereas 40% of them used unidentified bacterial isolates. Conclusion Reproducibility of previously reported activities from plants' extracts is a multi-factorial aspect. Thus, collective approaches are necessary in addressing the highlighted challenges.
Extraction is a key step in studying compounds from plants and other natural sources. The common ... more Extraction is a key step in studying compounds from plants and other natural sources. The common use of high temperatures in pressurized microwave-assisted extraction (PMAE) makes it unsuitable for the extraction of compounds with low or unknown thermal stability. This study aimed at determining the suitability of low-temperature, short-time PMAE in attaining yields comparable to those of prolonged maceration at room temperature. Additionally, we explored the phytochemical differences of the extracts from both techniques. Maceration at room temperature for 24 hr and PMAE at 40-45°C and 10 bar for 30 min were carried out on 18 samples from 14 plant species at a solvent-to-feeds ratio of 10. The PMAE yields of 16 out of 18 samples were within the proportions of 91-139.2% as compared with the respective extracts from maceration. Varying numbers of nonmatching peaks were noted in MS chromatograms of five extract pairs, indicating selective extraction of some compounds. Low-temperature PMAE can attain reasonable extraction efficiency with the added value of sparing compounds of low thermal stability. The method can also enable the recovery of compounds distinct from those obtained by maceration.
Diterpene esters of the phorbol and ingenol types are known to be highly active tumor promoting a... more Diterpene esters of the phorbol and ingenol types are known to be highly active tumor promoting agents that typically occur in members of the Euphorbiaceae. In the present work, Euphorbia leuconeura, a rare indoor plant, is analyzed for its tumor promoting potential. Latex as well as total leaf extracts exhibited Epstein±Barr-virus (EBV) inducing activity comparable to 12-O-tetradecanoyl-phorbol-13-O-acetate, a well known tumor promoter. The activity of individual fractions correlated with their ingenol ester content. Three ingenol esters with EBV inducing activity could be isolated and identi®ed. They belong to the milliamine type of diterpene esters that contain aromatic peptidyl groups. Two of them (milliamines L and M) are already known from E. milii. The third compound is identi®ed as an isomer of milliamine F with a novel 3,20-diester arrangement. The data show a close relationship between E. leuconeura and the more popular indoor plant E. milii whose latex is also used as a powerful molluscicide.
The initial contact between Blumeria graminis f.sp. hordei and its host barley (Hordeum vulgare) ... more The initial contact between Blumeria graminis f.sp. hordei and its host barley (Hordeum vulgare) takes place on epicuticular waxes at the surfaces of aerial plant organs. Here, the extent to which chemical composition, crystal structure and hydrophobicity of cuticular waxes affect fungal prepenetration processes was explored. The leaf surface properties of barley eceriferum (cer) wax mutants were characterized in detail. Barley leaves and artificial surfaces were used to investigate the early events of fungal infection. Even after epicuticular waxes had been stripped away, cer mutant leaf surfaces did not affect fungal prepenetration properties. Removal of total leaf cuticular waxes, however, resulted in a 20% reduction in conidial germination and differentiation. Two major components of barley leaf wax, hexacosanol and hexacosanal, differed considerably in their ability to effectively trigger conidial differentiation on glass surfaces. While hexacosanol, attaining a maximum hydrophobicity with contact angles of no more than 80 degrees, proved to be noninductive, hexacosanal significantly stimulated differentiation in c. 50% of B. graminis conidia, but only at contact angles > 80 degrees. These results, together with an observed inductive effect of highly hydrophobic, wax-free artificial surfaces, provide new insights into the interplay of physical and chemical surface cues involved in triggering prepenetration processes in B. graminis.
Cuticular waxes play a pivotal role in limiting transpirational water loss across the primary pla... more Cuticular waxes play a pivotal role in limiting transpirational water loss across the primary plant surface. The astomatous fruits of the tomato (Lycopersicon esculentum) ‘MicroTom’ and its lecer6 mutant, defective in a β-ketoacyl-coenzyme A synthase, which is involved in very-long-chain fatty acid elongation, were analyzed with respect to cuticular wax load and composition. The developmental course of fruit ripening was followed. Both the ‘MicroTom’ wild type and lecer6 mutant showed similar patterns of quantitative wax accumulation, although exhibiting considerably different water permeances. With the exception of immature green fruits, the lecer6 mutant exhibited about 3- to 8-fold increased water loss per unit time and fruit surface area when compared to the wild type. This was not the case with immature green fruits. The differences in final cuticular barrier properties of tomato fruits in both lines were fully developed already in the mature green to early breaker stage of fruit development. When the qualitative chemical composition of fruit cuticular waxes during fruit ripening was investigated, the deficiency in a β-ketoacyl-coenzyme A synthase in the lecer6 mutant became discernible in the stage of mature green fruits mainly by a distinct decrease in the proportion of n-alkanes of chain lengths > C28 and a concomitant increase in cyclic triterpenoids. This shift in cuticular wax biosynthesis of the lecer6 mutant appears to be responsible for the simultaneously occurring increase of water permeance. Changes in cutin composition were also investigated as a function of developmental stage. This integrative functional approach demonstrates a direct relationship between cuticular transpiration barrier properties and distinct chemical modifications in cuticular wax composition during the course of tomato fruit development.
Uploads
Papers by Gerd Vogg