This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Two trials were conducted on chicory (Cichorium intybus L.) grown under greenhouse and growth cha... more Two trials were conducted on chicory (Cichorium intybus L.) grown under greenhouse and growth chamber conditions with the aim to evaluate the potential of three biostimulants (seaweed extract (SWE), animal-derived protein hydrolysate (APH), and vegetal-derived protein hydrolysate (VPH) on improving quali-quantitative traits of taproot, in short and out-of-season production cycles. In the greenhouse trial, VPH biostimulant promoted the inulin yield on a per-hectare basis with respect to the untreated control and APH. Taproot fresh weights, dry weights, and diameter in VPH-treated plants increased in comparison with APH-treated ones. SWE-treated plants showed intermediate values of the root production parameters and the inulin yield, with no statistical difference with VPH, APH, and control. In the growth room trial, SWE, VPH, and control showed no significant differences in growth, root yield, and quality. The results demonstrated that VPH can be useful for improving root production ...
Salinity stress is a major constraint to sustainable crop production due to its adverse impact on... more Salinity stress is a major constraint to sustainable crop production due to its adverse impact on crop growth, physiology, and productivity. As potato is the fourth most important staple food crop, enhancing its productivity is necessary to ensure food security for the ever-increasing population. Identification and cultivation of salt-tolerant potato genotypes are imperative mitigating strategies to cope with stress conditions. For this purpose, fifty-three varieties of potato were screened under control and salt stress conditions for growth and yield-related traits during 2020. Salt stress caused a mean reduction of 14.49%, 8.88%, and 38.75% in plant height, stem numbers, and tuber yield, respectively in comparison to control. Based on percent yield reduction, the genotypes were classified as salt-tolerant (seven genotypes), moderately tolerant (thirty-seven genotypes), and salt-sensitive genotypes (nine genotypes). Seven salt-tolerant and nine salt-sensitive genotypes were further...
The cultivation of nutritionally and economically important crops like tomato are often threatene... more The cultivation of nutritionally and economically important crops like tomato are often threatened by dry spells due to drought as these crops largely depend on an assured water supply. The magnitude and intensity of drought is predicted to intensify under climate change scenarios, particularly in semi-arid regions, where water is already a scarce resource. Hence, it is imperative to devise strategies to mitigate the adverse effects of drought on tomato through improvement in the plant’s efficiency to utilise the moisture in the growth medium. Since the root is the entry point for water, its intrinsic structure and functions play a crucial role in maintaining the soil–water–plant continuum during moisture deficit at the rhizosphere. Grafting offers a great opportunity to replace the root system of the cultivated tomato plants with that of wild species and hence provide a rapid solution to modulate root system architecture in contrast to the time-consuming conventional breeding appro...
Basil (Ocimum basilicum L.) is an essential ingredient of the Mediterranean cuisine due to its di... more Basil (Ocimum basilicum L.) is an essential ingredient of the Mediterranean cuisine due to its distinctive aroma. Genovese basil leaves are used to prepare “pesto”, a condiment that has always caught the interest of consumers and producers. Usually, basil for industrial processing is harvested more than once to extract a higher yield. However, successive cuts can affect quality traits that play a crucial role in defining the product’s final sensory profile. This research was aimed to evaluate the impact of cut on the quantitative and qualitative properties of three Genovese basil cultivars (Aroma 2, Eleonora and Italiano Classico) grown in an open field. Nitrate content, phenolic acids and aromatic profile were determined by ion chromatography (IC), high-performance liquid chromatography (HPLC), and gas chromatography coupled to a mass spectrometer (GC/MS) analysis, respectively. The second harvest increased fresh biomass and total phenolic acids content by 172% and 413%, respective...
Brassica L. microgreens are a fresh microscale vegetable crop of high antioxidant value and natur... more Brassica L. microgreens are a fresh microscale vegetable crop of high antioxidant value and naturally dense in nutrients without the intervention of biofortification or genetic engineering. A climate chamber experiment on peat-based substrate was set up to test microgreens growth and accumulation of secondary metabolites in response to nutrient supplementation. Microgreens mineral content was analyzed through ion chromatography and total ascorbic acid through UV-Vis spectrophotometry, while carotenoids and phenolic acids were quantified by HPLC-DAD and UHPLC-HRMS, respectively. Brussels sprouts and cabbage yield was only reduced by 10%, while nitrate was reduced by 99% in the absence of nutrient supplementation. Rocket yield was prominently reduced by 47%, with a corresponding nitrate reduction of 118%. Brussels sprouts secondary metabolites were not improved by the absence of nutrient supplementation, whereas cabbage microgreens demonstrated a 30% increase in total ascorbic acid an...
This study aimed to assess the morphological and physio-biochemical responses of a commercial wat... more This study aimed to assess the morphological and physio-biochemical responses of a commercial watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) cv. ‘Crimson Sweet’ grafted onto a drought-tolerant rootstock of wild watermelon (bitter apple, Citrullus colocynthis (L.) Schrad, ‘Esfahan’) in comparison with an ungrafted ‘Crimson Sweet’ watermelon or one grafted onto a commercial interspecific Cucurbita hybrid (Cucurbita maxima Duch. × Cucurbita moschata Duch.) rootstock (‘Shintoza’) under water stress. The experiment was conducted in pots under a controlled environment in a greenhouse, and water stress was imposed by maintaining moisture level in pots at 100% (well water (WW)) or 50% (water deficit (WD)) of container capacity (CC). WD significantly decreased most of the morphological traits in ungrafted and grafted plants, while the decrease in growth traits was lower in grafted plants than ungrafted plants. The response of grafted plants onto wild watermelon rootstock (‘Esfahan...
The effect of plant biostimulation on fruits of traditional tomato germplasm is largely unknown. ... more The effect of plant biostimulation on fruits of traditional tomato germplasm is largely unknown. We examined how a tropical plant-derived biostimulant impacts the nutritional, functional, and compositional characteristics of tomato fruits from four landraces, collected in the San Marzano (SM) tomato Protected Designation of Origin (PDO) region, by profiling primary and secondary metabolites. Biostimulation was not able to completely reshuffle the morpho-physiological and nutritional profile of the four landraces. Their distinct phytochemical profile indicated a genotype-specific tuning of the analyzed traits, which also included an improved yield and fruit quality. Biostimulation of SM1 and SM3 increased photosynthetic accumulation of carbohydrate reserves, improved mineral nutrient use efficiency and consequently, yield (+21% and 34%, respectively). Moreover, biostimulation augmented the nutraceutical properties of the SM2 landrace. Interestingly, the plant-derived product increase...
Grafting is among the most ancient agricultural techniques, having been practiced since 2000 BC [... more Grafting is among the most ancient agricultural techniques, having been practiced since 2000 BC [...]
Herbaceous grafting is a propagation method largely used in solanaceous and cucurbit crops for en... more Herbaceous grafting is a propagation method largely used in solanaceous and cucurbit crops for enhancing their agronomic performances especially under (a)biotic stress conditions. Besides these grafting-mediated benefits, recent advances about microbial networking in the soil/root interface, indicated further grafting potentialities to act as soil environment conditioner by modulating microbial communities in the rhizosphere. By selecting a suitable rootstock, grafting can modify the way of interacting root system with the soil environment regulating the plant ecological functions able to moderate soilborne pathogen populations and to decrease the risk of diseases. Genetic resistance(s) to soilborne pathogen(s), root-mediate recruiting of microbial antagonists and exudation of antifungal molecules in the rhizosphere are some defense mechanisms that grafted plants may upgrade, making the cultivation less prone to the use of synthetic fungicides and therefore more sustainable. In the ...
Modern agriculture is facing many difficulties due to a rapidly changing climate, and environment... more Modern agriculture is facing many difficulties due to a rapidly changing climate, and environmental damage from agricultural production. The commitment of scientists and farmers to increase environmentally sustainable agricultural practices is one way to help mitigate environmental impacts. Among these practices, the use of biostimulants could be beneficial for increasing fertilizer efficiency and reducing excessive use in agriculture, and as plant growth regulators capable of increasing both production volume and quality of crops. In our study, rocket plants were grown in a greenhouse and treated with two biostimulants (protein hydrolysates or tropical plant extract), either individually or combined, to assess the effect on yield, dry biomass, mineral content, qualitative parameters as well as on economic profitability of foliar biostimulant applications. Total yield and dry biomass of the plants treated with the three biostimulant combinations on average increased by 48.1% and 37....
Scientists, extensions specialists, and growers are seeking sustainable agricultural practices th... more Scientists, extensions specialists, and growers are seeking sustainable agricultural practices that are able to cope with these objectives in order to ensure global food security and minimize environmental damage. The use of mulching films and plant biostimulants in agriculture seems to be a valid solution for tackling these rising concerns. A greenhouse experiment was conducted in order to elucidate the morpho-physiological and nutritive characteristics of lettuce (Lactuca sativa L.) in response to foliar application of a tropical plant extract (PE) biostimulant and the use of plastic mulches. Two biodegradable mulch treatments (Mater-Bi® 1 and Mater-Bi® 2) were compared to black polyethylene (LDPE) and bare soil. Biodegradable mulch film Mater-Bi® 1 produced a comparable marketable fresh yield to the commercial standard polyethylene (LDPE), whereas Mater-Bi® 2 exhibited the highest crop productivity. When averaged over biostimulant application, lettuce plants grown with biodegrada...
The current research elucidated the agronomical, physiological, qualitative characteristics and m... more The current research elucidated the agronomical, physiological, qualitative characteristics and mineral composition of lettuce (Lactuca sativa L. var. longifolia) after treatments with a beneficial fungus Trichoderma virens (TG41) alone or in combination with a vegetal biopolymer-based biostimulant (VBP; ‘Quik-link’). The experiment consisted of lettuce plants grown in three N conditions: sub-optimal (0N kg ha−1), optimal (70N kg ha−1), and supra-optimal (140N kg ha−1) N levels. Lettuce grown under 0N fertilization showed a significant increase in fresh yield when inoculated with TG41 alone (45%) and a greater increase with TG41 + VBP biostimulant (67%). At 48 days after transplanting, both the TG41 alone or TG41+VBP biostimulant induced higher values of CO2 assimilation in comparison to the control. The mineral concentrations in leaf tissues were greater by 10% for K and 12% for Mg with the TG41+VBP treatments compared to the untreated lettuce. The lettuce plants receiving either T...
Salinity in soil or water is a serious threat to global agriculture; the expected acreage affecte... more Salinity in soil or water is a serious threat to global agriculture; the expected acreage affected by salinity is about 20% of the global irrigated lands. Improving salt tolerance of plants through breeding is a complex undertaking due to the number of traits involved. Grafting, a surgical mean of joining a scion and rootstock of two different genotypes with the desired traits, offers an alternative to breeding and biotechnological approaches to salt tolerance. Grafting can also be used to circumvent other biotic and abiotic stresses. Increasing salinity tolerance in tomato (Solanum lycopresicum L.), a highly nutritious and economical vegetable, will have greater impact on the vegetable industry, especially in (semi) arid regions where salinity in soil and water are more prevalent. Besides, plants also experience salt stress when water in hydroponic system is recycled for tomato production. Grafting high yielding but salt-susceptible tomato cultivars onto salt-resistant/tolerant roo...
The emerging role of plant biostimulants in enhancing nutrient efficiency is important for mainta... more The emerging role of plant biostimulants in enhancing nutrient efficiency is important for maintaining soil fertility under sub-optimal nutrient regimens. We aimed to elucidate the morpho-physiological and biochemical effects as well as mineral composition changes of greenhouse jute (Corchorus olitorius L.) treated with a commercial vegetal-derived biostimulant from a tropical plant extract (PE; Auxym®, Italpollina, Rivoli Veronese, Italy). Plants were sprayed in weekly intervals with a solution containing 2 mL·L−1 PE. Jute plants were supplied with three nutrient solution concentrations: full-, half-, and quarter-strength. Decreasing macronutrient concentrations in the nutrient solution (NS), especially at quarter-strength, triggered a decrease in several morphological (plant height, leaf number, and dry biomass) and physiological (net CO2 assimilation rate (ACO2) and SPAD (Soil Plant Analysis Development) index) parameters. PE application triggered specific ameliorative effects in...
Plant biostimulants (PBs) such as protein hydrolysates and seaweed extracts are attracting the in... more Plant biostimulants (PBs) such as protein hydrolysates and seaweed extracts are attracting the increasing interest of scientists and vegetable growers for their potential toenhance yield and nutritional quality. The current study assessed crop productivity, leaf colorimetry, mineral profile and bioactive compounds of greenhouse spinach in response to the foliar application of three PBs: legume-derived protein hydrolysate [PH], extract of seaweed Ecklonia maxima or mixture of vegetal oils, herbal and seaweed Ascophyllum nodosum extracts. Plants were PB-treated at a rate of 3 mL L−1 four times during their growth cycle at weekly intervals. Foliar PB applications enhanced fresh yield, dry biomass and leaf area of spinach in comparison with untreated plants. Improved yield performance with PB applications was associated with improved chlorophyll biosynthesis (higher SPAD index). The three PB treatments elicited an increase in bioactive compounds (total phenols and ascorbic acid), thus r...
Plant-derived protein hydrolysates (PHs) have received increased attention in the last decade bec... more Plant-derived protein hydrolysates (PHs) have received increased attention in the last decade because of their potential to improve yield, nutritional quality as well as tolerance to abiotic stressors. The current study investigated the effects and the molecular mechanisms of a legume-derived PH under optimal and sub-optimal nitrogen (N) concentrations (112 and 7 mg L, respectively) in tomato ( L.). Growth and mineral composition of tomato plants treated with PHs by foliar spray or substrate drench were compared to untreated plants. In addition, the expression was determined of genes encoding ammonium and nitrate transporters and seven enzymes involved in N metabolism: nitrate reductase (), nitrite reductase (), glutamine synthetase 1 (), glutamine synthetase 2 (), ferredoxin-dependent glutamate synthase (), NADH-dependent glutamate synthase (), and glutamate dehydrogenase (). The root and total plant dry weight, SPAD index and leaf nitrogen content were higher by 21, 17, 7, and 6%,...
Plant biostimulants are receiving great interest for boosting root growth during the first phenol... more Plant biostimulants are receiving great interest for boosting root growth during the first phenological stages of vegetable crops. The present study aimed at elucidating the morphological, physiological, and metabolomic changes occurring in greenhouse melon treated with the biopolymer-based biostimulant Quik-link, containing lateral root promoting peptides, and lignosulphonates. The vegetal-based biopolymer was applied at five rates (0, 0.06, 0.12, 0.24, or 0.48 mL plant) as substrate drench. The application of biopolymer-based biostimulant at 0.12 and 0.24 mL plant enhanced dry weight of melon leaves and total biomass by 30.5 and 27.7%, respectively, compared to biopolymer applications at 0.06 mL plant and untreated plants. The root dry biomass, total root length, and surface in biostimulant-treated plants were significantly higher at 0.24 mL plant and to a lesser extent at 0.12 and 0.48 mL plant, in comparison to 0.06 mL plant and untreated melon plants. A convoluted biochemical r...
Interest in the role of small bioactive molecules (< 500 Da) in plants is on the rise, compell... more Interest in the role of small bioactive molecules (< 500 Da) in plants is on the rise, compelled by plant scientists' attempt to unravel their mode of action implicated in stimulating growth and enhancing tolerance to environmental stressors. The current study aimed at elucidating the morphological, physiological and metabolomic changes occurring in greenhouse tomato (cv. Seny) treated with omeprazole (OMP), a benzimidazole inhibitor of animal proton pumps. The OMP was applied at three rates (0, 10, or 100 μM) as substrate drench for tomato plants grown under nonsaline (control) or saline conditions sustained by nutrient solutions of 1 or 75 mM NaCl, respectively. Increasing NaCl concentration from 1 to 75 mM decreased the tomato shoot dry weight by 49% in the 0 μM OMP treatment, whereas the reduction was not significant at 10 or 100 μM of OMP. Treatment of salinized (75 mM NaCl) tomato plants with 10 and especially 100 μM OMP decreased Na and Cl while it increased Ca concent...
Plant-derived protein hydrolysates (PHs) have gained prominence as plant biostimulants because of... more Plant-derived protein hydrolysates (PHs) have gained prominence as plant biostimulants because of their potential to increase the germination, productivity and quality of a wide range of horticultural and agronomic crops. Application of PHs can also alleviate the negative effects of abiotic plant stress due to salinity, drought and heavy metals. Recent studies aimed at uncovering the mechanisms regulating these beneficial effects indicate that PHs could be directly affecting plants by stimulating carbon and nitrogen metabolism, and interfering with hormonal activity. Indirect effects could also play a role as PHs could enhance nutrient availability in plant growth substrates, and increase nutrient uptake and nutrient-use efficiency in plants. Moreover, the beneficial effects of PHs also could be due to the stimulation of plant microbiomes. Plants are colonized by an abundant and diverse assortment of microbial taxa that can help plants acquire nutrients and water and withstand bioti...
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Two trials were conducted on chicory (Cichorium intybus L.) grown under greenhouse and growth cha... more Two trials were conducted on chicory (Cichorium intybus L.) grown under greenhouse and growth chamber conditions with the aim to evaluate the potential of three biostimulants (seaweed extract (SWE), animal-derived protein hydrolysate (APH), and vegetal-derived protein hydrolysate (VPH) on improving quali-quantitative traits of taproot, in short and out-of-season production cycles. In the greenhouse trial, VPH biostimulant promoted the inulin yield on a per-hectare basis with respect to the untreated control and APH. Taproot fresh weights, dry weights, and diameter in VPH-treated plants increased in comparison with APH-treated ones. SWE-treated plants showed intermediate values of the root production parameters and the inulin yield, with no statistical difference with VPH, APH, and control. In the growth room trial, SWE, VPH, and control showed no significant differences in growth, root yield, and quality. The results demonstrated that VPH can be useful for improving root production ...
Salinity stress is a major constraint to sustainable crop production due to its adverse impact on... more Salinity stress is a major constraint to sustainable crop production due to its adverse impact on crop growth, physiology, and productivity. As potato is the fourth most important staple food crop, enhancing its productivity is necessary to ensure food security for the ever-increasing population. Identification and cultivation of salt-tolerant potato genotypes are imperative mitigating strategies to cope with stress conditions. For this purpose, fifty-three varieties of potato were screened under control and salt stress conditions for growth and yield-related traits during 2020. Salt stress caused a mean reduction of 14.49%, 8.88%, and 38.75% in plant height, stem numbers, and tuber yield, respectively in comparison to control. Based on percent yield reduction, the genotypes were classified as salt-tolerant (seven genotypes), moderately tolerant (thirty-seven genotypes), and salt-sensitive genotypes (nine genotypes). Seven salt-tolerant and nine salt-sensitive genotypes were further...
The cultivation of nutritionally and economically important crops like tomato are often threatene... more The cultivation of nutritionally and economically important crops like tomato are often threatened by dry spells due to drought as these crops largely depend on an assured water supply. The magnitude and intensity of drought is predicted to intensify under climate change scenarios, particularly in semi-arid regions, where water is already a scarce resource. Hence, it is imperative to devise strategies to mitigate the adverse effects of drought on tomato through improvement in the plant’s efficiency to utilise the moisture in the growth medium. Since the root is the entry point for water, its intrinsic structure and functions play a crucial role in maintaining the soil–water–plant continuum during moisture deficit at the rhizosphere. Grafting offers a great opportunity to replace the root system of the cultivated tomato plants with that of wild species and hence provide a rapid solution to modulate root system architecture in contrast to the time-consuming conventional breeding appro...
Basil (Ocimum basilicum L.) is an essential ingredient of the Mediterranean cuisine due to its di... more Basil (Ocimum basilicum L.) is an essential ingredient of the Mediterranean cuisine due to its distinctive aroma. Genovese basil leaves are used to prepare “pesto”, a condiment that has always caught the interest of consumers and producers. Usually, basil for industrial processing is harvested more than once to extract a higher yield. However, successive cuts can affect quality traits that play a crucial role in defining the product’s final sensory profile. This research was aimed to evaluate the impact of cut on the quantitative and qualitative properties of three Genovese basil cultivars (Aroma 2, Eleonora and Italiano Classico) grown in an open field. Nitrate content, phenolic acids and aromatic profile were determined by ion chromatography (IC), high-performance liquid chromatography (HPLC), and gas chromatography coupled to a mass spectrometer (GC/MS) analysis, respectively. The second harvest increased fresh biomass and total phenolic acids content by 172% and 413%, respective...
Brassica L. microgreens are a fresh microscale vegetable crop of high antioxidant value and natur... more Brassica L. microgreens are a fresh microscale vegetable crop of high antioxidant value and naturally dense in nutrients without the intervention of biofortification or genetic engineering. A climate chamber experiment on peat-based substrate was set up to test microgreens growth and accumulation of secondary metabolites in response to nutrient supplementation. Microgreens mineral content was analyzed through ion chromatography and total ascorbic acid through UV-Vis spectrophotometry, while carotenoids and phenolic acids were quantified by HPLC-DAD and UHPLC-HRMS, respectively. Brussels sprouts and cabbage yield was only reduced by 10%, while nitrate was reduced by 99% in the absence of nutrient supplementation. Rocket yield was prominently reduced by 47%, with a corresponding nitrate reduction of 118%. Brussels sprouts secondary metabolites were not improved by the absence of nutrient supplementation, whereas cabbage microgreens demonstrated a 30% increase in total ascorbic acid an...
This study aimed to assess the morphological and physio-biochemical responses of a commercial wat... more This study aimed to assess the morphological and physio-biochemical responses of a commercial watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai) cv. ‘Crimson Sweet’ grafted onto a drought-tolerant rootstock of wild watermelon (bitter apple, Citrullus colocynthis (L.) Schrad, ‘Esfahan’) in comparison with an ungrafted ‘Crimson Sweet’ watermelon or one grafted onto a commercial interspecific Cucurbita hybrid (Cucurbita maxima Duch. × Cucurbita moschata Duch.) rootstock (‘Shintoza’) under water stress. The experiment was conducted in pots under a controlled environment in a greenhouse, and water stress was imposed by maintaining moisture level in pots at 100% (well water (WW)) or 50% (water deficit (WD)) of container capacity (CC). WD significantly decreased most of the morphological traits in ungrafted and grafted plants, while the decrease in growth traits was lower in grafted plants than ungrafted plants. The response of grafted plants onto wild watermelon rootstock (‘Esfahan...
The effect of plant biostimulation on fruits of traditional tomato germplasm is largely unknown. ... more The effect of plant biostimulation on fruits of traditional tomato germplasm is largely unknown. We examined how a tropical plant-derived biostimulant impacts the nutritional, functional, and compositional characteristics of tomato fruits from four landraces, collected in the San Marzano (SM) tomato Protected Designation of Origin (PDO) region, by profiling primary and secondary metabolites. Biostimulation was not able to completely reshuffle the morpho-physiological and nutritional profile of the four landraces. Their distinct phytochemical profile indicated a genotype-specific tuning of the analyzed traits, which also included an improved yield and fruit quality. Biostimulation of SM1 and SM3 increased photosynthetic accumulation of carbohydrate reserves, improved mineral nutrient use efficiency and consequently, yield (+21% and 34%, respectively). Moreover, biostimulation augmented the nutraceutical properties of the SM2 landrace. Interestingly, the plant-derived product increase...
Grafting is among the most ancient agricultural techniques, having been practiced since 2000 BC [... more Grafting is among the most ancient agricultural techniques, having been practiced since 2000 BC [...]
Herbaceous grafting is a propagation method largely used in solanaceous and cucurbit crops for en... more Herbaceous grafting is a propagation method largely used in solanaceous and cucurbit crops for enhancing their agronomic performances especially under (a)biotic stress conditions. Besides these grafting-mediated benefits, recent advances about microbial networking in the soil/root interface, indicated further grafting potentialities to act as soil environment conditioner by modulating microbial communities in the rhizosphere. By selecting a suitable rootstock, grafting can modify the way of interacting root system with the soil environment regulating the plant ecological functions able to moderate soilborne pathogen populations and to decrease the risk of diseases. Genetic resistance(s) to soilborne pathogen(s), root-mediate recruiting of microbial antagonists and exudation of antifungal molecules in the rhizosphere are some defense mechanisms that grafted plants may upgrade, making the cultivation less prone to the use of synthetic fungicides and therefore more sustainable. In the ...
Modern agriculture is facing many difficulties due to a rapidly changing climate, and environment... more Modern agriculture is facing many difficulties due to a rapidly changing climate, and environmental damage from agricultural production. The commitment of scientists and farmers to increase environmentally sustainable agricultural practices is one way to help mitigate environmental impacts. Among these practices, the use of biostimulants could be beneficial for increasing fertilizer efficiency and reducing excessive use in agriculture, and as plant growth regulators capable of increasing both production volume and quality of crops. In our study, rocket plants were grown in a greenhouse and treated with two biostimulants (protein hydrolysates or tropical plant extract), either individually or combined, to assess the effect on yield, dry biomass, mineral content, qualitative parameters as well as on economic profitability of foliar biostimulant applications. Total yield and dry biomass of the plants treated with the three biostimulant combinations on average increased by 48.1% and 37....
Scientists, extensions specialists, and growers are seeking sustainable agricultural practices th... more Scientists, extensions specialists, and growers are seeking sustainable agricultural practices that are able to cope with these objectives in order to ensure global food security and minimize environmental damage. The use of mulching films and plant biostimulants in agriculture seems to be a valid solution for tackling these rising concerns. A greenhouse experiment was conducted in order to elucidate the morpho-physiological and nutritive characteristics of lettuce (Lactuca sativa L.) in response to foliar application of a tropical plant extract (PE) biostimulant and the use of plastic mulches. Two biodegradable mulch treatments (Mater-Bi® 1 and Mater-Bi® 2) were compared to black polyethylene (LDPE) and bare soil. Biodegradable mulch film Mater-Bi® 1 produced a comparable marketable fresh yield to the commercial standard polyethylene (LDPE), whereas Mater-Bi® 2 exhibited the highest crop productivity. When averaged over biostimulant application, lettuce plants grown with biodegrada...
The current research elucidated the agronomical, physiological, qualitative characteristics and m... more The current research elucidated the agronomical, physiological, qualitative characteristics and mineral composition of lettuce (Lactuca sativa L. var. longifolia) after treatments with a beneficial fungus Trichoderma virens (TG41) alone or in combination with a vegetal biopolymer-based biostimulant (VBP; ‘Quik-link’). The experiment consisted of lettuce plants grown in three N conditions: sub-optimal (0N kg ha−1), optimal (70N kg ha−1), and supra-optimal (140N kg ha−1) N levels. Lettuce grown under 0N fertilization showed a significant increase in fresh yield when inoculated with TG41 alone (45%) and a greater increase with TG41 + VBP biostimulant (67%). At 48 days after transplanting, both the TG41 alone or TG41+VBP biostimulant induced higher values of CO2 assimilation in comparison to the control. The mineral concentrations in leaf tissues were greater by 10% for K and 12% for Mg with the TG41+VBP treatments compared to the untreated lettuce. The lettuce plants receiving either T...
Salinity in soil or water is a serious threat to global agriculture; the expected acreage affecte... more Salinity in soil or water is a serious threat to global agriculture; the expected acreage affected by salinity is about 20% of the global irrigated lands. Improving salt tolerance of plants through breeding is a complex undertaking due to the number of traits involved. Grafting, a surgical mean of joining a scion and rootstock of two different genotypes with the desired traits, offers an alternative to breeding and biotechnological approaches to salt tolerance. Grafting can also be used to circumvent other biotic and abiotic stresses. Increasing salinity tolerance in tomato (Solanum lycopresicum L.), a highly nutritious and economical vegetable, will have greater impact on the vegetable industry, especially in (semi) arid regions where salinity in soil and water are more prevalent. Besides, plants also experience salt stress when water in hydroponic system is recycled for tomato production. Grafting high yielding but salt-susceptible tomato cultivars onto salt-resistant/tolerant roo...
The emerging role of plant biostimulants in enhancing nutrient efficiency is important for mainta... more The emerging role of plant biostimulants in enhancing nutrient efficiency is important for maintaining soil fertility under sub-optimal nutrient regimens. We aimed to elucidate the morpho-physiological and biochemical effects as well as mineral composition changes of greenhouse jute (Corchorus olitorius L.) treated with a commercial vegetal-derived biostimulant from a tropical plant extract (PE; Auxym®, Italpollina, Rivoli Veronese, Italy). Plants were sprayed in weekly intervals with a solution containing 2 mL·L−1 PE. Jute plants were supplied with three nutrient solution concentrations: full-, half-, and quarter-strength. Decreasing macronutrient concentrations in the nutrient solution (NS), especially at quarter-strength, triggered a decrease in several morphological (plant height, leaf number, and dry biomass) and physiological (net CO2 assimilation rate (ACO2) and SPAD (Soil Plant Analysis Development) index) parameters. PE application triggered specific ameliorative effects in...
Plant biostimulants (PBs) such as protein hydrolysates and seaweed extracts are attracting the in... more Plant biostimulants (PBs) such as protein hydrolysates and seaweed extracts are attracting the increasing interest of scientists and vegetable growers for their potential toenhance yield and nutritional quality. The current study assessed crop productivity, leaf colorimetry, mineral profile and bioactive compounds of greenhouse spinach in response to the foliar application of three PBs: legume-derived protein hydrolysate [PH], extract of seaweed Ecklonia maxima or mixture of vegetal oils, herbal and seaweed Ascophyllum nodosum extracts. Plants were PB-treated at a rate of 3 mL L−1 four times during their growth cycle at weekly intervals. Foliar PB applications enhanced fresh yield, dry biomass and leaf area of spinach in comparison with untreated plants. Improved yield performance with PB applications was associated with improved chlorophyll biosynthesis (higher SPAD index). The three PB treatments elicited an increase in bioactive compounds (total phenols and ascorbic acid), thus r...
Plant-derived protein hydrolysates (PHs) have received increased attention in the last decade bec... more Plant-derived protein hydrolysates (PHs) have received increased attention in the last decade because of their potential to improve yield, nutritional quality as well as tolerance to abiotic stressors. The current study investigated the effects and the molecular mechanisms of a legume-derived PH under optimal and sub-optimal nitrogen (N) concentrations (112 and 7 mg L, respectively) in tomato ( L.). Growth and mineral composition of tomato plants treated with PHs by foliar spray or substrate drench were compared to untreated plants. In addition, the expression was determined of genes encoding ammonium and nitrate transporters and seven enzymes involved in N metabolism: nitrate reductase (), nitrite reductase (), glutamine synthetase 1 (), glutamine synthetase 2 (), ferredoxin-dependent glutamate synthase (), NADH-dependent glutamate synthase (), and glutamate dehydrogenase (). The root and total plant dry weight, SPAD index and leaf nitrogen content were higher by 21, 17, 7, and 6%,...
Plant biostimulants are receiving great interest for boosting root growth during the first phenol... more Plant biostimulants are receiving great interest for boosting root growth during the first phenological stages of vegetable crops. The present study aimed at elucidating the morphological, physiological, and metabolomic changes occurring in greenhouse melon treated with the biopolymer-based biostimulant Quik-link, containing lateral root promoting peptides, and lignosulphonates. The vegetal-based biopolymer was applied at five rates (0, 0.06, 0.12, 0.24, or 0.48 mL plant) as substrate drench. The application of biopolymer-based biostimulant at 0.12 and 0.24 mL plant enhanced dry weight of melon leaves and total biomass by 30.5 and 27.7%, respectively, compared to biopolymer applications at 0.06 mL plant and untreated plants. The root dry biomass, total root length, and surface in biostimulant-treated plants were significantly higher at 0.24 mL plant and to a lesser extent at 0.12 and 0.48 mL plant, in comparison to 0.06 mL plant and untreated melon plants. A convoluted biochemical r...
Interest in the role of small bioactive molecules (< 500 Da) in plants is on the rise, compell... more Interest in the role of small bioactive molecules (< 500 Da) in plants is on the rise, compelled by plant scientists' attempt to unravel their mode of action implicated in stimulating growth and enhancing tolerance to environmental stressors. The current study aimed at elucidating the morphological, physiological and metabolomic changes occurring in greenhouse tomato (cv. Seny) treated with omeprazole (OMP), a benzimidazole inhibitor of animal proton pumps. The OMP was applied at three rates (0, 10, or 100 μM) as substrate drench for tomato plants grown under nonsaline (control) or saline conditions sustained by nutrient solutions of 1 or 75 mM NaCl, respectively. Increasing NaCl concentration from 1 to 75 mM decreased the tomato shoot dry weight by 49% in the 0 μM OMP treatment, whereas the reduction was not significant at 10 or 100 μM of OMP. Treatment of salinized (75 mM NaCl) tomato plants with 10 and especially 100 μM OMP decreased Na and Cl while it increased Ca concent...
Plant-derived protein hydrolysates (PHs) have gained prominence as plant biostimulants because of... more Plant-derived protein hydrolysates (PHs) have gained prominence as plant biostimulants because of their potential to increase the germination, productivity and quality of a wide range of horticultural and agronomic crops. Application of PHs can also alleviate the negative effects of abiotic plant stress due to salinity, drought and heavy metals. Recent studies aimed at uncovering the mechanisms regulating these beneficial effects indicate that PHs could be directly affecting plants by stimulating carbon and nitrogen metabolism, and interfering with hormonal activity. Indirect effects could also play a role as PHs could enhance nutrient availability in plant growth substrates, and increase nutrient uptake and nutrient-use efficiency in plants. Moreover, the beneficial effects of PHs also could be due to the stimulation of plant microbiomes. Plants are colonized by an abundant and diverse assortment of microbial taxa that can help plants acquire nutrients and water and withstand bioti...
Uploads
Papers by Giuseppe Colla