Papers by Felix Clairvoyant
Revista Española de Cardiología, 2009
INTRODUCTION AND OBJECTIVES: Percutaneous closure of patent ductus arteriosus (PDA) is a well-est... more INTRODUCTION AND OBJECTIVES: Percutaneous closure of patent ductus arteriosus (PDA) is a well-established technique. We evaluated the usefulness of the Amplatzer duct occluder for the percutaneous closure of patent ductus arteriosus in 29 children under 1 ...
Journal of Biological Chemistry, May 2, 1997
Protein-tyrosine phosphatases (PTPs) are involved in the regulation of diverse cellular processes... more Protein-tyrosine phosphatases (PTPs) are involved in the regulation of diverse cellular processes and may function as positive effectors as well as negative regulators of intracellular signaling. Recent data demonstrate that malignant transformation of cells is frequently associated with changes in PTP expression or activity. Our analysis of PTP expression in mammary carcinoma cell lines resulted in the molecular cloning of a receptorlike PTP, also known as DEP-1. DEP-1 was found to be expressed at varying levels in mammary carcinoma cell lines and A431 cells. In all tumor cell lines analyzed, DEP-1 was constitutively phosphorylated on tyrosine residues. Phosphorylation of DEP-1 increased significantly after treatment of cells with the PTP inhibitor pervanadate. In A431 cells, tyrosine phosphorylation of DEP-1 was also observed after stimulation with epidermal growth factor, however, only after prolonged exposure of the cells to the ligand, suggesting an indirect mechanism of phosphorylation. In addition, DEP-1 coprecipitated with several tyrosine-phosphorylated proteins from pervanadate-treated cells. In vitro binding experiments using a glutathione S-transferase fusion protein containing the catalytically inactive PTP domain of DEP-1 (Gst-DEP-1-C/S) identify these proteins as potential substrates of DEP-1. In addition, we found a 64-kDa serine/threonine kinase to be constitutively associated with DEP-1 in all tumor cell lines tested. The 64-kDa kinase forms a stable complex with DEP-1 and phosphorylates DEP-1 and DEP-1-interacting proteins in vitro. These data suggest a possible mechanism of DEP-1 regulation in tumor cell lines involving serine/ threonine and/or tyrosine phosphorylation.
The EMBO Journal, 1998
Genetic and biochemical studies in lower eukaryotes have identified several proteins that ensure ... more Genetic and biochemical studies in lower eukaryotes have identified several proteins that ensure accurate segregation of chromosomes. These include the Drosophila aurora and yeast Ipl1 kinases that are required for centrosome maturation and chromosome segregation. We have identified two human homologues of these genes, termed aurora1 and aurora2, that encode cell-cycle-regulated serine/threonine kinases. Here we demonstrate that the aurora2 gene maps to chromosome 20q13, a region amplified in a variety of human cancers, including a significant number of colorectal malignancies. We propose that aurora2 may be a target of this amplicon since its DNA is amplified and its RNA overexpressed, in more than 50% of primary colorectal cancers. Furthermore, overexpression of aurora2 transforms rodent fibroblasts. These observations implicate aurora2 as a potential oncogene in many colon, breast and other solid tumors, and identify centrosome-associated proteins as novel targets for cancer therapy.
Journal of Biological Chemistry, 2001
p21-activated protein kinase (PAK) serine/threonine kinases are important effectors of Rho family... more p21-activated protein kinase (PAK) serine/threonine kinases are important effectors of Rho family GTPases and have been implicated in the regulation of cell morphology and motility, as well as in cell transformation. To further investigate the possible involvement of PAK kinases in tumorigenesis, we analyzed the expression of several family members in tumor cell lines. Here we demonstrate that PAK4 is frequently overexpressed in human tumor cell lines of various tissue origins. We also have identified serine (Ser-474) as the likely autophosphorylation site in the kinase domain of PAK4 in vivo. Mutation of this serine to glutamic acid (S474E) results in constitutive activation of the kinase. Phosphospecific antibodies directed against serine 474 detect activated PAK4 on the Golgi membrane when PAK4 is co-expressed with activated Cdc42. Furthermore, expression of the active PAK4 (S474E) mutant has transforming potential, leading to anchorage-independent growth of NIH3T3 cells. A kinase-inactive PAK4 (K350A,K351A), on the other hand, efficiently blocks transformation by activated Ras and inhibits anchorage-independent growth of HCT116 colon cancer cells. Taken together, our data strongly implicate PAK4 in oncogenic transformation and suggest that PAK4 activity is required for Ras-driven, anchorage-independent growth.
Journal of Biological Chemistry, 2001
p21-activated protein kinase (PAK) serine/threonine kinases are important effectors of Rho family... more p21-activated protein kinase (PAK) serine/threonine kinases are important effectors of Rho family GTPases and have been implicated in the regulation of cell morphology and motility, as well as in cell transformation. To further investigate the possible involvement of PAK kinases in tumorigenesis, we analyzed the expression of several family members in tumor cell lines. Here we demonstrate that PAK4 is frequently overexpressed in human tumor cell lines of various tissue origins. We also have identified serine (Ser-474) as the likely autophosphorylation site in the kinase domain of PAK4 in vivo. Mutation of this serine to glutamic acid (S474E) results in constitutive activation of the kinase. Phosphospecific antibodies directed against serine 474 detect activated PAK4 on the Golgi membrane when PAK4 is co-expressed with activated Cdc42. Furthermore, expression of the active PAK4 (S474E) mutant has transforming potential, leading to anchorage-independent growth of NIH3T3 cells. A kinase-inactive PAK4 (K350A,K351A), on the other hand, efficiently blocks transformation by activated Ras and inhibits anchorage-independent growth of HCT116 colon cancer cells. Taken together, our data strongly implicate PAK4 in oncogenic transformation and suggest that PAK4 activity is required for Ras-driven, anchorage-independent growth.
Uploads
Papers by Felix Clairvoyant