We show here that MtMMPL1, a Medicago truncatula nodulin gene previously identified by transcript... more We show here that MtMMPL1, a Medicago truncatula nodulin gene previously identified by transcriptomics, represents a novel and specific marker for root and nodule infection by Sinorhizobium meliloti. This was established by determining the spatial pattern of MtMMPL1 expression and evaluating gene activation in the context of various plant and bacterial symbiotic mutant interactions. The MtMMPL1 protein is the first nodulin shown to belong to the large matrix metalloendoproteinase (MMP) family. While plant MMPs are poorly documented, they are well characterized in animals as playing a key role in a number of normal and pathological processes involving the remodeling of the extracellular matrix. MtMMPL1 represents a novel MMP variant, with a substitution of a key amino acid residue within the predicted active site, found exclusively in expressed sequence tags corresponding to legume MMP homologs. An RNA interference approach revealed that decreasing MtMMPL1 expression leads to an accu...
In the model legume Medicago truncatula, we identified a new transcription factor of the CCAAT-bi... more In the model legume Medicago truncatula, we identified a new transcription factor of the CCAAT-binding family, MtHAP2-1, for which RNA interference (RNAi) and in situ hybridization experiments indicate a key role during nodule development, possibly by controlling nodule meristem function. We could also show that MtHAP2-1 is regulated by microRNA169, whose overexpression leads to the same nodule developmental block as MtHAP2-1 RNAi constructs. The complementary expression pattern of miR169 and MtHAP2-1 and the phenotype of miR169-resistant MtHAP2-1 nodules strongly suggest, in addition, that the miR169-mediated restriction of MtHAP2-1 expression to the nodule meristematic zone is essential for the differentiation of nodule cells.
To construct macro-and microarray tools suitable for expression profiling in root endosymbioses o... more To construct macro-and microarray tools suitable for expression profiling in root endosymbioses of the model legume Medicago truncatula, we PCR-amplified a total of 6048 cDNA probes representing genes expressed in uninfected roots, mycorrhizal roots and young root nodules [Nucleic Acids Res. 30 (2002) 5579]. Including additional probes for either tissue-specific or constitutively expressed control genes, 5651 successfully amplified gene-specific probes were used to grid macro-and to spot microarrays designated Mt6k-RIT (M. truncatula 6k root interaction transcriptome). Subsequent to a technical validation of microarray printing, we performed two pilot expression profiling experiments using Cy-labeled targets from Sinorhizobium meliloti-induced root nodules and Glomus intraradices-colonized arbuscular mycorrhizal roots. These targets detected marker genes for nodule and arbuscular mycorrhiza development, amongst them different nodule-specific leghemoglobin and nodulin genes as well as a mycorrhiza-specific phosphate transporter gene. In addition, we identified several dozens of genes that have so far not been reported to be differentially expressed in nodules or arbuscular mycorrhiza thus demonstrating that Mt6k-RIT arrays serve as useful tools for an identification of genes relevant for legume root endosymbioses. A comprehensive profiling
VII Eucarpia Meeting on Cucurbit Genetics and Breeding, 2000
Abstract: Ethylene plays a major role in the ripening of climacteric fruit such as melons (Cucumi... more Abstract: Ethylene plays a major role in the ripening of climacteric fruit such as melons (Cucumis melo) of the cantaloupensis group. However, the importance of other modes of regulation is emerging and demonstrates the interplay between ethylene-dependent and ...
Charentais melons (Cucumis melo L., var cantalupensis Naud.) in which ethylene biosynthesis has b... more Charentais melons (Cucumis melo L., var cantalupensis Naud.) in which ethylene biosynthesis has been suppressed by an antisense ACC oxidase gene have been used to better understand the role of ethylene in the regulation of the ripening process of climacteric fruit and on the development of sensory qualities. We have shown that a number of biochemical and molecular processes associated with the ripening of climacteric fruit are ethylene-independent. In some cases, such as softening of the flesh, the same pathway comprises both ethylene-dependent andindependent components. The various ethylene-dependent events exhibit differential sensitivity to ethylene. The threshold level for degreening of the rind is 1 ppm, while 2.5 ppm are required to trigger the ethylene-dependent component of the softening process. The saturating level of ethylene for all these events is less than 5 ppm, which is by far lower than the internal ethylene concentrations found in the fruit at the climacteric peak (around 100 ppm). Detachment of the fruit influences the development of respiratory climacteric. Fruit remaining attached to the vine, although producing higher levels of ethylene, exhibit a reduced climacteric rise in respiration as compared to detached fruit. The response of antisense ACO fruit to exogenous ethylene in terms of respiration is higher in detached than in attached fruit. Ethylene-suppressed melons show a severe reduction of aroma volatiles production, particularly in ester production. In the biosynthetic pathway of aliphatic esters, the dehydrogenation of fatty acids and aldehydes appears to be ethylene-dependent. In contrast, alcohol acetylation comprises ethylene-dependent and ethylene-independent components, probably corresponding to differentially regulated alcohol acetyl transferases. In terms of sensory quality, these data show that the extension of shelf-life through the inhibition of ethylene production has some beneficial effects on texture and sugar accumulation but is detrimental for the generation of aroma.
In this study, we describe a large-scale expression-profiling approach to identify genes differen... more In this study, we describe a large-scale expression-profiling approach to identify genes differentially regulated during the symbiotic interaction between the model legume Medicago truncatula and the nitrogen-fixing bacterium Sinorhizobium meliloti. Macro- and microarrays containing about 6,000 probes were generated on the basis of three cDNA libraries dedicated to the study of root symbiotic interactions. The experiments performed on wild-type and symbiotic mutant material led us to identify a set of 756 genes either up- or down-regulated at different stages of the nodulation process. Among these, 41 known nodulation marker genes were up-regulated as expected, suggesting that we have identified hundreds of new nodulation marker genes. We discuss the possible involvement of this wide range of genes in various aspects of the symbiotic interaction, such as bacterial infection, nodule formation and functioning, and defense responses. Importantly, we found at least 13 genes that are goo...
In the model legume Medicago truncatula, we identified a new transcription factor of the CCAAT-bi... more In the model legume Medicago truncatula, we identified a new transcription factor of the CCAAT-binding family, MtHAP2-1, for which RNA interference (RNAi) and in situ hybridization experiments indicate a key role during nodule development, possibly by controlling nodule meristem function. We could also show that MtHAP2-1 is regulated by microRNA169, whose overexpression leads to the same nodule developmental block as MtHAP2-1 RNAi constructs. The complementary expression pattern of miR169 and MtHAP2-1 and the phenotype of miR169-resistant MtHAP2-1 nodules strongly suggest, in addition, that the miR169-mediated restriction of MtHAP2-1 expression to the nodule meristematic zone is essential for the differentiation of nodule cells.
We show here that MtMMPL1, a Medicago truncatula nodulin gene previously identified by transcript... more We show here that MtMMPL1, a Medicago truncatula nodulin gene previously identified by transcriptomics, represents a novel and specific marker for root and nodule infection by Sinorhizobium meliloti. This was established by determining the spatial pattern of MtMMPL1 expression and evaluating gene activation in the context of various plant and bacterial symbiotic mutant interactions. The MtMMPL1 protein is the first nodulin shown to belong to the large matrix metalloendoproteinase (MMP) family. While plant MMPs are poorly documented, they are well characterized in animals as playing a key role in a number of normal and pathological processes involving the remodeling of the extracellular matrix. MtMMPL1 represents a novel MMP variant, with a substitution of a key amino acid residue within the predicted active site, found exclusively in expressed sequence tags corresponding to legume MMP homologs. An RNA interference approach revealed that decreasing MtMMPL1 expression leads to an accu...
In the model legume Medicago truncatula, we identified a new transcription factor of the CCAAT-bi... more In the model legume Medicago truncatula, we identified a new transcription factor of the CCAAT-binding family, MtHAP2-1, for which RNA interference (RNAi) and in situ hybridization experiments indicate a key role during nodule development, possibly by controlling nodule meristem function. We could also show that MtHAP2-1 is regulated by microRNA169, whose overexpression leads to the same nodule developmental block as MtHAP2-1 RNAi constructs. The complementary expression pattern of miR169 and MtHAP2-1 and the phenotype of miR169-resistant MtHAP2-1 nodules strongly suggest, in addition, that the miR169-mediated restriction of MtHAP2-1 expression to the nodule meristematic zone is essential for the differentiation of nodule cells.
To construct macro-and microarray tools suitable for expression profiling in root endosymbioses o... more To construct macro-and microarray tools suitable for expression profiling in root endosymbioses of the model legume Medicago truncatula, we PCR-amplified a total of 6048 cDNA probes representing genes expressed in uninfected roots, mycorrhizal roots and young root nodules [Nucleic Acids Res. 30 (2002) 5579]. Including additional probes for either tissue-specific or constitutively expressed control genes, 5651 successfully amplified gene-specific probes were used to grid macro-and to spot microarrays designated Mt6k-RIT (M. truncatula 6k root interaction transcriptome). Subsequent to a technical validation of microarray printing, we performed two pilot expression profiling experiments using Cy-labeled targets from Sinorhizobium meliloti-induced root nodules and Glomus intraradices-colonized arbuscular mycorrhizal roots. These targets detected marker genes for nodule and arbuscular mycorrhiza development, amongst them different nodule-specific leghemoglobin and nodulin genes as well as a mycorrhiza-specific phosphate transporter gene. In addition, we identified several dozens of genes that have so far not been reported to be differentially expressed in nodules or arbuscular mycorrhiza thus demonstrating that Mt6k-RIT arrays serve as useful tools for an identification of genes relevant for legume root endosymbioses. A comprehensive profiling
VII Eucarpia Meeting on Cucurbit Genetics and Breeding, 2000
Abstract: Ethylene plays a major role in the ripening of climacteric fruit such as melons (Cucumi... more Abstract: Ethylene plays a major role in the ripening of climacteric fruit such as melons (Cucumis melo) of the cantaloupensis group. However, the importance of other modes of regulation is emerging and demonstrates the interplay between ethylene-dependent and ...
Charentais melons (Cucumis melo L., var cantalupensis Naud.) in which ethylene biosynthesis has b... more Charentais melons (Cucumis melo L., var cantalupensis Naud.) in which ethylene biosynthesis has been suppressed by an antisense ACC oxidase gene have been used to better understand the role of ethylene in the regulation of the ripening process of climacteric fruit and on the development of sensory qualities. We have shown that a number of biochemical and molecular processes associated with the ripening of climacteric fruit are ethylene-independent. In some cases, such as softening of the flesh, the same pathway comprises both ethylene-dependent andindependent components. The various ethylene-dependent events exhibit differential sensitivity to ethylene. The threshold level for degreening of the rind is 1 ppm, while 2.5 ppm are required to trigger the ethylene-dependent component of the softening process. The saturating level of ethylene for all these events is less than 5 ppm, which is by far lower than the internal ethylene concentrations found in the fruit at the climacteric peak (around 100 ppm). Detachment of the fruit influences the development of respiratory climacteric. Fruit remaining attached to the vine, although producing higher levels of ethylene, exhibit a reduced climacteric rise in respiration as compared to detached fruit. The response of antisense ACO fruit to exogenous ethylene in terms of respiration is higher in detached than in attached fruit. Ethylene-suppressed melons show a severe reduction of aroma volatiles production, particularly in ester production. In the biosynthetic pathway of aliphatic esters, the dehydrogenation of fatty acids and aldehydes appears to be ethylene-dependent. In contrast, alcohol acetylation comprises ethylene-dependent and ethylene-independent components, probably corresponding to differentially regulated alcohol acetyl transferases. In terms of sensory quality, these data show that the extension of shelf-life through the inhibition of ethylene production has some beneficial effects on texture and sugar accumulation but is detrimental for the generation of aroma.
In this study, we describe a large-scale expression-profiling approach to identify genes differen... more In this study, we describe a large-scale expression-profiling approach to identify genes differentially regulated during the symbiotic interaction between the model legume Medicago truncatula and the nitrogen-fixing bacterium Sinorhizobium meliloti. Macro- and microarrays containing about 6,000 probes were generated on the basis of three cDNA libraries dedicated to the study of root symbiotic interactions. The experiments performed on wild-type and symbiotic mutant material led us to identify a set of 756 genes either up- or down-regulated at different stages of the nodulation process. Among these, 41 known nodulation marker genes were up-regulated as expected, suggesting that we have identified hundreds of new nodulation marker genes. We discuss the possible involvement of this wide range of genes in various aspects of the symbiotic interaction, such as bacterial infection, nodule formation and functioning, and defense responses. Importantly, we found at least 13 genes that are goo...
In the model legume Medicago truncatula, we identified a new transcription factor of the CCAAT-bi... more In the model legume Medicago truncatula, we identified a new transcription factor of the CCAAT-binding family, MtHAP2-1, for which RNA interference (RNAi) and in situ hybridization experiments indicate a key role during nodule development, possibly by controlling nodule meristem function. We could also show that MtHAP2-1 is regulated by microRNA169, whose overexpression leads to the same nodule developmental block as MtHAP2-1 RNAi constructs. The complementary expression pattern of miR169 and MtHAP2-1 and the phenotype of miR169-resistant MtHAP2-1 nodules strongly suggest, in addition, that the miR169-mediated restriction of MtHAP2-1 expression to the nodule meristematic zone is essential for the differentiation of nodule cells.
Uploads
Papers by F. Yahyaoui