Papers by Dr. Rajesh W. Raut
Studies in Mechanobiology, Tissue Engineering and Biomaterials
Green Processing and Synthesis
Throughout history, the utilization of plant products as medicinal remedies has been widespread, ... more Throughout history, the utilization of plant products as medicinal remedies has been widespread, with numerous modern drugs finding their origins in the plant kingdom. Taxol, derived from Taxus species, stands out as an exceptional and highly potent anticancer medication. In this study, we present a rapid one-pot synthesis method for silver nanoparticles (AgNPs) using the leaves of Taxus wallichiana Zucca in the presence of sunlight. The synthesized AgNPs were comprehensively characterized using X-ray diffraction, transmission electron microscopy, and HPLC Q-TOF. The AgNPs were further investigated for their antioxidative, anticancer, anti-inflammatory, and antiurolithi properties. The anticancer activity was assessed through a sulforhodamine B assay conducted on the MDA-MB-231 human breast carcinoma cell line and SiHa human cervical cancer cell line. The findings of this study reveal the impressive antioxidative, anticancer, anti-inflammatory, and antiurolithi characteristics exhib...
Agrochemicals
The microflora of the soil is adversely affected by chemical fertilizers. Excessive use of chemic... more The microflora of the soil is adversely affected by chemical fertilizers. Excessive use of chemical fertilizers has increased crop yield dramatically at the cost of soil vigor. The pH of the soil is temporarily changed by chemical fertilizers, which kill the beneficial soil microflora and can cause absorption stress on crop plants. This leads to higher dosages during the application, causing groundwater leaching and environmental toxicity. Nanofertilizers (NFs) reduce the quantity of fertilizer needed in agriculture, enhance nutrient uptake efficiency, and decrease fertilizer loss due to runoff and leaching. Moreover, NFs can be used for soil or foliar applications and have shown promising results in a variety of plant species. The main constituents of nanomaterials are micro- and macronutrient precursors and their properties at the nanoscale. Innovative approaches to their application as a growth promoter for crops, their modes of application, and the mechanism of absorption in pla...
Journal of Photochemistry and Photobiology A: Chemistry
Environmental Bioremediation Technologies
In future, modification and adaptation of nanotechnology will extend the quality and length of li... more In future, modification and adaptation of nanotechnology will extend the quality and length of life. The breath of anticipated opportunities, cross-disciplinary nature, potential for innovation, historical track records and the impact of the potential gains of nanotechnology research have led to the recognization of this area with special emphasis. The social benefits are significant from nanomaterials and the new products are applicable to information technology, medicine, energy, and environment. An important challenge in nanotechnology is to tailor optical, electric and electronic properties of nanoparticles by controlling the size and shape. Utilization of microbe for intracellular/extracellular synthesis of nanoparticles with different chemical composition, size/shapes and controlled monodispersity can be a novel, economically viable and eco-friendly strategy that can reduce toxic chemicals in the conventional protocol.
Nano-micro Letters, May 20, 2010
Extract of oven dried leaves of Pongamia pinnata (L) Pierre was used for the synthesis of silver ... more Extract of oven dried leaves of Pongamia pinnata (L) Pierre was used for the synthesis of silver nanoparticles. Stable and crystalline silver nanoparticles were formed by the treatment of aqueous solution of AgNO 3 (1mM) with dried leaf extract of Pongamia pinnata (L) Pierre. UV-visible spectroscopy studies were carried out to quantify the formation of silver nanoparticles. Transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy were used to characterize the silver nanoparticles. TEM image divulges that silver nanoparticles are quite polydispersed, the size ranging from 20 nm to 50 nm with an average of 38 nm. Water soluble heterocyclic compounds such as flavones were mainly responsible for the reduction and stabilization of the nanoparticles. Silver nanoparticles were effective against Escherichia coli (ATCC 8739), Staphylococcus aureus (ATCC 6538p), Pseudomonas aeruginosa (ATCC 9027) and Klebsiella pneumoniae (clinical isolate). The move towards extracellular synthesis using dried biomass appears to be cost effective, eco-friendly to the conventional methods of nanoparticles synthesis.
CRC Press eBooks, Nov 15, 2022
IEEE Transactions on NanoBioscience
Molecules
In the current decade, nanoparticles are synthesized using solvents that are environmentally frie... more In the current decade, nanoparticles are synthesized using solvents that are environmentally friendly. A number of nanoparticles have been synthesized at room temperature using water as a solvent, such as gold (Au) and silver (Ag) nanoparticles. As part of nanotechnology, nanoparticles are synthesized through biological processes. Biological methods are the preferred method for the synthesis of inorganic nanoparticles (AgNPs) as a result of their simple and non-hazardous nature. Nanoparticles of silver are used in a variety of applications, including catalysts, spectrally selective coatings for solar absorption, optical objectives, pharmaceutical constituents, and chemical and biological sensing. Antimicrobial agents are among the top uses of silver nanoparticles. In the current study, silver nanoparticles were biologically manufactured through Madhuca longifolia, and their antibacterial activity against pathogenic microorganisms, anticancer, anti-inflammatory, and antioxidant activ...
Colloids and Surfaces B: Biointerfaces, 2015
We report a rapid one-step immunoassay to detect protein using antibody conjugated gold nanoparti... more We report a rapid one-step immunoassay to detect protein using antibody conjugated gold nanoparticles (AbGNPs) where the targeted protein concentration was determined by analyzing the gold nanoparticle aggregation caused by antibody-antigen interactions using nanoparticles tracking analysis (NTA) technique. The sandwich structure constituting the binding of the targeted human IgG to the gold nanoparticle conjugates with goat anti human monoclonal IgG (AbGNPs) was confirmed by transmission electron microscopy. The binding of human IgG (antigen, mentioned hence forth as AT) induce AbGNPs to form dimers or trimers through a typical antibody-antigen-antibody sandwich structure that can be analyzed for the sensitive determination on the basis of change in hydrodynamic diameter of AbGNPs. By this method the minimum detectable concentration of AT is found to be below 2pg/ml. We expect that a significant change in the hydrodynamic diameter of AbGNP could form the basis for the rapid one-step immunoassay development.
Colloids and Surfaces B: Biointerfaces, 2011
Extracellular biosynthesis of silver nanoparticles using five fungal species including Fusarium o... more Extracellular biosynthesis of silver nanoparticles using five fungal species including Fusarium oxysporum and four others isolated from native lichens (Kerman, Iran) was investigated in this study. These fungal species were identified as Arctoparmelia incurva, Penicillium chrysogenum, Uncultured root-associated fungus, and Caloplaca arnoldii by using ITS rRNA sequence analysis. These species were then cultivated in four common industrial wastes, namely a combination of yeast and malt extract, sugar beet molasses, whey, and wastewater of beverage industry, prior to their use for biosynthesis. The synthesis of the nanoparticles was monitored by UV-visible spectroscopy. It was found to be significantly affected by both fungal species and their cultivation media. C. arnoldii cultivated in the yeast and malt extract resulted in the best performance regarding reaction kinetics, particle mean diameter and size distribution. The mean diameter and variance of the nanoparticles were determined to be about 11 nm and 24 by using transmission electron microscopy and powder X-ray diffraction techniques, respectively. The zeta potential of the nanoparticles was measured to be −21.5 mV confirming their long-term stability. These findings suggest a new biosynthetic route towards eco-friendly and inexpensive production of the nanoparticles in bulk.
IEEE Transactions on NanoBioscience, 2021
Phytopathogens are responsible for huge losses in the agriculture sector. Amongst them, fungal ph... more Phytopathogens are responsible for huge losses in the agriculture sector. Amongst them, fungal phytopathogen is quite difficult to control. Many chemicals are available in the market, claiming the high activity against them. However, the development of resistance by the fungal pathogen is the main concern to overcome their menace. Nanotechnology-based products can be a potential alternative to conventional fungicides. Amongst various nanoparticles, Copper nanoparticles (CuNPs) are appearing to be a promising antifungal candidate. It can be synthesized by various methods, but the myco-fabrication appears to be an environmental-friendly approach. Hence, the present study is an attempt to synthesize CuNPs using Aspergillus flavus. The myco-fabricated CuNPs were characterized by UV spectrophotometer, Fourier transform infrared spectroscopy (FTIR), Nanoparticles tracking and analysis system (NTA), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD) and Zeta potential measurement. Myco-fabricated CuNPs showed maximum absorbance at 602 nm and particle size ranging 5-12 nm with the least average size of 8 nm with spherical shape and moderate stability. Myco-fabricated CuNPs tested against selected fungal crop pathogens viz. Aspergillus niger, Fusariumoxysporum, and Alternaria alternata reveal a significant effect. Besides these we have given the hypothetical mechanism depicting the antifungal action of myco-fabricated CuNPs.
Advanced Materials Proceedings, 2017
In the present investigation, we demonstrated the fabrication of polyethylene glycol (PEG) embedd... more In the present investigation, we demonstrated the fabrication of polyethylene glycol (PEG) embedded a WO3graphene film. Transparent and electrically composite films of polyethylene glycol (PEG) were fabricated on ITO coated substrate by incorporation of WO3-graphene Nano sheets into PEG followed by spin coating and chemical reduction. The obtained film exhibited good sensitivity for H2 and LPG gas sensing applications to be used in diverse areas.
Advanced Materials Letters, 2013
The fabrication of metal nanoparticles is undergoing the revolutionary changes due to their wides... more The fabrication of metal nanoparticles is undergoing the revolutionary changes due to their widespread applications in the areas like selective and specific catalysis such as hydrogenation, optoelectronics, semiconductor, sensing and diagnosis. Biologically, the metal nanoparticles are produced using fungi, yeasts, bacteria, algae and plant biomass. The metal nanoparticles synthesized using biological methods include mainly silver and gold. The synthesis of metals like platinum and palladium is still unexplored. In this context we have synthesized Platinum and palladium metal nanoparticles using root extract of Asparagus racemosus Linn. at room temperature. The synthesized metals were characterized using UV-visible spectroscopy, Transmission Electron Microscopy (TEM) and Cyclic Voltammetry (CV) techniques. UV-Visible study revealed that in both cases nanoparticles are produced within 5 min. TEM study shows that metal nanoparticles formed are crystalline in nature and spherical in shape. It also shows that Pt and Pd nanoparticles are nearly monodispersed and having a particle size ranging between 1 to 6nm. CV of the metal nanoparticles shows reversible redox behavior. The method reported for the synthesis of metal nanoparitcles is clean, rapid and ecofriendly.
IET Nanobiotechnology, 2017
Cotton fibres coated with biogenically fabricated silver nanoparticles (SNPs) are most sought mat... more Cotton fibres coated with biogenically fabricated silver nanoparticles (SNPs) are most sought material because of their enhanced activity and biocompatibility. After successful synthesis of SNPs on cotton fibres using leaf extract of Vitex negundo Linn, the fibres were studied using diffuse reflectance spectroscopy, scanning electron microscopy, nanoparticle tracking analysis, energy dispersive X-ray, and inductively coupled plasma atomic emission spectrometry. The characterisation revealed uniformly distributed spherical agglomerates of SNPs having individual particle size around 50 nm with the deposition load of 423 μg of silver per gram of cotton. Antimicrobial assay of cotton-SNPs fibres showed effective performance against pathogenic bacteria and fungi. The method is biogenic, environmentally benign, rapid, and cost-effective, producing highly biocompatible antimicrobial coating required for the healthcare industry.
Acta poloniae pharmaceutica
Mixed ligand ternary Zr(IV) complexes of type [M(Q)2LNO3xH2O] have been synthesized using 8-hydro... more Mixed ligand ternary Zr(IV) complexes of type [M(Q)2LNO3xH2O] have been synthesized using 8-hydroxyquinoline (HQ) as a primary ligand and N- and/O-donor amino acids (HL) such as L-serine, L-alanine and glycine as secondary ligands. These complexes were characterized on the basis of elemental analysis, conductance measurement, spectral and thermal studies. The molar conductance study of the complexes in DMF solvent signifies their non-electrolytic nature whereas the thermal analyses specify presence of a coordinated water molecule. The complexes were tested for antifungal and antibacterial activity by using agar well diffusion bioassay. The antibacterial activity was tested against the pathogenic bacteria Staphylococcus aureus and Enterococcus faecium. The results obtained were evaluated with antibacterial standard vancomycin. The antifungal activity was tested against Candida albicans, Candida krusei, Aspergillus fumigatus and the results obtained were compared with antifungal stand...
Materials Chemistry and Physics, 2014
Uploads
Papers by Dr. Rajesh W. Raut