Papers by Dr.Intikhab Alam
Toxins
Mosquito densoviruses (MDVs) are mosquito-specific viruses that are recommended as mosquito bio-c... more Mosquito densoviruses (MDVs) are mosquito-specific viruses that are recommended as mosquito bio-control agents. The MDV Aedes aegypti densovirus (AeDNV) is a good candidate for controlling mosquitoes. However, the slow activity restricts their widespread use for vector control. In this study, we introduced the Bacillus thuringiensis (Bti) toxin Cry11Aa domain II loop α8 and Cyt1Aa loop β6-αE peptides into the AeDNV genome to improve its mosquitocidal efficiency; protein expression was confirmed using nanoscale liquid chromatography coupled to tandem mass spectrometry (nano LC-MS/MS). Recombinant plasmids were transfected into mosquito C6/36 cell lines, and the expression of specific peptides was detected through RT-PCR. A toxicity bioassay against the first instar Aedes albopictus larvae revealed that the pathogenic activity of recombinant AeDNV was significantly higher and faster than the wild-type (wt) viruses, and mortality increased in a dose-dependent manner. The recombinant vi...
Plants, 2021
The YABBY gene family is one of the plant transcription factors present in all seed plants. The f... more The YABBY gene family is one of the plant transcription factors present in all seed plants. The family members were extensively studied in various plants and shown to play important roles in plant growth and development, such as the polarity establishment in lateral organs, the formation and development of leaves and flowers, and the response to internal plant hormone and external environmental stress signals. In this study, a total of 364 YABBY genes were identified from 37 Brassicaceae genomes, of which 15 were incomplete due to sequence gaps, and nine were imperfect (missing C2C2 zinc-finger or YABBY domain) due to sequence mutations. Phylogenetic analyses resolved these YABBY genes into six compact clades except for a YAB3-like gene identified in Aethionema arabicum. Seventeen Brassicaceae species each contained a complete set of six basic YABBY genes (i.e., 1 FIL, 1 YAB2, 1 YAB3, 1 YAB5, 1 INO and 1 CRC), while 20 others each contained a variable number of YABBY genes (5–25) ca...
Diversity, 2022
GOLDEN2-LIKE (GLK) transcription factors are a subfamily of GARP family transcription factors, wh... more GOLDEN2-LIKE (GLK) transcription factors are a subfamily of GARP family transcription factors, which play an essential function in plant growth and development as well as stress response during abiotic and biotic stress conditions. This study reports GLK genes in the Arabidopsis thaliana genome in-depth and identified 55 AtGLK genes in the Arabidopsis genome. Phylogenetic analyses resolved these GLK gene clusters into seven groups. A Ka/Ks ratios analysis indicated that they had experienced purifying selection. Many essential cis elements are present in the promoter regions of AtGLK genes associated with plant hormones, light, and stress. The expression profile from RNA-Seq data revealed that 29.1% of them had relatively high expression in all tested tissues or organs, indicating their crucial housekeeping function in plant growth and development. However, many other GLK members were selectively expressed in particular tissues or organs. In silico study of the transcriptional regula...
Plants, 2022
The GIF gene family is one of the plant transcription factors specific to seed plants. The family... more The GIF gene family is one of the plant transcription factors specific to seed plants. The family members are expressed in all lateral organs produced by apical and floral meristems and contribute to the development of leaves, shoots, flowers, and seeds. This study identified eight GIF genes in the soybean genome and clustered them into three groups. Analyses of Ka/Ks ratios and divergence times indicated that they had undergone purifying selection during species evolution. RNA-sequence and relative expression patterns of these GmGIF genes tended to be conserved, while different expression patterns were also observed between the duplicated GIF members in soybean. Numerous cis-regulatory elements related to plant hormones, light, and stresses were found in the promoter regions of these GmGIF genes. Moreover, the expression patterns of GmGIF members were confirmed in soybean roots under cadmium (Cd) and copper (Cu) stress, indicating their potential functions in the heavy metal respon...
Scientific Reports, 2021
Exponential rise of metagenomics sequencing is delivering massive functional environmental genomi... more Exponential rise of metagenomics sequencing is delivering massive functional environmental genomics data. However, this also generates a procedural bottleneck for on-going re-analysis as reference databases grow and methods improve, and analyses need be updated for consistency, which require access to increasingly demanding bioinformatic and computational resources. Here, we present the KAUST Metagenomic Analysis Platform (KMAP), a new integrated open web-based tool for the comprehensive exploration of shotgun metagenomic data. We illustrate the capacities KMAP provides through the re-assembly of ~ 27,000 public metagenomic samples captured in ~ 450 studies sampled across ~ 77 diverse habitats. A small subset of these metagenomic assemblies is used in this pilot study grouped into 36 new habitat-specific gene catalogs, all based on full-length (complete) genes. Extensive taxonomic and gene annotations are stored in Gene Information Tables (GITs), a simple tractable data integration ...
Estimates of marine plastic stocks, a major threat to marine life (1), are far lower than expecte... more Estimates of marine plastic stocks, a major threat to marine life (1), are far lower than expected from exponentially-increasing litter inputs, suggesting important loss factors (2, 3). These may involve microbial degradation, as the plastic-degrading polyethylene terephthalate enzyme (PETase) has been reported in marine microbial communities (4). An assessment of 416 metagenomes of planktonic communities across the global ocean identifies 68 oceanic PETase variants (oPETase) that evolved from ancestral enzymes degrading polycyclic aromatic hydrocarbons. Twenty oPETases show predicted efficiencies comparable to those of laboratory-optimized PETases, suggesting strong selective pressures directing the evolution of these enzymes. We found oPETases in 90.1% of samples across all oceans and depths, particularly abundant at 1,000 m depth, with a strong dominance of Pseudomonadales containing putative highly-efficient oPETase variants in the dark ocean. Enzymatic degradation may be removi...
Environmental Microbiology, 2020
Massive metagenomic sequencing combined with gene prediction methods were previously used to comp... more Massive metagenomic sequencing combined with gene prediction methods were previously used to compile the gene catalogue of the ocean and hostassociated microbes. Global expeditions conducted over the past 15 years have sampled the ocean to build a catalogue of genes from pelagic microbes. Here we undertook a large sequencing effort of a perturbed Red Sea plankton community to uncover that the rate of gene discovery increases continuously with sequencing effort, with no indication that the retrieved 2.83 million non-redundant (complete) genes predicted from the experiment represented a nearly complete inventory of the genes present in the sampled community (i.e., no evidence of saturation). The underlying reason is the Pareto-like distribution of the abundance of genes in the plankton community, resulting in a very long tail of millions of genes present at remarkably low abundances, which can only be retrieved through massive sequencing. Microbial metagenomic projects retrieve a variable number of unique genes per Tera base-pair (Tbp), with a median value of 14.7 million unique genes per Tbp sequenced across projects. The increase in the rate of gene discovery in microbial metagenomes with sequencing effort implies that there is ample room for new gene discovery in further ocean and holobiont sequencing studies.
Frontiers in Microbiology, 2020
Complete Genome Sequence of Cronobacter muytjensii JZ38 with more in vitro assays will provide a ... more Complete Genome Sequence of Cronobacter muytjensii JZ38 with more in vitro assays will provide a better understanding the highlighted genes' involvement in JZ38's functional potential and its interaction with plants. Nevertheless, these results provide insight into the bioactivity of C. muytjensii JZ38 as a multi-stress tolerance promoting bacterium with a potential use in agriculture.
BMC Genomics, 2019
BackgroundPlant homeodomain (PHD) finger proteins are widely present in all eukaryotes and play i... more BackgroundPlant homeodomain (PHD) finger proteins are widely present in all eukaryotes and play important roles in chromatin remodeling and transcriptional regulation. The PHD finger can specifically bind a number of histone modifications as an “epigenome reader”, and mediate the activation or repression of underlying genes. Many PHD finger genes have been characterized in animals, but only few studies were conducted on plant PHD finger genes to this day.Brassica rapa(AA, 2n = 20) is an economically important vegetal, oilseed and fodder crop, and also a good model crop for functional and evolutionary studies of important gene families amongBrassicaspecies due to its close relationship toArabidopsis thaliana.ResultsWe identified a total of 145 putative PHD finger proteins containing 233 PHD domains from the current version ofB. rapagenome database. Gene ontology analysis showed that 67.7% of them were predicted to be located in nucleus, and 91.3% were predicted to be involved in prot...
Genes, 2019
The HECT-domain protein family is one of the most important classes of E3 ligases. While the role... more The HECT-domain protein family is one of the most important classes of E3 ligases. While the roles of this family in human diseases have been intensively studied, the information for plant HECTs is limited. In the present study, we performed the identification of HECT genes in Brassica rapa and Brassica oleracea, followed by analysis of phylogeny, gene structure, additional domains, putative cis-regulatory elements, chromosomal location, synteny, and expression. Ten and 13 HECT genes were respectively identified in B. rapa and B. oleracea and then resolved into seven groups along with their Arabidopsis orthologs by phylogenetic analysis. This classification is well supported by analyses of gene structure, motif composition within the HECT domain and additional protein domains. Ka/Ks ratio analysis showed that these HECT genes primarily underwent purifying selection with varied selection pressures resulting in different rates of evolution. RNA-Seq data analysis showed that the overwh...
Frontiers in Microbiology, 2019
Halophilic methanogens play an important role in the carbon cycle in hypersaline environments, bu... more Halophilic methanogens play an important role in the carbon cycle in hypersaline environments, but are under-represented in culture collections. In this study, we describe a novel Methanohalophilus strain that was isolated from the sulfide-rich brine-seawater interface of Kebrit Deep in the Red Sea. Based on physiological and phylogenomic features, strain RSK, which is the first methanogenic archaeon to be isolated from a deep hypersaline anoxic brine lake of the Red Sea, represents a novel species of this genus. In order to compare the genetic traits underpinning the adaptations of this genus in diverse hypersaline environments, we sequenced the genome of strain RSK and compared it with genomes of previously isolated and well characterized species in this genus (Methanohalophilus mahii, Methanohalophilus halophilus, Methanohalophilus portucalensis, and Methanohalophilus euhalobius). These analyses revealed a highly conserved genomic core of greater than 93% of annotated genes (1490 genes) containing pathways for methylotrophic methanogenesis, osmoprotection through saltout strategy, and oxidative stress response, among others. Despite the high degree of genomic conservation, species-specific differences in sulfur and glycogen metabolisms, viral resistance, amino acid, and peptide uptake machineries were also evident. Thus, while Methanohalophilus species are found in diverse extreme environments, each genotype also possesses adaptive traits that are likely relevant in their respective hypersaline habitats.
FEBS Open Bio, 2018
Enzymes originating from hostile environments offer exceptional stability under industrial condit... more Enzymes originating from hostile environments offer exceptional stability under industrial conditions and are therefore highly in demand. Using single-cell genome data, we identified the alcohol dehydrogenase gene, adh/a1a, from the Atlantis II Deep Red Sea brine pool. ADH/A1a is highly active at elevated temperatures and high salt concentrations (optima at 70 °C and 4 M KCl), and withstands organic solvents. The polyextremophilic ADH/A1a exhibits a broad substrate scope including aliphatic and aromatic alcohols and is able to reduce cinnamylmethyl-ketone and raspberry ketone in the reverse reaction, making it a possible candidate for
Frontiers in plant science, 2018
Scientific reports, Jan 23, 2018
Globally, Aedes aegypti is one of the most dangerous mosquitoes that plays a crucial role as a ve... more Globally, Aedes aegypti is one of the most dangerous mosquitoes that plays a crucial role as a vector for human diseases, such as yellow fever, dengue, and chikungunya. To identify (1) transcriptomic basis of midgut (2) key genes that are involved in the toxicity process by a comparative transcriptomic analysis between the control and Bacillus thuringiensis (Bt) toxin (LLP29 proteins)-treated groups. Next-generation sequencing technology was used to sequence the midgut transcriptome of A. aegypti. A total of 17130 unigenes, including 574 new unigenes, were identified containing 16358 (95.49%) unigenes that were functionally annotated. According to differentially expressed gene (DEG) analysis, 557 DEGs were annotated, including 226 upregulated and 231 downregulated unigenes in the Bt toxin-treated group. A total of 442 DEGs were functionally annotated; among these, 33 were specific to multidrug resistance, 6 were immune-system-related (Lectin, Defensin, Lysozyme), 28 were related to ...
FASEB journal : official publication of the Federation of American Societies for Experimental Biology, Jan 24, 2018
The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high t... more The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein's surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive f...
Frontiers in microbiology, 2017
Enterobacter sp. SA187 is an endophytic bacterium that has been isolated from root nodules of the... more Enterobacter sp. SA187 is an endophytic bacterium that has been isolated from root nodules of the indigenous desert plant Indigofera argentea. SA187 could survive in the rhizosphere as well as in association with different plant species, and was able to provide abiotic stress tolerance to Arabidopsis thaliana. The genome sequence of SA187 was obtained by using Pacific BioScience (PacBio) single-molecule sequencing technology, with average coverage of 275X. The genome of SA187 consists of one single 4,429,597 bp chromosome, with an average 56% GC content and 4,347 predicted protein coding DNA sequences (CDS), 153 ncRNA, 7 rRNA, and 84 tRNA. Functional analysis of the SA187 genome revealed a large number of genes involved in uptake and exchange of nutrients, chemotaxis, mobilization and plant colonization. A high number of genes were also found to be involved in survival, defense against oxidative stress and production of antimicrobial compounds and toxins. Moreover, different metabol...
Genome announcements, Jan 16, 2017
Enterobacter sp. Sa187 is a plant endophytic bacterium, isolated from root nodules of the desert ... more Enterobacter sp. Sa187 is a plant endophytic bacterium, isolated from root nodules of the desert plant Indigofera argentea, collected from the Jizan region of Saudi Arabia. Here, we report the genome sequence of Sa187, highlighting several genes involved in plant growth-promoting activity and environmental adaption.
Genomics, Proteomics & Bioinformatics, 2015
the interface: the upper-interface was enriched with viruses associated with typical marine bacte... more the interface: the upper-interface was enriched with viruses associated with typical marine bacteria, while the lower-interface was enriched with haloviruses and halophages. These results provide first insights into the unexplored viral communities present in deep-sea brines of the Red Sea, representing one of the first steps for ongoing and future sampling efforts and studies.
Genomics, Proteomics & Bioinformatics, 2015
Covering a quarter of the world's tropical coastlines and being one of the most threatened ecosys... more Covering a quarter of the world's tropical coastlines and being one of the most threatened ecosystems, mangroves are among the major sources of terrestrial organic matter to oceans and harbor a wide microbial diversity. In order to protect, restore, and better understand these ecosystems, researchers have extensively studied their microbiology, yet few surveys have focused on their fungal communities. Our lack of knowledge is even more pronounced for specific fungal populations, such as the ones associated with the rhizosphere. Likewise, the Red Sea grey mangroves (Avicennia marina) remain poorly characterized, and understanding of their fungal communities still relies on cultivation-dependent methods. In this study, we analyzed metagenomic datasets from grey mangrove rhizosphere and bulk soil samples collected in the Red Sea coast, to obtain a snapshot of their fungal communities. Our data indicated that Ascomycota was the dominant phylum (76%-85%), while Basidiomycota was less abundant (14%-24%), yet present in higher numbers than usually reported for such environments. Fungal communities were more stable within the rhizosphere than within the bulk soil, both at class and genus level. This finding is consistent with the intrinsic patchiness in soil sediments and with the selection of specific microbial communities by plant roots. Our study indicates the presence of several species on this mycobiome that were not previously reported as mangrove-associated. In particular, we detected representatives of several commercially-used fungi, e.g., producers of secreted cellulases and anaerobic producers of cellulosomes. These results represent additional insights into the fungal community of the grey mangroves of the Red Sea, and show that they are significantly richer than previously reported.
Uploads
Papers by Dr.Intikhab Alam