Papers by Dr. Asif Mahmood
Hydrogels and Nanogels - Applications in Medicine [Working Title]
This book chapter give an overview of natural and synthetic polymeric moieties consumed for devel... more This book chapter give an overview of natural and synthetic polymeric moieties consumed for developing hydrogels and their types. Different properties of nanogels are the advancement of hydrogels characterized by nano-size range, stimuli-responsive swelling, and release. Stimuli responsiveness is imparted by the presence of a suitable monomer. A number of polymerization approaches are presented in the literature that are employed to prepare such networks. These systems are elastic, rubbery, nontoxic, and biocompatible and offer prolonged release of the drugs without chances of dose dumping. These types of networks have potential pharmaceutical, agricultural, food, and biotechnological applications in terms of controlled, prolonged, and targeted drug delivery, solubility enhancements, stimuli-dependent intelligent drug delivery, such as contact lenses, wound healing, etc. In the current chapter, we have tried to introduce hydrogels and microgels, their different types, the variety of...
Gels
Tofacitinib is an antirheumatic drug characterized by a short half-life and poor permeability, wh... more Tofacitinib is an antirheumatic drug characterized by a short half-life and poor permeability, which necessitates the development of sustained release formulation with enhanced permeability potential. To achieve this goal, the free radical polymerization technique was employed to develop mucin/chitosan copolymer methacrylic acid (MU-CHI-Co-Poly (MAA))-based hydrogel microparticles. The developed hydrogel microparticles were characterized for EDX, FTIR, DSC, TGA, X-ray diffraction, SEM, drug loading; equilibrium swelling (%), in vitro drug release, sol–gel (%) studies, size and zeta potential, permeation, anti-arthritic activities, and acute oral toxicity studies. FTIR studies revealed the incorporation of the ingredients into the polymeric network, while EDX studies depicted the successful loading of tofacitinib into the network. The thermal analysis confirmed the heat stability of the system. SEM analysis displayed the porous structure of the hydrogels. Gel fraction showed an incre...
Pharmaceuticals
Acyclovir has a short half-life and offers poor bioavailability. Its daily dose is 200 mg five ti... more Acyclovir has a short half-life and offers poor bioavailability. Its daily dose is 200 mg five times a day. A tamarind gum and β-cyclodextrin-based pH-responsive hydrogel network for sustained delivery of acyclovir was developed using the free-radical polymerization technique. Developed networks were characterized by FTIR, DSC, TGA, PXRD, EDX, and SEM. The effect of varying feed ratios of polymers, monomers, and crosslinker on the gel fraction, swelling, and release was also investigated. FTIR findings confirmed the compatibility of the ingredients in a new complex polymer. The thermal stability of acyclovir was increased within the newly synthesized polymer. SEM photomicrographs confirmed the porous texture of hydrogels. The gel fraction was improved (from 90.12% to 98.12%) with increased reactant concentrations. The pH of the dissolution medium and the reactant contents affected swelling dynamics and acyclovir release from the developed carrier system. Based on the R2 value, the b...
Journal of Applied Biomedicine, 2020
Background: Rosuvastatin Calcium and Ezetimibe are used to control cholesterol level while Perind... more Background: Rosuvastatin Calcium and Ezetimibe are used to control cholesterol level while Perindopril Erbumine is used to treat hypertension. Hepatic metabolism reduces the therapeutic effect of these drugs. Objective: Instant release buccal films (IRBFs) could possibly be a solution to this issue. The objective of the study was to formulate IRBFs of Rosuvastatin Calcium, Perindopril Erbumine and Ezetimibe using solvent casting technique. Methods: Polymers used to prepare IRBFs included hydroxypropyl methylcellulose (HPMC E5), PEG 400 (as plasticizer) and Tween 80 (as surfactant). Solvent casting technique was used to fabricate the films, followed by their in-vitro analysis including high performance liquid chromatography (HPLC), X-ray diffraction (XRD), fourier transform infrared evaluation (FTIR), In-vitro dissolution, In-vitro disintegration, stability tests, scanning electron microscopy (SEM), folding fortitude, thickness evaluation, surface pH, tensile strength, weight variation and percentage moisture content. Results: Optical microscopy as well as SEM analysis displayed that the surfaces of IRBFs were smooth with uniform mixing of ingredients. IRBFs disintegrated within 15 seconds while on dissolution they exhibited instant drug release i.e. 100% release in 2 minutes. Conclusions: The results show promising potential of IRBFs in drug delivery.
International Journal of Nanomedicine, 2019
Background: Hyperlipidemia is the elevation of low density lipoprotein levels resulting in fat de... more Background: Hyperlipidemia is the elevation of low density lipoprotein levels resulting in fat deposites in arteries and their hardening and blockage. It is the leading cause of several life threatening pathological conditions like hypertension, cardiovascular diseases, diabetes etc. Purpose: The objective of this study was to prepare and optimize nontoxic, biocompatible β-CD-g-MAA/Na +-MMT nanocomposite hydrogels with varying content of polymer, monomer and montmorillonite. Moreover, lipid lowering potentials were determined and compared with other approaches. Methods: β-CD-g-MAA/Na +-MMT nanocomposite hydrogels (BM-1 to BM9) were prepared through free radical polymerization by using β-CD as polymer, MAA as monomer, MBA as crosslinker and montmorillonite as clay. Developed networks were evaluated for FTIR, DSC, TGA, PXRD, SEM, sol-gel fraction (%), swelling studies, antihyperlipidemic studies and toxicity studies. Results: Optimum swelling (94.24%) and release (93.16%) were obtained at higher pH values. Based on R 2 and "n" value LVT release followed zero order kinetics with Super Case II transport release mechanism, respectively. Tensile strength and elongation at break were found to be 0.0283MPa and 94.68%, respectively. Gel fraction was between 80.55-98.16%. Antihyperlipidemic studies revealed that LDL levels were markedly reduced from 522.24 ± 21.88mg/dl to 147.63 ± 31.5mg/dl. Toxicity studies assured the safety of developed network. Conclusion: A novel pH responsive crosslinked network containing β-CDgpoly (methacrylic acid) polymer and MMT was developed and optimized with excellent mechanical, swelling and release properties and lipid lowering potentials.
Tropical Journal of Pharmaceutical Research, 2018
Purpose: To prepare chondroitin sulphate-polyvinyl alcohol cross-linked microcapsules (miCAPs) fo... more Purpose: To prepare chondroitin sulphate-polyvinyl alcohol cross-linked microcapsules (miCAPs) for controlled delivery of 5-flurouracil (5-FU) in cancer patients. Method: Nine different miCAP formulations were prepared using emulsion cross-linking procedure. The formulations were evaluated for their physicochemical properties, complex formation, stability at variable temperatures, safety, as well as drug-loading and drug-release characteristics. The effects of glutaraldehyde (GA), polymer concentration and stirring speed on 5-FU release at various pH were also assessed. Results: One of the miCAP formulations (miCAP-1) was adjudged the most suitable based on its particle size, high drug loading (75.3 %, p = 0.034), and high entrapment efficiency (85.2 %, p = 0.031). Best-fit drug release model was Higuchi model based on regression coefficient value (R2) while drug release mechanism was Fickian. Conclusion: Highly stable, crosslinked, amorphous and drug delivery system has been successfully developed. The delivery system is potentially suitable for acid-sensitive therapeutic moieties and where controlled release is desired.
Pharmaceutics
Oral delivery of insulin has always been a challenging task due to harsh gut environment involvin... more Oral delivery of insulin has always been a challenging task due to harsh gut environment involving variable pH and peptidase actions. Currently, no Food and Drug Administration (FDA) approved oral insulin formulation is commercially available, only intravenous (IV) or subcutaneous (SC) routes. Therefore, it is really cumbersome for diabetic patients to go through invasive approaches for insulin delivery on daily basis. In the present study, a novel pH-responsive hydrogel nanocomposite (NC) system was developed and optimized for safe oral delivery of insulin. Black seed polysaccharide extract-based hydrogel (BA hydrogel) was formulated by free radical polymerization and loaded with insulin. Blank BA hydrogel was also incorporated with insulin-loaded montmorillonite nanoclay (Ins-Mmt) to form an Ins-Mmt-BA hydrogel NC and compared with the insulin-loaded hydrogel. Swelling, sol-gel analysis and in vitro release studies proved that Ins-Mmt-BA6 hydrogel NC has the best formulation, with...
Free-radical polymerization technique was adopted to fabricate a stimuli-responsive intelligent q... more Free-radical polymerization technique was adopted to fabricate a stimuli-responsive intelligent quince/mucin co-poly (methacrylate) hydrogel for the controlled delivery of acyclovir sodium. The developed hydrogel matrices were appraised using different parameters, such as drug loading
(%), swelling kinetics, pH- and electrolyte-responsive swelling, and sol–gel fraction. Drug-excipient compatibility study, scanning electron microscopy, thermal analysis, powder X-ray diffraction (PXRD) analysis, in vitro drug release studies, drug release kinetics and acute oral toxicity studies were
conducted. The results of drug loading revealed an acyclovir sodium loading of 63–75% in different formulations. The hydrogel discs exhibited pH-responsive swelling behavior, showing maximum swelling in a phosphate buffer with a pH of 7.4, but negligible swelling was obvious in an acidic buffer with a pH of 1.2. The swelling kinetics of the developed hydrogel discs exhibited second-order kinetics. Moreover, the hydrogel discs responded to the concentration of electrolytes (CaCl2 and
NaCl). The results of the FTIR confirm the formation of the hydrogel via free-radical polymerization. However, the major peaks of acyclovir remain intact, proving drug-excipient compatibility. The results of the SEM analysis reveal the porous, rough surface of the hydrogel discs with multiple cracks and pores over the surface. The results of the PXRD disclose the amorphous nature of the fabricated hydrogel. The dissolution studies showed a minor amount of acyclovir sodium released in
an acidic environment, while an extended release up to 36 h in the phosphate buffer was observed. The drug release followed Hixen–Crowell’s kinetics with Fickian diffusion mechanism. The toxicity studies demonstrated the non-toxic nature of the polymeric carrier system. Therefore, these results signify the quince/mucin co-poly (methacrylate) hydrogel as a smart material with the potential to deliver acyclovir into the intestine for an extended period of time.
Uploads
Papers by Dr. Asif Mahmood
(%), swelling kinetics, pH- and electrolyte-responsive swelling, and sol–gel fraction. Drug-excipient compatibility study, scanning electron microscopy, thermal analysis, powder X-ray diffraction (PXRD) analysis, in vitro drug release studies, drug release kinetics and acute oral toxicity studies were
conducted. The results of drug loading revealed an acyclovir sodium loading of 63–75% in different formulations. The hydrogel discs exhibited pH-responsive swelling behavior, showing maximum swelling in a phosphate buffer with a pH of 7.4, but negligible swelling was obvious in an acidic buffer with a pH of 1.2. The swelling kinetics of the developed hydrogel discs exhibited second-order kinetics. Moreover, the hydrogel discs responded to the concentration of electrolytes (CaCl2 and
NaCl). The results of the FTIR confirm the formation of the hydrogel via free-radical polymerization. However, the major peaks of acyclovir remain intact, proving drug-excipient compatibility. The results of the SEM analysis reveal the porous, rough surface of the hydrogel discs with multiple cracks and pores over the surface. The results of the PXRD disclose the amorphous nature of the fabricated hydrogel. The dissolution studies showed a minor amount of acyclovir sodium released in
an acidic environment, while an extended release up to 36 h in the phosphate buffer was observed. The drug release followed Hixen–Crowell’s kinetics with Fickian diffusion mechanism. The toxicity studies demonstrated the non-toxic nature of the polymeric carrier system. Therefore, these results signify the quince/mucin co-poly (methacrylate) hydrogel as a smart material with the potential to deliver acyclovir into the intestine for an extended period of time.
(%), swelling kinetics, pH- and electrolyte-responsive swelling, and sol–gel fraction. Drug-excipient compatibility study, scanning electron microscopy, thermal analysis, powder X-ray diffraction (PXRD) analysis, in vitro drug release studies, drug release kinetics and acute oral toxicity studies were
conducted. The results of drug loading revealed an acyclovir sodium loading of 63–75% in different formulations. The hydrogel discs exhibited pH-responsive swelling behavior, showing maximum swelling in a phosphate buffer with a pH of 7.4, but negligible swelling was obvious in an acidic buffer with a pH of 1.2. The swelling kinetics of the developed hydrogel discs exhibited second-order kinetics. Moreover, the hydrogel discs responded to the concentration of electrolytes (CaCl2 and
NaCl). The results of the FTIR confirm the formation of the hydrogel via free-radical polymerization. However, the major peaks of acyclovir remain intact, proving drug-excipient compatibility. The results of the SEM analysis reveal the porous, rough surface of the hydrogel discs with multiple cracks and pores over the surface. The results of the PXRD disclose the amorphous nature of the fabricated hydrogel. The dissolution studies showed a minor amount of acyclovir sodium released in
an acidic environment, while an extended release up to 36 h in the phosphate buffer was observed. The drug release followed Hixen–Crowell’s kinetics with Fickian diffusion mechanism. The toxicity studies demonstrated the non-toxic nature of the polymeric carrier system. Therefore, these results signify the quince/mucin co-poly (methacrylate) hydrogel as a smart material with the potential to deliver acyclovir into the intestine for an extended period of time.