Methyl CpG binding protein-2 (MeCP2) isoforms (E1 and E2) are important epigenetic regulators in ... more Methyl CpG binding protein-2 (MeCP2) isoforms (E1 and E2) are important epigenetic regulators in brain cells. Accordingly, MeCP2 loss- or gain-of-function mutation causes neurodevelopmental disorders, including Rett syndrome (RTT), MECP2 duplication syndrome (MDS), and autism spectrum disorders (ASD). Within different types of brain cells, highest MeCP2 levels are detected in neurons and the lowest in astrocytes. However, our current knowledge of Mecp2/MeCP2 regulatory mechanisms remains largely elusive. It appears that there is a sex-dependent effect in X-linked MeCP2-associated disorders, as RTT primarily affects females, whereas MDS is found almost exclusively in males. This suggests that Mecp2 expression levels in brain cells might be sex-dependent. Here, we investigated the sex- and cell type-specific expression of Mecp2 isoforms in male and female primary neurons and astrocytes isolated from the murine forebrain. Previously, we reported that DNA methylation of six Mecp2 regula...
Ubiquitin C-terminal hydrolase isozyme L1 (UCHL1) is primarily expressed in neuronal cells and ne... more Ubiquitin C-terminal hydrolase isozyme L1 (UCHL1) is primarily expressed in neuronal cells and neuroendocrine cells and has been associated with various diseases, including many cancers. It is a multifunctional protein involved in deubiquitination, ubiquitination and ubiquitin homeostasis, but its specific roles are disputed and still generally undetermined. Herein, we demonstrate that UCHL1 is associated with genomic DNA in certain prostate cancer cell lines, including DU 145 cells derived from a brain metastatic site, and in HEK293T embryonic kidney cells with a neuronal lineage. Chromatin immunoprecipitation and sequencing revealed that UCHL1 localizes to TTAGGG repeats at telomeres and interstitial telomeric sequences, as do TRF1 and TRF2, components of the shelterin complex. A weak or transient interaction between UCHL1 and the shelterin complex was confirmed by immunoprecipitation and proximity ligation assays. UCHL1 and RAP1, also known as TERF2IP and a component of the shelt...
Breast cancer is one of the leading causes of cancer death in women. It is a complex and heteroge... more Breast cancer is one of the leading causes of cancer death in women. It is a complex and heterogeneous disease with different clinical outcomes. Stratifying patients into subgroups with different outcomes could help guide clinical decision making. In this study, we used two opposing groups of genes, Yin and Yang, to develop a prognostic expression ratio signature. Using the METABRIC cohort we identified a16-gene signature capable of stratifying breast cancer patients into four risk levels with intention that low-risk patients would not undergo adjuvant systemic therapy, intermediate-low-risk patients will be treated with hormonal therapy only, and intermediate-high- and high-risk groups will be treated by chemotherapy in addition to the hormonal therapy. The 16-gene signature for four risk level stratifications of breast cancer patients has been validated using 14 independent data sets. Notably, the low-risk group (n=51) of 205 ER+/Node- patients from three different data sets who h...
Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer, Dec 4, 2016
Lung cancer is the leading cancer killer worldwide. There is an urgent need for easy-to-use and r... more Lung cancer is the leading cancer killer worldwide. There is an urgent need for easy-to-use and robust clinical gene signatures for improved prognosis and treatment prediction. We used a gene expression signature termed the 'Yin' and 'Yang' mean ratio (YMR) based on two groups of genes with opposing function, to determine lung cancer prognosis. The YMR signature represents the relative state of the individual tumor on a gene expression spectrum ranging from malignancy to the normal healthy lung. The genes in the YMR signature have therefore been determined independent of survival time which is different from previous regression models. We then leveraged the cross-platform utility of the YMR signature to optimize the signature into a smaller set of genes that validated the robustness of the signature in many independent lung cancer expression data sets. Four Yin and six Yang genes were optimized using 741 NSCLC cases from diverse platforms including microarray and RNA...
Pre-mRNA splicing is a cotranscriptional process affected by the chromatin architecture along the... more Pre-mRNA splicing is a cotranscriptional process affected by the chromatin architecture along the body of coding genes. Recruited to the pre-mRNA by splicing factors, histone deacetylases (HDACs) and K-acetyltransferases (KATs) catalyze dynamic histone acetylation along the gene. In colon carcinoma HCT 116 cells, HDAC inhibition specifically increased KAT2B occupancy as well as H3 and H4 acetylation of the H3K4 trimethylated (H3K4me3) nucleosome positioned over alternative exon 2 of the MCL1 gene, an event paralleled with the exclusion of exon 2. These results were reproduced in MDA-MB-231, but not in MCF7 breast adenocarcinoma cells. These later cells have much higher levels of demethylase KDM5B than either HCT 116 or MDA-MB-231 cells. We show that H3K4me3 steady-state levels and H3K4me3 occupancy at the end of exon 1 and over exon 2 of the MCL1 gene were lower in MCF7 than in MDA-MB-231 cells. Furthermore, in MCF7 cells, there was minimal effect of HDAC inhibition on H3/H4 acetyla...
The angiotensin-converting enzyme 2 (ACE2) is the receptor for the three coronaviruses HCoV-NL63,... more The angiotensin-converting enzyme 2 (ACE2) is the receptor for the three coronaviruses HCoV-NL63, SARS-CoV and SARS-CoV-2. ACE2 is involved in the regulation of the renin-angiotensin system and blood pressure. ACE2 is also involved in the regulation of several signaling pathways, including integrin signaling. ACE2 expression is regulated transcriptionally and post-transcriptionally. The expression of the gene is regulated by two promoters, with usage varying among tissues. ACE2 expression is greatest in the small intestine, kidney and heart and detectable in a variety of tissues and cell types. Herein we review the chemical and mechanical signal transduction pathways regulating the expression of the ACE2 gene and the epigenetic/chromatin features of the expressed gene.
SARS-CoV-2, the causing agent of the ongoing COVID-19 pandemic, is a beta-coronavirus which has 8... more SARS-CoV-2, the causing agent of the ongoing COVID-19 pandemic, is a beta-coronavirus which has 80% genetic homology with SARS-CoV, but displays increased virulence and transmissibility. Initially, SARS-CoV-2 was considered a respiratory virus generally causing a mild disease, only severe and fatal in the elderly and individuals with underlying conditions. Severe illnesses and fatalities were attributed to a cytokine storm, an excessive response from the host immune system. However, with the number of infections over 10 millions and still soaring, the insidious and stealthy nature of the virus has emerged, as it causes a vast array of diverse unexpected symptoms among infected individuals , including the young and healthy. It has become evident that besides infecting the respiratory tract, SARS-CoV-2 can affect many organs, possibly through the infection of the endothelium. This review presents an overview of our learning curve with the novel virus emergence, transmission, pathology, biological properties and host-interactions. It also briefly describes remedial measures taken until an effective vaccine is available, that is non-pharmaceutical interventions to reduce the viral spread and the repurposing of existing drugs, approved or in development for other conditions to eliminate the virus or mitigate the cytokine storm.
The angiotensin-converting enzyme 2 (ACE2) is the receptor for the three coronaviruses HCoV-NL63,... more The angiotensin-converting enzyme 2 (ACE2) is the receptor for the three coronaviruses HCoV-NL63, SARS-CoV and SARS-CoV-2. ACE2 is involved in the regulation of the renin-angiotensin system and blood pressure. ACE2 is also involved in the regulation of several signaling pathways, including integrin signaling. ACE2 expression is regulated transcriptionally and post-transcriptionally. The expression of the gene is regulated by two promoters, with usage varying among tissues. ACE2 expression is greatest in the small intestine, kidney and heart and detectable in a variety of tissues and cell types. Herein we review the chemical and mechanical signal transduction pathways regulating the expression of the ACE2 gene and the epigenetic/chromatin features of the expressed gene.
Earlier we identified a survival role for NF-B in ventricular myocytes, however, the underlying m... more Earlier we identified a survival role for NF-B in ventricular myocytes, however, the underlying mechanism was undefined. In this report we provide new mechanistic evidence that the hypoxia-inducible death factor BNIP3 is transcriptionally silenced by NF-B through a mechanism that involves the cooperative actions of HDAC1. Activation of the NF-B signaling pathway in ventricular myocytes suppressed basal and hypoxia-inducible BNIP3 gene activity. Basal Bnip3 gene expression was increased in cells derived from p65 Ϫ/Ϫ deficient mice. The histone deacetylase (HDAC) inhibitor Trichostatin A (TSA 10 nM) suppressed the inhibitory actions of NF-B on Bnip3 gene transcription. Basal and hypoxia-induced Bnip3 transcription was repressed by wild type but not a catalytically inactive mutant of HDAC1. Immunoprecipitation assays verified interaction of HDAC1 with wild type p65 NF-B and mutations of p65 defective for transactivation in ventricular myocytes. Deletion analysis revealed canonical NF-B elements within the Bnip3 promoter to be important for repression of Bnip3 gene expression by HDAC1. Further, the ability of HDAC1 to repress Bnip3 gene transcription was lost in cells derived from p65 Ϫ/Ϫ deficient mice but was restored by repletion of p65 NF-B into p65 Ϫ/Ϫ cells. Mutations of p65 NF-B defective for DNA binding but not for transactivation abrogated the inhibitory actions of HDAC1 on the Bnip3 gene transcription. Together, our findings provide new mechanistic insight into the cytoprotective actions conferred by NF-B that extend to the active transcriptional repression of the death factor Bnip3 through a mechanism that is mutually dependent on HDAC-1. (Circ Res. 2006;99:1347-1354.)
Nuclear matrix proteins (NMPs) show promise as informative biomarkers in following the pathogenes... more Nuclear matrix proteins (NMPs) show promise as informative biomarkers in following the pathogenesis of breast cancer. The nuclear matrix is a dynamic RNA-protein network involved in the organization and expression of chromatin. Cisplatin, which preferentially cross-links nuclear matrix proteins to DNA in situ, may be used to identify NMPs that organize and/or regulate the processing of DNA. In this study, we analyzed the nuclear matrix proteins from an estrogen receptor-positive breast cancer cell line panel consisting of MCF-7, MIII, LCC1, and LCC2 cell lines. This cell line panel reflects the stages of malignant progression in breast cancer. Proteins isolated from nuclear matrices and proteins cross-linked to nuclear DNA in situ with cisplatin were analyzed by two-dimensional gel electrophoresis. Specific changes in nuclear matrix proteins bound to nuclear DNA were identified. In concordance with estrogen independence and antiestrogen insensitivity, a loss in cisplatin cross-linking of specific NMPs to nuclear DNA was observed. Our results suggest that progression of breast cancer is accompanied by a reorganization of chromosomal domains, which may lead to alterations in gene expression. . The abbreviations used are: ER, estrogen receptor; NMP, nuclear matrix protein; XLP, proteins cross-linked to DNA in situ with cisplatin; hnRNP, human nuclear ribonucleoprotein.
Biochemistry and cell biology = Biochimie et biologie cellulaire, 2016
Histone H3 lysine 4 trimethylation (H3K4me3) is often stated as a mark of transcriptionally activ... more Histone H3 lysine 4 trimethylation (H3K4me3) is often stated as a mark of transcriptionally active promoters. However, closer study of the positioning of H3K4me3 shows the mark locating primarily after the first exon at the 5' splice site and overlapping with a CpG island in mammalian cells. There are several enzyme complexes that are involved in the placement of the H3K4me3 mark, including multiple protein complexes containing SETD1A, SETD1B, and MLL1 enzymes (writers). CXXC1, which is associated with SETD1A and SETD1B, target these enzymes to unmethylated CpG islands. Lysine demethylases (KDM5 family members, erasers) demethylate H3K4me3. The H3K4me3 mark is recognized by several proteins (readers), including lysine acetyltransferase complexes, chromatin remodelers, and RNA bound proteins involved in pre-mRNA splicing. Interestingly, attenuation of H3K4me3 impacts pre-mRNA splicing, and inhibition of pre-mRNA splicing attenuates H3K4me3.
Chromatin condensation and subsequent decondensation are processes required for proper execution ... more Chromatin condensation and subsequent decondensation are processes required for proper execution of various cellular events. During mitosis, chromatin compaction is at its highest, whereas relaxation of chromatin is necessary for DNA replication, repair, recombination, and gene transcription. Since histone proteins are directly complexed with DNA in the form of a nucleosome, great emphasis is put on deciphering histone post-translational modifications that control the chromatin condensation state. Histone H3 phosphorylation is a mark present in mitosis, where chromatin condensation is necessary, and in transcriptional activation of genes, when chromatin needs to be decondensed. There are four characterized phospho residues within the H3 N-terminal tail during mitosis: Thr3, Ser10, Thr11, and Ser28. Interestingly, H3 phosphorylated at Ser10, Thr11, and Ser28 has been observed on genomic regions of transcriptionally active genes. Therefore, H3 phosphorylation is involved in processes requiring opposing chromatin states. The level of H3 phosphorylation is mediated by opposing actions of specific kinases and phosphatases during mitosis and gene transcription. The cellular contexts under which specific residues on H3 are phosphorylated in mitosis and interphase are known to some extent. However, the functional consequences of H3 phosphorylation are still unclear.
Page 1. AD Award Number: DAMD17-97-1-7175 TITLE: Detection of Genetic Lesions in Breast Cancer PR... more Page 1. AD Award Number: DAMD17-97-1-7175 TITLE: Detection of Genetic Lesions in Breast Cancer PRINCIPAL INVESTIGATOR: James R. Davie, Ph.D. CONTRACTING ORGANIZATION: University of Manitoba Winnipeg, Manitoba, Canada R3E-0W3 ...
Methyl CpG binding protein-2 (MeCP2) isoforms (E1 and E2) are important epigenetic regulators in ... more Methyl CpG binding protein-2 (MeCP2) isoforms (E1 and E2) are important epigenetic regulators in brain cells. Accordingly, MeCP2 loss- or gain-of-function mutation causes neurodevelopmental disorders, including Rett syndrome (RTT), MECP2 duplication syndrome (MDS), and autism spectrum disorders (ASD). Within different types of brain cells, highest MeCP2 levels are detected in neurons and the lowest in astrocytes. However, our current knowledge of Mecp2/MeCP2 regulatory mechanisms remains largely elusive. It appears that there is a sex-dependent effect in X-linked MeCP2-associated disorders, as RTT primarily affects females, whereas MDS is found almost exclusively in males. This suggests that Mecp2 expression levels in brain cells might be sex-dependent. Here, we investigated the sex- and cell type-specific expression of Mecp2 isoforms in male and female primary neurons and astrocytes isolated from the murine forebrain. Previously, we reported that DNA methylation of six Mecp2 regula...
Ubiquitin C-terminal hydrolase isozyme L1 (UCHL1) is primarily expressed in neuronal cells and ne... more Ubiquitin C-terminal hydrolase isozyme L1 (UCHL1) is primarily expressed in neuronal cells and neuroendocrine cells and has been associated with various diseases, including many cancers. It is a multifunctional protein involved in deubiquitination, ubiquitination and ubiquitin homeostasis, but its specific roles are disputed and still generally undetermined. Herein, we demonstrate that UCHL1 is associated with genomic DNA in certain prostate cancer cell lines, including DU 145 cells derived from a brain metastatic site, and in HEK293T embryonic kidney cells with a neuronal lineage. Chromatin immunoprecipitation and sequencing revealed that UCHL1 localizes to TTAGGG repeats at telomeres and interstitial telomeric sequences, as do TRF1 and TRF2, components of the shelterin complex. A weak or transient interaction between UCHL1 and the shelterin complex was confirmed by immunoprecipitation and proximity ligation assays. UCHL1 and RAP1, also known as TERF2IP and a component of the shelt...
Breast cancer is one of the leading causes of cancer death in women. It is a complex and heteroge... more Breast cancer is one of the leading causes of cancer death in women. It is a complex and heterogeneous disease with different clinical outcomes. Stratifying patients into subgroups with different outcomes could help guide clinical decision making. In this study, we used two opposing groups of genes, Yin and Yang, to develop a prognostic expression ratio signature. Using the METABRIC cohort we identified a16-gene signature capable of stratifying breast cancer patients into four risk levels with intention that low-risk patients would not undergo adjuvant systemic therapy, intermediate-low-risk patients will be treated with hormonal therapy only, and intermediate-high- and high-risk groups will be treated by chemotherapy in addition to the hormonal therapy. The 16-gene signature for four risk level stratifications of breast cancer patients has been validated using 14 independent data sets. Notably, the low-risk group (n=51) of 205 ER+/Node- patients from three different data sets who h...
Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer, Dec 4, 2016
Lung cancer is the leading cancer killer worldwide. There is an urgent need for easy-to-use and r... more Lung cancer is the leading cancer killer worldwide. There is an urgent need for easy-to-use and robust clinical gene signatures for improved prognosis and treatment prediction. We used a gene expression signature termed the 'Yin' and 'Yang' mean ratio (YMR) based on two groups of genes with opposing function, to determine lung cancer prognosis. The YMR signature represents the relative state of the individual tumor on a gene expression spectrum ranging from malignancy to the normal healthy lung. The genes in the YMR signature have therefore been determined independent of survival time which is different from previous regression models. We then leveraged the cross-platform utility of the YMR signature to optimize the signature into a smaller set of genes that validated the robustness of the signature in many independent lung cancer expression data sets. Four Yin and six Yang genes were optimized using 741 NSCLC cases from diverse platforms including microarray and RNA...
Pre-mRNA splicing is a cotranscriptional process affected by the chromatin architecture along the... more Pre-mRNA splicing is a cotranscriptional process affected by the chromatin architecture along the body of coding genes. Recruited to the pre-mRNA by splicing factors, histone deacetylases (HDACs) and K-acetyltransferases (KATs) catalyze dynamic histone acetylation along the gene. In colon carcinoma HCT 116 cells, HDAC inhibition specifically increased KAT2B occupancy as well as H3 and H4 acetylation of the H3K4 trimethylated (H3K4me3) nucleosome positioned over alternative exon 2 of the MCL1 gene, an event paralleled with the exclusion of exon 2. These results were reproduced in MDA-MB-231, but not in MCF7 breast adenocarcinoma cells. These later cells have much higher levels of demethylase KDM5B than either HCT 116 or MDA-MB-231 cells. We show that H3K4me3 steady-state levels and H3K4me3 occupancy at the end of exon 1 and over exon 2 of the MCL1 gene were lower in MCF7 than in MDA-MB-231 cells. Furthermore, in MCF7 cells, there was minimal effect of HDAC inhibition on H3/H4 acetyla...
The angiotensin-converting enzyme 2 (ACE2) is the receptor for the three coronaviruses HCoV-NL63,... more The angiotensin-converting enzyme 2 (ACE2) is the receptor for the three coronaviruses HCoV-NL63, SARS-CoV and SARS-CoV-2. ACE2 is involved in the regulation of the renin-angiotensin system and blood pressure. ACE2 is also involved in the regulation of several signaling pathways, including integrin signaling. ACE2 expression is regulated transcriptionally and post-transcriptionally. The expression of the gene is regulated by two promoters, with usage varying among tissues. ACE2 expression is greatest in the small intestine, kidney and heart and detectable in a variety of tissues and cell types. Herein we review the chemical and mechanical signal transduction pathways regulating the expression of the ACE2 gene and the epigenetic/chromatin features of the expressed gene.
SARS-CoV-2, the causing agent of the ongoing COVID-19 pandemic, is a beta-coronavirus which has 8... more SARS-CoV-2, the causing agent of the ongoing COVID-19 pandemic, is a beta-coronavirus which has 80% genetic homology with SARS-CoV, but displays increased virulence and transmissibility. Initially, SARS-CoV-2 was considered a respiratory virus generally causing a mild disease, only severe and fatal in the elderly and individuals with underlying conditions. Severe illnesses and fatalities were attributed to a cytokine storm, an excessive response from the host immune system. However, with the number of infections over 10 millions and still soaring, the insidious and stealthy nature of the virus has emerged, as it causes a vast array of diverse unexpected symptoms among infected individuals , including the young and healthy. It has become evident that besides infecting the respiratory tract, SARS-CoV-2 can affect many organs, possibly through the infection of the endothelium. This review presents an overview of our learning curve with the novel virus emergence, transmission, pathology, biological properties and host-interactions. It also briefly describes remedial measures taken until an effective vaccine is available, that is non-pharmaceutical interventions to reduce the viral spread and the repurposing of existing drugs, approved or in development for other conditions to eliminate the virus or mitigate the cytokine storm.
The angiotensin-converting enzyme 2 (ACE2) is the receptor for the three coronaviruses HCoV-NL63,... more The angiotensin-converting enzyme 2 (ACE2) is the receptor for the three coronaviruses HCoV-NL63, SARS-CoV and SARS-CoV-2. ACE2 is involved in the regulation of the renin-angiotensin system and blood pressure. ACE2 is also involved in the regulation of several signaling pathways, including integrin signaling. ACE2 expression is regulated transcriptionally and post-transcriptionally. The expression of the gene is regulated by two promoters, with usage varying among tissues. ACE2 expression is greatest in the small intestine, kidney and heart and detectable in a variety of tissues and cell types. Herein we review the chemical and mechanical signal transduction pathways regulating the expression of the ACE2 gene and the epigenetic/chromatin features of the expressed gene.
Earlier we identified a survival role for NF-B in ventricular myocytes, however, the underlying m... more Earlier we identified a survival role for NF-B in ventricular myocytes, however, the underlying mechanism was undefined. In this report we provide new mechanistic evidence that the hypoxia-inducible death factor BNIP3 is transcriptionally silenced by NF-B through a mechanism that involves the cooperative actions of HDAC1. Activation of the NF-B signaling pathway in ventricular myocytes suppressed basal and hypoxia-inducible BNIP3 gene activity. Basal Bnip3 gene expression was increased in cells derived from p65 Ϫ/Ϫ deficient mice. The histone deacetylase (HDAC) inhibitor Trichostatin A (TSA 10 nM) suppressed the inhibitory actions of NF-B on Bnip3 gene transcription. Basal and hypoxia-induced Bnip3 transcription was repressed by wild type but not a catalytically inactive mutant of HDAC1. Immunoprecipitation assays verified interaction of HDAC1 with wild type p65 NF-B and mutations of p65 defective for transactivation in ventricular myocytes. Deletion analysis revealed canonical NF-B elements within the Bnip3 promoter to be important for repression of Bnip3 gene expression by HDAC1. Further, the ability of HDAC1 to repress Bnip3 gene transcription was lost in cells derived from p65 Ϫ/Ϫ deficient mice but was restored by repletion of p65 NF-B into p65 Ϫ/Ϫ cells. Mutations of p65 NF-B defective for DNA binding but not for transactivation abrogated the inhibitory actions of HDAC1 on the Bnip3 gene transcription. Together, our findings provide new mechanistic insight into the cytoprotective actions conferred by NF-B that extend to the active transcriptional repression of the death factor Bnip3 through a mechanism that is mutually dependent on HDAC-1. (Circ Res. 2006;99:1347-1354.)
Nuclear matrix proteins (NMPs) show promise as informative biomarkers in following the pathogenes... more Nuclear matrix proteins (NMPs) show promise as informative biomarkers in following the pathogenesis of breast cancer. The nuclear matrix is a dynamic RNA-protein network involved in the organization and expression of chromatin. Cisplatin, which preferentially cross-links nuclear matrix proteins to DNA in situ, may be used to identify NMPs that organize and/or regulate the processing of DNA. In this study, we analyzed the nuclear matrix proteins from an estrogen receptor-positive breast cancer cell line panel consisting of MCF-7, MIII, LCC1, and LCC2 cell lines. This cell line panel reflects the stages of malignant progression in breast cancer. Proteins isolated from nuclear matrices and proteins cross-linked to nuclear DNA in situ with cisplatin were analyzed by two-dimensional gel electrophoresis. Specific changes in nuclear matrix proteins bound to nuclear DNA were identified. In concordance with estrogen independence and antiestrogen insensitivity, a loss in cisplatin cross-linking of specific NMPs to nuclear DNA was observed. Our results suggest that progression of breast cancer is accompanied by a reorganization of chromosomal domains, which may lead to alterations in gene expression. . The abbreviations used are: ER, estrogen receptor; NMP, nuclear matrix protein; XLP, proteins cross-linked to DNA in situ with cisplatin; hnRNP, human nuclear ribonucleoprotein.
Biochemistry and cell biology = Biochimie et biologie cellulaire, 2016
Histone H3 lysine 4 trimethylation (H3K4me3) is often stated as a mark of transcriptionally activ... more Histone H3 lysine 4 trimethylation (H3K4me3) is often stated as a mark of transcriptionally active promoters. However, closer study of the positioning of H3K4me3 shows the mark locating primarily after the first exon at the 5' splice site and overlapping with a CpG island in mammalian cells. There are several enzyme complexes that are involved in the placement of the H3K4me3 mark, including multiple protein complexes containing SETD1A, SETD1B, and MLL1 enzymes (writers). CXXC1, which is associated with SETD1A and SETD1B, target these enzymes to unmethylated CpG islands. Lysine demethylases (KDM5 family members, erasers) demethylate H3K4me3. The H3K4me3 mark is recognized by several proteins (readers), including lysine acetyltransferase complexes, chromatin remodelers, and RNA bound proteins involved in pre-mRNA splicing. Interestingly, attenuation of H3K4me3 impacts pre-mRNA splicing, and inhibition of pre-mRNA splicing attenuates H3K4me3.
Chromatin condensation and subsequent decondensation are processes required for proper execution ... more Chromatin condensation and subsequent decondensation are processes required for proper execution of various cellular events. During mitosis, chromatin compaction is at its highest, whereas relaxation of chromatin is necessary for DNA replication, repair, recombination, and gene transcription. Since histone proteins are directly complexed with DNA in the form of a nucleosome, great emphasis is put on deciphering histone post-translational modifications that control the chromatin condensation state. Histone H3 phosphorylation is a mark present in mitosis, where chromatin condensation is necessary, and in transcriptional activation of genes, when chromatin needs to be decondensed. There are four characterized phospho residues within the H3 N-terminal tail during mitosis: Thr3, Ser10, Thr11, and Ser28. Interestingly, H3 phosphorylated at Ser10, Thr11, and Ser28 has been observed on genomic regions of transcriptionally active genes. Therefore, H3 phosphorylation is involved in processes requiring opposing chromatin states. The level of H3 phosphorylation is mediated by opposing actions of specific kinases and phosphatases during mitosis and gene transcription. The cellular contexts under which specific residues on H3 are phosphorylated in mitosis and interphase are known to some extent. However, the functional consequences of H3 phosphorylation are still unclear.
Page 1. AD Award Number: DAMD17-97-1-7175 TITLE: Detection of Genetic Lesions in Breast Cancer PR... more Page 1. AD Award Number: DAMD17-97-1-7175 TITLE: Detection of Genetic Lesions in Breast Cancer PRINCIPAL INVESTIGATOR: James R. Davie, Ph.D. CONTRACTING ORGANIZATION: University of Manitoba Winnipeg, Manitoba, Canada R3E-0W3 ...
Uploads
Papers by James R Davie
transcriptionally and post-transcriptionally. The expression of the gene is regulated by two promoters, with usage varying among tissues. ACE2 expression is greatest in the small intestine, kidney and heart and detectable in a variety of tissues and cell types. Herein we review the chemical and mechanical signal transduction pathways regulating the
expression of the ACE2 gene and the epigenetic/chromatin features of the expressed gene.
transcriptionally and post-transcriptionally. The expression of the gene is regulated by two promoters, with usage varying among tissues. ACE2 expression is greatest in the small intestine, kidney and heart and detectable in a variety of tissues and cell types. Herein we review the chemical and mechanical signal transduction pathways regulating the
expression of the ACE2 gene and the epigenetic/chromatin features of the expressed gene.