Antoine Guisan,* Reid Tingley, John B. Baumgartner, Ilona Naujokaitis-Lewis, Patricia R. Sutcliff... more Antoine Guisan,* Reid Tingley, John B. Baumgartner, Ilona Naujokaitis-Lewis, Patricia R. Sutcliffe, Ayesha I. T. Tulloch, Tracey J. Regan, Lluis Brotons, Eve McDonald-Madden, Chrystal Mantyka-Pringle, Tara G. Martin, Jonathan R. Rhodes, Ramona Maggini, Samantha A. Setterfield, Jane Elith, Mark W. Schwartz, Brendan A. Wintle, Olivier Broennimann, Mike Austin, Simon Ferrier, Michael R. Kearney, Hugh P. Possingham and Yvonne M. Buckley Abstract Species distribution models (SDMs) are increasingly proposed to support conservation decision making. However, evidence of SDMs supporting solutions for on-ground conservation problems is still scarce in the scientific literature. Here, we show that successful examples exist but are still largely hidden in the grey literature, and thus less accessible for analysis and learning. Furthermore, the decision framework within which SDMs are used is rarely made explicit. Using case studies from biological invasions, identification of critical habitats,...
Primary Biodiversity Data (PBD) are defined as the basic attributes of observations or records of... more Primary Biodiversity Data (PBD) are defined as the basic attributes of observations or records of the occurrences of species. PBD is a fundamental concept of biodiversity informatics since it is substantial in quantity and provides the links to organize other large and independent bodies of data concerning species (= taxonomic information) and environments. In fact, PBD is at the core of the exploding field of biodiversity informatics, which in some sense now underlies biogeography, macroecology, landscape ecology and several other subdisciplines of biology. A principal - and rapidly growing - class of research that can be performed using PBD is the estimation of a species' environmental requirements and the projection of these in both environmental and geographic spaces to estimate niches or distributional ranges, generally by using models of ecological niches and species' distributions (often called ENMs or SDMs, respectively). The largest point of access to PBD in the wor...
The Giant Hogweed (Heracleum mantegazzianum), an invasive giant herb native from Caucasus, was fi... more The Giant Hogweed (Heracleum mantegazzianum), an invasive giant herb native from Caucasus, was first introduced in Switzerland (Geneva) in 1895 and cultivated in alpine botanical gardens because of its spectacular inflorescence. Since then, it escaped repeatedly from gardens, becoming invasive and leading to ecological, economical and health problems. In this study, we evaluated the invasion status of this alien invasive species in the Western Swiss Alps, by modelling its potential distribution and estimating current and future density and cost estimations. These assessment measures provide useful tools for an action plan in conservation biology. In the continuity of a previous study in 2004, we used a model-based sampling design to improve occurrences data and ultimately improve predictive models of the species distribution. Since we did not found as much occurrences as expected, different models were carrying out with different available data sets. The first predictive maps were based on naturalized occurrences versus all available presences and the second, on a set of absence sites stratified according to the strata of a previous available model. We tested two different estimations of the giant hogweed's population size: a design-based estimation and a model-based estimation. We first proceed to the Thompson design-based estimation through a randomstratified adaptive sampling. This estimation provided current population size of the focal species. The future potential population size of the focal species was achieved with the models resulting from the field sampling. For management cost, communes included in the study area were set as management units and assessed individually. A binary model using threshold value optimising ratio of omission to commission errors provided future potential costs. Finally, this filtered binomial model permits us to underline which communes should receive special attention for eradication.
Venomous animals use venom, a complex biofluid composed of unique mixtures of proteins and peptid... more Venomous animals use venom, a complex biofluid composed of unique mixtures of proteins and peptides, for either predation or defense. Bumblebees, which occur in various habitats due to their unique thermoregulatory properties, mainly use venom for defense. Herein, we conducted an exploratory analysis of the venom composition of a bumblebee species (Bombus pascuorum) along an elevation gradient in the western Swiss Alps using shot-gun proteomic approaches to assess whether their defense mechanism varies along the gradient. The gradient was characterized by high temperatures and low humidity at low elevations and low temperatures and high humidity at high elevations. Venom composition is changing along the elevation gradient, with proteomic variation in the abundances of pain-inducing and allergenic proteins. In particular, the abundance of phospholipase A2-like, the main component of bumblebee venom, gradually decreases toward higher elevation (lower temperature), suggesting venom al...
Protected areas (PAs) play a critical role in conserving biodiversity and maintaining viable popu... more Protected areas (PAs) play a critical role in conserving biodiversity and maintaining viable populations of threatened species. Yet, as global change could reduce the future effectiveness of existing PAs in covering high species richness, updating the boundaries of existing PAs or creating new ones might become necessary to uphold conservation goals. Modelling tools are increasingly used by policymakers to support the spatial prioritization of biodiversity conservation, enabling the inclusion of scenarios of environmental changes to achieve specific targets. Here, using the Western Swiss Alps as a case study, we show how integrating species richness derived from species distribution model predictions for four taxonomic groups under present and future climate and land-use conditions into two conservation prioritization schemes can help optimize extant and future PAs. The first scheme, the "Priority Scores Method" identified priority areas for the expansion of the existing PA network. The second scheme, using the zonation software, allowed identifying priority conservation areas while incorporating global change scenarios and political costs. We found that existing mountain PAs are currently not situated in the most environmentally nor politically suitable locations when maximizing alpha diversity for the studied taxonomic groups and that current PAs could become even less optimum under the future climate and land-use change scenarios. This analysis has focused on general areas of high species richness or species of conservation concern and did not account for special habitats or functional groups that could have been used to create the existing network. We conclude that such an integrated framework could support more effective conservation planning and could be similarly applied to other landscapes or other biodiversity conservation indices.
In severe and variable conditions, specialized resource selection strategies should be less frequ... more In severe and variable conditions, specialized resource selection strategies should be less frequent because extinction risks increase for species that depend on a single and unstable resource. Psithyrus (Bombus subgenus Psithyrus) are bumblebee parasites that usurp Bombus nests and display inter-specific variation in the number of hosts they parasitize. Using a phylogenetic comparative framework, we show that Psithyrus species at higher elevations display a higher number of hosts species compared with species restricted to lower elevations. Species inhabiting high elevations also cover a larger temperature range, suggesting that species able to occur in colder conditions may benefit from recruitment from populations occurring in warmer conditions. Our results provide evidence for an 'altitudinal niche breadth hypothesis' in parasitic species, showing a decrease in the parasites' specialization along the elevational gradient, and also suggesting that Rapoport's rule might apply to Psithyrus.
Interactions between plants and bacteria in the non-rhizosphere soil are rarely assessed, because... more Interactions between plants and bacteria in the non-rhizosphere soil are rarely assessed, because they are less direct and easily masked by confounding environmental factors. By studying plant vegetation alliances and soil bacterial community co-patterning in grassland soils in 100 sites across a heterogeneous mountain landscape in the western Swiss Alps, we obtained sufficient statistical power to disentangle common co-occurrences and weaker specific interactions. Plant alliances and soil bacterial communities tended to be synchronized in community turnover across the landscape, largely driven by common underlying environmental factors, such as soil pH or elevation. Certain alliances occurring in distinct, local, environmental conditions were characterized by co-occurring specialist plant and bacterial species, such as the Nardus stricta and Thermogemmatisporaceae. In contrast, some generalist taxa, like Anthoxanthum odoratum and 19 Acidobacteria species, spanned across multiple ve...
Asexual taxa often have larger ranges than their sexual progenitors, particularly in areas affect... more Asexual taxa often have larger ranges than their sexual progenitors, particularly in areas affected by Pleistocene glaciations. The reasons given for this 'geographical parthenogenesis' are contentious, with expansion of the ecological niche or colonisation advantages of uniparental reproduction assumed most important in case of plants. Here, we parameterized a spread model for the alpine buttercup Ranunculus kuepferi and reconstructed the joint Holocene range expansion of its sexual and apomictic cytotype across the European Alps under different simulation settings. We found that, rather than niche broadening or a higher migration rate, a shift of the apomict's niche towards colder conditions per se was crucial as it facilitated overcoming of topographical barriers, a factor likely relevant for many alpine apomicts. More generally, our simulations suggest potentially strong interacting effects of niche differentiation and reproductive modes on range formation of related...
GAIA - Ecological Perspectives for Science and Society
The recently finished EU funded project MACIS reviewed observed and projected climate change impa... more The recently finished EU funded project MACIS reviewed observed and projected climate change impacts on biodiversity. It assessed mitigation and adaptation options. It also reviewed and developed methods to assess future impacts of climate change on biodiversity including the identification of policy options to prevent and minimise these impacts.
Improving biodiversity predictions is essential if we are to meet the challenges posed by global ... more Improving biodiversity predictions is essential if we are to meet the challenges posed by global change. As knowledge is key to feed models, we need to evaluate how debated theory can affect models. An important ongoing debate is whether environmental constraints limit the number of species that can coexist in a community (saturation), with recent findings suggesting that species richness in many communities might be unsaturated. Here, we propose that biodiversity models could address this issue by accounting for a duality: considering communities as unsaturated but where species composition is constrained by different scale-dependent biodiversity drivers. We identify a variety of promising advances for incorporating this duality into commonly applied biodiversity modelling approaches and improving their spatial predictions.
Correlative species distribution models are based on the observed relationship between species... more Correlative species distribution models are based on the observed relationship between species' occurrence and macroclimate or other environmental variables. In climates predicted less favourable populations are expected to decline, and in favourable climates they are expected to persist. However, little comparative empirical support exists for a relationship between predicted climate suitability and population performance. We found that the performance of 93 populations of 34 plant species worldwide - as measured by in situ population growth rate, its temporal variation and extinction risk - was not correlated with climate suitability. However, correlations of demographic processes underpinning population performance with climate suitability indicated both resistance and vulnerability pathways of population responses to climate: in less suitable climates, plants experienced greater retrogression (resistance pathway) and greater variability in some demographic rates (vulnerabili...
The effects of Quaternary climatic oscillations on the demography of organisms vary across region... more The effects of Quaternary climatic oscillations on the demography of organisms vary across regions and continents. In taxa distributed in Europe and North America, several paradigms regarding the distribution of refugia have been identified. By contrast, less is known about the processes that shaped the species' spatial genetic structure in areas such as the Himalayas, which is considered a biodiversity hotspot. Here, we investigated the phylogeographic structure and population dynamics of Primula tibetica by combining genomic phylogeography and species distribution models (SDMs). Genomic data were obtained for 293 samples of P. tibetica using restriction site-associated DNA sequencing (RADseq). Ensemble SDMs were carried out to predict potential present and past distribution ranges. Four distinct lineages were identified. Approximate Bayesian computation analyses showed that each of them have experienced both expansions and bottlenecks since their divergence, which occurred dur...
We quantified the degree to which the relationship between the geographic distribution of three m... more We quantified the degree to which the relationship between the geographic distribution of three major European tree species, Abies alba, Fagus sylvatica and Picea abies and January temperature (Tjan) has remained stable over the past 10,000 years. We used an extended data-set of fossil pollen records over Europe to reconstruct spatial variation in Tjan values for each 1000-year time slice between 10,000 and 3000 years BP (before present). We evaluated the relationships between the occurrences of the three species at each time slice and the spatially interpolated Tjan values, and compared these to their modern temperature ranges. Our results reveal that F. sylvatica and P. abies experienced Tjan ranges during the Holocene that differ from those of the present, while A. alba occurred over a Tjan range that is comparable to its modern one. Our data suggest the need for re-evaluation of the assumption of stable climate tolerances at a scale of several thousand years. The temperature range instability in our observed data independently validates similar results based exclusively on modeled Holocene temperatures. Our study complements previous studies that used modeled data by identifying variation in frequencies of occurrence of populations within the limits of suitable climate. However, substantial changes that were observed in the realized thermal niches over the Holocene tend to suggest that predicting future species distributions should not solely be based on modern realized niches, and needs to account for the past variation in the climate variables that drive species ranges.
Questions: The choice of environmental predictor variables in correlative models of plant species... more Questions: The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive accuracy and model realism, as highlighted in multiple earlier studies. Because variable selection is directly related to a model's capacity to capture important species' environmental requirements, one would expect an explicit prior consideration of all ecophysiologically meaningful variables. For plants, these include temperature, water, soil nutrients, light, and in some cases, disturbances and biotic interactions. However, the set of predictors used in published correlative plant SDM studies varies considerably. No comprehensive review exists of what environmental predictors are meaningful, available (or missing), and used in practice to predict plant distributions. Contributing to answer these questions is the aim of this review. Methods: We carried out an extensive, systematic review of recently published plant SDM studies (years 2010-2015; n = 200) to determine the predictors used (and not used) in the models. We additionally conducted an in-depth review of SDM studies in selected journals to identify temporal trends in the use of predictors (years 2000-2015; n = 40). Results: A large majority of plant SDM studies neglected several ecophysiologically meaningful environmental variables, and the number of relevant predictors used in models has stagnated or even declined over the last 15 years. Conclusions: Neglecting ecophysiologically meaningful predictors can result in incomplete niche quantification and can thus limit the predictive power of plant SDMs. Some of these missing predictors are already available spatially or may soon become available (e.g., soil moisture). However, others are not yet easily obtainable across whole study extents (e.g., soil pH and nutrients), and their development should receive increased attention. We conclude that more effort should be made to build ecologically more sound plant SDMs. This requires a more thorough rationale for the choice of environmental predictors needed to meet the study goal, and the development of missing ones. The latter calls for increased collaborative effort between ecological and geo-environmental sciences.
The role of ecological niche in lineage diversification has been the subject of long-standing int... more The role of ecological niche in lineage diversification has been the subject of long-standing interest of ecologists and evolutionary biologists. Gynandropaa frogs diversified into three independent clades endemic to the southeastern Qinghai-Tibetan Plateau. Here, we address the question whether these clades kept the same niche after separation, and what it tells us about possible diversification processes. We applied predictions in geographical (G)-space and tests of niche conservatism in environmental (E)-space. Niche models in G-space indicate separate regions with high suitability for the different clades, with some potential areas of sympatry. While the pair of central and eastern clades displayed the largest niche overlap for most variables, and strict niche equivalency was rejected for all clade-pairs, we found no strong evidence for niche divergence, but rather the signature of niche conservatism compared to null models in E-space. These results suggest a common ancestral ec...
Mountain ecosystems are characterized by a diverse range of climatic and topographic conditions o... more Mountain ecosystems are characterized by a diverse range of climatic and topographic conditions over short distances and are known to shelter a high biodiversity. Despite important progress still little is known on bacterial diversity in mountain areas. Here we investigated soil bacterial biogeography in more than 100 sampling sites random stratified across a 700 km2area with 2,200 m elevation gradient in the western Swiss Alps. Bacterial grassland communities were highly diverse with 12,741 total operational taxonomic units across 100 sites and an average of 2,918 per site. Bacterial community structure was correlated with local climatic, topographic, and soil physico-chemical parameters with high statistical significance. Among the groups of most important environmental drivers of bacterial community structure we found pH (correlated with % CaO and % mineral carbon), hydrogen index (correlated with bulk gravimetric water content), and annual average number of frost days during the...
One of the key input parameters for numerical pollen forecasts is the distribution of pollen sour... more One of the key input parameters for numerical pollen forecasts is the distribution of pollen sources. Generally, three different methodologies exist to assemble such distribution maps: (1) plant inventories, (2) land use data in combination with annual pollen counts, and (3) ecological modeling. We have used six exemplary maps for all of these methodologies to study their applicability and usefulness in numerical pollen forecasts. The ragweed pollen season of 2012 in France has been simulated with the numerical weather prediction model COSMO-ART using each of the distribution maps in turn. The simulated pollen concentrations were statistically compared to measured values to derive a ranking of the maps with respect to their performance. Overall, approach (2) resulted in the best correspondence between observed and simulated pollen concentrations for the year 2012. It is shown that maps Electronic supplementary material The online version of this article (
Antoine Guisan,* Reid Tingley, John B. Baumgartner, Ilona Naujokaitis-Lewis, Patricia R. Sutcliff... more Antoine Guisan,* Reid Tingley, John B. Baumgartner, Ilona Naujokaitis-Lewis, Patricia R. Sutcliffe, Ayesha I. T. Tulloch, Tracey J. Regan, Lluis Brotons, Eve McDonald-Madden, Chrystal Mantyka-Pringle, Tara G. Martin, Jonathan R. Rhodes, Ramona Maggini, Samantha A. Setterfield, Jane Elith, Mark W. Schwartz, Brendan A. Wintle, Olivier Broennimann, Mike Austin, Simon Ferrier, Michael R. Kearney, Hugh P. Possingham and Yvonne M. Buckley Abstract Species distribution models (SDMs) are increasingly proposed to support conservation decision making. However, evidence of SDMs supporting solutions for on-ground conservation problems is still scarce in the scientific literature. Here, we show that successful examples exist but are still largely hidden in the grey literature, and thus less accessible for analysis and learning. Furthermore, the decision framework within which SDMs are used is rarely made explicit. Using case studies from biological invasions, identification of critical habitats,...
Primary Biodiversity Data (PBD) are defined as the basic attributes of observations or records of... more Primary Biodiversity Data (PBD) are defined as the basic attributes of observations or records of the occurrences of species. PBD is a fundamental concept of biodiversity informatics since it is substantial in quantity and provides the links to organize other large and independent bodies of data concerning species (= taxonomic information) and environments. In fact, PBD is at the core of the exploding field of biodiversity informatics, which in some sense now underlies biogeography, macroecology, landscape ecology and several other subdisciplines of biology. A principal - and rapidly growing - class of research that can be performed using PBD is the estimation of a species' environmental requirements and the projection of these in both environmental and geographic spaces to estimate niches or distributional ranges, generally by using models of ecological niches and species' distributions (often called ENMs or SDMs, respectively). The largest point of access to PBD in the wor...
The Giant Hogweed (Heracleum mantegazzianum), an invasive giant herb native from Caucasus, was fi... more The Giant Hogweed (Heracleum mantegazzianum), an invasive giant herb native from Caucasus, was first introduced in Switzerland (Geneva) in 1895 and cultivated in alpine botanical gardens because of its spectacular inflorescence. Since then, it escaped repeatedly from gardens, becoming invasive and leading to ecological, economical and health problems. In this study, we evaluated the invasion status of this alien invasive species in the Western Swiss Alps, by modelling its potential distribution and estimating current and future density and cost estimations. These assessment measures provide useful tools for an action plan in conservation biology. In the continuity of a previous study in 2004, we used a model-based sampling design to improve occurrences data and ultimately improve predictive models of the species distribution. Since we did not found as much occurrences as expected, different models were carrying out with different available data sets. The first predictive maps were based on naturalized occurrences versus all available presences and the second, on a set of absence sites stratified according to the strata of a previous available model. We tested two different estimations of the giant hogweed's population size: a design-based estimation and a model-based estimation. We first proceed to the Thompson design-based estimation through a randomstratified adaptive sampling. This estimation provided current population size of the focal species. The future potential population size of the focal species was achieved with the models resulting from the field sampling. For management cost, communes included in the study area were set as management units and assessed individually. A binary model using threshold value optimising ratio of omission to commission errors provided future potential costs. Finally, this filtered binomial model permits us to underline which communes should receive special attention for eradication.
Venomous animals use venom, a complex biofluid composed of unique mixtures of proteins and peptid... more Venomous animals use venom, a complex biofluid composed of unique mixtures of proteins and peptides, for either predation or defense. Bumblebees, which occur in various habitats due to their unique thermoregulatory properties, mainly use venom for defense. Herein, we conducted an exploratory analysis of the venom composition of a bumblebee species (Bombus pascuorum) along an elevation gradient in the western Swiss Alps using shot-gun proteomic approaches to assess whether their defense mechanism varies along the gradient. The gradient was characterized by high temperatures and low humidity at low elevations and low temperatures and high humidity at high elevations. Venom composition is changing along the elevation gradient, with proteomic variation in the abundances of pain-inducing and allergenic proteins. In particular, the abundance of phospholipase A2-like, the main component of bumblebee venom, gradually decreases toward higher elevation (lower temperature), suggesting venom al...
Protected areas (PAs) play a critical role in conserving biodiversity and maintaining viable popu... more Protected areas (PAs) play a critical role in conserving biodiversity and maintaining viable populations of threatened species. Yet, as global change could reduce the future effectiveness of existing PAs in covering high species richness, updating the boundaries of existing PAs or creating new ones might become necessary to uphold conservation goals. Modelling tools are increasingly used by policymakers to support the spatial prioritization of biodiversity conservation, enabling the inclusion of scenarios of environmental changes to achieve specific targets. Here, using the Western Swiss Alps as a case study, we show how integrating species richness derived from species distribution model predictions for four taxonomic groups under present and future climate and land-use conditions into two conservation prioritization schemes can help optimize extant and future PAs. The first scheme, the "Priority Scores Method" identified priority areas for the expansion of the existing PA network. The second scheme, using the zonation software, allowed identifying priority conservation areas while incorporating global change scenarios and political costs. We found that existing mountain PAs are currently not situated in the most environmentally nor politically suitable locations when maximizing alpha diversity for the studied taxonomic groups and that current PAs could become even less optimum under the future climate and land-use change scenarios. This analysis has focused on general areas of high species richness or species of conservation concern and did not account for special habitats or functional groups that could have been used to create the existing network. We conclude that such an integrated framework could support more effective conservation planning and could be similarly applied to other landscapes or other biodiversity conservation indices.
In severe and variable conditions, specialized resource selection strategies should be less frequ... more In severe and variable conditions, specialized resource selection strategies should be less frequent because extinction risks increase for species that depend on a single and unstable resource. Psithyrus (Bombus subgenus Psithyrus) are bumblebee parasites that usurp Bombus nests and display inter-specific variation in the number of hosts they parasitize. Using a phylogenetic comparative framework, we show that Psithyrus species at higher elevations display a higher number of hosts species compared with species restricted to lower elevations. Species inhabiting high elevations also cover a larger temperature range, suggesting that species able to occur in colder conditions may benefit from recruitment from populations occurring in warmer conditions. Our results provide evidence for an 'altitudinal niche breadth hypothesis' in parasitic species, showing a decrease in the parasites' specialization along the elevational gradient, and also suggesting that Rapoport's rule might apply to Psithyrus.
Interactions between plants and bacteria in the non-rhizosphere soil are rarely assessed, because... more Interactions between plants and bacteria in the non-rhizosphere soil are rarely assessed, because they are less direct and easily masked by confounding environmental factors. By studying plant vegetation alliances and soil bacterial community co-patterning in grassland soils in 100 sites across a heterogeneous mountain landscape in the western Swiss Alps, we obtained sufficient statistical power to disentangle common co-occurrences and weaker specific interactions. Plant alliances and soil bacterial communities tended to be synchronized in community turnover across the landscape, largely driven by common underlying environmental factors, such as soil pH or elevation. Certain alliances occurring in distinct, local, environmental conditions were characterized by co-occurring specialist plant and bacterial species, such as the Nardus stricta and Thermogemmatisporaceae. In contrast, some generalist taxa, like Anthoxanthum odoratum and 19 Acidobacteria species, spanned across multiple ve...
Asexual taxa often have larger ranges than their sexual progenitors, particularly in areas affect... more Asexual taxa often have larger ranges than their sexual progenitors, particularly in areas affected by Pleistocene glaciations. The reasons given for this 'geographical parthenogenesis' are contentious, with expansion of the ecological niche or colonisation advantages of uniparental reproduction assumed most important in case of plants. Here, we parameterized a spread model for the alpine buttercup Ranunculus kuepferi and reconstructed the joint Holocene range expansion of its sexual and apomictic cytotype across the European Alps under different simulation settings. We found that, rather than niche broadening or a higher migration rate, a shift of the apomict's niche towards colder conditions per se was crucial as it facilitated overcoming of topographical barriers, a factor likely relevant for many alpine apomicts. More generally, our simulations suggest potentially strong interacting effects of niche differentiation and reproductive modes on range formation of related...
GAIA - Ecological Perspectives for Science and Society
The recently finished EU funded project MACIS reviewed observed and projected climate change impa... more The recently finished EU funded project MACIS reviewed observed and projected climate change impacts on biodiversity. It assessed mitigation and adaptation options. It also reviewed and developed methods to assess future impacts of climate change on biodiversity including the identification of policy options to prevent and minimise these impacts.
Improving biodiversity predictions is essential if we are to meet the challenges posed by global ... more Improving biodiversity predictions is essential if we are to meet the challenges posed by global change. As knowledge is key to feed models, we need to evaluate how debated theory can affect models. An important ongoing debate is whether environmental constraints limit the number of species that can coexist in a community (saturation), with recent findings suggesting that species richness in many communities might be unsaturated. Here, we propose that biodiversity models could address this issue by accounting for a duality: considering communities as unsaturated but where species composition is constrained by different scale-dependent biodiversity drivers. We identify a variety of promising advances for incorporating this duality into commonly applied biodiversity modelling approaches and improving their spatial predictions.
Correlative species distribution models are based on the observed relationship between species... more Correlative species distribution models are based on the observed relationship between species' occurrence and macroclimate or other environmental variables. In climates predicted less favourable populations are expected to decline, and in favourable climates they are expected to persist. However, little comparative empirical support exists for a relationship between predicted climate suitability and population performance. We found that the performance of 93 populations of 34 plant species worldwide - as measured by in situ population growth rate, its temporal variation and extinction risk - was not correlated with climate suitability. However, correlations of demographic processes underpinning population performance with climate suitability indicated both resistance and vulnerability pathways of population responses to climate: in less suitable climates, plants experienced greater retrogression (resistance pathway) and greater variability in some demographic rates (vulnerabili...
The effects of Quaternary climatic oscillations on the demography of organisms vary across region... more The effects of Quaternary climatic oscillations on the demography of organisms vary across regions and continents. In taxa distributed in Europe and North America, several paradigms regarding the distribution of refugia have been identified. By contrast, less is known about the processes that shaped the species' spatial genetic structure in areas such as the Himalayas, which is considered a biodiversity hotspot. Here, we investigated the phylogeographic structure and population dynamics of Primula tibetica by combining genomic phylogeography and species distribution models (SDMs). Genomic data were obtained for 293 samples of P. tibetica using restriction site-associated DNA sequencing (RADseq). Ensemble SDMs were carried out to predict potential present and past distribution ranges. Four distinct lineages were identified. Approximate Bayesian computation analyses showed that each of them have experienced both expansions and bottlenecks since their divergence, which occurred dur...
We quantified the degree to which the relationship between the geographic distribution of three m... more We quantified the degree to which the relationship between the geographic distribution of three major European tree species, Abies alba, Fagus sylvatica and Picea abies and January temperature (Tjan) has remained stable over the past 10,000 years. We used an extended data-set of fossil pollen records over Europe to reconstruct spatial variation in Tjan values for each 1000-year time slice between 10,000 and 3000 years BP (before present). We evaluated the relationships between the occurrences of the three species at each time slice and the spatially interpolated Tjan values, and compared these to their modern temperature ranges. Our results reveal that F. sylvatica and P. abies experienced Tjan ranges during the Holocene that differ from those of the present, while A. alba occurred over a Tjan range that is comparable to its modern one. Our data suggest the need for re-evaluation of the assumption of stable climate tolerances at a scale of several thousand years. The temperature range instability in our observed data independently validates similar results based exclusively on modeled Holocene temperatures. Our study complements previous studies that used modeled data by identifying variation in frequencies of occurrence of populations within the limits of suitable climate. However, substantial changes that were observed in the realized thermal niches over the Holocene tend to suggest that predicting future species distributions should not solely be based on modern realized niches, and needs to account for the past variation in the climate variables that drive species ranges.
Questions: The choice of environmental predictor variables in correlative models of plant species... more Questions: The choice of environmental predictor variables in correlative models of plant species distributions (hereafter SDMs) is crucial to ensure predictive accuracy and model realism, as highlighted in multiple earlier studies. Because variable selection is directly related to a model's capacity to capture important species' environmental requirements, one would expect an explicit prior consideration of all ecophysiologically meaningful variables. For plants, these include temperature, water, soil nutrients, light, and in some cases, disturbances and biotic interactions. However, the set of predictors used in published correlative plant SDM studies varies considerably. No comprehensive review exists of what environmental predictors are meaningful, available (or missing), and used in practice to predict plant distributions. Contributing to answer these questions is the aim of this review. Methods: We carried out an extensive, systematic review of recently published plant SDM studies (years 2010-2015; n = 200) to determine the predictors used (and not used) in the models. We additionally conducted an in-depth review of SDM studies in selected journals to identify temporal trends in the use of predictors (years 2000-2015; n = 40). Results: A large majority of plant SDM studies neglected several ecophysiologically meaningful environmental variables, and the number of relevant predictors used in models has stagnated or even declined over the last 15 years. Conclusions: Neglecting ecophysiologically meaningful predictors can result in incomplete niche quantification and can thus limit the predictive power of plant SDMs. Some of these missing predictors are already available spatially or may soon become available (e.g., soil moisture). However, others are not yet easily obtainable across whole study extents (e.g., soil pH and nutrients), and their development should receive increased attention. We conclude that more effort should be made to build ecologically more sound plant SDMs. This requires a more thorough rationale for the choice of environmental predictors needed to meet the study goal, and the development of missing ones. The latter calls for increased collaborative effort between ecological and geo-environmental sciences.
The role of ecological niche in lineage diversification has been the subject of long-standing int... more The role of ecological niche in lineage diversification has been the subject of long-standing interest of ecologists and evolutionary biologists. Gynandropaa frogs diversified into three independent clades endemic to the southeastern Qinghai-Tibetan Plateau. Here, we address the question whether these clades kept the same niche after separation, and what it tells us about possible diversification processes. We applied predictions in geographical (G)-space and tests of niche conservatism in environmental (E)-space. Niche models in G-space indicate separate regions with high suitability for the different clades, with some potential areas of sympatry. While the pair of central and eastern clades displayed the largest niche overlap for most variables, and strict niche equivalency was rejected for all clade-pairs, we found no strong evidence for niche divergence, but rather the signature of niche conservatism compared to null models in E-space. These results suggest a common ancestral ec...
Mountain ecosystems are characterized by a diverse range of climatic and topographic conditions o... more Mountain ecosystems are characterized by a diverse range of climatic and topographic conditions over short distances and are known to shelter a high biodiversity. Despite important progress still little is known on bacterial diversity in mountain areas. Here we investigated soil bacterial biogeography in more than 100 sampling sites random stratified across a 700 km2area with 2,200 m elevation gradient in the western Swiss Alps. Bacterial grassland communities were highly diverse with 12,741 total operational taxonomic units across 100 sites and an average of 2,918 per site. Bacterial community structure was correlated with local climatic, topographic, and soil physico-chemical parameters with high statistical significance. Among the groups of most important environmental drivers of bacterial community structure we found pH (correlated with % CaO and % mineral carbon), hydrogen index (correlated with bulk gravimetric water content), and annual average number of frost days during the...
One of the key input parameters for numerical pollen forecasts is the distribution of pollen sour... more One of the key input parameters for numerical pollen forecasts is the distribution of pollen sources. Generally, three different methodologies exist to assemble such distribution maps: (1) plant inventories, (2) land use data in combination with annual pollen counts, and (3) ecological modeling. We have used six exemplary maps for all of these methodologies to study their applicability and usefulness in numerical pollen forecasts. The ragweed pollen season of 2012 in France has been simulated with the numerical weather prediction model COSMO-ART using each of the distribution maps in turn. The simulated pollen concentrations were statistically compared to measured values to derive a ranking of the maps with respect to their performance. Overall, approach (2) resulted in the best correspondence between observed and simulated pollen concentrations for the year 2012. It is shown that maps Electronic supplementary material The online version of this article (
Uploads
Papers by Antoine Guisan