This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Prophages or prophage remnants are found in chromosomes of many bacterial strains and might incre... more Prophages or prophage remnants are found in chromosomes of many bacterial strains and might increase the environmental fitness and/or virulence of their hosts. Up to this date, complete genome sequences of only seven temperate bacteriophages infecting bacteria from genus Erwinia, comprising of mostly phytopathogenic bacteria, are available publicly. No attempts to analyze the global diversity of temperate Erwinia phages and establish relationships between cultured temperate Erwinia phages and prophages were yet made. In this study, we have isolated, sequenced, and described novel Erwinia persicina infecting bacteriophage "Midgardsormr38" and placed it in the context of previously described Erwinia sp. temperate phages and putative prophages derived from chromosomes of publicly available complete genomes of Erwinia sp. to broaden and investigate diversity of temperate Erwinia phages based on their genomic contents. The study revealed more than 50 prophage or prophage remnant regions in the genomes of different Erwinia species. At least 5 of them seemed to be intact and might represent novel inducible Erwinia phages. Given the enormous bacteriophage diversity, attempts to establish evolutionary relationships between temperate Erwinia phages revealed at least five different clusters of temperate phages sharing higher degree of similarity.
The first complete genome that was sequenced at the beginning of the sequencing era was that of a... more The first complete genome that was sequenced at the beginning of the sequencing era was that of a phage, since then researchers throughout the world have been steadily describing and publishing genomes from a wide array of phages, uncovering the secrets of the most abundant and diverse biological entities known to man. Currently, we are experiencing an unprecedented rate of novel bacteriophage discovery, which can be seen from the fact that the amount of complete bacteriophage genome entries in public sequence repositories has more than doubled in the past 3 years and is steadily growing without showing any sign of slowing down. The amount of publicly available phage genome-related data can be overwhelming and has been summarized in literature before but quickly becomes out of date. Thus, the aim of this paper is to briefly outline currently available phage diversity data for public acknowledgment that could possibly encourage and stimulate future "depth" studies of particular groups of phages or their gene products.
International Journal of Molecular Sciences, Jan 17, 2023
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
The novel bacterial virus Mimir87, infecting the salt-tolerant bacterium Virgibacillus halotolera... more The novel bacterial virus Mimir87, infecting the salt-tolerant bacterium Virgibacillus halotolerans, was isolated from worker honey bees. Mimir87 has an elongated head and a long non-contractile tail consistent with members of the Siphoviridae phage family. The phage genome comprises 48,016 base pairs and encodes 68 predicted proteins, to 34 of which a function could be assigned from homology analysis. The phage encodes two metabolism-related transporter proteins previously not observed in bacteriophage genomes. Mimir87 displays some relatedness to several Bacillus and Paenibacillus viruses; however, the overall sequence dissimilarity suggests Mimir87 to be a representative of a new phage genus.
A hepatitis B core antigen (HBcAg) gene bearing the 39-amino-acid-long domain A of hepatitis B su... more A hepatitis B core antigen (HBcAg) gene bearing the 39-amino-acid-long domain A of hepatitis B surface antigen (HBsAg) within the HBcAg immunodominant loop has been constructed and expressed in Escherichia coli. Chimeric capsids demonstrated HBs but not HBc antigenicity and elicited in mice B-cell and T-cell responses against native HBcAg and HBsAg.
The rates of viral RNA and protein syntheses for wild-type RNA bacteriophages and their nonpolar,... more The rates of viral RNA and protein syntheses for wild-type RNA bacteriophages and their nonpolar, coat protein amber mutants were determined in amber suppressor (S26R1E, Su-1 and H12R8a, Su-3) and nonsuppressor (AB259, S26, and Q13) strains of Escherichia coli in the presence of rifamycin. It was demonstrated that the rates of synthesis of phage-specific replicase and RNA minus strands drop off concurrently in both wild-type and coat protein mutant-infected Su − and Su + cells after 10 and 15 min postinfection, respectively. The rate of synthesis of RNA plus strands started to decline 5 to 10 min later in both cases. Excessive synthesis of replicase in the coat protein mutant-infected cells was accompanied by a similar overproduction of RNA minus strands, but not of plus strands. Partial suppression of protein synthesis in wild-type phage-infected cells abolishing coat protein control over replicase accumulation led to prolongation of replicase synthesis. Such an effect was observed...
Replication of RNA bacteriophages in the presence of rifamycin was studied in different Escherich... more Replication of RNA bacteriophages in the presence of rifamycin was studied in different Escherichia coli strains that vary in RNase content but are not isogenic: AB259 RNase+, Q13 RNase I- PNPase-, AB105 RNase I- RNase III-. It was found that rifamycin did not affect characteristics of phage replication such as the general pattern of viral RNA synthesis and intracellular development of the phage. These characteristics are strain specific and independent of the cell growth rate, which defines only phage release. The inhibition of cell division by rifamycin interfered with the release of the phage and thus produced an apparent effect of rifamycin on phage replication.
Previous studies have shown that the progression of hepatitis B virus-related liver disease in lo... more Previous studies have shown that the progression of hepatitis B virus-related liver disease in longterm immunosuppressed kidney transplant recipients is associated with the accumulation of virus variants carrying in-frame deletions in the central part of the core gene. A set of naturally occurring core protein variants was expressed in Escherichia coli in order to investigate their stability and assembly competence and to characterize their antigenic and immunogenic properties. In addition, a library of core gene variants generated in vitro with deletions including the major immunodominant region (MIR) of the core protein was investigated. The position and length of deletions determined the behaviour of mutant core proteins in E. coli and their assignment to one of the three groups : (i) assembly-competent, (ii) stable but assembly-incompetent and (iii) unstable proteins. In vivo core variants with MIR deletions between amino acids 77 and 93 belong to the first group. Only proteins with the shortest deletion (amino acids 86-93) showed stability and selfassembly at the same level as wild-type cores, and they showed reduced antigenicity and immunogenicity. Mutants with deletions extending N-terminally beyond residue G73 or Cterminally beyond G94 were found to be assembly-incompetent. We suggest that G73 and G94 are involved in the folding and the native assembly of core molecules, whereas the intervening sequence determines the antibody response. Depending on their ability to form stable proteins or to assemble into particles, core mutants could contribute to liver cell pathogenesis in different ways.
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Prophages or prophage remnants are found in chromosomes of many bacterial strains and might incre... more Prophages or prophage remnants are found in chromosomes of many bacterial strains and might increase the environmental fitness and/or virulence of their hosts. Up to this date, complete genome sequences of only seven temperate bacteriophages infecting bacteria from genus Erwinia, comprising of mostly phytopathogenic bacteria, are available publicly. No attempts to analyze the global diversity of temperate Erwinia phages and establish relationships between cultured temperate Erwinia phages and prophages were yet made. In this study, we have isolated, sequenced, and described novel Erwinia persicina infecting bacteriophage "Midgardsormr38" and placed it in the context of previously described Erwinia sp. temperate phages and putative prophages derived from chromosomes of publicly available complete genomes of Erwinia sp. to broaden and investigate diversity of temperate Erwinia phages based on their genomic contents. The study revealed more than 50 prophage or prophage remnant regions in the genomes of different Erwinia species. At least 5 of them seemed to be intact and might represent novel inducible Erwinia phages. Given the enormous bacteriophage diversity, attempts to establish evolutionary relationships between temperate Erwinia phages revealed at least five different clusters of temperate phages sharing higher degree of similarity.
The first complete genome that was sequenced at the beginning of the sequencing era was that of a... more The first complete genome that was sequenced at the beginning of the sequencing era was that of a phage, since then researchers throughout the world have been steadily describing and publishing genomes from a wide array of phages, uncovering the secrets of the most abundant and diverse biological entities known to man. Currently, we are experiencing an unprecedented rate of novel bacteriophage discovery, which can be seen from the fact that the amount of complete bacteriophage genome entries in public sequence repositories has more than doubled in the past 3 years and is steadily growing without showing any sign of slowing down. The amount of publicly available phage genome-related data can be overwhelming and has been summarized in literature before but quickly becomes out of date. Thus, the aim of this paper is to briefly outline currently available phage diversity data for public acknowledgment that could possibly encourage and stimulate future "depth" studies of particular groups of phages or their gene products.
International Journal of Molecular Sciences, Jan 17, 2023
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
The novel bacterial virus Mimir87, infecting the salt-tolerant bacterium Virgibacillus halotolera... more The novel bacterial virus Mimir87, infecting the salt-tolerant bacterium Virgibacillus halotolerans, was isolated from worker honey bees. Mimir87 has an elongated head and a long non-contractile tail consistent with members of the Siphoviridae phage family. The phage genome comprises 48,016 base pairs and encodes 68 predicted proteins, to 34 of which a function could be assigned from homology analysis. The phage encodes two metabolism-related transporter proteins previously not observed in bacteriophage genomes. Mimir87 displays some relatedness to several Bacillus and Paenibacillus viruses; however, the overall sequence dissimilarity suggests Mimir87 to be a representative of a new phage genus.
A hepatitis B core antigen (HBcAg) gene bearing the 39-amino-acid-long domain A of hepatitis B su... more A hepatitis B core antigen (HBcAg) gene bearing the 39-amino-acid-long domain A of hepatitis B surface antigen (HBsAg) within the HBcAg immunodominant loop has been constructed and expressed in Escherichia coli. Chimeric capsids demonstrated HBs but not HBc antigenicity and elicited in mice B-cell and T-cell responses against native HBcAg and HBsAg.
The rates of viral RNA and protein syntheses for wild-type RNA bacteriophages and their nonpolar,... more The rates of viral RNA and protein syntheses for wild-type RNA bacteriophages and their nonpolar, coat protein amber mutants were determined in amber suppressor (S26R1E, Su-1 and H12R8a, Su-3) and nonsuppressor (AB259, S26, and Q13) strains of Escherichia coli in the presence of rifamycin. It was demonstrated that the rates of synthesis of phage-specific replicase and RNA minus strands drop off concurrently in both wild-type and coat protein mutant-infected Su − and Su + cells after 10 and 15 min postinfection, respectively. The rate of synthesis of RNA plus strands started to decline 5 to 10 min later in both cases. Excessive synthesis of replicase in the coat protein mutant-infected cells was accompanied by a similar overproduction of RNA minus strands, but not of plus strands. Partial suppression of protein synthesis in wild-type phage-infected cells abolishing coat protein control over replicase accumulation led to prolongation of replicase synthesis. Such an effect was observed...
Replication of RNA bacteriophages in the presence of rifamycin was studied in different Escherich... more Replication of RNA bacteriophages in the presence of rifamycin was studied in different Escherichia coli strains that vary in RNase content but are not isogenic: AB259 RNase+, Q13 RNase I- PNPase-, AB105 RNase I- RNase III-. It was found that rifamycin did not affect characteristics of phage replication such as the general pattern of viral RNA synthesis and intracellular development of the phage. These characteristics are strain specific and independent of the cell growth rate, which defines only phage release. The inhibition of cell division by rifamycin interfered with the release of the phage and thus produced an apparent effect of rifamycin on phage replication.
Previous studies have shown that the progression of hepatitis B virus-related liver disease in lo... more Previous studies have shown that the progression of hepatitis B virus-related liver disease in longterm immunosuppressed kidney transplant recipients is associated with the accumulation of virus variants carrying in-frame deletions in the central part of the core gene. A set of naturally occurring core protein variants was expressed in Escherichia coli in order to investigate their stability and assembly competence and to characterize their antigenic and immunogenic properties. In addition, a library of core gene variants generated in vitro with deletions including the major immunodominant region (MIR) of the core protein was investigated. The position and length of deletions determined the behaviour of mutant core proteins in E. coli and their assignment to one of the three groups : (i) assembly-competent, (ii) stable but assembly-incompetent and (iii) unstable proteins. In vivo core variants with MIR deletions between amino acids 77 and 93 belong to the first group. Only proteins with the shortest deletion (amino acids 86-93) showed stability and selfassembly at the same level as wild-type cores, and they showed reduced antigenicity and immunogenicity. Mutants with deletions extending N-terminally beyond residue G73 or Cterminally beyond G94 were found to be assembly-incompetent. We suggest that G73 and G94 are involved in the folding and the native assembly of core molecules, whereas the intervening sequence determines the antibody response. Depending on their ability to form stable proteins or to assemble into particles, core mutants could contribute to liver cell pathogenesis in different ways.
Uploads
Papers by Andris Dišlers