Ocular surface inflammation is one of the primary mechanisms associated with dysfunctional tear s... more Ocular surface inflammation is one of the primary mechanisms associated with dysfunctional tear syndrome (DTS), also known as dry eye disease. DTS, more prevalent in older populations, causes ocular discomfort and visual disturbance due to dryness on the surface layer in the eye. We used human conjunctival fibroblast cultures (HCJVF) to investigate the effects of inflammatory cytokines IFN-c, TNF-a and IL-1b (ITI) on the secretions of VEGF and chemokines. Our results demonstrate the elevated secretion of angiogenic VEGF molecules by ITI without affecting anti-angiogenic molecules, PEDF, endostatin, thrombospondin and sVEGF-R1. The secretion of interferon-c inducible chemokines, CXCL9,-10,-11 by HCJVF were significantly enhanced by ITI. Our in vitro study supports previously reported observations of elevated VEGF and chemokines in tear fluids of DTS patients, reiterating the role of inflammatory reactions in DTS.
Chronic inflammation is implicated in the pathogenesis of age-related macular degeneration (AMD).... more Chronic inflammation is implicated in the pathogenesis of age-related macular degeneration (AMD). Choroidal neovascularization (CNV) observed in exudative form of AMD results in vision loss. Human retinal pigment epithelial cell (HRPE) layer and choroidal tissue are the primary pathological sites in AMD. Pathological and therapeutic evidences have strongly indicated the vascular endothelial growth factor (VEGF) molecules as critical components in CNV pathogenesis. In these studies, we used human primary HRPE and choroidal fibroblast cells (HCHF) prepared from adult donor eyes. The effects of inflammatory cytokine (IFN-γ+ TNF-α+IL-1β) mix (ICM) on global gene expression profiles in HRPE cells, revealed 10- and 9-fold increase in VEGF-A and VEGF-C expression, respectively. The microarray results were validated by quantitative RT-PCR and secretion of VEGFs proteins. IL-1β is the most potent in inducing VEGFs secretion followed by IFN-γ and TNF-α, and the secretion was more effective in the presence of 2 and 3 cytokines. NF-κB and JAK-STAT pathway, but not HIF-1α, Sp-1, Sp-3, and STAT-3, transcription factors were upregulated and translocated to nucleus by ICM treatment. The mRNA levels of VEGF-A and VEGF-C and secretion of these proteins were also significantly enhanced by ICM in HCHF cells. The secretion of other angiogenic molecules, PEDF, SDF-1α, endostatin, and angiopoietins was not affected by ICM. Our results show that the inflammatory cytokines enhance secretion of VEGF-A and VEGF-C by HRPE and HCHF cells. These studies indicate that VEGFs secreted by these cells initiate and promote pathological choroidal and retinal noevascularization processes in AMD.
Biochemical and Biophysical Research Communications, 2008
Inflammatory processes within the cornea are known to be associated with corneal neovascularizati... more Inflammatory processes within the cornea are known to be associated with corneal neovascularization (CN). We examined the effects of inflammatory mediators on the expression of angiogenic factors by corneal cells. TNF-α and IL-1 induced VEGF-A secretion by corneal fibroblasts (HCRF) and this was inhibited significantly by IFN-γ. Constitutively secreted VEGF-A by corneal epithelial cells (HCE) was not affected by these cytokines. Moreover, sVEGF-R1(sFlt-1) secretion by HCRF was stimulated significantly by IFN-γ. JAK-STAT pathway inhibitor reversed the effects of IFN-γ on VEGF-A and sFlt-1 secretion by HCRF. RT-PCR analysis showed that IFN-γ influences the expression of VEGF-A and sFlt-1 by affecting their mRNA level. IFN-γ inhibited TGF-β induced VEGF-A secretion but not sVEGF-R1secretion. This is the first report demonstrating the inhibitory and stimulatory effects of IFN-γ on VEGF-A and sFlt-1 secretion, respectively. Our results suggest that IFN-γ acts as an anti-angiogenic cytokine in the human cornea.
Biochemical and Biophysical Research Communications, 2010
Interleukin-11 (IL-11) is an anti-apoptotic, anti-inflammatory cytokine with hematopoietic potent... more Interleukin-11 (IL-11) is an anti-apoptotic, anti-inflammatory cytokine with hematopoietic potential. The expression and protective actions of IL-11 have not been explored in the eye. The expression of IL-11 in primary cultures of human retinal pigment epithelial (HRPE) and human corneal fibroblast (HCRF) cells were evaluated in these studies. Constitutive secretion of IL-11 was not observed in either HRPE or HCRF. TNF-α + IL-1 induced IL-11 secretion and this production was inhibited by NFκB pathway inhibitors. IFN-γ significantly inhibited TNF-α and IL-1 induced IL-11 secretion and inhibitors of JAK-STAT pathway reversed this inhibition. TGFβ induced IL-11 secretion that was blocked by TGF-β receptor 1 inhibitor but not by IFN-γ. RT-PCR analysis confirmed the effects of IL-1, TNF-α, IFN-γ and TGF-β on IL-11 secretion at mRNA levels. Our results demonstrate that IL-11 is dramatically up regulated in retina and cornea cells and that IFN-γ is a physiological inhibitor of IL-11 expression.
Ocular surface inflammation is one of the primary mechanisms associated with dysfunctional tear s... more Ocular surface inflammation is one of the primary mechanisms associated with dysfunctional tear syndrome (DTS), also known as dry eye disease. DTS, more prevalent in older populations, causes ocular discomfort and visual disturbance due to dryness on the surface layer in the eye. We used human conjunctival fibroblast cultures (HCJVF) to investigate the effects of inflammatory cytokines IFN-c, TNF-a and IL-1b (ITI) on the secretions of VEGF and chemokines. Our results demonstrate the elevated secretion of angiogenic VEGF molecules by ITI without affecting anti-angiogenic molecules, PEDF, endostatin, thrombospondin and sVEGF-R1. The secretion of interferon-c inducible chemokines, CXCL9,-10,-11 by HCJVF were significantly enhanced by ITI. Our in vitro study supports previously reported observations of elevated VEGF and chemokines in tear fluids of DTS patients, reiterating the role of inflammatory reactions in DTS.
Chronic inflammation is implicated in the pathogenesis of age-related macular degeneration (AMD).... more Chronic inflammation is implicated in the pathogenesis of age-related macular degeneration (AMD). Choroidal neovascularization (CNV) observed in exudative form of AMD results in vision loss. Human retinal pigment epithelial cell (HRPE) layer and choroidal tissue are the primary pathological sites in AMD. Pathological and therapeutic evidences have strongly indicated the vascular endothelial growth factor (VEGF) molecules as critical components in CNV pathogenesis. In these studies, we used human primary HRPE and choroidal fibroblast cells (HCHF) prepared from adult donor eyes. The effects of inflammatory cytokine (IFN-γ+ TNF-α+IL-1β) mix (ICM) on global gene expression profiles in HRPE cells, revealed 10- and 9-fold increase in VEGF-A and VEGF-C expression, respectively. The microarray results were validated by quantitative RT-PCR and secretion of VEGFs proteins. IL-1β is the most potent in inducing VEGFs secretion followed by IFN-γ and TNF-α, and the secretion was more effective in the presence of 2 and 3 cytokines. NF-κB and JAK-STAT pathway, but not HIF-1α, Sp-1, Sp-3, and STAT-3, transcription factors were upregulated and translocated to nucleus by ICM treatment. The mRNA levels of VEGF-A and VEGF-C and secretion of these proteins were also significantly enhanced by ICM in HCHF cells. The secretion of other angiogenic molecules, PEDF, SDF-1α, endostatin, and angiopoietins was not affected by ICM. Our results show that the inflammatory cytokines enhance secretion of VEGF-A and VEGF-C by HRPE and HCHF cells. These studies indicate that VEGFs secreted by these cells initiate and promote pathological choroidal and retinal noevascularization processes in AMD.
Biochemical and Biophysical Research Communications, 2008
Inflammatory processes within the cornea are known to be associated with corneal neovascularizati... more Inflammatory processes within the cornea are known to be associated with corneal neovascularization (CN). We examined the effects of inflammatory mediators on the expression of angiogenic factors by corneal cells. TNF-α and IL-1 induced VEGF-A secretion by corneal fibroblasts (HCRF) and this was inhibited significantly by IFN-γ. Constitutively secreted VEGF-A by corneal epithelial cells (HCE) was not affected by these cytokines. Moreover, sVEGF-R1(sFlt-1) secretion by HCRF was stimulated significantly by IFN-γ. JAK-STAT pathway inhibitor reversed the effects of IFN-γ on VEGF-A and sFlt-1 secretion by HCRF. RT-PCR analysis showed that IFN-γ influences the expression of VEGF-A and sFlt-1 by affecting their mRNA level. IFN-γ inhibited TGF-β induced VEGF-A secretion but not sVEGF-R1secretion. This is the first report demonstrating the inhibitory and stimulatory effects of IFN-γ on VEGF-A and sFlt-1 secretion, respectively. Our results suggest that IFN-γ acts as an anti-angiogenic cytokine in the human cornea.
Biochemical and Biophysical Research Communications, 2010
Interleukin-11 (IL-11) is an anti-apoptotic, anti-inflammatory cytokine with hematopoietic potent... more Interleukin-11 (IL-11) is an anti-apoptotic, anti-inflammatory cytokine with hematopoietic potential. The expression and protective actions of IL-11 have not been explored in the eye. The expression of IL-11 in primary cultures of human retinal pigment epithelial (HRPE) and human corneal fibroblast (HCRF) cells were evaluated in these studies. Constitutive secretion of IL-11 was not observed in either HRPE or HCRF. TNF-α + IL-1 induced IL-11 secretion and this production was inhibited by NFκB pathway inhibitors. IFN-γ significantly inhibited TNF-α and IL-1 induced IL-11 secretion and inhibitors of JAK-STAT pathway reversed this inhibition. TGFβ induced IL-11 secretion that was blocked by TGF-β receptor 1 inhibitor but not by IFN-γ. RT-PCR analysis confirmed the effects of IL-1, TNF-α, IFN-γ and TGF-β on IL-11 secretion at mRNA levels. Our results demonstrate that IL-11 is dramatically up regulated in retina and cornea cells and that IFN-γ is a physiological inhibitor of IL-11 expression.
Uploads
Papers by Abitha William