In this study, we consider the historical climatological time series available in the meteorologi... more In this study, we consider the historical climatological time series available in the meteorological yearbooks of the Royal Hungarian Central Institute of Meteorology and Earth Magnetism, first published in 1871. Data quality improvement of historical data includes the homogenization process with outlier checks and data gap filling by applying the MASH software. We investigated 13 stations from the Carpathian Region having the most complete monthly temperature and precipitation time series for the period of 1871–1918 and 8 stations with fog observations (1886–1916). First, statistical tests were conducted to compare the main statistics of the historical datasets (1871–1918) with current data (1971–2020). The sources of the current data are the National Meteorological Administration of Romania and the European Climate Assessment & Dataset. The results show significant changes between the two periods. In the whole region, the mean temperature in the last five decades (1971–2020) was 0...
Remote sensing data are abundant, whereas surface in situ verification of atmospheric conditions ... more Remote sensing data are abundant, whereas surface in situ verification of atmospheric conditions is rare on Mars. Earth-based analogues could help gain an understanding of soil and atmospheric processes on Mars and refine existing models. In this work, we evaluate the applicability of the Weather Research and Forecasting (WRF) model against measurements from the Mars analogue High Andes-Atacama Desert. Validation focuses on the surface conditions, and on the surface energy budget. Measurements show that the average daily net radiation, global radiation, and latent heat flux amount to 131, 273, and about 10 W/m2, respectively, indicating extremely dry atmospheric conditions. Dynamically, the effect of topography is also well simulated. One of the main modeling problems is the inaccurate initial soil and surface conditions in the area. Correction of soil moisture based on in situ and satellite soil moisture measurements, as well as the removal of snow coverage reduced the surface skin temperature root mean square error from 9.8°C to 4.3°C. The model, however, has shortcomings when soil condition modeling is considered. Sensible heat flux estimations are on par with the measurements (daily maxima around 500 W/m2), but surface soil heat flux is greatly overestimated (by 150-500 W/m2). Soil temperature and soil moisture diurnal variations are inconsistent with the measurements, partially due to the lack of water vapor representation in soil calculations.
<p>Characteristic phenomena in the Pannonian basin during the winte... more <p>Characteristic phenomena in the Pannonian basin during the winter half year are the mist (500-1000 hours/year), the fog (150-300 hours/year) and the cold air pool with high air pollution concentrations. Formation, development and dissipation of fog events are complex processes that are impacted by short- and longwave radiation, condensation and evaporation, turbulent exchange, furthermore fog chemistry. The research presented here aims at exploring the interaction of these processes using field observations. To this end, complex field campaigns were conducted in Budapest (WMO code: 12843) and in the Sió Valley, 6 km away from Siófok (12935) during 1 to 3-month periods in the last three winter half years.</p><p>Besides air chemistry and standard meteorological variables, the leaf wetness, surface and soil temperature, soil moisture, soil heat flux (Huskeflux), radiation budget components (CNR1) and turbulent fluxes based on eddy covariance (CSAT3, EC150) and gradient methods were measured above the grassland. Time resolutions of measurements for slow sensors were 10 sec or rather 1 minute and for eddy covariance system 10 Hz. The mist and fog periods were detected using a cloud camera (in Sió Valley) and by synoptic observations in Budapest and Siófok.</p><p>Additional measurements in Budapest were i) the wind speed (<em>U</em>), air temperature (<em>T</em>) and relative humidity (<em>RH</em>) profiles together with Gill sonic anemometer at the top of a 30 m high tower, ii) LUFT CHM 15k ceilometer. SODAR and aviation meteorological measurements were also available from the<em> </em>Budapest Ferenc Liszt International Airport<em> (</em>LHBP<em>) </em>at 8 km distance.<em> </em>Other<em> </em>field experiments were done in the wet leeward Sió Valley in 2018-19 and 2019-20. Vaisala WXT530 sensor, LUFT CHM 15k ceilometer, tethered balloon measurements with GRAW radiosondes and METEK SODAR measurements were also provided as additional information behind the energy budget measurements.</p><p>Our results confirmed that according to the expectations, we have recorded more foggy situations in the Sió Valley than in Budapest (12843) and Siófok (12935). Radiation and advection type fog events were formed in most cases. The measured <em>RH</em> was above 95 and gradually increased during the onset period of fog. RH was around 100%, fluctuations could be measured less accurately.  Dissipation of the fog is usually characterized by wind intensification and rise in the incoming solar radiation. The data of two field campaigns will be analyzed i) a cold pool situation in Sió Valley in January 2020 and ii) the foggy season 2020-21 in Budapest. The developed complex (micrometeorological, furthermore air and liquid chemistry) database gives opportunity to validate numerical model results (WRF, CHIMERE and detailed box model) and to improve parameterizations of the numerical models.</p>
In this study, we consider the historical climatological time series available in the meteorologi... more In this study, we consider the historical climatological time series available in the meteorological yearbooks of the Royal Hungarian Central Institute of Meteorology and Earth Magnetism, first published in 1871. Data quality improvement of historical data includes the homogenization process with outlier checks and data gap filling by applying the MASH software. We investigated 13 stations from the Carpathian Region having the most complete monthly temperature and precipitation time series for the period of 1871–1918 and 8 stations with fog observations (1886–1916). First, statistical tests were conducted to compare the main statistics of the historical datasets (1871–1918) with current data (1971–2020). The sources of the current data are the National Meteorological Administration of Romania and the European Climate Assessment & Dataset. The results show significant changes between the two periods. In the whole region, the mean temperature in the last five decades (1971–2020) was 0...
Remote sensing data are abundant, whereas surface in situ verification of atmospheric conditions ... more Remote sensing data are abundant, whereas surface in situ verification of atmospheric conditions is rare on Mars. Earth-based analogues could help gain an understanding of soil and atmospheric processes on Mars and refine existing models. In this work, we evaluate the applicability of the Weather Research and Forecasting (WRF) model against measurements from the Mars analogue High Andes-Atacama Desert. Validation focuses on the surface conditions, and on the surface energy budget. Measurements show that the average daily net radiation, global radiation, and latent heat flux amount to 131, 273, and about 10 W/m2, respectively, indicating extremely dry atmospheric conditions. Dynamically, the effect of topography is also well simulated. One of the main modeling problems is the inaccurate initial soil and surface conditions in the area. Correction of soil moisture based on in situ and satellite soil moisture measurements, as well as the removal of snow coverage reduced the surface skin temperature root mean square error from 9.8°C to 4.3°C. The model, however, has shortcomings when soil condition modeling is considered. Sensible heat flux estimations are on par with the measurements (daily maxima around 500 W/m2), but surface soil heat flux is greatly overestimated (by 150-500 W/m2). Soil temperature and soil moisture diurnal variations are inconsistent with the measurements, partially due to the lack of water vapor representation in soil calculations.
<p>Characteristic phenomena in the Pannonian basin during the winte... more <p>Characteristic phenomena in the Pannonian basin during the winter half year are the mist (500-1000 hours/year), the fog (150-300 hours/year) and the cold air pool with high air pollution concentrations. Formation, development and dissipation of fog events are complex processes that are impacted by short- and longwave radiation, condensation and evaporation, turbulent exchange, furthermore fog chemistry. The research presented here aims at exploring the interaction of these processes using field observations. To this end, complex field campaigns were conducted in Budapest (WMO code: 12843) and in the Sió Valley, 6 km away from Siófok (12935) during 1 to 3-month periods in the last three winter half years.</p><p>Besides air chemistry and standard meteorological variables, the leaf wetness, surface and soil temperature, soil moisture, soil heat flux (Huskeflux), radiation budget components (CNR1) and turbulent fluxes based on eddy covariance (CSAT3, EC150) and gradient methods were measured above the grassland. Time resolutions of measurements for slow sensors were 10 sec or rather 1 minute and for eddy covariance system 10 Hz. The mist and fog periods were detected using a cloud camera (in Sió Valley) and by synoptic observations in Budapest and Siófok.</p><p>Additional measurements in Budapest were i) the wind speed (<em>U</em>), air temperature (<em>T</em>) and relative humidity (<em>RH</em>) profiles together with Gill sonic anemometer at the top of a 30 m high tower, ii) LUFT CHM 15k ceilometer. SODAR and aviation meteorological measurements were also available from the<em> </em>Budapest Ferenc Liszt International Airport<em> (</em>LHBP<em>) </em>at 8 km distance.<em> </em>Other<em> </em>field experiments were done in the wet leeward Sió Valley in 2018-19 and 2019-20. Vaisala WXT530 sensor, LUFT CHM 15k ceilometer, tethered balloon measurements with GRAW radiosondes and METEK SODAR measurements were also provided as additional information behind the energy budget measurements.</p><p>Our results confirmed that according to the expectations, we have recorded more foggy situations in the Sió Valley than in Budapest (12843) and Siófok (12935). Radiation and advection type fog events were formed in most cases. The measured <em>RH</em> was above 95 and gradually increased during the onset period of fog. RH was around 100%, fluctuations could be measured less accurately.  Dissipation of the fog is usually characterized by wind intensification and rise in the incoming solar radiation. The data of two field campaigns will be analyzed i) a cold pool situation in Sió Valley in January 2020 and ii) the foggy season 2020-21 in Budapest. The developed complex (micrometeorological, furthermore air and liquid chemistry) database gives opportunity to validate numerical model results (WRF, CHIMERE and detailed box model) and to improve parameterizations of the numerical models.</p>
Uploads
Papers by Ágoston Tordai