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Abstract  An image taken under an extremely-low-illumination condition is modeled as obeying the Poissonian-
Gaussian probability distribution. This paper presents our recently proposed image-restoration method to recover 
a higher-quality color moving-image sequence from those Poissonian-Gaussian random observations. The method 
firstly performs virtual multiplex imaging, formed as a series of pixel binning and redundant subsampling, on the 
input sequence for increasing its statistical reliability, secondly denoises the multiple subsampled image sequences 
given by the redundant subsampling, and lastly removes image blurs due to the pixel binning by super-resolution 
deblurring, which integrates the multiple denoised image sequences into an image sequence with the 
spatiotemporal resolution identical to that of the input image sequence. Through computer simulations, this paper 
demonstrates that the method successfully recovers a relatively-high-quality image sequence. 
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1. Introduction 
  Recently, as a candidate successor to a CMOS image sensor, 
a quanta image sensor (QIS) attracts researchers’ attention [1] ~ 
[6]. The QIS is expected to have single photon sensitivity [2] 
and to render its pitch size very small, e.g. 500nm [3], and hence 
the QIS is regarded as having the potential to achieve high 
spatial resolution, a high dynamic range, and so on. However, 
since a full well capacity of the QIS is generally set extremely 
small, a pixel’s signal value observed by the QIS should be 
treated as a binary random variable. The observed signal of the 
QIS is statistically modeled as a two-level quantization output of 
a Poisson random process, that is to say, the output will be 1 if 
the photon count is over a certain threshold, and the output is 0 
if the count is under the threshold. Therefore, to utilize the QIS 
as an image sensor instead of a CMOS image sensor, a highly-
advanced image-restoration algorithm is indispensable, that is to 
say, an image sequence with desirable spatiotemporal resolution 
and/or a specifically satisfactory dynamic range should be 
restored from those seemingly uninformative binary quantized 
Poisson random process. From this point of view, recently 
preliminary studies on the issue of the QIS image restoration has 
been performed and some image restoration methods based on 
the statistical model of the binary quantized Poisson random 
process have been presented [4], [5], [6]. 
  On the other hand, if a highly-advanced image-restoration 
algorithm is applied to a pixel’s signal value observed by a 
CMOS image sensor, naturally the potential of the CMOS image 
sensor will be further extended. Along this line, recently, some 
researchers have been involved in the development of an image 
restoration method to heighten the potential for low-illumination 
photographing [7] ~ [17]. This paper takes up this issue, and 
presents our recently proposed image restoration method [17]. 
  In the situation of extremely-low-illumination photographing 
such as video surveillance operating in the dark, a quantity of 
light incident on an image sensor is too small to utilize an image 
acquired by the image sensor, as it is, because of its very low 
picture-quality. Under such an extremely-low-illumination 
condition, a photoelectric conversion signal acquired by the 
sensor shows a statistical property of the Poisson distribution, 
and hence recently some researchers have developed image-
processing methods to recover an image with relatively high 
picture-quality from an input Poissonian image whose pixel’s 

value obeys a Poisson distribution [7] ~ [12]. However, the 
Poisson distribution is insufficient to model a statistical property 
of real signals acquired by the sensor under the extremely-low-
illumination condition, and actually random noise due to 
electronic circuits installed in the sensor, viz. read-out noise, is 
added to the real signals. The random noise is approximately 
modeled as obeying a white Gaussian distribution, and hence as 
the statistical model for the extremely-low-illumination image 
the Poissonian-Gaussian statistical model that a white Gaussian 
random number is added to a Poisson random number is 
regarded as far preferable to the Poisson statistical model. 
  As for the restoration of an input image obeying the 
Poissonian-Gaussian statistical model [13] ~ [17], Mäkitalo and 
Foi have recently proposed an image restoration method that 
firstly applies to an input image the generalized Anscombe 
transform, behaving as the variance stabilization transform for 
the Poissonian-Gaussian statistical model, then applies the 
existing state-of-the-art image-denoising method, e.g. the BM3D 
method [18], and finally applies the exact unbiased inverse of 
the generalized Anscombe transform [14]. Moreover, very 
recently, Chouzenoux and others have proposed a convex-
optimization image-restoration approach with the exact 
Poissonian-Gaussian negative log-likelihood [16]. In the case of 
the extremely-low-illumination condition where total noise’s 
power competes with signal’s power almost equally, statistical 
reliability of a Poissonian-Gaussian random variable is so low 
that these recently-proposed approaches do not necessarily 
perform as well as expected, and hence a certain approach to 
heighten the signal-to-noise power ratio should be incorporated 
into the restoration process at any risk. 
  From the above-mentioned point of view, we have tackled an 
image-restoration problem that recovers a color moving-image 
sequence with higher picture-quality from a Poissonian-
Gaussian image sequence, and very recently we have proposed a 
new concept that both virtual multiplex imaging, constructed as 
a series of spatiotemporal pixel-binning and 3-D redundant 
subsampling, and super-resolution deblurring are simultaneously 
introduced into the restoration approach [17]. 
 
2. Color moving-image restoration method 
  Figure 1 shows a flow diagram of our recently proposed color 
moving-image restoration method [17]. Input signals to the 



restoration method are heavily-degraded image sequences, 
mimicking color moving-image sequences acquired under the 
extremely-low-illumination condition. 
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Fig. 1. Flow diagram of our recently proposed color moving-

image restoration method [17]. 
 
2.1. Virtual multiplex imaging 
  In the flow diagram of Fig. 1, the restoration method firstly 
applies 3 × 3 × 3 spatiotemporal pixel-binning, a local small 
window of which is illustrated in Fig. 2, to the input image 
sequence. For a pixel of interest, a red-colored pixel in Fig. 2, 
the spatiotemporal pixel-binning sums up values of all 27 pixels 
inside a 3 × 3 × 3 local window surrounding the pixel of interest. 
Actually, in the restoration method, the spatiotemporal pixel-
binning is constructed as the 3 × 3 × 3 simply-averaging filter. 
  The pixel binning was originally developed to increase 
sensitivity of an image sensor [19]. The pixel binning is a 
method to produce virtual observation values equivalent to those 
acquired by a virtual image-sensor with a larger-than-real pixel 
aperture. This paper extends the concept of the pixel binning, by 
combining it with the subsequent redundant subsampling, which 
means to simulate multiplex imaging achieved by virtual 
cameras with low spatiotemporal resolution and high sensitivity. 
  Secondly, the restoration method performs 3:1 3-D redundant 
subsampling whose structure is correspondent to the pixel 
binning. In the case of 3:1 subsampling in the 3-D space of (x, y, 
t), there are 27 (= 33) different subsampling patterns. Each 
subsampling pattern is specified by the 3-D coordinates (xS, yS, 
tS) of its starting point, viz. (0, 0, 0), (0, 0, 1), ···, (2, 2, 2). The 
restoration method performs the 3:1 3-D subsampling with all 
the 27 different subsampling patterns, and it produces a set of 27 
subsampled image sequences each of which is scaled down to 
one third in each dimension of the 3-D space. This paper refers 
to this type of subsampling as the redundant subsampling. In the 
subsequent color moving-image denoising stage, each of the 27 
subsampled image sequences is separately processed with a 
color moving-image denoising method. 
  The serial application of the spatiotemporal pixel-binning and 
the 3-D redundant subsampling amounts to simulating multiplex 
imaging, achieved by virtual cameras with low spatiotemporal 
resolution and high sensitivity, which improves the signal-to-
noise power ratio of the input image sequence and causes the 
probability distribution to approach the signal-dependent 
Gaussian distribution. 

t − 1 t t + 1
Pixel of interest  

Fig. 2. Local window of the spatiotemporal pixel binning. 

 
2.2. Color moving-image denoising 
  Thirdly, the restoration method applies a certain color 
moving-image denoising method, which shows high denoising 
performance for signal-dependent Gaussian noise, to each of the 
multiple subsampled sequences, thus to produce multiple 
denoised image sequences. 
  For denoising each of the 27 subsampled image sequences, 
this paper generally adopts either our previously proposed color 
moving-image denoising method, viz. the 3D-RDCT-CS (3-D 
Redundant DCT Color-Shrinkage) method [20], or the 
CVBM3D color moving-image denoising method [21], which is 
one of the state-of-the-art moving-image denoising methods. 
  The 3D-RDCT-CS method firstly applies the 3D-RDCT [20] 
to an input color moving-image sequence, and then processes 
each AC transform coefficient with the hard color-shrinkage 
[22], and finally converts the shrunk coefficients to the original 
space by the least-squares-type generalized inverse transform of 
the 3D-RDCT, thus to produce a denoised image sequence. 
 
2.3. Super-resolution deblurring 
  Lastly, to remove image blurs caused by the pixel binning 
selectively, the restoration method performs super-resolution 
deblurring by integrating the set of the multiple denoised image 
sequences into a single image sequence with the spatiotemporal 
resolution identical to that of the input sequence, thus to produce 
an output image sequence. 
  This super-resolution deblurring problem is easy to solve, 
because the number of unknown variables is equal to that of 
available independent linear constraint equations and in addition 
to it all the degradation process in the virtual multiplex imaging 
is very simple and plain. However, we cannot expect that there 
exists a unique solution satisfying all the linear constraint 
equations simultaneously, and we need to seek a desirable 
solution that approximately satisfies all the simultaneous linear 
constraint equations and renders its regularization semi-norm, 
representing the inadequacy of a restored image, as low as 
possible. From this point of view, for the super-resolution 
deblurring, we adopt the total-variation (TV) semi-norm as the 
regularization semi-norm, and construct the restoration method 
as an iterative reconstruction algorithm that repeats the back-
projection process [23] and the TV (Total-Variation) denoising 
process [24] alternately. 
  The classic back-projection method tends to amplify high-
frequency components, and it often has an undesirable effect on 
noise visibility. To cope with this problem, the iterative 
reconstruction algorithm applies the TV denoising to the 
sequence updated by the immediately preceding back-projection 
step. As for the TV-denoising algorithm, this paper employs the 
2-D ROF (Rudin-Osher-Fatemi) algorithm [24], and handles 
each frame of the sequence separately. 
  Formally speaking, the alternate iteration should be continued 
until convergence. However, actually the maximum number of 
iterations is set to Nmax in advance; when the iteration count 
arrives at N max, the iteration is stopped forcibly. 
 
3. Experimental simulations 
  Our proposed restoration method is experimentally evaluated 
by computer simulations with a Poissonian-Gaussian test image 
sequence, artificially generated from the ITE standard image 
sequence, named ‘Intersection’, a certain image frame of which 
is shown in Fig. 3. 



 
Fig. 3. Certain original image frame of the ITE standard color 

moving-image sequence, named ‘Intersection’. 
 
3.1. Method of experimental simulations 
  Figure 4 shows how to generate a Poissonian-Gaussian test 
image sequence and how to conduct experimental simulations of 
restoration on the test image sequence. 
  In Fig. 4, its part enclosed with dotted lines corresponds to a 
flow diagram of generating the test image sequence. As shown 
in Fig. 4, firstly, the γ-correction is applied to a value of each 
pixel in an original image sequence, to covert an image-
sequence’s signal to its light quantity a. Secondly, at each pixel 
of the image sequence, its light quantity a is divided by the 
light-limiting parameter D, thus to get a mean parameter λ of the 
Poisson distribution. Thirdly, at each pixel, a Poisson random 
number with the mean parameter λ is generated, a white 
Gaussian noise with zero mean and variance σ2 is added to it, 
and a Poissonian-Gaussian random number u is yielded. Lastly, 
for the normalization of signal’s intensity of u, each pixel’s 
value is multiplied by the light-limiting parameter D, thus to 
produce a Poissonian-Gaussian test image sequence r. In the 
experimental simulations, the light-limiting parameter D and the 
variance σ2 are set to 64 and 4, respectively, which is a 
parameter-setting realistic for the extremely-low-illumination 
imaging. 
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Fig. 4. Flow diagram of the experimental simulations. 

 
  Our proposed restoration method is applied to the Poissonian-
Gaussian test sequence r, and then the inverse γ-correction is 
applied to the output image sequence q, thus to produce a 
finally-recovered image sequence that is actually displayed. To 

evaluate restoration performance objectively, a peak signal-to-
noise ratio, PSNR [dB], is calculated between the γ-corrected 
input image sequence a and the output image sequence q 
provided by our proposed restoration method. 
  For comparison, this paper evaluates restoration performance 
of two variant types of our proposed restoration method. The 
two variant types are as follows. 
1) Variant A: The super-resolution deblurring stage is skipped, 
and instead each of the 27 denoised image sequences is 
magnified to three times in each dimension with the nearest 
neighbor interpolation method, and a recovered sequence is 
produced by averaging all the 27 magnified sequences. 
2) Variant B: The two stages of the virtual multiplex imaging 
and the super-resolution deblurring are omitted; and hence a 
recovered sequence is simply provided by the denoising method. 
  In both the variant A and the variant B, our 3D-RDCT-CS 
denoising method [20] is employed as the denoising method. 
 
3.2. Results of experimental simulations 
  Figure 5 shows PSNR’s of recovered image sequences versus 
the maximum number of iterations, Nmax, at the super-resolution 
deblurring stage. In Fig. 5, as Nmax is set to a higher value, the 
PSNR gradually improves to some extent. However, even if 
Nmax is set to a value higher than 20, the improvement in the 
PSNR is not significant and elevation of subjective picture-
quality of the recovered sequence is very little. In the 
simulations, Nmax is fixed at 20. 
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Fig. 5. PSNR’s of recovered image sequences versus the 

maximum number of iterations, Nmax, at the super-resolution 
deblurring stage. 

 
  Figure 6 shows PSNR’s of every frame in recovered image 
sequences versus the frame number k. In Fig. 6, PSNR’s 
provided by our proposed restoration method are compared with 
those provided by the Variant A, the Variant B, and the 
Mäkitalo-and-Foi’s restoration method with the generalized 
Anscombe transform [14] and the CVBM3D color moving-
image denoising method [21], abbreviated to ‘the MF-GA 
method’ in the following. As for our proposed restoration 
method, as the color moving-moving image denoising method, 
either the 3D-RDCT-CS denoising method [20] or the 
CVBM3D denoising method [21] is applied. As shown in Fig. 6, 
the Variant A performs most poorly, and the Variant B 
outperforms the Variant A, which means that the introduction of 
the virtual multiplex imaging without the super-resolution 
deblurring results in the deterioration in restoration performance 
instead of improvement. Our proposed restoration method with 
the 3D-RDCT-CS denoising method performs best, and gives 
higher PSNR’s by 1 [dB] or more than the Variant B and the 
MF-GA method; the introduction of the virtual multiplex 



imaging and the super-resolution deblurring together contributes 
to this superiority in restoration performance. As for the 
denoising method in our proposed restoration approach, the 
results of Fig. 6 show that the 3D-RDCT-CS denoising method 
is more suitable than the CVBM3D denoising method. 
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Fig. 6. PSNR’s of every frame in recovered image sequences 

versus the frame number k. 
 
  Figure 7 compares portions of certain image frames of color 
moving-image sequences recovered by the four different 
restoration methods: our proposed restoration method, the 
Variant A, the Variant B, and the MF-GA method. The 
Poissonian-Gaussian test image of Fig. 7 (a) is produced by 
omitting the image-restoration processing from the flow diagram 
of Fig. 4. In the cases of Fig. 7 (c), (d), and (e), the 3D-RDCT-
CS denoising method [20] is employed as the denoising method, 
but in the case of Fig. 7 (b) and (f) the CVBM3D denoising 
method [21] is employed as the denoising method. 
  As shown in Fig. 7 (b), the MF-GA method fails to restore 
objects’ true colors and textures and it produces false color 
smears as a side effect. The MF-GA method does not 
necessarily perform well, because the generalized Anscombe 
transform does not function as properly as expected as the 
variance stabilization under the extremely-low-illumination 
photographing condition. The Variant B also produces false 
color smears; the Variant A restores objects’ true colors, but 
reconstructs an image giving a blurry visual impression. On the 
other hand, our proposed restoration method succeeds in 
recovering a relatively-high-quality image, and reconstructs an 
image giving the sharpest visual impression. As shown in Fig. 7 
(f), our proposed method with the CVBM3D denoising method 
restorers a moving-image sequence giving a slightly shaper 
visual impression than our proposed method with the 3D-
RDCT-CS denoising method, but fails in restoring fine image 
textures and objects’ true colors correctly. On the other hand, as 
shown in Fig. 7 (e), our proposed method with the 3D-RDCT-
CS denoising method succeeds in removing the image blurs 
caused by the pixel binning to a considerable extent and 
restoring objects’ true colors correctly. However, roughly 
speaking, the comparison between Fig. 7 (e) and (f) suggests 
that our proposed restoration method visually achieves 
restoration performance almost at the same level, irrespective of 
a color moving-image denoising method actually employed at 
the denoising stage, as long as the employed denoising method 
shows a fairly efficient denoising performance for a noisy color 
moving-image sequence. 

 
(a) Poissonian-Gaussian test image, 9.09 [dB] 

 
(b) MF-GA method with the CVBM3D method [21], 27.71 [dB] 

 
(c) Variant B with the 3D-RDCT-CS method [20], 28.37 [dB] 

 
(d) Variant A with the 3D-RDCT-CS method [20], 26.08 [dB] 

 
(e) Our method with the 3D-RDCT-CS method [20], 29.50 [dB] 

 
(f) Our method with the CVBM3D method [21], 28.86 [dB] 

Fig. 7. Recovered color moving-image sequences. 
 



4. Conclusion 
  For the restoration of a Poissonian-Gaussian color moving-
image sequence, this paper presents our recently proposed image 
restoration approach composed of the three consecutive stages: 
the virtual multiplex imaging, the color moving-image denoising, 
and the super-resolution deblurring. Experimental simulations 
demonstrate that the introduction of both the virtual multiplex 
imaging and the super-resolution deblurring into the restoration 
approach definitely contributes toward reconstructing a 
relatively-high-quality color moving-image sequence from a 
heavily-corrupted color moving-image sequence taken under the 
extremely-low-illumination photographing condition. As shown 
in this paper, the state-of-the-art highly-advanced image-
restoration technique will be able to extend the potential of a 
solid-state image sensor further beyond its seemingly physical 
restriction. 
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