Oktaéderszámok

poliéderszám
Ez a közzétett változat, ellenőrizve: 2023. november 1.

A számelméletben az oktaéderszámok olyan poliéderszámok, illetve figurális számok, melyek a sűrűn pakolt gömbökből összeálló oktaéderekben részt vevő gömbök számát reprezentálják. Az n-edik oktaéderszám a következő képlettel állítható elő:[1]

146, oktaéder formába pakolt mágneses golyóbis

Az első néhány oktaéderszám:

1, 6, 19, 44, 85, 146, 231, 344, 489, 670, 891 (A005900 sorozat az OEIS-ben).

Tulajdonságai, alkalmazásai

szerkesztés

Az oktaéderszámok generátorfüggvénye:

 

Sir Frederick Pollock (wd) 1850-es sejtése szerint bármely szám felírható legfeljebb 7 oktaéderszám összegeként.[2]

Kapcsolat más figurális számokkal

szerkesztés

Négyzetes piramisszámok

szerkesztés
 
Négyzetes piramisok, melyek minden rétege középpontos négyzetszámú kockából áll. Mindegyik piramisban a kockák teljes száma oktaéderszámot ad.

A gömbök oktaéderes pakolása felosztható két négyzetes piramissá, az egyik fejjel lefelé a másik alatt, négyzet keresztmetszettel elválasztva. Ezért az n-edik oktaéderszám   megkapható két egymást követő négyzetes piramisszám összeadásával:[1]

 

Tetraéderszámok

szerkesztés

Ha   az n-edik oktaéderszám és   az n-edik tetraéderszám, akkor

 

Ez azt a matematikai tényt fejezi ki, hogy egy oktaéder négy, nem egymás melletti lapjához tetraédert ragasztva kétszeres méretű tetraédert kapunk. Egy másik lehetőség, hogy egy oktaéder felosztható négy tetraéderre oly módon, hogy mindegyiknek két összeérő lapja van:

 

Középpontos négyzetszámok

szerkesztés

Két egymást követő oktaéderszám különbsége középpontos négyzetszám:[1]

 

Ezért az oktaéderszámok kifejezik a középpontos négyzetek egymásra helyezésével kapott négyzetes piramis pontjainak számát is; ami miatt 1575-ös könyvében, az Arithmeticorum libri duo-ban Francesco Maurolico "pyramides quadratae secundae"-nek nevezte ezeket a számokat.[3]

Kapcsolódó szócikkek

szerkesztés

Fordítás

szerkesztés
  • Ez a szócikk részben vagy egészben az Octahedral number című angol Wikipédia-szócikk ezen változatának fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.
  1. a b c Conway, John Horton & Guy, Richard K. (1996), The Book of Numbers, Springer-Verlag, p. 50, ISBN 978-0-387-97993-9.
  2. Dickson, L. E. (2005), Diophantine Analysis, vol. 2, History of the Theory of Numbers, New York: Dover, pp. 22–23, <https://books.google.com/books?id=eNjKEBLt_tQC&pg=PA22>.
  3. Tables of integer sequences Archiválva 2012. szeptember 7-i dátummal az Archive.is-en from Arithmeticorum libri duo, retrieved 2011-04-07.

További információk

szerkesztés