
Specification for abstract user interface for
Windows, GNOME and Aqua

Krasimir Andreev Angelov

2003-07-25

Contents

1 Introduction 1

2 Document windows 2

3 SDI and MDI applications 2

4 Menus 3

5 Dialogs 14

6 Summary 15

1 Introduction

This article describes the special features of the user interfaces under Aqua, GNOME
and Windows. The aim of this exposition is to define platform independent pro-
gramming interface which considers the specific features of these platforms. The
applications developed with this interface must not only be portable, but also look
natural in the targeted environment. In order to achieve this, the interface should
offer sufficient high level of abstraction. All statements in the following pages
are harmonized with Aqua1 & GNOME2 Human Interface Guidelines. The CGA
abbreviation means Common GUI API.

1http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines/AquaHIGuidelines.pdf
2http://developer.gnome.org/projects/gup/hig/1.0/hig-1.0.pdf

1

http://developer.apple.com/techpubs/macosx/Essentials/AquaHIGuidelines/AquaHIGuidelines.pdf
http://developer.gnome.org/projects/gup/hig/1.0/hig-1.0.pdf


2 Document windows

The document windows are used for manipulation and visualization of a specific
document. Usually the document is stored in a file or database. The peculiarity
here is that the window should respond to events like New, Open, Save, Save As
and others. The window title must correspond to the document name. Under Win-
dows and GNOME the document name is the same as the file name without the
path. Under Aqua the document name is also formed from the file name, but if
the user has chosen to hide the file extension for this document type (the choice
is made from Finder/Preferences) then the extension will also be hidden in the
window title. The windows of the new documents, which are still not associ-
ated with files, are named ”untitled” under Aqua and ”Untitled” under Windows
and GNOME. If there are a few new documents, then an index is added to the
title. Under Aqua the first window will be named ”untitled” and the others: ”un-
titled2”, ”untitled3”, ”untitled4” ... Under Windows and GNOME the titles are
”Untitled1.txt”, ”Untitled2.txt”, ”Untitled3.txt” ... Depending on the way the doc-
uments are organized the applications are with Single (SDI) and Multiple (MDI)
Document Interfaces.

3 SDI and MDI applications

The SDI application can handle only one document window. If the user wants
to open a new document, then he/she should first close the old one, and then to
load the new one. The MDI application can support many opened documents.
The application should offer an easy way to switch between the documents. In
HToolkit the application type is specified from the argument passed to thestart
function:

start :: String — Application name
→ String — Application version
→ DocumentInterface — Document interface type for application
→ [Prop Process ] — Properties
→ IO α — Startup action
→ IO ()

TheDocumentInterface type definition is:

data DocumentInterface
=SDI — Single document interface
| MDI — Multiple document interface

The application type cannot be changed after the library is initialised.

2



Each platform has its own style of organizing SDI and MDI application:

Aqua - Under Aqua the difference between MDI and SDI is conditional. In both
cases the application visualizes each document in a separate window. The
only difference is that if the application is SDI and you try to open a new
window, the GUI library will generate an exception. The aim of this restric-
tion is to guarantee a better compatibility with GNOME and Windows. The
Aqua guidelines specify that the SDI applications should have a Window
menu while under GNOME and Windows this menu is required only for
MDI application. In the Window menu for SDI applications in Aqua there
should be only one element with the caption Minimize. Closing the appli-
cation windows (for both MDI and SDI) will not close the application itself
because the application menu bar remains active.

Windows - Under Windows both MDI and SDI applications can have only one
main window. The main window contains the menu and the toolbars of
the application and also the document window for the SDI applications.
In MDI applications the document windows are placed (inside) within the
MDIClient window and the MDIClient itself is placed inside the main win-
dow. The MDIClient window is able to display multiple child (document)
windows and with its help the user can switch easily from one document to
another. Closing the document windows does not mean closing the entire
application because the main window, the menu and the toolbars remain
active.

GNOME - The manipulation of MDI and SDI applications under GNOME is
the same as under Windows. The difference is that instead of MDIClient
GtkNotebook is used where each document window corresponds to a sepa-
rate page in the GtkNotebook. The window title is displayed as a title of the
notebook page.

4 Menus

One of the typical features of Aqua is that it supports only one menu for the
whole application. The menu is displayed at the top of the screen and is not
associated with a certain window, but with the whole application. Under Windows
and GNOME each window can have its own menu, but in the scheme presented in
the previous point, the menu is associated only with the main window. This cannot
be considered as a restriction for the SDI application, as they can have only one
document window. The menu of the MDI application may contain options that are
typical only for certain windows. In this case the options can be forbidden if the

3



active window does not support them, or they can just be removed from the menu.
The forbidding/removing of the options is possible from handlers for ”activate”
and ”deactivate” events for each window.

Each platform has its own recommendations for the menu structure. Under
Aqua the first sub menu is labelled with the Apple logo. It is a system specific
and cannot be modified from the application. For the application working with
CGA the existence of this menu must be completely transparent. The next menu
is the application menu. Its title should be the same as the name of the application.
This restriction is established in order to help the user to identify the application
to which the current menu is associated. The title must be short and should not
include any spaces. In HToolkit the first argument of thestart function is the name
of the application. Under GNOME the name and the version of the application
are required to initialise the libgnome library (They are passed as arguments to the
gnomeprograminit function). The wxWindows library is based on GTK instead
of GNOME and that is why this requirement is not necessary. Under GNOME
and Windows the application name is used as a title of the main window and
the same name can be used as a title of the application menu under Aqua. It is
recommended to keep the title of the main window constant under GNOME and
Windows. This will make the identification of the application easier. Under Aqua
the same is recommended for the title of the application menu. The only exception
for Windows is made when the document windows of the MDI applications are
maximised. In order to ease the identification of the (active) current document it
is accepted that the title of the main windows has the following form:

<AppName> - [<DocumentName>]

The elements of the application menu are:

• About <AppName>- The selection of this item will show the ”About” di-
alog. The item title should be formed from the word ”About” and the name
of the application. For this purpose the argument passed to thestart func-
tion can be used again. Under Windows and GNOME this option is placed
in the ”Help” menu. In this case the graphical library, not the application
code, should be responsible for the proper placing of the option. In HToolkit
all global properties are accessible from thepc object of typeProcess. It is
required to add theappAbout event to theProcess type. The new event will
be generated when the user selects the ”About” item.

The proper view of the ”About” dialog is described in the Aqua recommen-
dations. A similar dialog is included in libgnomeui under GNOME and it
is expected that the GNOME application will use the standard dialog. In
HToolkit the functionrunAboutDialog opens the standard ”About” dialog:

4



runAboutDialog :: String — application name
→ String — application version
→ String — copyright
→ String — comments
→ [String ] — authors
→ [String ] — documenters
→ String — translator credits
→ Bitmap — logo
→ Maybe Window — The owner window
→ IO ()

The about dialog for Windows is implemented from HToolkit because it
is missing in Win32 API. The information passed torunAboutDialog is
enough to create the similar dialog for Aqua and this guarantee that the
runAboutDialog function can be implemented for Aqua. The application
name passed to therunAboutDialog is not necessary equal to the name
passed to thestart function but it is recomended to pass the same applica-
tion version. The Aqua guidelines request a more descriptive name in the
About dialog and a shorter one for the application menu.

The HToolkit API can be extended defining the following type:

dataAppAboutInfo =
{ appName :: String — application name
, appShortName :: String — application name
, appVersion :: String — application version
, appCopyright :: String — copyright
, appComments :: String — comments
, appAuthors :: [String ] — authors
, appDocumenters :: [String ] — documenters
, appTranslatorCredits :: String — translator credits
, appLogo :: Bitmap — logo
}

Thestart andrunAboutDialog should be redefined like that:

start :: AppAboutInfo → DocumentInterface → [Prop Process ] → IO α → IO ()

runAboutDialog :: AppAboutInfo
→ Maybe Window

5



→ IO ()

In this way the library receives a complete description of the application
during the initialisation and it allows the automatic installation of the default
handler for theappAbout event.

In HToolkit the events are presented byEvent α type. The association and
the removal of a handler to a given event is done with the following func-
tions:

on :: Event ω α → Attr ω α
off :: Event ω α → Prop ω

With theon function a new handler can be associated with a given event,
while with theoff function the handler is removed. For example:

set btn1 [on command =: onClickBtn1] — associate with onClickBtn1
set btn1 [off command ] — remove association

In this way the library is always aware whether there is an associated handler
to the given event. This can be used to show the ”About” item only when
there is an associated handler with it and to hide it when the handler is
removed.

• -Separator-

• Preferences - The selection of this item will show the dialog for the applica-
tion setup. The setup should refer to the whole application and not to a spe-
cific document. There aren’t exact requirements for the setup dialog design
because the type of the setup is different in each application. For that reason
for the Process type theappPreferences event should be defined. The event
will occur when the user selects the ”Preferences” option. The option will
not be shown if there isn’t a defined function forappPreferences.

• -Separator-

• Services - The Services option is a submenu which should contain options
oriented to inter application communication. The menu isn’t obligatory and
its contents are not strongly specified. It can be omitted if the application
cannot communicate with other applications. In the first CGA version this
specification may not be supported.

6



• Hide <AppName>- Hides all windows in the application. The option can
be handled from the low-level library and in that way it remains invisible for
the application working with CGA. The standard accelerator key is Com-
mand+H. The Option title is formed from the word ”Hide” and from the
application name. (the appShortName field from AppAboutInfo).

• Hide Others - The usage of the option is not specified in the ”Aqua Human
Interface Guideline”.

• Show All - Unlike the Hide option, the Show All option shows all opened
windows in the application.

• -Separator-

• Quit <AppName>- Finishes the execution of the application. The acceler-
ator key is Command+Q. Under GNOME the Quit option is situated in the
File menu. Under Windows the option is also situated in the File menu but
the option name is ”Exit”.

The next menu in Aqua is the File menu, while under GNOME and Windows
it always comes at first place. Under Aqua in this menu are situated only functions
for file management, while under GNOME and Windows the Quit/Exit option is
added at the end of this menu. If the application doesn’t work with files, then
under Aqua it would not have a File menu, while under GNOME and Windows
the menu will have only the Quit/Exit option.

The contents of the menu under Aqua are:

• New - Creates a new document. Accelerator key Command+N.

• Open - Opens a document. The file Open dialog is shown on the screen and
if the user selects a file then the file will be opened in a new window.

• Open recent - This is a submenu which contains the titles of the recently
opened files. When the user selects an item in the submenu, the application
should open the corresponding file.

• -Separator-

• Close - Closes the active window. If the application supports more than one
window (view) for one and the same document, then this option should be
replaced with these two options: Close Window and Close File<FileTitle>
where<FileTitle> is the title of the document. If the application is
MDI, then when the Option button is hold pressed then the Close option will
be replaced with Close All. The Close All option under GNOME is situated
in the Window menu. The associated accelerator key is Command+W.

7



• Save - Saves the document in the active window. If the document is a new
one, the file Save dialog will show on the screen. The accelerator key is
Command+S.

• Save As... - Saves the document under a new name. The program asks the
user to give the file a new name with the SaveAs dialog and then saves the
file. The accelerator key is Shift+Command+S.

• Save All - Saves all changed files. Under GNOME this item is situated in
the Window menu. If the application is SDI, this item should not appear.

• Revert to saved - Reloads the document from its copy in the file.

• -Separator-

• Page Setup - Sets up the page properties. The accelerator key is Shift+Command+P.

• Print - Prints the active document. The accelerator key is Command+P.

The contents of the menu under GNOME are:

• New - Creates a new document. The accelerator key is Ctrl+N.

• Open - Opens a document. The command will show the file open dialog
and if the user select a file then the file will be opened in a new window.

• -Separator-

• Save - Saves the document in the active window. If the document is a new
one, the file Save dialog will show on the screen. The accelerator key is
Ctrl+S.

• Save As... - Saves the document under a new name. The program asks the
user to give the file a new name with the SaveAs dialog and then saves the
file. The accelerator key is Shift+Ctrl+S.

• Save a copy - Saves a copy of the document in the active window.

• Revert - Reloads the document from its copy in the file.

• -Separator-

• Page Setup - Sets up the page properties. The accelerator key is Shift+Command+P.

• Print Preview - Displays a print preview for the active document. The ac-
celerator key is - Shift+Ctrl+P.

8



• Print - Prints the active document. The accelerator key is - Ctrl+P.

• Send To - Sends the document to another destination. The accelerator key
is - Ctrl+M.

• -Separator-

• Properties - Correspond to the ”Preferences” option in the application menu
under Aqua.

• -Separator-

• The list of last few opened files.

• -Separator-

• Close - Accelerator key - Ctrl+W

• Quit - Accelerator key - Ctrl+Q

The menu can be the same under Windows and GNOME except for the Quit
option which is renamed to Exit.

As you see, the organization of the File menu under Aqua, GNOME and Win-
dows is different and in order to guarantee its native look it should be built from
the graphical library, not from the application code. To make this in HToolkit one
should introduce an abstraction for documents and for document templates. The
document template is defined like this:

data DocumentTemplate α = DocumentTemplate
{ dtMimeType :: String
, dtOrder :: Int
, dtDescription :: String
, dtExtensions :: [String ]
, dtNewDocument :: IO α
, dtOpenDocument :: FilePath → IO α
, dtSaveDocument :: FilePath → α → IO ()
, dtPrintDocument :: α → IO ()
, dtOpenWindow :: Document α → IO WindowHandle
, dtCompatibleTemplates :: [String ]
}

The application should be able to define the document templates with the fol-
lowing function:

registerDocumentTemplate :: DocumentTemplate α → IO ()

9



The document itself is defined asDocument α:

data Document α = Document
(IORef (Bool , α)) — reference to document value

— and flag for modification
(IORef FilePath) — file path
(IORef [Window ]) — list of windows
(DocumentTemplate α) — template

The data in the document is accessible with the following functions:

readDoc :: Document α → IO α
writeDoc :: Document α → α → IO ()

The writeDoc function automatically sets the flag for modification toTrue.
Under Aqua it is recommended to display a small black point over the close but-
ton of the windows which contain modified documents. Under Windows and
GNOME to the title of the windows with modified document is added the ”*”
symbol. This indication can be handled automatically with the flag for modifica-
tion by thewriteDoc function.

Other useful functions are:

getDocIsModified :: Document α → IO Bool
getDocFilePath :: Document α → IO (Maybe FilePath)

newDoc :: DocumentTemplate α → IO (Document α)
openDoc :: FilePath → DocumentTemplate α → IO (Document α)
revertDoc :: Document α → IO ()
saveDoc :: FilePath → Document α → IO ()
openDocWindow :: Document α → IO Window
printDoc :: Document α → IO ()

As theDocument andDocumentTemplate types are parameterised with the
type of the underlying data we need an additional type to build a list of documents
and templates.

data Holder ω = forall α . Holder (ω α)

With theHolder type the list of the documents can be defined as[Holder Document ]
and the list of templates as[Holder DocumentTempalate].

Using the information for the templates the library can build and handle the
File menu. If there aren’t defined templates in the application, then under Aqua
the application will not have a File menu, while under GNOME and Windows the
menu will have only the Close and Quit/Exit options. The commands associated
with items in the File menu can be defined as:

10



• New - If only one template is defined in the application, then from this tem-
plate thedtNewDocument function is called, and after that from the result
of its execution a new document (a value of typeDocument α) is created.
The document is passed to thedtOpenWindow function. If the templates
are more than one, then under GNOME it is recommended to replace the
New option with submenu. Each item in the menu should be of the form
New <DocumentType> . The text corresponding to<DocumentType>
can be taken from the fielddtDescription in theDocumentTemplate. The
items in the menu should be ordered by the frequency of usage. For that rea-
son the fielddtOrder is added to the document template. The accelerator
Ctrl+N should be associated with the most frequently used type of docu-
ment, i.e. the template -dtOrder = 0. Under Aqua and Windows if the
application has multiple templates, then the New command opens a dialog
from which the user can select the type of the new document. The types
are sorted by thedtOrder field. The new document will be registered in
the list of active documents. The captions of the new windows are formed
according to the rules specified in point 2.

• Open - The action opens the standard ”Open” dialog in the platform. In
HToolkit this dialog is opened byrunInputFileDialog function. The func-
tion receives as an argument a filter for the files which can be chosen from
the dialog. The filter is an argument of the[(String , [String ])] type. In fact
it is a list of pairs of the the filter name and a list the file extensions which
enters in the filter. The list can be received from the list of the registered
templates and the fielddtDescription is taken for a name of the filter. The
path to the chosen file is given to thedtOpenDocument function from the
document template. The result of the function is used for creating a docu-
ment which after that is given to thedtOpenWindow function.

• Open recent - The list of the last opened files is stored in Windows Registry
under Windows, in GConf database under GNOME and in the appropriate
place under Aqua. The path to the file can be recovered from the storage
and after that the process follows the same steps as in the Open option.

• Save - If the flag for modification of the active document is set toTrue, then
the library calls thedtSaveDocument function from the template and after
that the flag is set toFalse.

• Save As... - The library asks the user for the new file name with the ”Save”
dialog and after that the library calls thedtSaveDocument function with
the new file path. The flag for modification is set toFalse. In HToolkit the
runOutputFileDialog function opens the standard ”Save” dialog.

11



• Save All - The processing is the same as for the ”Save” option but the oper-
ation is performed for each opened document.

• Revert to saved - The loading of the file copy is done by thedtOpenDocument
function from the document template. The loaded data is saved in the same
document (in theDocument α structure). The flag of the modified docu-
ment is set toFalse after reloading.

An additional advantage of this scheme is that the graphic library will be au-
tomatically able to identify the type of the file and to load it if the user drags a file
from the file manager (Windows Explorer, Nautilus) and drops it over the main
window. In the same way the users will be automatically able to open files from
Finder in the application under MacOS.

The next two menus have to be Edit and View. The Edit menu contains the
following options: Undo, Redo, Cut, Copy, Paste, Delete, Find and so on. The
View menu has options for setting up the view of the application. As the struc-
ture of these two menus depends on the type of the application, their managing
should be organised by it. The Aqua and GNOME guidelines concerning the Edit
menu are very similar, while there are no recommendations for the View menu
under Aqua. The View menu described for GNOME is typical mainly for the file
manager Nautilus.

All other menus typical for the application are situated after the View and Edit
menus.

The last but one menu is Window. Under Windows and GNOME the SDI
applications do not have a Window menu, while under Aqua the Window menu
has only one option - Minimize. The contents of the menu under Aqua are:

• Minimize - The accelerator key is Command+M. The option minimizes the
active window.

• Zoom - The option restores the real size of the minimized window.

• -Separator-

• Bring All to Front - Brings all application windows over the others.

• -Separator-

• A list of the open windows. Choosing any option moves the corresponding
window over the windows of the other applications. The dialogs and the
help windows are not included in the list. The help windows under Aqua
correspond to the floating toolbars under Windows and GNOME.

12



The type of all menu items is such that the corresponding commands can be
fulfilled directly, without any additional help from the application.

Under GNOME the menu contains the following options:

• List of the open windows.

• -Separator-

• Save All - Saves all changed documents.

• Close All - Closes all active windows.

The Save All and Close All options are the same as the ones described in the
File menu under Aqua.

Under Windows the menu contains the following options:

• Arrange Icons

• Tile Vertically

• Tile Horizontally

• Cascade

• -Separator-

• A list of the open windows.

The menu is already supported in HToolkit and does not request an additional
support from the application.

The last menu is the Help menu. Under Aqua there are no specific require-
ments for this menu, and under Windows and GNOME the only restriction is that
the last option should be ”About”.

When creating each menu in HToolkit one should point the parent menu where
the new item should be situated. If it has to be situated in the menu bar, then
the mainMenu constant is used as a parent menu. In order to handle the Edit,
View and Help menus, three more constants have to be defined: editMenu, view-
Menu and helpMenu. The Edit and View menus are automatically added before
adding the first item to them. The Help menu is created at the very beginning (for
GNOME and Windows) and contains the About item. All elements in Help are
situated before the About item.

13



5 Dialogs

Dialogs are used to fill in help or managing information. There are two types of
dialogs: modal and modeles. Under Aqua the modal dialogs are divided into two
subtypes: modal to the document and modal to the application.

In HToolkit under Windows and GNOME all document windows are situated
in one unifying main window, and each application can have only one main win-
dow. Unlike them the dialogs are not situated in the main window - they float over
it. When a dialog is created, its window owner should be specified. The created
dialog is situated always over its owner. When the owner is minimized or closed,
its subordinate dialogs are also minimized or closed. On the other side, each sub-
ordinate dialog can be the owner of other dialogs. This creates a chain whose
basis is always the main window of the application. Consequently the minimiz-
ing or the closing of the main window minimizes or closes all other dialogs. The
owner is set by an argument from typeMaybe Window . If the argument is with
a valueNothing or Just ω, whereω is a document window, the main window of
the application becomes an owner. If the argument isJust ω andω is a dialog,ω
becomes an owner of the new dialog.

Under Aqua the support of dialogs is the same. The only difference is that
the dialogs are supported modal to the document. IfNothing is the owner of the
dialog, then the dialog is modal to the whole application. IfJust ω is the owner
of the dialog, then the owner of the dialog isω regardless whether it is a dialog or
a document window.

The created dialog can become modal by using the function:

runDialog :: Window → IO ()

The modal dialog is situated always over its owners, and the user is not allowed
to select either of the owners while the modal window is open. The execution of
therunDialog function finishes after closing the modal window.

Under Aqua and GNOME there are special requirements about the location
of the buttons in the dialogs. The buttons should be located at the bottom of the
dialog. The button that is set by default (OK) should be located on the right side.
The Cancel button should be located on the left side of the OK button. If there are
other buttons in the dialog which can lead to the closing of the window, then they
should be located on the left side of the Cancel button. If the action associated
with these buttons may lead to loss of information (for instance the ”Don’t Save”
button), they should be separated at least 12 pixels from the Cancel button. The
Help information button should be situated at the bottom left corner, and all the
rest managing buttons should be located on its right side.

Under Windows the Help button should be located at the bottom right hand

14



corner. The OK and Cancel buttons are located to the left. All other buttons are
located at the bottom left hand corner.

Under Windows and GNOME the OK button is surrounded by a thicker frame
to show that this is the button set by default. Under Aqua the button is displayed
in light blue for the same purpose. For the three platforms pressing the Enter key
is associated with confirming the default action, and pressing the Esc key - with
Cancel.

The automatic location of the buttons, in the most appropriate for the platform
way, should be done by the graphical library. For this purpose we define the
following function:

addButton :: Button → ButtonType → Window → IO ()

TheButtonType type is defined as:

dataButton
= DefaultButton
| CancelButton
| DismissButton
| DismissAndLostButton
| HelpButton
| SimpleButton

Unlike other controls, the buttons do not have to be included in the expression
associated with thelayout property of the window. They have to be added by the
addButton function. This allows the graphical library to choose the location of
the buttons on base of theButtonType parameter.

6 Summary

Some of the described ideas are already realized in HToolkit, but still there is a
lot to do. The specification is a sort of a plan for the future development of the
project. I hope some of the ideas to be accepted by the CGA specification. This
specification is not final and is about to be developed.

15


	Introduction
	Document windows
	SDI and MDI applications
	Menus
	Dialogs
	Summary

