
SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY — INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Anomaly Detection in
Team Communication Platforms

Fabian Höltke

SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY — INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Anomaly Detection in
Team Communication Platforms

Erkennung von Anomalien in
Team-Kommunikationsplattformen

Author: Fabian Höltke
Supervisor: Prof. Dr. Claudia Eckert
Advisor: Ching-Yu Kao and Wei Herng Choong
Submission Date: 17.07.2023

I confirm that this master’s thesis in informatics is my own work and I have documented all
sources and material used.

Munich, 17.07.2023 Fabian Höltke

Abstract

Team communication platforms have emerged as vital tools in our professional and personal
lives. They facilitate collaboration, streamline workflow, and serve as indispensable links that
connect us to our colleagues, classmates, and peers. However, as these platforms evolve and
gain widespread acceptance, they simultaneously expose new vulnerabilities for malicious
activities, resulting in significant data security challenges. Detecting attackers on these plat-
forms is particularly daunting, given the high level of assumed trust among users.
Graph Neural Networks (GNNs), a type of machine learning algorithm specifically designed
for graph-based data, are emerging as a promising solution to tackle evolving security chal-
lenges on graph-based data networks. Over recent years, GNNs have proven to be superior
in the field of anomaly detection on graph networks, outperforming traditional machine
learning or heuristic-based approaches.
In this thesis, we introduce ECONAD, a specialized GNN model developed to detect anoma-
lies in team communication platforms. ECONAD distinguishes itself by incorporating human
knowledge about known data breaches through innovative augmentation strategies and
processing team communication platforms through various attack vector-specific perspec-
tives. In addition, we present a novel dataset, detailing the activities of 250 users on a team
communication platform over a period of three years. This dataset serves as the foundation
for testing and evaluating the effectiveness of our anomaly detection model. Through our
experiments, we show that our model surpasses state-of-the-art GNN anomaly detection
models when applied to this unique dataset, outperforming the baseline by up to 35% in
recall and 14% in the overall f1 score. Moreover, our approach unveils graph-based anomalies
that existing threat detection methods are unable to identify.

iii

Contents

Abstract iii

1 Introduction 1

2 Background 3
2.1 Recent Attacks on Team Collaboration Platforms 3
2.2 Attack Vectors . 4

3 Related Work 6
3.1 Anomaly Detection on Social Networks . 6

3.1.1 Heuristic Based Anomaly Detection . 6
3.1.2 Non-Graph DL Based Anomaly Detection on Social Networks 7
3.1.3 Graph Based DL Anomaly Detection on Social Networks 8

3.2 System Designs . 9
3.3 Contrastive Anomaly Detection (CONAD) . 11

3.3.1 Design . 12
3.3.2 Knowledge Modeling Module . 12
3.3.3 Knowledge Integration Module . 13
3.3.4 Anomaly Detection Module . 14

3.4 Datasets . 15
3.4.1 Team Communication Datasets . 15
3.4.2 Non-Team Communication Datasets . 15

3.5 Commercial Solutions . 16

4 Dataset 18
4.1 Choosing the Best Dataset . 18

4.1.1 Existing Datasets . 18
4.1.2 Masterclass Dataset . 21
4.1.3 Datasets in Numbers . 21

4.2 Data Collection . 24
4.3 Data Pre-Processing . 24
4.4 Synthesized Attacks . 27
4.5 Message Embeddings . 27
4.6 Data Representation . 29

4.6.1 Graph Dataset Libraries . 29
4.6.2 Knowledge Graphs . 30

iv

Contents

4.6.3 Final Graph Design . 30
4.7 Final Node Features . 33
4.8 Dataset Creation Flow . 33

5 ECONAD 35
5.1 Custom Augmentation Strategies . 35
5.2 Multi-View Graph . 36
5.3 Sampling Strategies . 39
5.4 Validation . 40
5.5 Prediction . 41

6 Experiments 44
6.1 Setup . 44
6.2 Metrics . 44
6.3 P1 Message View . 45

6.3.1 Impact of Structure and Attribute . 46
6.3.2 Impact of Batch Size . 47
6.3.3 Comparing Augmentation Strategies . 48

6.4 P2 User Channel View . 49
6.4.1 Impact of Structure and Attribute . 49
6.4.2 Impact of Batch Size . 50
6.4.3 Comparing Augmentation Strategies . 51

6.5 ECONAD Evaluation . 53
6.5.1 Multi-View compared to Full Graph . 54
6.5.2 Comparison to Further Graph Anomaly Detection Algorithms 55

7 Discussion 57
7.1 Dataset . 57

7.1.1 Limitations . 58
7.1.2 Alternative Representations . 58

7.2 ECONAD . 59
7.2.1 Multi-View Splitting . 59
7.2.2 Augmentation Strategies . 59
7.2.3 Impact of Node Attributes and Graph Structure 60
7.2.4 Impact of Batch Size . 60
7.2.5 Benchmark with Further Anomaly GNN Models 61
7.2.6 Limitations . 61
7.2.7 Alternative Design Approaches . 62

8 Conclusion 63

9 Appendix 66

List of Figures 67

v

Contents

List of Tables 70

Bibliography 71

vi

1 Introduction

As digital technology advances at an unprecedented pace, team communication platforms
emerged as vital tools in our professional and personal lives. They facilitate collaboration,
streamline workflow, and serve as indispensable links that connect us to our colleagues,
classmates, and peers. As of now, over 83% of professionals worldwide depend on these
technologies for team communication [1]. Simultaneously, this market is projected to be worth
23.8 billion USD by 2030, underscoring its growing prominence in our digital society [2].
However, as these platforms evolve and gain widespread acceptance, they simultaneously
open up new vulnerabilities for malicious activities, posing significant challenges to data
security [3, 4]. Many users often overlook the potential security risks embedded within
these communication platforms, falsely presuming that threats are unlikely to originate from
familiar co-workers or acquaintances. This complacency allows an attacker to exploit a single
compromised account and leverage it to deceive other users, thus gaining unauthorized access
to more sensitive information [5, 6, 7, 8].

Graph Neural Networks (GNNs) [9] are rising as a promising solution to tackle evolving
security challenges on graph-based data networks [10]. In recent years, GNNs have proven to
be superior in the field of anomaly detection on graph networks, outperforming traditional
machine learning or heuristic-based approaches [11, 12]. As team communication platforms
can be represented as heterogeneous graphs, we propose to apply a GNN to find threats and
malicious actors within a team communication platform.
However, this heterogeneity poses a challenge for existing GNNs to process, as existing
models for malicious node classifications are primarily designed for homogeneous graph
structures [10]. Also, incorporating team communication-specific human knowledge about
previous attacks into a model is not trivial. Evaluated breaches often use several different at-
tack vectors, which are team communication platform-specific and have not been investigated
by other GNN-based research.

In this thesis, we present ECONAD, a GNN model specifically designed to detect anomalies
in team communication platforms. ECONAD is based on a state-of-the-art anomaly detection
model for social networks, which is further enhanced by introducing multiple views to
handle the graph’s heterogeneous structure. Additionally, novel custom data augmentation
strategies are introduced to identify multiple types of attacks that were recorded within team
communication platforms.
To evaluate ECONAD, we create a custom team communication dataset, containing the
activity of 250 users over three years. On this dataset, each enhancement of ECONAD
is extensively evaluated, with the top-performing strategies combined to create our final

1

1 Introduction

model.

The following chapter introduces the background of this thesis, including previously occured
breaches in team communication platforms, and defined attack vectors in this domain. Related
models and approaches for anomaly detection on team communication platforms are further
described in Chapter 3. Chapter 4 highlights the need for a new dataset and describes the
process of creating a custom dataset for this thesis. The dataset is further processed with our
novel model in Chapter 5. Here, we outline the improvements made to the base model. In
Chapter 6, we evaluate our approach, to understand what impact the different enhancements
had on the model and how they compare to the baseline. Our findings are discussed in
Chapter 7. In Chapter 8, we conclude our work and outline future work.

2

2 Background

More and more companies and organizations are using team collaboration platforms as
their primary tool for internal communication and organization [13][14]. A centralized team
communication platform offers much more comfort and ease to use for communication than
traditional email communication.
However, while years of phishing attacks have created users suspicious of unusual emails,
few suspect a message from a coworker within their own organization’s platform. Therefore,
compromising a single account within a platform can be easily leveraged by an attacker to
deceive other users and gain additional access.
Many organizations maintain multiple channels to encourage participation and facilitate
knowledge sharing. Unfortunately, the question of who has access to these channels is
frequently overlooked, leading to the unintentional sharing of confidential information,
including sensitive messages such as passwords or API keys. Additionally, few individuals
consider the long-term storage of their messages and the potential access by compromised
accounts. Once the information is within the platform, it can be indefinitely accessible,
creating future security risks [3].
Not only does lateral phishing pose a threat within team communication platforms, but
the extensive configuration options for workspaces also present risks. For example, users
can install third-party integrations, which can potentially act maliciously and have been
exploited in the past to extract sensitive data from the platform [15, 16]. Furthermore, all
users can modify their profile settings without any countermeasures in place to prevent
potential impersonation attacks [4].

2.1 Recent Attacks on Team Collaboration Platforms

No exact number exists regarding the frequency of breaches on team communication plat-
forms. Usually, only the most impactful breaches are published and recorded by the media or
post-mortems.

At the beginning of 2023, two prominent companies, the ride-booking company Uber [17]
and the video game developer Activision Blizzard [18], faced breaches on their internal
communication platform, Slack [19] [5, 6]. These breaches occurred within a short span of five
months, and it is believed that the same attacker was responsible for both incidents. In both
cases, the attacker used spear-phishing SMS attacks to bypass Slack’s 2FA authorization. Once
an employee fell victim to the attack, the attacker gained control over their Slack account and

3

2 Background

proceeded to exploit all publicly available channels. The attacker’s actions resulted in the
unauthorized access of sensitive information about unreleased games for Activision Blizzard
and the discovery of passwords for other services in the case of Uber. Furthermore, the
attacker managed to breach the administration panels of several internal services associated
with Uber. As a consequence, Uber experienced a 5.2% drop in share prices, resulting in an
estimated loss of 4.53 billion USD [20].
Similarly, in 2021 and 2022, two video game developers, Electronic Arts [21] and Rockstar [22],
also encountered breaches on their internal communication tool[7, 8]. In both instances, the
attacker purchased stolen session cookies from the dark web and utilized them to log into the
victims’ Slack accounts. Subsequently, the attacker internally contacted IT support to request
new authentication tokens. In the case of Electronic Arts, they pretended to have lost their
phone.

2.2 Attack Vectors

The reports of breaches described in the previous Section 2.1 differ as follows: In the first two
scenarios, involving Uber and Activision Blizzard, the attacker downloaded and processed
messages to find sensitive information. In the second two scenarios, the attackers conducted
active spear phishing attacks within the team collaboration platform, extending their attack
on other services outside the team communication platform.

During the investigation of these recent attacks, we identified the following attack vectors (AV)
that the attackers used to leverage their attack after the initial access to the team collaboration
platform:

AV1 Lateral Neighborhood Phising: The attacker attempts to gain access to sensitive
information by sending phishing messages to known members of the victim’s immediate
communication circle, which could include the victim’s team or individuals with whom
they had previous message interactions.

AV2 Lateral Phishing to "Powerusers": "Powerusers" are defined users within a platform
that manage a security-relevant resource. An example of this is an IT administration
that holds credentials for specific services. By targeting power users with elevated
administrative privileges, the attacker can attempt to build up persistence in the platform
(e.g. requesting new credentials) or leverage the attack to new services. Typically,
these attacks require the attacker to contact users with whom the victim had no prior
interaction.

AV3 Impersonation: The attacker impersonates a user of the team communication plat-
form by copying the victim’s avatar and profile information. They attempt to gain
access to sensitive information by pretending to be a well-known co-worker within the
organization.

AV4 Channel Sniffing: The attacker attempts to uncover sensitive information by infiltrat-

4

2 Background

ing multiple public channels. This information may include plain-text passwords or
confidential documents that have been previously shared, as message history remains
preserved within team communication platforms and does not disappear over time.

In this thesis, our objective is to identify the four attack vectors within a team communication
platform before the attacker can exploit them and inflict further damage.

5

3 Related Work

The following sections review and compare existing threat detection systems and methods for
social networks. With this, state-of-the-art anomaly detection algorithms for graph networks
are presented.Various system designs are compared, including the underlying algorithm on
which our own model is based.
Next, this chapter introduces currently accessible datasets from team communication plat-
forms that are freely available for research. Each dataset is evaluated based on its relevance
to the research problem and data quality.
Finally, we examine existing commercial solutions for anomaly detection in team collab-
oration platforms and evaluate their capabilities to detect the attack vectors described in
Section 2.2.

3.1 Anomaly Detection on Social Networks

Current strategies for anomaly detection on (social) networks can be categorized into two
leading methods: Non-Deep Learning (Non-DL) methods and Deep Learning (DL) methods.
Non-DL methods typically rely on various types of heuristic anomaly measurements to detect
anomalies, while DL methods often resort to feature learning or Graph Neural Networks
(GNNs) for the detection of anomalies. In recent years, DL-based approaches have shown
superior performance over traditional Non-DL methods [12, 11]. The following subsections
provide a brief overview of each category.

3.1.1 Heuristic Based Anomaly Detection

Heuristic-based anomaly detection significantly affected graph analysis, paving the way for
novel techniques to identify and interpret anomalous nodes or edges. Innovative methods
such as the measure of "normality" [23], the user-oriented FocusCO algorithm [24] (used
for user preference attribute extraction), outlier classification models [25], or methods for
selecting congruent subspaces in multivariate attributed graphs [26] all emerged from this field.
Taking into account both the structural and attribute-based characteristics of graphs, these
heuristic-based approaches demonstrated notable advancements over traditional techniques
that prioritize structural features exclusively.

However, the rise of deep learning-based techniques introduced a significant shift in anomaly
detection, redefining the methods and mechanisms used to identify anomalies. The ability

6

3 Related Work

of deep learning-based approaches to discern complex patterns and dependencies within
data outperformed the performance of heuristic-based methods. For example, Li et al. [12]
introduced a learning framework that leveraged residual analysis for anomaly detection
in attributed networks. This approach successfully identified anomalies that significantly
deviated from expected behavior, outperforming traditional heuristic-based methods. Fur-
thermore, Müller et al. [11] introduced the Graph Outlier Ranking (GOutRank) method that
offered a unified approach to anomaly detection in graph and attribute data spaces. The
authors demonstrated that deep learning-based techniques outperformed heuristic-based
methods.

3.1.2 Non-Graph DL Based Anomaly Detection on Social Networks

Before shifting the focus to graph anomaly detection, we took a broader look at the topic
and investigated how other researchers detected anomalies in the domain of social networks
using non-graph-based approaches.

Several studies chose to focus their entire attention on the attributes of social network users.
For example, Kawase et al. [27] delved into the issue of account takeover, a form of online
identity theft prevalent in online vehicle marketplaces. The authors presented a dual-faceted
approach to prevent and detect unauthorized account activities. To prevent account takeovers,
they performed a behavioral analysis of fraudsters’ operations and implemented a mutual
two-factor authentication method, resulting in a significant reduction of 43% in account
takeovers. For detecting fraudulent activities, a concept drift-sensitive machine learning
training approach was introduced, which improved detection rates by 18% over baseline
methods. Consequently, the automated detection resulted in a safer marketplace by reducing
the exposure of fraudulent listings by 69%.

In another study, Ho et al. [28] focused entirely on lateral email phishing attacks. They
conducted a large-scale characterization of these attacks using a dataset of 113 million
employee-sent emails from 92 enterprise organizations. To detect phishing emails, they
developed a classifier that could identify hundreds of real-world lateral phishing emails. This
study offered valuable insights into the nature and scale of enterprise phishing attacks.

The research conducted by Shen et al. [29] and He et al. [30] focused on analyzing user
features within dating apps to detect fake accounts. Shen et al. [29] developed a trust-aware
detection framework to detect malicious users in dating social networks. They proposed
a user trust model and a novel data-balancing method within their framework to enhance
the recall rate of malicious user detection. This approach significantly outperformed other
baseline algorithms.
He et al. [30], on the other hand, developed a novel system named DatingSec to counteract
the hidden signals in the textual information of user interactions. This system combined
Long Short-Term Memory neural networks (LSTMs) and an attentive module to capture users’
temporal-spatial behaviors and user-generated textual content. When evaluated on a real-
world dataset from Momo [31], a widely used dating app, DatingSec claimed it outperformed

7

3 Related Work

state-of-the-art methods.

Much like He et al.[30], who employed LSTMs to predict anomalous users within dating
networks, numerous other studies relied solely on Natural Language Processing (NLP)
approaches to process user messages for anomaly detection. For example, Seyler et al. [32]
developed a novel general framework for the semantic analysis of text messages to detect
compromised accounts on social networks. Their approach, based on the difference in
language usage between normal users and adversaries, proposed new semantic features
for measuring semantic incoherence in a message stream. When tested using a Twitter
dataset [33], their approach proved effective in detecting compromised accounts, with the
KL-divergence-based language model feature performing the best.
Similarly, Ilias et al. [34] addressed the issue of detecting automated accounts or bots on
Twitter [35], which spread harmful content. They proposed two methods, based primarily
on NLP, for the early detection of these bots. The first method utilized feature extraction
and machine learning algorithms to identify accounts that post automated messages. The
second method introduced a deep learning architecture, unique in its use of an attention
mechanism for bot identification. Both methods, when evaluated using real Twitter datasets,
demonstrated advantages over existing techniques to identify malicious users on social
networks.

Although these papers produced good results for their specific use cases, they did not
incorporate any graph topology for their classification.

3.1.3 Graph Based DL Anomaly Detection on Social Networks

The rapid advancements and wide adoption of graph neural networks (GNNs) in recent years
generated considerable attention and traction in the field of anomaly detection on attributed
graph networks [36]. In this regard, the papers of Ma et al. [10] and Kim et al. [37] presented
an overview of the current status quo in the field of GNN anomaly detection and reviewed
recent advances in detecting graph anomalies using GNN models. Both studies highlighted
the significant role of deep learning in handling high-dimensional network data, proposed
new taxonomies for different state-of-the-art methods, and outlined potential future research
directions.

General purpose anomaly detection models such as ANOMALOUS [38] and DOMINANT [39]
paved the way for more specialized models. ANOMALOUS [38] addressed the issues of
noisy and irrelevant node attributes in anomaly detection by proposing a new framework
that jointly conducted attribute selection and anomaly detection based on CUR [40] matrix
decomposition and residual analysis. On the other hand, DOMINANT [39] tackled the
problem of anomaly detection on attributed networks by proposing a novel deep learning
model that integrated topological graph structure and node attributes for node embedding
learning, using graph convolutional networks [41] and deep autoencoders [42].

These advances led to the development of specialized models for social networks [43, 44, 45].

8

3 Related Work

Chaudhary et al. [43] proposed a Graph Neural Network for anomaly detection in email
and Twitter networks by studying the graph structure and understanding the functioning of
anomalous nodes through the use of deep neural networks. Similarly, Dou et al. [44] proposed
a novel framework, which exploited user preference for fake news detection by jointly model-
ing content and graph, addressing the issue of disinformation and fake news. Xu et al. [45]
addressed the problem of modeling and integrating human knowledge of different types of
anomalies for attributed network anomaly detection. Their approach modeled prior human
knowledge through novel data augmentation strategies and integrated them in a Siamese
graph neural network encoder through a well-designed contrastive loss. Their proposed
model Contrastive Anomaly Detection (CONAD) is further evaluated in Section 3.3.

The technique of using different graph transformations based on node features and relations
to improve the performance of anomaly detection models on (heterogeneous) graphs was
extensively discussed in several papers [10, 46, 47]. Zhang et al. [46] used this technique to
identify malicious users in underground forums, introducing an intelligent system, iDetective,
that employed a meta-path-based approach for user representation and a method named
Player2Vec for key player identification [46]. Meanwhile, Peng et al. [47] proposed ALARM, an
extendible framework that combined multiple GNN models for feature-specific predictions.
ALARM took into account user preferences and heterogeneous attribute characteristics
through multiple graph encoders and a well-designed aggregator supporting self-learning
and user-guided learning.

The papers discussed in this section demonstrated the potential of graph-based methods for
anomaly detection on social networks, not only in understanding complex patterns but also in
capturing subtle, nuanced deviations that might otherwise go unnoticed. In the next section,
we take a closer look at three different system designs used by the previously introduced
GNN anomaly detection models for social networks [44, 39, 47].

3.2 System Designs

This section investigates common techniques and approaches of the previously mentioned
papers used to detect anomalies in social media datasets [44, 39, 47]. We identified the
following three system designs and took a closer look at them.

• The first approach, as described in the paper "User Preference-aware Fake News Detec-
tion" by Dou et al. [44], was employed to detect fake news within a Twitter [35] network.
For each message transmitted, a unique graph was constructed based on its propagation
throughout the Twitter community. Utilizing a dual-encoder design structure, the final
classification of each graph depended on both the message’s interaction graph structure
and its embeddings. The complete system design is illustrated in Figure 3.1. Although
this approach appeared reasonable for a vast open social network such as Twitter, which
includes millions of users, it may be less applicable to a team communication platform
characterized by a more limited user base.

9

3 Related Work

Figure 3.1: Event-focused graph and model design, as demonstrated by Dou et al. [44]. For
each written message, a user-interaction graph and text embeddings were created
and processed separately.

• The next investigated design approach was based on processing a single attributed full
graph that represented an entire social network and its interactions. Unlike the previ-
ously mentioned system design, where the graph was divided into multiple subgraphs
based on events such as sent messages, this approach processed the entire graph at once.
This allowed for greater flexibility in sampling and detecting various types of anomaly
events. According to the number of research papers focusing on anomaly detection
tasks, this graph processing approach was the most popular [10].
To process graph structures derived from social networks, the paper "Deep Anomaly
Detection on Attributed Networks" [39] introduced an autoencoder [42] approach for
anomaly detection based on reconstruction error (see Figure 3.2). This approach was fur-
ther refined for the application on social networks in the paper "Contrastive Attributed
Network Anomaly Detection with Data Augmentation" [45], which is evaluated in more
detail in Section 3.3.

Figure 3.2: DOMINANT [39] employed an autoencoder design in which the entire graph is
processed at once. The classification was based on the reconstruction error of a
siamese decoder, which was specifically trained to reconstruct the original graph.

10

3 Related Work

• The final investigated system design assumes that distinct graph views can represent
various graph features. Each graph view is subsequently processed individually by a
GNN. The final classification is determined by combining the outputs of all GNNs. An
exemplary architecture, introduced in the paper titled "A deep multi-view framework
for anomaly detection on attributed networks" by Peng et al. [47], is illustrated in
Figure 3.3.

Figure 3.3: Design of a multi view graph system, as described in the work by Peng et al. [47].
This approach involved splitting the graph into distinct views according to its
features. Each graph view was subsequently processed by an independent Graph
Neural Network (GNN). The final classification was determined by combining the
individual GNN classifications.

Compared to graphs derived from traditional social networks, such as Twitter [35] or Face-
book [48], team communication platforms are more limited in memory size and graph
complexity. There is no need to create a new subgraph for single events, instead, we can
process the full graph at once. Therefore, this thesis focuses on the second system design.
This approach offers the most flexibility for sampling and detecting different kinds of anomaly
events and we believe that it is the most suitable for detecting the observed attack vectors
described in Section 2.2

.

3.3 Contrastive Anomaly Detection (CONAD)

As mentioned in Sections 3.1.3 and 3.2, multiple GNN-based models were fine-tuned for
anomaly detection on social networks. CONAD, the model introduced in the paper Contrastive
Attributed Network Anomaly [45], was chosen for further evaluation, as it leveraged human
knowledge into its model design to detect different anomaly types. Initially based on
DOMINANT [39], this model could process a single social network graph at once. This
approach seemed reasonable for our use case, as we can leverage the knowledge of the
observed attack vectors described in Section 2.2.

11

3 Related Work

Figure 3.4: CONAD [45] system design. In contrast to other GNN-based anomaly detection
approaches for social networks, CONAD incorporates human knowledge about
anomalies into its model design.

3.3.1 Design

The CONAD model design, as shown in Figure 3.4, consists of three main components.
The first Knowledge Modeling Module component introduces augmentation strategies for each
defined anomaly type ξ to the input attributed graph G and generates the augmented
attributed graph Gano accordingly.
Then, the Knowledge Integration Module is used to feed G and Gano into the graph encoder,
a Siamese GNN, to learn the graph node representations. Using a Siamese encoder, both
graphs are encoded into the same latent space, making it possible to contrast between
the node representations of G and Gano. After the encoding, a unique contrastive loss is
used to guide the encoder to represent normal nodes on the input-attributed network and
contrastive samples on the augmented attributed network differently. Consequently, this
captures anomaly patterns of the augmented nodes.
Finally, the Anomaly Detection Module is used to reconstruct the graph structure and node
attributes from the learned node representations. The reconstruction errors are then leveraged
as suspicion scores, quantifying how likely a node is to be abnormal, to detect anomalies in
G.

3.3.2 Knowledge Modeling Module

By default, CONAD has four predefined augmented anomaly types, from both the structural
site and the attribute side.

• high-degree (structural) augmentation for detecting nodes with a high degree centrality.

• outlying (structural) augmentation for detecting outlying nodes.

12

3 Related Work

Figure 3.5: Four different kinds of anomalies are modeled through a data augmentation
strategy. These augmentations can be based on the graph structure or node
attributes.

• deviated (attribute) augmentation for detecting nodes with deviated attributes from
their neighbors.

• disproportionate (attribute) for detecting nodes with disproportionate attributes, e.g.,
unreasonable low or high attribute values.

After applying the augmentation methods, the augmented attributed graph Gano is obtained.
Within Gano, a label vector y denotes if a node corresponds to one of the introduced anomaly
augmentation types.
In Chapter 5, we will introduce our own novel augmentation strategies specifically designed
for team communication platforms.

3.3.3 Knowledge Integration Module

The modeled human knowledge within the augmentation types is now integrated into the
detecting model through learning node representations and contrasting between different
views.

Learning Node Representations. In order to encode both G and Gano, CONAD employs a
Siamese GNN architecture as an encoder.
Here, the aggregation mechanism hi

(l+1) = AGG({hi
(l)} ∪ {h(l)j : j ∈ Ni}) is used to learn

the node representations, where hi
(l) denotes the representation of node i in the l-th layer,

and hi
(0) is the input attribute of node i. Ni is the set of all neighbors of node i, AGG(·)

is the aggregation function that can be implemented by mean pooling, max pooling, or
many others [49]. On default, CONAD specifies the information aggregation based on the
self-attention mechanism in Graph Attention Networks (GAT) [50].
Multiple GAT layers are stacked to form the encoder Enc for node representation learning.

Contrasting Between Views. To fully harness the power of human knowledge in Gano,
CONAD contrasts between the Gano and the normal view G. The anomalous patterns on the
attributed network are expected to be well characterized through this contrastive process.
Two different contrast strategies are used to contrast between the two views, Siamese contrast

13

3 Related Work

and Triplet contrast.
Siamese contrast: Suppose Enc encoded G and Gano through stacked GAT layers into the repre-
sentations Z and Ẑ, then siamese contrast is performed between zi and ẑi, the representations
of node i in G and Gano, respectively. The contrastive loss is defined as:

Lsc =
1
n

n

∑
i=1

(
Iyi=0 · d(zi, ẑi) + Iyi=1 · max{0, m − d(zi, ẑi)}

)
where I is the indicator function, yi is the label of node i, d(·) is the Euclidean distance,
and m is the margin. When applying Siamese contrastive loss (yi = 1), node i is considered
abnormal in Gano, the distance between the nodes representation in G and Gano, d(zi, ẑi),
will be maximized with margin no smaller than m. When yi = 0, the node i is considered
normal in Gano, the distance between the nodes representation in G and Gano, d(zi, ẑi), will be
minimized.
Triplet contrast: To further enhance the contrastive learning, CONAD also employs triplet
contrast that works on the triplet of nodes {zi, zj, ẑj}, where zi zj are normal nodes in G, ẑj is
an abnormal node in Gano. The triplet contrastive loss is defined as:

Ltc = ∑
∀Aij=1,

yi=0,yj=1

max
{

0, m −
(
d(zi, ẑj)− d(zi, zj)

)}

By minimizing the contrastive triplet loss, the model will increase the gap between two
distances with a margin no smaller than m.

3.3.4 Anomaly Detection Module

Besides learning from human knowledge through augmentation strategies in Gano, CONAD
also learns from the original attributed network G to detect anomalies in it. The aim is to
reconstruct the graph structure and node attributes from the learned node representation view
Z. Since anomalies cannot be well reconstructed, the reconstruction errors are leveraged as
suspicion scores to detect anomalies in G. The model uses a decoder function Dec, that consists
of a GAT layer to reconstruct the adjacency and attribute matrix from Z. The reconstruction
error is then defined as:

Â = σ(Z · Z⊤), X̂ = GATLayer(A, Z)

Lrecon = λ
∥∥A − Â

∥∥
F + (1 − λ) ·

∥∥X − X̂
∥∥

F

Here, σ(·) is a nonlinear activation function, e.g ReLU [51], (·)⊤ and ∥·∥F are the transpose
and Frobenius norm (L2 norm for a matrix), respectively. As often, λ is a hyperparameter
to balance the reconstruction loss between the adjacency and attribute matrix. In Chapter 6,
we experiment with different values for λ to determine which reconstruction error is more
important for our introduced augmentation strategies.

14

3 Related Work

3.4 Datasets

In this section, we take a closer look at potential datasets that can be used to evaluate our
model. We distinguish between two kinds of datasets: First, datasets containing messages
from team collaboration platforms. Second, datasets that contain messages from other
platforms, such as social networks, that were used to train and evaluate models for anomaly
detection.

3.4.1 Team Communication Datasets

Recent research on team communication platforms focused on message disentanglement. For
this task, Chatterjee et al. [52] monitored various programming-related Slack workspaces
over a period of two years. The dataset contained 38,955 conversations from 12,171 unique
users and was split into four workspaces: clojurians (7918 conversations), elmlang (22172
conversations) and pythondev (8887 conversations). After the initial publication, it was also
extended with messages from more programming-related workspaces, such as racket (about
1900 conversations).

In addition to the monitored Slack workspaces by Chatterjee et al., the paper GitterCom [53]
and the website FreeCodeCamp.org [54] published datasets of up to 10,000 messages col-
lected from several Gitter [55] communities. As in the previous dataset, all workspaces
were associated with software engineers working on open-source software or specific pro-
gramming languages. The workspaces were publicly available without any restrictions for
communication or joining a community.

3.4.2 Non-Team Communication Datasets

Most GNN anomaly detection algorithms for message communication are not trained on
team communication datasets. Instead, they used data from social networks. Here, the most
common datasets originated from Twitter [35], Reddit [56], and Facebook [48] [57, 58, 59].
However, none of these datasets included internal communication from a larger company or
organization.
The first Twitter and Facebook datasets [57] were initially introduced to discover social circles
in ego networks. Here, the authors developed a model that combined network structure and
user profile information to predict these circles.
In the second Twitter dataset, called FakeNewsNet [58], the authors presented a fake news
data repository, which contained two comprehensive datasets with various features in news
content, social context, and spatiotemporal information.
The Reddit dataset [59] was introduced to train a model for node classification. Here, the
authors classified the category of unseen nodes in evolving information graphs based on
citations and Reddit post data.

All the mentioned social network datasets included message data from public conversations.

15

3 Related Work

The most popular dataset that only contained private messages was Enron [60], published in
2004. This dataset contained 0.5M emails of 150 employees of the Enron Cooperation [61], a
former US-based energy company. In recent years, this dataset was often used for the task of
email classification [62].

The presented datasets from team collaboration platforms and datasets that contained mes-
sages from other social networks, are not very similar regarding graph topology and message
content in contrast to a private organization’s team communication platform. In Chapter 4,
we will conduct a more comprehensive evaluation of these identified differences.

3.5 Commercial Solutions

During our research, we found the following commercial solutions that promised different
levels of threat detection for team collaboration platforms:

• Avanan [63] was a cloud security platform that offered a solution for popular team
communication platforms. It promised to detect account takeovers and insider threats
by using audit logs. Furthermore, it claimed to detect malicious files and sensitive
information.

• Zerofox[64] was another cloud security platform that offered an integration for team
communication platforms. Compared to Avanan, its focus centered more on message
data, detecting abusive language, malicious links, and credential theft.

• Nightfall[65] was a cloud-native data loss prevention platform. It was entirely focused
on data leakage prevention [66].

Among the most popular team communication platforms, only Slack offerd an endpoint for
monitoring suspicious user activity when a customer purchased the most expensive enterprise
plan [67]. This feature, known as the Audit Logs API, could detect ten different types of
anomalous events:

First, it could keep track of Autonomous System Numbers (ASNs) to spot bad ones and send
alters. Then, it also monitored file activity, generating alerts for abnormal downloads or
file-sharing behaviors that may imply data misuse. IP address history of user tokens could
be observed, raising an alert when a potentially suspicious IP, such as a cloud ASN, was
identified. Alerts could also be triggered on an unusual volume of search queries, hinting
at suspicious behavior. Furthermore, inconsistencies in session cookies or client fingerprints
also raised alarms. The use of TOR exit nodes, often associated with anonymous and possibly
malicious activities, could trigger alerts. Unexpected anomalous activities from administrative
accounts, able to cause severe damage, were also detected. Finally, changes in the user token’s
user agent, such as a version downgrade, were noted as potential anomalies and could be
investigated through audit logs.

To our best knowledge, all the commercial solutions mentioned solely relied on attributes and

16

3 Related Work

did not incorporate the graph topology of the team communication platform. Consequently,
existing solutions could not detect graph structure-based anomalies, like AV4 Channel Sniffing.
However, since all the mentioned solutions were closed source, it is impossible to verify this
assumption.
We believe a more holistic approach, incorporating the platform’s network structure, can
detect further attacks and anomalies.

17

4 Dataset

This chapter begins with an evaluation of a freely available Slack [19] dataset. Subsequently, a
novel dataset derived from the team communication platform used within the "Entrepreneurial
Masterclass" [68] organization at the Technical University of Munich (TUM) is introduced.
In contrast to existing datasets, the Masterclass dataset offers a unique opportunity for
researching unprocessed message data and can be extensively examined for suspicious and
anomalous activities.

The raw data from the "Entrepreneurial Masterclass" communication platform must undergo a
series of transformations to be used for anomaly-detecting graph neural networks. Therefore,
the following sections describe the necessary steps and techniques to convert the raw data into
a suitable format. In addition, it is outlined how the attack vectors described in Chapter 2 are
synthesized within the dataset. During the transformation process of the raw communication
data, key features have to be extracted and converted into a standardized graph representation.
The advantages of the chosen graph representation are elaborated upon in the final section of
this chapter.

4.1 Choosing the Best Dataset

In the following, we compare the in Chapter 3 introduced dataset Software related Slack Chats
with Disentangled Conversations [52] with a novel dataset, derived from the "Entrepreneurial
Masterclass" team communication platform. We investigate both datasets for their features
and suitability for our research objectives.

4.1.1 Existing Datasets

As investigated in Chapter 3, only a limited number of team communication platforms were
monitored and recorded for research purposes. Chatterjee et al. [52] published the dataset
Software related Slack Chats with Disentangled Conversations, in which various programming-
related Slack workspaces were monitored for a period of two years. The dataset comprises
38955 conversations from 12171 unique users. It is divided into four workspaces: clojurians
(7918 conversations), elmlang (22172 conversations), pythondev (8887 conversations), and
racket (about 1900 conversations). The dataset includes highly active message conversations,
with some days recording thousands of sent messages (see Figure 4.1). However, it is

18

4 Dataset

0 5 10 15 20 25 30
Date

0

250

500

750

1000

1250

1500

1750

Se
nt

 M
es

sa
ge

s

Sent Messages per Day during 10/2018
racket
pythondev
clojurians
elmlang

Figure 4.1: Message activity in of the Slack workspaces recorded by the paper Software-related
Slack Chats with Disentangled Conversations [52]. Especially during weekends,
indicated with blue background, less activity can be seen.

important to note that the dataset solely consists of messages from specifically selected public
channels, excluding all communication outside these channels.

We further evaluate the suitability of this dataset for our research objectives by examining
the communication patterns within the elmlang workspace. For this, we utiliz Gephi [69], a
graph visualization tool, along with its implemented Fruchtermann-Reingold algorithm [70].
In order to apply the Fruchtermann-Reingold algorithm, we group the dataset messages into
30-minute intervals. Within each interval and for every message sent, we establish a weighted
edge connecting the sender to all other active users during that same interval. Here, the
weighted edge denotes an interaction between two users, with the weight increasing as the
number of exchanged messages between them grows. By employing this technique across
all intervals, we construct a graph that represents the communication patterns among all
users in the workspace. Through the use of the Fruchtermann-Reingold algorithm, the graph
undergoes a transformation: users with a greater number of weighted edges are drawn closer
to the center of the graph, while users with only a few interactions can be found along the
outer edge.
As can be seen in Figure 4.2, the computed interaction graph of the elmlang workspace
contains many single edges toward its outer edge. This suggests that many users were active
in the workspace for only a limited period of time, engaging in only a few message exchanges
before leaving. Such behavior is more characteristic of workspaces accessible to the general
public, rather than reflective of communication patterns within closed organizational team
communication platforms.

19

4 Dataset

Figure 4.2: Communication cluster of the elmlang Slack workspace, recorded in the paper
Software-related Slack Chats with Disentangled Conversations [52]. Many single edges
toward the outer edge of the graph can be seen, indicating that a lot of users were
only active for a limited number of time. This behavior does not represent the
communication patterns of a closed organization’s team communication platform.

20

4 Dataset

4.1.2 Masterclass Dataset

The TUM Entrepreneurial Masterclass [68] is a program managed by the Technical Uni-
versity of Munich’s UnternehmerTUM initiative [71]. It offers students passionate about
entrepreneurial fields the opportunity to write their master’s thesis about entrepreneurship-
related research. The participants gain extensive integration into the entrepreneurial ecosys-
tem at TUM and UnternehmerTUM. To effectively structure this program, an internal team
communication platform (Slack) is used for organization and coordination within the master-
class.

Members of the Masterclass are divided into different task forces. Each task force is responsi-
ble for a unique area, such as marketing, technology, PR, or event organization. Additionally,
task forces manage resources relevant to their function. For instance, the PR task force controls
the Masterclass social media accounts, while the technology task force oversees the website
and server organization.

Certain resources, such as social media account login credentials or WordPress website
credentials, hold a higher security relevance. Therefore, Masterclass members are strongly
advised to handle such sensitive information carefully and exercise discretion.

With the authorization of the Masterclass, this research monitored the organization’s internal
communication for three years, gathering data to construct a dataset that can be utilized for
training machine learning models to identify potential internal threats or anomalies. Although
no active threats were identified during the monitored period, sensitive information, that
members were unaware of, was detected in the communication history. Overall, the dataset
offers valuable insights into the communication dynamics of a thriving organization.

4.1.3 Datasets in Numbers

The unprocessed Masterclass dataset contains the activities of 234 users, each of whom is
characterized by specific features such as their timezone, team affiliation, or app usage. As we
were able to gain access to data provided by a Slack Pro [72] plan, the scope of user-specific
features was expanded with more activity logs, including the total messages each user has
posted, as well as access logs detailing the device used, IP address, and time of access.
The total count of conversations posted in public channels adds up to 3975, collected from
across a total of 39 different channels. The user with the highest activity level sent a total of
7620 messages throughout the recorded period, while the most active user within the last 30
days of recording contributed a total of 313 messages. On average, 78 messages were sent per
week. The daily distribution of messages demonstrates a predominant pattern of messages
sent on weekdays, as shown in Figure 4.3.

In Table 4.1, we compare the dataset "Software related Slack Chats with Disentangled Con-
versations" by Chatterjee et al. [52] examined in the previous Section 4.1.1 to the Masterclass
dataset. While Chatterjee et al. monitored more conversations across 4 different workspaces,
they only published a few selected channels. Additionally, no specific User features are avail-

21

4 Dataset

0 5 10 15 20 25 30
Date

0

5

10

15

20

25

Se
nt

 M
es

sa
ge

s

Sent Messages per Day during 11/2021
Total Messages

Figure 4.3: Total number of sent messages per day within the Masterclass dataset during
November 2021. Most activity occurred on weekdays, with a peak on Wednesday.
During weekends, indicated with blue background, less activity was observed.

able, whereas we can utilize 17 different features for each user from the Masterclass dataset.
It is impossible to create a fully connected graph from Chatterjee et al., representing the entire
workspace, as we cannot access non-published channels. Therefore, it is not possible to detect
anomalies that occur across multiple channels. This is not a problem for the Masterclass
dataset, as we can access all public channels and user data.

The limited availability of user-specific features, the absence of recorded non-published
channels, and the observed user behavior of never returning users makes Chatterjee et al.’s
dataset unsuitable for representing a closed organization’s team communication platform.
Our objective to detect the attack vectors described in Section 2.2 involves altering user
features and manipulating multiple channels. Consequently, we decide to solely use the
Masterclass dataset, as it resembles a closed organization’s team communication platform,
provides more detailed resources, and includes user features and information about all public
channels.

22

4 Dataset

Feature Masterclass [68] Chatterjee et al. [52]
Number of Workspaces 1 4

Number of Users 234
elmlang: 6454
clojurians: 2422
pythondev: 3295
racket: Unknown

Number of Teams 4 Unknown
Plan Slack Pro [72] Unknown

Number of Different Channels 39
elmlang: 2
clojurians: 1
pythondev: 1
racket: 1

Total Public Channel Conversations 3975
elmlang: 22172
clojurians: 7918
pythondev: 8887
racket: about 1900

Most Sent Messages by a User 7620 18498
Average Conversations per Week 78 374
Total Conversations 3975 38955

Accessible User Features

name
timezone
team
title
status text
email
is_admin
is_bot
is_app_user
updated
email_confirmed
deleted
country
joined channels
location
IP address

None

Accessible Message Features
timestamp
text
is_reply
replying users

timestamp
text

Table 4.1: Comparison between the Masterclass dataset and the "Software-related Slack Chats
with Disentangled Conversations" dataset, published by Chatterjee et al. [52]. While
Chatterjee et al. published more conversations and included different workspaces,
they only monitored a handful of selected channels. Additionally, no user-specific
features are provided, which can be leveraged for anomaly detection.

23

4 Dataset

4.2 Data Collection

The following step-by-step guide is taken from the official Slack documentation [73] and is
used to export the raw data from the Masterclass Slack workspace:

Workspace Owners and Admins can export data from a workspace using the steps below:

1. From your desktop, click your workspace name in the top left.
2. Select Settings & administration from the menu, then click Workspace settings.
3. Click Import/Export Data in the top right.
4. Select the Export tab.
5. Below Export date range, open the drop-down menu to select an option.
6. Click Start Export. We’ll send you an email once your export file is ready.
7. Open the email and click Visit your workspace’s export page.
8. Click Ready for download to access the zip file.

The received zip file contains the raw workspace’s message history in JSON format and file
links from all public channels. Depending on the paid subscription to Slack, the data quality
varies. For this thesis, all data from the Masterclass Slack channel is accessed with the Slack
Pro [72] subscription. Additional data, such as user-specific activity logs, are accessed using
the Slack API [74] and are manually added to the unzipped Slack data directory. For this task,
an API crawler was written that can be found within this thesis’ code implementation.

4.3 Data Pre-Processing

As mentioned in the previous section (Section 4.2), the message history of the received
workspace is stored in JSON format. These files are organized by channel and placed in their
respective directories. Within each channel directory, the message history is further divided
into multiple files, each containing messages from a specific day. Each recorded message is
assigned a unique ID, a timestamp, a sender, and a text field. Figure 9.1 illustrates an example
of a message log. It’s worth noting that responses, threads, and reactions are also stored
within the message object, but they are not analyzed in detail in this thesis.
In addition to the message-related log entries, the exported files from Slack also include
user-specific data, which can be found in the "users.json" file. This file provides information
such as the users’ names, emails, unique user IDs, teams, devices, and privileges. The user ID is
used throughout the workspace to identify individuals within the message history. A final
list of channels is stored in the file channels.json. This file contains the name, id, and the user
ids of all members for each channel in the exported workspace.

For further research, it is necessary to normalize and preprocess the message history. This
involves removing HTML links, emojis, and user-specific attributes. Since the workspace
contains non-English messages, a few of them must be translated into English. To accomplish
this, we leverage OpenAI’s Complete API [75].

24

4 Dataset

Compared to other translation services, we encounter no rate limits in API calls. Additionally,
we implement a cache to avoid unnecessary API calls and reduce costs.

The preprocessed messages are stored in a pandas [76] dataframe. Table 4.2 displays the final
message dataframe and its columns.
A similar dataframe is created for users in the workspace. The dataframe is created from the
raw JSON but also incorporates new features computed from the sent messages. The final
user dataframe columns can be seen in Table 4.3.
Lastly, a third dataframe was created to keep track of all channels within a workspace. The
columns of the dataframe are shown in Table 4.4.

Message Feature Description
id The id of the message
ts The timestamp of the message
sender The user id of the message sender
receivers The user id of the message receivers
message The original message text
replying_to An optional id of the message the current message is replying to
preprocessed The pre-processed message text
embedding An embedding representation of the preprocessed message text
label Label indicating if the message is malicious or not

Table 4.2: Columns of the Message Dataframe. Bold indicated features are computed and
cannot be found in the original JSON files.

25

4 Dataset

User Feature Description
user_id The user id
name The user name
tz The user’s timezone
team The user’s assigned team
title The user’s role in the organization
status_text The user’s status (e.g. "In a meeting", "On vacation")
email The user email
is_admin Whether the user is an admin
is_bot Whether the user is a bot
is_app_user Whether the user has the Slack app installed
updated The timestamp of the last update
is_email_confirmed Whether the user’s email is confirmed
deleted Whether the user is deleted
country The user’s country
channels The channels the user is a member of
email_domain The user’s email domain
sent_message_count The total number of messages the user sent
received_message_count The total number of messages the user received
early_message_count The number of messages the user sent between 6 am and 12 pm
morning_message_count The number of messages the user sent between 12 pm and 6 pm
afternoon_message_count The number of messages the user sent between 6 pm and 12 am
night_message_count The number of messages the user sent between 12 am and 6 am

Table 4.3: Columns of the User Dataframe. Bold indicated features are computed and cannot
be found in the original JSON files.

Channel Feature Description
name The channel name
description The channel description
created The timestamp of the channel creation
total_membership The total number of members
messages_posted The total number of messages posted
members_who_posted The number of members who posted at least one message
members_who_viewed The number of members who viewed at least one message
label Label indicating if the channel is malicious or not

Table 4.4: Columns of the Channel Dataframe. All features are taken from JSON files.

26

4 Dataset

4.4 Synthesized Attacks

As described in Section 2.2, four attack vectors are identified, that were within breaches of
team communication platforms. As these attacks did not happen on the internal Masterclass
communication platforms, we synthesize them programmatically by modifying the previously
generated dataframes for users, messages, and channels.

1. To simulate lateral neighborhood phishing attacks AV1 in team communication platforms,
a group of active users, randomly selected, sends phishing messages to their common
channels. This is accomplished by augmenting the message dataframes with new
messages.

2. To synthesize power user targeting AV2, a batch of randomly selected users send messages
to previously unaffiliated channels. This is also achieved by extending the message
dataframe with new messages.

3. To simulate impersonation attacks AV3, several randomly chosen users have their name,
country, and status replaced with values from different users. This is achieved by
modifying the user dataframe.

4. The last attack vector channel sniffing AV4 is simulated by adding selected users to
multiple channels they are not members of and have not interacted with before. This is
done by extending the channel dataframe with new users.

Additionally, we create a list of exemplary phishing messages in the same style and format
as regular Slack messages that are used for the mentioned synthesized phishing attacks.
These messages are not directly associated with the Masterclass resources. Instead, they are
written generally so that they can also be used for other team communication platforms. We
use OpenAI’s ChatGPT [77] to generate new messages based on previously human-written
messages to achieve many unique messages. In total, 260 unique messages are created, of
which about 50 are hand-crafted and 210 AI-generated.

4.5 Message Embeddings

To generate features from messages exchanged among users on a team communication
platform, we convert all processed messages into a fixed-size embedding representation [78].
Various methods exist for generating text embeddings for this task. As outlined by Dou et
al. [44], many research papers use pre-trained word2vec [78] or Bert [79] models. However,
with the emergence of large language models [80], it is also possible to obtain cutting-edge
embeddings through API calls to external services [81].
For our initial approach, we employ Bert-as-a-service [82] to generate a fixed vector of 512
features as our message embeddings. This method is used effectively by previous work [44] to
embed Twitter messages and identify fake news. As described in the paper, Bert-as-a-service
leverages a pre-trained BERT model to encode semantic similarities among different sent

27

4 Dataset

messages. However, upon closer examination, we discover that there are no significant
differences in the cosine similarity (Eq. 4.1) between maliciously labeled messages and regular
messages.

The cosine similarity is a commonly used measure for determining the similarity between
feature vectors. Given two feature vectors, A and B, the cosine similarity is computed as
follows:

cosine similarity =
A⃗ · B⃗

∥A⃗∥∥B⃗∥
(4.1)

Therefore, we replace Bert-as-a-service with the OpenAI embeddings API endpoint [81]. In
this case, we utilize the babbage-similarity engine to generate our embeddings. As demonstrated
by [83], the endpoint exhibits a strong performance compared to other embedding providers
in a similarity search problem. The OpenAI endpoint transforms each message into a
fixed vector consisting of 2048 features. To improve the cosine similarity between flagged
anomalous messages and reduce their similarity to regular messages, we further customize
the embeddings for our dataset.

OpenAI provides a notebook [84] that demonstrates a method to tailor embeddings to specific
classification tasks, using training data consisting of manually labeled text pairs according to
their similarity. In our context, these text pairs are malicious-regular, malicious-malicious, or
regular-regular messages. As a result, an optimized matrix is generated using a process of
iterative optimization through gradient descent.
Initially, a random matrix is generated with dimensions matching the size of the embeddings.
Then, in each training epoch, a simple Neural Network uses this matrix to project the
embeddings of two text sets, in our case regular messages and malicious messages. The
projected embeddings are compared using cosine similarity, which serves as the predicted
similarity score. To quantify the disparity between the predicted score and the actual human-
assigned similarity score, a Mean Squared Error (MSE) loss function is employed. The
resulting loss is utilized to calculate the gradient, representing the rate of change of the loss
in the matrix. The matrix is then updated in the opposite direction of this gradient, effectively
reducing the loss. This process of prediction, loss calculation, gradient computation, and
matrix update is repeated for 30 epochs or until the matrix achieves an acceptable level of
accuracy. Consequently, the resulting matrix can be multiplied with the original embeddings
from our messages, thereby reducing error rates when classifying message pairs as similar or
dissimilar.

Figure 4.4 shows the cosine similarity between the raw and optimized embedding vectors
for messages from our dataset. As a result of the optimization process, two distinct clusters
emerge: one represents identical types of message pairs (malicious - malicious / regular -
regular), labeled as 1, and the other corresponds to different types of message pairs (malicious-
regular), labeled as -1.

28

4 Dataset

(a) Cosine similarity between message pairs without
applied optimization matrix. The similarity scores
for the two message pairs overlap, causing the clus-
ters to be indistinguishable.

(b) Cosine similarity of message embeddings after ap-
plied optimization matrix. Two distinct clusters can
be seen after the optimization process.

Figure 4.4: Cluster 1 comprises pairs of identical message types, either anomalous-anomalous or
regular-regular. In contrast, Cluster -1 encapsulates pairs of different message types,
anomalous-regular. Optimizing embeddings has a clear effect in distinguishing the
two types of message pairs.

4.6 Data Representation

As stated in Chapter 3, graph neural networks were previously utilized for anomaly detection
in social networks, surpassing heuristic-based approaches or feature-based DL approaches
that do not incorporate graph structure. In order to employ a Graph Neural Network on
our dataset, it is necessary to transform the data into a graph representation. This section
will outline different graph representations and libraries that can be utilized to represent our
data.

4.6.1 Graph Dataset Libraries

Multiple libraries exist to represent and process graph data programmatically in Python [85],
our preferred programming language. To this date, the most popular ones are:

• NetworkX [86], initially developed in 2002, is a Python package for the creation, manip-
ulation, and study of the structure, dynamics, and functions of complex networks.

• Deep Graph Library (DGL) [87], which is a framework-independent library and can be
used with Pytorch [88], MXNet [89], and Tensorflow [90].

29

4 Dataset

• Pytorch Geometric [91], which is a geometric deep learning extension library for
Pytorch [88].

Although NetworkX is a widely used library for graph processing in Python, it is not intended
for utilization in the realm of Graph Machine Learning. PyTorch Geometric and DGL, on
the other hand, are both optimized for graph machine learning tasks. However, PyTorch
Geometric is more actively developed in the field of graph anomaly detection. Hence, we
opted to employ a PyTorch Geometric dataset for our graph representation.

4.6.2 Knowledge Graphs

Three types of knowledge graph implementations exist within PyTorch Geometric, which can
represent data in different graph structures [92]. The most commonly used representation is
the Homogeneous Attributed Graph. In this graph, all nodes and edges are of the same type.
There is only one shared feature space, graph.x, for all nodes, and a single graph.edge_index
matrix to represent all edges between nodes.
Then, there is the Heterogeneous Attributed Graph. Here, nodes and edges can be of
different types. The node feature space is divided, and each node type has its own matrix
representation, graph[node_type].x. Edges between different types of nodes are represented as
graph[nodetype1_relation_nodetype2].edge_index, also using separate matrices.
Finally, PyTorch Geometric also supports Temporal Dynamic Graphs [93]. This type of graph
is used to represent data that change over time.

4.6.3 Final Graph Design

During our initial experimentation stage, we attempted to represent the Slack dataset as a
homogeneous attributed graph. In this representation, users are represented as nodes, and the
edges denoted message interactions between those users. The user features are stored directly
within the nodes, while the message features are associated with the attributed edges.

However, we soon discovered that this design approach is not suitable for the task of anomaly
detection. As mentioned by Kim et al. [37] and Ma et al. [10], much current research and
frameworks for GNN-based anomaly detection do not take into account edge features. The
most recent paper to our knowledge that incorporates edge weights for anomaly prediction
on graph networks is Shah et al. [94], which was published seven years ago and does not
consider recent advances in the field of GNNs.

For this reason, we adopt a Heterogeneous Attributed Graph structure to represent our
Masterclass dataset. In this revised approach, users, messages, and channels are all repre-
sented as nodes, while interactions such as user-sends-message, message-sentTo-channel, and
message-sentTo-user are represented as non-attributed edges.
Compared to temporal or dynamic graph designs, heterogeneous graphs also offer better
support for anomaly detection, as noted in the comprehensive study by Ma et al. [10]. Cur-

30

4 Dataset

rently, there is still a significant amount of research to be conducted in the field of anomaly
detection on dynamic and temporal graphs.

To initialize the graph using PyTorch Geometric’s "HeterogeneousGraph" interface, the
following steps are taken:

data = HeteroData()
data[’user’].x = padding_user_x(user_x)
data[’user’].y = user_y
data[’message’].x = message_x
data[’message’].y = message_y
data[’channel’].x = padding_channel_x(channel_x)
data[’channel’].y = channel_y
data[’user’, ’sends’, ’message’].edge_index = user_sends_message
data[’message’, ’sentTo’, ’channel’].edge_index = message_sentTo_channel

Note that a custom padding is applied to the user and channel feature vectors. This ensures
that all feature vectors of each node type have the same dimensionality.

The final node structure of the heterogeneous graph can be observed in Figure 4.5. Each color
represents a distinct node type. The edges between the nodes are non-attributed. Figure
4.6 illustrates how the graph representation displays all messages to the selected channel
emc_amlumni during March 2023.

31

4 Dataset

Figure 4.5: Node structure and relations of the heterogeneous knowledge graph. Different
colors and shapes represent node types. Edges between the nodes are non-
attributed and do not carry any features or weights.

Figure 4.6: Snapshot taken of the final Masterclass knowledge graph, showing all conversa-
tions between users in the channel emc_amlumni within March 2023. Node types
are represented by different colors and shapes.

32

4 Dataset

4.7 Final Node Features

Table 4.5 showcases the final node feature list of our dataset. It is important to note that not all
features from the previously generated dataframes are included in the graph representation.
This includes user-specific data, such as emails, and other features irrelevant for predicting
anomalies.

4.8 Dataset Creation Flow

In Figure 4.7, we present the final workflow for creating the Masterclass dataset. This workflow
showcases the process of loading data from the original Slack export files and transforming it
into a graph representation. Additionally, it outlines all intermediate processes, including
embedding creation and attack injection.

Node Type Feature

User Node

timezone
country
team
title
is_admin
is_bot
is_app_user
updated
is_email_confirmed
number of joined channels
number messages written in 0:00-6:00
number messages written in 6:00-12:00
number messages written in 12:00-18:00
number messages written in 18:00-24:00

Message Node text embedding

Channel Node

total members
messages posted
number members that posted
number members who viewed

Table 4.5: Final node features used in the graph representation of the Masterclass dataset.
Private user data, such as emails and irrelevant features for anomaly detection are
excluded from the graph.

33

4 Dataset

user_df, including
features about

users

Parse Data

message_df,
including channel,

sender and
receiver

channel_df, list
of all channels

Process text message
 remove emoji
 remove privacy related content (emails, usernames
 lowercas
 remove white-space
 remove diacritic
 remove punctuatio
 English translation

Create message embeddingsOpenAI embeddings API

message_df,
including

embeddings,and
attacks

user_df,including
features about
users,and attacks

channel_df, list
of all channels

Create edges_indices

(user sends message),
(message sentTo channel)

Create feature tensors

for each node type

(user, message and
channel)

Inject attacks into
dataframes

Create labels

 for each node type

(user, message and
channel)

Pytorch Geometric
Dataset

OpenAI Completion API,
used for message

translation

Attack Injector

Slack Data, represented as
several JSON files

Synthesized
Attack Messages

Figure 4.7: Creation flow of the Masterclass dataset. The raw data is loaded from the exported
JSON files and transformed into a graph representation.

34

5 ECONAD

CONAD [45], which is summarized in Chapter 3.3, is selected as the baseline model for our
anomaly detection task. In particular, the self-supervised learning approach of CONAD,
which incorporates human knowledge to enhance the graph, proves to be a promising method
for detecting anomalies in team communication platforms.
In this chapter, we present our extended CONAD model, ECONAD, which is specifically
designed to detect anomalies in team communication platforms. First, we expand the base
CONAD model by incorporating augmentation strategies tailored to team communication
platforms (Section 5.1). Subsequently, we introduce a multi-view graph approach (Section 5.2).
We then describe the sampling strategies used to divide the graph into smaller batches in
Section 5.3, as well as the validation process in Section 5.4. Finally, we outline the prediction
and system design in Section 5.5.

5.1 Custom Augmentation Strategies

Not all predefined CONAD augmentation strategies, as described in Section 3.3.2, are directly
applicable to team communication platforms. For example, CONAD’s high degree strategy
is based on the assumption that a node with a high number of edges is more likely to be
anomalous. However, in the context of a team communication platform, this assumption is
invalid, as it would classify every channel with many active users as anomalous. Nevertheless,
Xu et al. [45] demonstrated that incorporating prior human knowledge about attack patterns
has a significant and positive impact on anomaly detection in social networks. Therefore, we
introduce our own team communication platform-specific augmentation strategies, which
are custom-tailored to the attack vectors identified in Section 2.2. Similarly to the original
augmentation strategies implemented within the base CONAD model, the new augmentation
strategies can be categorized into structural and attribute augmentation strategies.

A1 Neighborhood Phishing (Attribute) With our first custom augmentation strategy, we
aim to detect lateral phishing messages sent to a compromised user’s direct common
interaction channels. We replace a randomly selected message node embedding vector
with a malicious message embedding from the training set used to fine-tune the message
embeddings in Section 4.5. By doing so, we hope the model will learn to differentiate
between normal and malicious messages based on the message’s embedding vector.
Since the original graph structure remains unchanged, the model can only incorporate
knowledge through attributes.

35

5 ECONAD

A2 Poweruser Phishing (Attribute, Structural) Attackers have previously gained access to
more security-critical resources by contacting power users within a team communication
platform, such as IT administration [7]. Since the model cannot determine which user
is responsible for what service in an organization, we attempt to detect this attack by
introducing new malicious message events between a user and channels not in the
user’s direct neighborhood. Similarly to A1, we use malicious embeddings for the new
message node. With the introduction of this augmentation, the model can incorporate
knowledge through both attributes and structure.

A3 User Impersonation (Attribute) By impersonating a user, attackers can increase their
credibility and raise less suspicion when requesting access to critical infrastructure. To
detect this type of attack, we replace the features of randomly chosen user nodes with
the features of another random user in the same workspace. Like augmentation strategy
A1, the model can only incorporate knowledge through attributes.

A4 Channel Sniffing (Structural) Team communication platforms often contain sensitive
information in public channels. If a user joins a large number of channels that are not
related to their team, it may indicate that the user is looking for sensitive information
unrelated to their actual work. To detect this behavior, we introduce new edges between
users and several randomly chosen channels that the user was not previously affiliated.
In this augmentation strategy, the model has to learn from the graph structure, as all
node attributes remain unchanged.

5.2 Multi-View Graph

CONAD is designed to process homogeneous attributed graphs in which every node is of
the same type and is assigned a feature vector with the same dimensionality. However, as
described in Section 4.6.3, the graph obtained from our Masterclass dataset is heterogeneous,
comprising three different node types: user nodes, message nodes, and channel nodes. To
process this heterogeneous graph, we split it into multiple views based on the type of anomaly
we aim to detect. Unlike the multi-view approach by Peng et al. [47] introduced in Section
3.2, we chose not to employ a specific GNN for each anomaly classification task, but to
use CONAD with the extended augmentation methods introduced in the previous section.
Similarly to Zhang et al. [46], we divide the graph into different views using predefined
meta-paths denoted by P .

A meta-path P is a path defined on the network schema TG = (A,R), and is denoted in the

form of A1
R1−→ A2

R2−→ ...
RL−→ AL+1, which defines a composite relation R = R1 · R2 · ... · RL

between node types A1 and AL+1, where · denotes relation composition operator, and L is the
length of P [46]. Given our heterogeneous network with different node types user, message,
and channel and their relations, we define the following meta-paths to split the graph into
two new views:

36

5 ECONAD

P1 Message-User-Channel-User-Message (P1): By removing all users and channels from
the graph, we can detect anomalies based on the message’s content and its relation
to other messages. Since this graph view is homogeneous, we can apply CONAD’s
original augmentation strategies.

P2 User-Message-Channel: For augmentation A3 and A4, we only use the channel and
user nodes. By excluding messages, we can detect anomalies based on the user’s
behavior and its relation to other users and channels.

An example of how the graph is transformed by applying the meta-paths P1 and P2 can be
seen in Figure 5.1.

37

5 ECONAD

User

Message

Channel

User

Message

Message

Channel

User

MessageMessage

Message

User

Message

Exemplary heterogeneous graph structure before the application of a meta-path P . Node types are
indicated by different colors and shapes.

Message

Message Message

Message

Message
Message

Message

P1 Message-User-Channel-User-Message view. After all users and channels
are removed, messages of each channel connect to each other and form a
complete cluster. Clusters are connected to other clusters when users are active
in both channels. This view is applied for message augmentation strategies A1
and A2.

User

User

Channel

User

Channel

User

P2 User-Message-Channel view. By removing all messages, only direct user-
channel interactions are perceived. This view is employed for the custom
augmentation methods A3 and A4.

Figure 5.1: Graph transformation with meta-paths P1 and P2. After applying the meta-paths,
the graph is split into two views, that can be used for different augmentation
strategies.

38

5 ECONAD

5.3 Sampling Strategies

Our graph data set, derived from the Masterclass team communication platform, comprises
202 user nodes, 39 channel nodes, and 4132 message nodes collected over a 3-year period,
as previously described in Section 4.1.3. To predict anomalies, we partition the graph into
smaller batches, simulating various time periods such as days, weeks, or months that can be
used to train the model.
Several approaches exist for dividing a graph into smaller subsets [95]. For our team
communication platform graph, we employ multihop neighborhood sampling [59]. This
method involves selecting a random source node vi, and for each hop (representing the
number of edges required to reach a neighboring node vj), adding all nodes within that hop
to the sample. Figure 5.2 illustrates a source node vi and its 3-hop neighbors, which would
be included in a batch. In our sampling strategy, we set the number of hops to 4 to ensure the
inclusion of all three node types: messages, users, and channels.
In practice, multiple source nodes are chosen to create a single sample, ensuring that the
source nodes represent different types. The number of source nodes is determined by the
batch size parameter. In Chapter 6, we evaluate how the batch size parameter influences our
final prediction.

Figure 5.2: Multihop neighborhood sampling. The red node vi is taken as source node. Nodes
of different colors represent the sampled nodes at k-hops. Here vj is one of the
3-hop neighbors of vi. The orange arrows mark the shortest path ranging from vi
to vj. Graphic and description taken from Xu et al. [96]

39

5 ECONAD

5.4 Validation

In the original implementation of the CONAD fit function, the model is trained for a fixed
number of epochs without considering the performance on a separate validation set. To
improve the training process and avoid overfitting, we add validation and an early stopping
logic to the original implementation.

1. Data loader for the validation set:
The model’s training function is extended to process not only a training graph G but
also an optional validation graph val_G.
If a validation graph is provided, separate batches are created by using neighborhood
sampling. The average loss from all batches is used to evaluate the model’s performance
after each training epoch.

2. Validation loss computation:
After each training epoch, the model is evaluated on the validation graph using the
val_loader. The loss on the validation graph is computed using the same loss function
as used for training, and averaged across all batches of the validation graph.

3. Early stopping based on validation performance:
To prevent overfitting and improve the training process, an early stopping mechanism
is implemented, based on the model performance on the validation graph. Using
the patience parameter, the number of consecutive epochs with no improvement in
validation loss can be set before training is stopped by the early stopping mechanism.
By default, we set patience to 50 epochs.
During the training, the best-obtained validation loss and the number of epochs with
no improvement are tracked. If the number of consecutive epochs with no improvement
in the validation loss exceeds the value of patience, training is stopped early.

4. Saving the best model state:
As training progresses, the model state with the best validation loss is saved. After the
training is completed, either by reaching the maximum number of epochs or triggered
by early stopping, the state of the model with the best performance on the validation
graph is returned.

By incorporating these changes into the base CONAD training algorithm, the modified fit
function now provides a more robust training procedure. The early stopping mechanism
allows the model training to be more computationally efficient, as it will terminate the training
early if it does not observe any improvement in the validation loss for a specified number of
epochs. Furthermore, this approach also mitigates the risk of overfitting by closely monitoring
the validation performance throughout the training process.

40

5 ECONAD

5.5 Prediction

To predict anomalies in the original graph, we initially divide the graph into multiple views,
as described in Section 5.2. Then, each view undergoes processing by a distinct trained
ECONAD model, which uses custom augmentation strategies tailored specifically to that
view. To generate the final prediction for the original graph, we project the predictions of each
view onto the original graph, as illustrated in Figure 5.3. If a node is labeled as malicious in
the P1 message view, it will also be labeled in the original graph.

To visually represent the identified anomalous nodes, we color the nodes in the provided
graph according to their predicted label. Anomalously labeled nodes are colored yellow,
while normal nodes are colored purple. Channel nodes are colored green, as the dataset
does not include any malicious channels. Hovering over nodes reveals additional detailed
information. Node types can be distinguished by shape: user nodes are displayed as triangles,
message nodes as circles, and channel nodes as squares.
Figure 5.4 showcases exemplary predictions for different types of anomalies on the original
graph. The final design of the ECONAD model can be observed in Figure 5.5.

P1 Message View

P2 User Channel View

Original Graph

Figure 5.3: Node predictions for each view are projected onto the original graph to obtain the
final prediction. If a message node is predicted as anomalous in the P1 message
view, it will be colored yellow in the final prediction on the original graph.

41

5 ECONAD

Found Lateral Phishing attacks within the graph. In this case,
anomalous message nodes are highlighted in yellow.

Found Channel Sniffing attacks. Anomalous user nodes are
highlighted in yellow. Multiple edges connecting to various
channels can be seen in this part of the graph.

Found User Impersonation attacks. All yellow highlighted users
have interacted with the same channel and share the same
attributes.

Figure 5.4: Multiple types of attacks found within the Masterclass dataset. Anomalous nodes
are highlighted in yellow, normal nodes in purple. As all channels are non-
malicious in the dataset, they are colored in green.

42

5 ECONAD

Neighborhood Phising

User Impersonation

Channel Sni�ng

Poweruser Phising

Attributed Network
G = {A, X}

P2 user channel view

P1 message view

Gano

Gano

Concatenation

Knowlege Modeling

Graph Transformation

Predicted Anomalies

Figure 5.5: Final ECONAD model design. The graph is split into two views, based on
the meta-paths P1 and P2. Each view is processed by a CONAD model, that
combines team communication tailored data augmentation strategies with base
CONAD augmentation strategies. The final prediction is created by projecting the
predictions of each node in a single view to the original graph.

43

6 Experiments

This chapter describes the experiments we conducted to evaluate our proposed anomaly
detection model, ECONAD. To evaluate the advantage of GNNs compared to traditional
feature-based deep learning approaches, we first test the impact of graph structure and node
attributes on the in Section 5.1 introduced custom augmentation strategies. To determine the
optimal batch size, which represents different periods of messages sent within a workspace,
we analyze the impact of various batch sizes on each augmentation strategy. As described
in Section 6.7, the workspace graph is divided into multiple views to accommodate the
heterogeneous structure of the graph for our introduced augmentation strategies. Hence,
we evaluate the impact of each transformation. Finally, we compare our model with other
graph anomaly detection models implemented in the popular graph outlier detection library
pyGOD [97]. In particular, we closely examine other autoencoder-based GNN anomaly
detection models, as they share similar system designs and capabilities.

6.1 Setup

We partition the graph into three subsets for the experimental setup of the base CONAD and
our ECONAD model: training, validation, and test set. The training set consists of 23 months
of data, while the validation set and the test set span 2 months and 1 month, respectively.
These subsets are arranged in a timewise order, with the training set containing the oldest
messages and the test set containing the most recent messages. To break down the training
and validation graph into smaller batches, we employ neighborhood sampling with 4 hops,
as described in Section 5.3. An outlier score margin of 0.2 is established, above which each
node is classified as anomalous. For our augmentation strategies, we choose a rate of 0.5,
which, as in the base CONAD model, determines the number of manipulated nodes for each
applied augmentation strategy. The hidden dimension within the models is set to match the
size of our node feature vectors, which is 2051. Furthermore, we choose a learning rate (lr) of
1e-3, as it is the default value for the base CONAD model.

6.2 Metrics

For the next sections, we employ the following metrics [98], to evaluate the performance of
our model:

44

6 Experiments

• Accuracy: The first metric represents the fraction of correct predictions made by our
model. In binary classification, accuracy can be calculated as (TP + TN)/(TP + TN +

FP + FN), where TP = True Positives, TN = True Negatives, FP = False Positives, and
FN = False Negatives.

• Precision: Precision measures the fraction of relevant instances among the retrieved
instances. In other words, it quantifies how many True Positives our model predicted
out of all the positive predictions made. The precision is calculated as TP/(TP + FP).

• Recall: Recall represents the fraction of relevant instances that were correctly retrieved
out of the total number of instances. It measures how well our model captures the
anomalies by labeling them as positive. The recall is calculated as TP/(TP + FN).
Especially for the task of anomaly detection, we are interested in a high recall value,
indicating that most anomalies were found during classification.

• Average Precision: Average Precision (AP) is a performance metric used to evaluate the
quality of a classification model. It calculates the average precision score for each class
(anomalous, non-anomalous) individually and then takes the average across all classes,
giving equal weight to each class. This metric is useful when there is class imbalance in
the data, as it provides a balanced assessment of the model’s performance across all
classes. A high AP score indicates that the model performs well in correctly identifying
and classifying positive instances with minimal false positives.

• F1 Score: The F1 score is the harmonic mean of precision and recall. While the regular
mean treats all values equally, the harmonic mean assigns more weight to low values.
Consequently, a high F1 score can only be achieved if both the recall and the precision
are high. The F1 score is calculated as 2 ∗ (Recall ∗ Precision)/(Recall + Precision).

• AUC (Area Under The Curve): AUC represents the probability that a randomly selected
node (anomalous or non-anomalous) will get a higher anomaly score than a randomly
selected non-anomalous node. A higher AUC score indicates better model performance,
with a perfect score of 1.

These metrics provide distinct perspectives on the model’s performance, and it is crucial to
take all of them into account, since the model may excel in one metric while performing
poorly in another.

6.3 P1 Message View

In order to determine the optimal hyperparameters for our ECONAD model on the P1

message view, we first test the impact of structure and attribute on the classification. Subse-
quently, we carefully examine an appropriate batch size. Finally, we identify the most effective
augmentation strategies for this view and assess their impact on the model’s classification
performance.

45

6 Experiments

6.3.1 Impact of Structure and Attribute

In Section 3.3, we discussed how the base CONAD model and ECONAD learn from both the
graph structure and the node attributes. To assess the impact of these two factors, we can
adjust the weighting parameter α in the loss function, setting it to a value between 0 and 1.
The loss function is defined as follows:

Lrecon = α · attribute_errors + (1 − α) · structure_errors

To investigate the influence of node attributes and graph structure on our ECONAD model in
the context of the P1 view and our custom augmentation strategies, we conduct experiments
for each message augmentation strategy (A1 and A2) using different α values. Additionally,
we test the base CONAD model’s approach of determining a meaningful α value based
on standard deviation. Each experiment utilizes a batch size of 30 nodes, and no other
augmentation strategies are enabled apart from A1 and A2.

Figure 6.1 shows that a higher α value leads to a better classification performance for both
augmentation strategies. In contrast to neighborhood phishing, the poweruser augmentation
also modifies the structure of the graph by inserting new edges to unrelated message clusters.
Therefore, we hypothesized that a lower α value would have a greater impact on the overall
performance of this strategy. In fact, as shown in Figure 6.1b, the precision metric remains

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

auc ap accuracy precision recall f1

Neighborhood Phishing Alpha

Alpha 0 Alpha 0.5 Alpha 1 Standard Deviation

(a) Impact of graph structure (low α) and node attributes
(high α) on the neighborhood phishing augmentation
strategy A1. The overall best prediction score is
achieved using a high α value.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

auc ap accuracy precision recall f1

Poweruser Phishing Alpha

Alpha 0 Alpha 0.5 Alpha 1 Standard Deviation

(b) Impact of structure (low α) and node attributes (high
α) on the poweruser phishing augmentation strategy
A2. As in the case of strategy A1, the best overall
performance is achieved with a high α value. Es-
pecially the recall metric is most affected by the α

value.

Figure 6.1: Classification metrics of single applied message augmentation strategies with
a different focus on graph structure or node attributes. All experiments are
conducted with a batch size of 30 nodes and no other augmentation strategies
enabled. The standard deviation, used by CONAD as the default strategy to
determine the α value, only produces moderate metrics compared to the as best
determined α value of 1.

46

6 Experiments

remarkably high with an α value of 0.5. However, this is not the case for the recall metric,
where an α value of 0.5 underperforms compared to a higher α value of 1.

6.3.2 Impact of Batch Size

As outlined in Section 5.3, our ECONAD model employs a sampling strategy to divide the
graph into smaller batches, each representing a specific time period of messages sent within
the team communication platform. Here, a smaller batch size represents communication
within a shorter time frame, a larger batch size represents communication within a longer
time frame. Considering that our novel masterclass dataset has an average of 75 messages per
week (see Chapter 4), we initially select a batch size of 50 nodes as a suitable starting point,
resulting in approximately 250 messages per batch after applying neighborhood sampling.
To assess the impact of batch size on the classification performance, we perform experiments
in which we apply each augmentation strategy (A1 and A2) with batch sizes of 30, 50, and
100 nodes, as well as the full training graph. In each experiment, we maintain an α value
of 1, which was determined to be the optimal value for both augmentation strategies in the
previous experiments.

As shown in Figure 6.2 the batch size has a significant impact on the classification perfor-
mance. For both augmentation strategies, a smaller batch size leads to better classification
performance. This is especially the case for the recall metric, which improves 25% for strategy
A1 and 15% for strategy A2.
As stated in Section 6.1, we utilize the last month of communication within the dataset as a

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

auc ap accuracy precision recall f1

Batch Size Impact for Neighborhood Phising

Batch Size 30 Batch Size 50 Batch Size 100 Full Graph

(a) Impact of the batch size on metrics for the neighbor-
hood phishing strategy A1. Compared to full graph
training, a lower batch size boosts overall perfor-
mance on precision, recall and F1 score up by 25%.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

auc ap accuracy precision recall f1

Batch Size Impact for Poweruser Phishing

Batch Size 30 Batch Size 50 Batch Size 100 Full Graph

(b) Impact of the batch size on metrics for the poweruser
phishing strategy A2. Overall best classification
could be achieved using a low batch size of 30 nodes.
Especially for the recall metric, a low batch size im-
proves the score up to 15%.

Figure 6.2: Impact of batch size on classification performance for single applied message
augmentation strategies. All experiments are conducted with an α value of 1. No
other augmentation strategies are enabled.

47

6 Experiments

testset for our model. In this testset, approximately 50 message nodes are included. It appears
that the closer the selected batch size is to the number of nodes in the testset, the greater the
overall improvement in all metric performance becomes.

6.3.3 Comparing Augmentation Strategies

To test the impact of augmentation method A1 for Neighborhood Phishing and A2 for
Poweruser Phishing, we first evaluate the classification performance of each novel augmenta-
tion strategy against a CONAD model without any applied augmentation in Figure 6.3a. This
step ensures that the strategies are effective and do not compromise the overall performance.
Then, we test the combined application of both strategies A1 and A2, as employed in our
final ECONAD model, against the base CONAD model and the combination of the base
CONAD model with ECONAD augmentations, as illustrated in Figure 6.3b. All experiments
are carried out using the optimized α value of 1, which was determined beforehand, and a
batch size of 30 nodes.

Figure 6.3a demonstrates the positive impact of both our newly introduced augmentation
strategies on the overall classification performance. Especially in terms of recall, A2 outper-
forms the baseline by 15%. Therefore, we determine that both augmentation strategies are

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

auc ap accuracy precision recall f1

Impact of Single Augmentation Strategies

No Augmentation Neighborhood Phishing only Poweruser Phising only

(a) Metrics for augmentation strategies Neigborhood
Phising A1 and Poweruser Phishing A2 compared
to classification without any augmentation. Particu-
larly in terms of the recall metric, A2 outperforms
the baseline by 20%.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

auc ap accuracy precision recall f1

Impact of Combined Augmentation Strategies

No Augmentation Base CONAD Augmentations

ECONAD Augmentations Base CONAD and ECONAD Augmentations

(b) Performance of combined augmentation strategies
A1 and A2 (ECONAD), compared to three other
augmentation approaches: no augmentation, base
CONAD augmentation, and combined CONAD and
ECONAD augmentations. It is observed that the best
overall performance is attained by either applying
ECONAD or base CONAD. However, incorporating
too many combined augmentation strategies appears
to decrease the overall classification performance.

Figure 6.3: Impact of augmentation strategies on lateral phishing detection. All experiments
were conducted with the previously determined best batch size of 30 nodes and
an α value of 1.

48

6 Experiments

effective and do not compromise the overall performance.
In Figure 6.3b, it is evident that the optimal overall performance is achieved by either applying
the base CONAD or our ECONAD model. We cannot discern a significant difference between
the augmentation strategies of the base CONAD and our ECONAD model. It appears that
the base CONAD model already uses a sufficient amount of augmentation strategies to detect
lateral phishing attacks. However, combining too many augmentation strategies, such as in
the case of CONAD and ECONAD, diminishes the overall classification performance.

6.4 P2 User Channel View

In order to determine the optimal hyperparameters for our ECONAD model on the P2

user channel view, we first test the impact of structure and attribute on the classification.
Subsequently, we carefully examine an appropriate batch size. Finally, we identify the
most effective augmentation strategies for this view and assess their impact on the model’s
classification performance.

6.4.1 Impact of Structure and Attribute

To investigate the influence of node attributes and graph structure on our augmentation
strategies A3 against user impersonation and A4 against channel sniffing in the context of the
P2 view, we carry out experiments for each augmentation strategy using different α values.
Additionally, we test the base CONAD model’s approach of determining a meaningful α

value based on standard deviation. Each experiment utilizes a batch size of 140 nodes. No
other enhancement strategies are enabled except A3 and A4.

In Figure 6.4, it is evident that a higher α value leads to a improved classification performance
for both augmentation strategies A3 and A4. However, for channel sniffing A4, the best
overall performance is achieved when using a value between 0.5 and 1.0. Since A4 introduces
new edges between user and channel nodes (structure) and modifies the number of channels
a user has joined to enhance the existing graph, this suggests that the model leverages both
structure and attributes for learning. Notably, the recall and precision metrics profit from the
structure, outperforming the experiments with different α values.
Regarding the user impersonation augmentation strategy A3, the highest overall performance
is attained with a high α value. Considering that this strategy solely modifies the node
attributes, this performance outcome is expected. Furthermore, as on the P1 message view
(Section 6.3.1), it is evident that the proposed standard deviation method of the base CONAD
model for determining the optimal α value does not apply to our customized augmentation
strategies. Across all experiments, it significantly underperformed compared to experiments
with the best α values.

49

6 Experiments

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

auc ap accuracy precision recall f1

User Impersonation Alpha

Alpha 0 Alpha 0.5 Alpha 0.8 Alpha 1 Standard Deviation

(a) Impact of graph structure (low α) and node attributes
(high α) on the user impersonation augmentation
strategy A3. α has most impact on the precision
value, with high α values performing best.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

auc ap accuracy precision recall f1

Channel Sniffing Alpha

Alpha 0 Alpha 0.5 Alpha 0.8 Alpha 1 Standard Deviation

(b) Impact of structure (low α) and node attributes (high
α) on the channel sniffing augmentation strategy A4.
Compared to A3, α has most impact on precisison
and recall. A value of α = 0.8 performs best on
all metrics, indicating that the model learns from
combined structure and attributes.

Figure 6.4: Classification metrics of single applied augmentation strategies with a different
focus on graph structure or node attributes. All experiments are conducted with
a batch size of 140 nodes and no other augmentation strategies enabled. The
standard deviation, used by CONAD as the default strategy to determine the α

value, only produces moderate metrics compared to as best determined α value of
1 in Figure 6.4a and 0.8 in Figure 6.4b.

6.4.2 Impact of Batch Size

As described in Section 5.3, ECONAD employs a sampling strategy to divide the graph into
smaller batches. In contrast to the previously tested P1 message view, where each batch
represents a specific time period of message nodes sent within the team communication
platform, the user and channel nodes in the P2 view remain unchanged between batches,
with only their connecting edges being altered.
To evaluate the impact of batch size on classification performance, we test each augmentation
strategy (A3 and A4) on a sampled graph with batch sizes of 50, 100, 130, 140, and 150 nodes.
Since there are only a total of approximately 280 nodes remaining after removing all message
nodes in the P2 view, we are also able to train the model on the complete training graph
without any applied sampling. In each experiment, we maintain an α value of 0.8, which
was determined to be an optimal value for both augmentation strategies in the previous
section.

For the User Impersonation augmentation strategy A3, Figure 6.5a shows minimal variations
in metrics. It appears that the classification remains unaffected by the batch size for this
strategy. However, the same cannot be said for the Channel Sniffing augmentation strategy,
as shown in Figure 6.5b. In this case, a batch size of 140 nodes achieves the best overall
performance, which is approximately half of the total graph nodes (280 nodes). Compared to

50

6 Experiments

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

auc ap accuracy precision recall f1

Batch Size Impact for User Impersonation

Batch Size 50 Batch Size 100 Batch Size 130

Batch Size 140 Batch Size 150 Full Graph

(a) Impact of the batch size on metrics for the user aug-
mentation strategy A3. All metrics do not deviate
much between applied batch sizes.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

auc ap accuracy precision recall f1

Batch Size Impact for Channel Sniffing

Batch Size 50 Batch Size 100 Batch Size 130

Batch Size 140 Batch Size 150 Full Graph

(b) Impact of the batch size on metrics for the channel
sniffing augmentation strategy. Especially for recall
and precision, a batch size of 140 nodes achieves the
best overall results.

Figure 6.5: Impact of batch size on classification performance for single applied augmentation
strategies. All experiments are conducted with an α = 0.8. No other augmentation
strategies are enabled.

full graph training, the batch size shows a significant impact on the precision metric.

6.4.3 Comparing Augmentation Strategies

To test the impact of the augmentation method A3 against user impersonation and A4 against
channel sniffing on the P2 user channel view, we first evaluate the classification performance
of each augmentation strategy against a CONAD model without any applied augmentation
in Figure 6.6. This step ensures that the strategies are effective and do not compromise the
overall performance. Then we test the combined application of both strategies A3 and A4
against the base CONAD model and the combination of the base CONAD augmentations
with all ECONAD augmentations, as illustrated in Figure 6.6b. All experiments are carried
out using the optimized α value of 0.8 and a batch size of 140 nodes.

Figure 6.6a illustrates the positive impact of our introduced augmentation strategy A4 to
detect channel sniffing. It effectively improves the recall metric by 20%. However, the
augmentation strategy A3 to detect user impersonation appears to have minimal influence on
the classification performance. It seems not possible to accurately detect user impersonation
attacks solely by replicating the node attributes.
In Figure 6.6b, it is shown that the combination of both strategies (ECONAD augmentation)
does not increase the recall metric. This lack of improvement may be attributed to a flawed
user impersonation strategy. Compared to the model with only the A4 augmentation applied,
as shown in Figure 6.6a, the final F1 score of the model with applied A3 augmentation
decreases by almost 10%. Therefore, we conclude that the user impersonation strategy A3
is ineffective and should not be employed. Without the user impersonation strategy, the

51

6 Experiments

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

auc ap accuracy precision recall f1

Impact of Single Augmentation Strategies

No Augmentation Channel Sniffing only User Impersonation only

(a) Metrics for augmentation strategies for User Imper-
sonation A3 and Channel Sniffing A4 compared to
classification without any augmentation. Particularly
in terms of the recall metric, A4 outperforms the
baseline by 20%.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

auc ap accuracy precision recall f1

Impact of Combined Augmentation Strategies

No Augmentation Base CONAD Augmentations

ECONAD Augmentations Base CONAD and ECONAD Augmentations

(b) Performance of combined augmentation strategies
A3 and A4 (ECONAD), compared to three other
augmentation approaches: no augmentation, base
CONAD augmentation, and combined CONAD and
ECONAD augmentations. It is observed that the best
overall performance is attained by either applying
ECONAD or base CONAD. However, incorporating
too many combined augmentation strategies appears
to decrease the precision metric.

Figure 6.6: Impact of augmentation strategies on P2 user channel view. All experiments were
conducted with the previously determined best batch size of 140 nodes and an α

value of 0.8.

ECONAD model outperforms the base CONAD model by 20% in terms of recall and 10% in
terms of the F1 score.

52

6 Experiments

6.5 ECONAD Evaluation

To obtain the final classification from both views P1 and P2, the predictions of P1 and P2

are projected onto the dataset’s original graph, as described in Section 5.5. The overall
performance of each view and the final prediction on the graph is shown in Figure 6.7. It can
be seen that the P1 message view prediction has a higher overall performance compared to
the P2 user channel view prediction.

The final classification on the full graph is significantly influenced by the number of anomalies
of each type in the dataset. The tested graph contains 7 lateral phishing attacks, 2 channel
sniffing attacks, and 4 user impersonation attacks. Since the number of lateral phishing
attacks is the highest among all, the correct classification of message attacks has the most
impact on the classification metrics of the full graph. Overall, the final ECONAD model
achieves an F1 score of 0.8 after combining both views.

Figure 6.8 shows the confusion matrix of the test set prediction from the final ECONAD model.
Besides a single not found anomaly, all anomalies were correctly classified. However, the
model classified 5 non-anomalous nodes as anomalous. Still, this is a significant improvement
compared to the base CONAD model, which is only able to detect 6 out of 14 anomalies.

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

accuracy precision recall f1
P1 View 0,99 1,00 0,95 0,97

P2 View 0,94 0,56 0,83 0,67

Full Graph 0,98 0,72 0,93 0,81

Classification Metrics For Each View

Figure 6.7: Metrics for top performing models on the P1 and P2 view. Classification metrics
on the P1 view are overall better than on the P2 view. The final classification for
the full graph, is obtained by projecting the predictions of both views onto the
graph.

53

6 Experiments

Predicted Regular Predicted Anomaly

Actual Regular

Actual Anomaly

316 5

1 13

Figure 6.8: Confusion matrix of the final ECONAD model. ECONAD identified 13 out of 14
injected anomalies.

6.5.1 Multi-View compared to Full Graph

In order to assess the impact of our applied multi-view approaches P1 and P2, we benchmark
the ECONAD model’s classification performance with and without the application of these
views. To provide a comprehensive overview of the improvements, we also include the base
CONAD model in the benchmark.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

1,00

accuracy precision recall f1
CONAD 0,98 0,80 0,57 0,67

ECONAD no Multi View 0,98 0,77 0,71 0,74

ECONAD with Multi View 0,98 0,72 0,93 0,81

Multi View Impact on ECONAD

Figure 6.9: Improvements of the multi-view approach for ECONAD. When compared to
ECONAD without multiple views, the multi-view approach demonstrates a 20%
enhancement in the recall metric. Moreover, compared to the base CONAD model,
the multi-view approach showcases an even more impressive 35% improvement
in the recall metric.

54

6 Experiments

In Figure 6.9, it is evident that the recall metric benefits the most from each modification made
to the base model. When compared to ECONAD without multiple views, the multi-view
approach demonstrates a 20% enhancement in the recall metric. Even without employing
multiple views, ECONAD exhibits a 15% improvement in overall recall compared to the base
CONAD model.

6.5.2 Comparison to Further Graph Anomaly Detection Algorithms

We conduct a comprehensive benchmark of the overall anomaly detection performance of
our ECONAD model compared to other anomaly detection models implemented in the
pyGOD graph outlier detection library [97]. In this evaluation, we compare our model’s
performance with CoLA [99], AnomalyDAE [100], DOMINANT [39], and the base CONAD
model [45].

CoLA [99] (Contrastive self-supervised Learning framework for Anomaly detection on at-
tributed networks) employs contrastive instance pair sampling to predict anomalies. The
model measures the agreement of instance pairs using outputted scores, which are then
utilized to evaluate the abnormality of each node. Like the CONAD base model, CoLA
incorporates self-supervised learning to ease the reliance on labeled data.

AnomalyDAE [100] (Anomaly Detection through a Dual Autoencoder) uses two autoencoders
(a structure autoencoder and an attribute autoencoder) for concurrent learning of node and
attribute embeddings. It features an attention mechanism to detect crucial structural patterns.
The model reconstructs node attributes using both node and attribute embeddings, enabling
it to discern the interactions between network structure and node attributes.

As mentioned in Chapter 3, DOMINANT [39] was among the first GNN models to employ an
autoencoder for computing an anomaly score. DOMINANT, served as the base for CONAD
and ECONAD, and is therefore included in our benchmark.

The base CONAD model [45], as described in detail in Section 3.3, is the base model for our
ECONAD model. It is specifically designed for social networks and incorporates prior human
knowledge about attacks into its model.

All selected GNN models employ an autoencoder architecture [42] to detect anomalies in
graphs and support graph sampling to split the full graph into smaller batches.
In our benchmark, each model is evaluated using a batch size of 30 and 100 nodes, respectively.
The optimal performance achieved by each model is outlined in Table 6.1.

Beyond Accuracy and Precision metrics, ECONAD surpasses each model in terms of Recall
and overall F1 score. In particular, ECONAD boasts a 20% improvement in the recall metric
compared to the base CONAD model. CoLA and AnomalyDAE encounter challenges when
distinguishing between anomalous and non-anomalous nodes, achieving only a precision
of 0.05 and 0.06, and a recall of 0.29 and 0.43, respectively. These less-than-ideal metrics
could potentially be attributed to the heterogeneous graph design of our dataset. In contrast,

55

6 Experiments

DOMINANT presents a precision of 0.4 but falls short with a recall of 0.14. Despite this, its
overall accuracy is comparable to that of both CONAD and ECONAD.

We also attempted to benchmark our model against GAAN [101], a non-autoencoder Neural
Network anomaly detection approach based on a Generative Adversarial Network [102].
However, GAAN does not support varying graph sizes, which are present in our training
and test sets. Consequently, we are unable to include GAAN in our benchmark.

Model Accuracy Precision Recall F1 Confusion Matrix

CoLA [99] 0.72 0.05 0.29 0.08
[

237 84
10 4

]
AnomalyDAE [100] 0.71 0.06 0.43 0.11

[
233 88
8 6

]
DOMINANT [39] 0.96 0.40 0.14 0.21

[
318 3
12 2

]
Base CONAD [45] 0.98 0.80 0.57 0.67

[
319 2
6 8

]
ECONAD (Ours) 0.98 0.72 0.93 0.81

[
316 5
1 13

]
Table 6.1: Benchmark of various graph anomaly detection models against our ECONAD

model. The best performance of each metric is highlighted in bold.

56

7 Discussion

The main objective of this thesis is to develop an enhanced method for detecting anomalies
and threats in team communication platforms. For this task, we delved into the field of
Graph Neural Networks (GNNs) as we discovered that our data could be best represented
using a graph structure. With the help of a GNN, we are able to detect anomalies in
outlying graph structures and node attributes. We show that GNNs are a suitable method
for detecting anomalies in team communication platforms and that they can identify new
types of anomalies, such as channel sniffing, which was not possible to detect with previous
methods.
In this chapter, we discuss the Masterclass dataset we created and the novel ECONAD model.
Both, advantages and disadvantages, are highlighted, and each enhancement to ECONAD is
discussed.

7.1 Dataset

In this thesis we demonstrate that the created Masterclass dataset can be used for graph-
based machine learning tasks on team communication platforms. It offers a complete graph,
representing the whole workspace, incorporating all users and their interactions. As outlined
in Section 3.4.1 and Section 4.1, it is the first open and complete dataset that is suitable for
anomaly detection tasks within team communication platforms. As demonstrated in Section
4.1.1, previous datasets lack the same type of user interactions and did not encompass the same
level of message and user features found in private team communication platforms.

Furthermore, the dataset is highly extendible. Future researchers can incorporate additional
nodes and edges, by modifying the dataframes mentioned in Section 4.3. This enables new
research possibilities for Graph Neural Networks, which do not have to be necessarily related
to the task of anomaly detection. Additionally, the provided source code for the dataset
generation enables the creation of new datasets derived from different Slack workspaces,
which is beneficial for organizations aiming to monitor their own Slack workspaces.

The underlying graph representation for the team communication platform proves to be a
suitable method for understanding the user interactions and visualizing the data (see Section
4.6.3). This visual clarity enables an intuitive interpretation of the found anomalies within the
dataset and helps to easily identify affected users of an attack.

57

7 Discussion

7.1.1 Limitations

Despite its advantages, the Masterclass dataset presents certain limitations. As described in
Section 4.2, the dataset generation relies on data exported from Slack workspaces, without
support for other team communication platforms. Additionally, the richness of the graph is
influenced by the type of Slack plan used during the data export. For instance, features like
direct messages between users require a paid enterprise plan.

Furthermore, while using the OpenAI endpoint [81] to generate message embeddings has
proven straightforward and efficient, the requirement for a paid OpenAI key poses a constraint.
Alternative approaches, such as local text embedding creation, could bypass this issue.
However, as outlined in Section 4.5, using the OpenAI endpoint demonstrates superior
performance compared to other tested methods of embedding creation, such as Bert-as-a-
Service [82].

We also observe that the effectiveness of detecting lateral phishing attacks depends on the
number of representative phishing attacks provided. Providing an excess of similar attacks,
or too many AI-created phishing messages, may compromise the model’s ability to detect
a range of phishing threats. A wider variety of different phishing attacks is needed to
counterfeit this bias. However, this is not straightforward, as most phishing attacks are not
publicly accessible. We reached out to the authors of the paper Detecting and characterizing
lateral phishing at scale[28], who developed a phishing email classifier using the Enron[60]
dataset. However, they could not provide us with their dataset of phishing emails due to
proprietary restrictions.

7.1.2 Alternative Representations

As described in 4.6.3, we represent our dataset as a heterogeneous graph. Initially, we
experimented with a homogeneous graph representation, where users are represented as
nodes and messages as connecting edges. However, this is not our final design choice
due to the limited available research that incorporates edge weights for anomaly detection.
Additionally, this representation lacks flexibility, as it is impossible to add other node types,
such as channels, to the graph.

Another approach is to represent the dataset as a dynamic temporal graph, since this
representation might capture the evolving nature of a team communication platform more
accurately. However, as noted by Ma et al. [10], the field of anomaly detection on temporal
dynamic graphs is still emerging, and more research is needed for this specific task. Having
selected the heterogeneous graph representation, we address this problem by partitioning our
data for testing, validation, and training using message timestamps. The most recent message
nodes are continuously incorporated into the test set, whereas the training and validation are
composed of older messages.

58

7 Discussion

7.2 ECONAD

This thesis introduces ECONAD, a novel graph neural network designed to detect anoma-
lies in team communication platforms. Unlike existing methods, which focus primarily on
attribute-based anomalies (as described in Section 3.1.2), ECONAD leverages graph structure
for identifying anomalies. This approach distinguishes it from other techniques currently
employed to detect anomalies within team communication platforms (see Section 3.5). Fur-
thermore, it paves the way for identifying potential threats that cannot be detected by existing
feature-based deep learning anomaly detection approaches.

7.2.1 Multi-View Splitting

One of the main challenges for applying a GNN to the domain of team communication
platforms is the heterogeneous data structure. Existing models for classifying malicious nodes
are primarily designed for homogeneous graph structures [10]. ECONAD addresses this
issue by breaking down the graph into multiple views, each with a distinct focus on the
anomalies being searched for, as described in Section 6.5.1. In Section 6.5, we evaluated the
impact of the multi-view approach on the model’s performance. We found that splitting the
graph into multiple views significantly improves the model’s performance and observe a
20% increase in recall and a 7% increase in the F1 score. However, it is worth noting that
not all views contribute equally to this performance improvement. The user channel view
P2 underperforms compared to the message view P1. We believe that the heterogeneity of
P2, with two types of nodes (user, channel), is the main reason for this. The model struggles
to differentiate between user and channel nodes. As a result, we prevent the model from
flagging channels as anomalous by hard-coding the channel nodes as non-malicious.
Additional views, such as a user view that only considers user nodes, could improve the
overall performance. This might be beneficial for the User Impersonation A3 augmentation.
However, we are uncertain how to model the relationship between users and channels for
the Channel Sniffing augmentation A4. Transposing the graph to a new view without losing
information presents a significant challenge, which leads us to incorporate both types of
nodes in the user channel view P2.

7.2.2 Augmentation Strategies

Incorporating human knowledge of previous attacks from team communication into a model
is not trivial. Evaluated breaches often use several attack vectors, which are team communi-
cation platform-specific and are not investigated by other GNN-based research. Therefore,
we introduce the four custom augmentations neighborhood phishing, poweruser phising, user
impersonation, and channel sniffing described in Section 5.1. These augmentations incorporate
human knowledge to detect the attack vectors, as outlined in Section 2.2.
In Section 6.3.3 and Section 6.4.3, we tested the impact of each augmentation strategy on the
model’s performance. In both experiments, our custom augmentation strategies significantly

59

7 Discussion

outperform the baseline without any applied augmentation strategies. However, compared to
the predefined CONAD augmentations, our custom augmentations perform similarly in each
view. Therefore, we combine our best-performing augmentation strategies with each view’s
best-performing base CONAD strategies. This strategy achieves the best overall performance
for both views. Notably, we discovered that combining all augmentation strategies decreases
the overall performance of each view. As this process also applies unsuitable augmentations
for specific views, such as the base CONAD high-degree augmentation in the User Channel
view, we assume this as the reason for the overall performance decrease.
Finding the best combination of augmentation strategies for each view turned out to be a
challenging task. The number of possible combinations increases exponentially with the
number of augmentation strategies, and we found that the combination also varies depending
on the alpha value and batch size used. Therefore, we only tested the combinations for the
previously determined best-performing alpha value and batch size. As the batch size depends
on the number of messages sent within a workspace, the best-performing combination of
augmentation strategies can vary for different workspaces. To investigate this hypothesis, we
need to test our model’s performance on different workspaces and see if a slightly different
combination of augmentation strategies yields better results.

7.2.3 Impact of Node Attributes and Graph Structure

For each introduced augmentation strategy in Section 5.1, we evaluated the impact of
node attributes and graph structure on the augmentation performance in Section 6.3.3 and
Section 6.4.1. We found that node attributes have a greater impact on performance across
all introduced augmentation strategies than graph structure. This is particularly evident for
the message augmentation strategies, where the message embeddings stored in the node
attributes prove to be the most influential feature. However, for the augmentation strategy
Channel Sniffing A4, we discovered that the best performance is achieved when both node
attributes and graph structure are considered.
Based on these findings, we can conclude that using a GNN for detecting message-based
attacks in team communication platforms might not be the most effective approach, as no
graph structure is needed to detect these attacks. However, in cases where identifying an
attack solely based on anomalous node features (e.g. channel sniffing) is challenging, the
graph structure significantly contributes to the detection of anomalies. In these scenarios, a
GNN appears to be the most suitable approach.

7.2.4 Impact of Batch Size

For each augmentation strategy introduced in Section 5.1, we also evaluated the impact of
batch size on augmentation performance in Section 6.3.2 and Section 6.4.2. Here, we found
that the batch size significantly impacts the performance of each augmentation strategy.
Specifically, for message-based augmentation strategies (A1, A2), we observe the best classifi-
cation performance when the batch size closely matches that of the final test graph. As for

60

7 Discussion

user channel-based augmentation strategies (A3, A4), the optimal batch size is around 140,
roughly 50% of the size of all remaining nodes after removing the message nodes in the P2

view.
These observations suggest that the optimal batch size to achieve the best classification results
is influenced by the workspace environment, which changes according to the number of users
and their sent messages. Furthermore, our findings show that each augmentation strategy
has its own optimal batch size. The difference in optimal batch sizes could contribute to why
ECONAD’s performance is superior on a graph divided into multiple views, as it allows for
the application of different batch sizes for each view.

7.2.5 Benchmark with Further Anomaly GNN Models

Compared to other benchmarked GNN models in Section 6.5.2, ECONAD outperforms in
the recall metric, a critical aspect for anomaly detection, as it helps identify as many true
anomalies as possible while minimizing the number of false negatives. However, the precision
metric of ECONAD is lower than that of CONAD, the model upon which ECONAD is
developed. This suggests that ECONAD exhibits higher sensitivity to anomalies given its
design purpose to detect as many true anomalies as possible.
In our benchmark, we opted for models that exclusively utilize auto-encoders for anomaly
detection. However, as highlighted in Chapter 3, alternative approaches for anomaly detection
on attributed graphs exist, which do not rely on autoencoder-based GNN networks. These
approaches, however, were not considered in our benchmark.
A significant challenge in comparing different anomaly detection models is the variation in
sample sizes used for training, validation, and testing. Numerous models provided in the
pyGOD [97] library cannot handle graphs of differing sizes.

7.2.6 Limitations

Despite its capabilities, ECONAD has limitations that hinder its overall performance. The
first limitation is observed in the effectiveness of the User Impersonation augmentation A3. It
appears that this augmentation technique is not as effective as initially expected. It may be
worth exploring the idea of copying specific features of the feature vector rather than all at
once to enhance the detection of user impersonation attacks.

ECONAD incorporates time-based node relations by splitting the graph into smaller batches
based on the timestamp of each message sent in the workspace. As evaluated in Section
6.3.2 and 6.4.2, this split dramatically impacts the overall performance of the augmentation
strategies. However, other features that change over time, such as user features, are not
processed by ECONAD. Incorporating changing node features in a GNN model is still an
open research question, with little research currently available [10].

During the evaluation, we also observed that the performance of ECONAD in detecting
lateral phishing attacks (A1, A2) heavily relies on the quality of the embeddings and the

61

7 Discussion

presence of a sufficient number of message anomalies. If the embeddings are of low quality
or an insufficient number of message anomalies are provided, it compromises the model’s
overall performance.

Lastly, it is important to note that the performance of the base CONAD Triplet contrasting
method, as mentioned in Section 3.3.3, cannot be tested due to limitations in the underlying
implementation. However, the effectiveness of this contrasting method is uncertain, as the
Triplet Contrast performs worse in the original paper than the Siamese Contrast used by
ECONAD [45].

7.2.7 Alternative Design Approaches

ECONAD builds upon the foundation of the CONAD model, which demonstrates superior
performance compared to other graph-based anomaly detection models on social network
graphs [45]. As a result, ECONAD is specifically designed as a node classification model.
However, with appropriate modifications to the data representation, the node classification
problem could be reformulated as an anomalous link prediction problem.
Nevertheless, the main limitation lies in the insufficient extendibility of the graph within such
a problem, where messages can only be represented as links. Furthermore, as highlighted in
Section 4.6.3, not much research is available that incorporates attributed edges for the task of
anomaly detection using Graph Neural Networks.

Moreover, our research indicates that node attributes play the most crucial role in enhancing
the model’s effectiveness in detecting anomalous messages. Given the recent emergence of
large language models (LLMs) [80], it should be possible to perform this classification using
LLMs instead of solely relying on embeddings. However, the behavior of LLMs in more
complex graph structures involving direct messages or message replies remains unclear. In
such cases, the graph structure itself might have a more significant impact on the model’s
performance. Further research is needed here to validate this assumption.

62

8 Conclusion

This thesis addressed the rising problem of effective anomaly detection in team communi-
cation platforms. As these platforms became increasingly integral to our professional and
personal lives, the security of the data transmitted within is crucial. We introduced ECONAD,
a Graph Neural Network (GNN) based model designed to detect anomalies and malicious
actors within team communication platforms.
Throughout the literature research, we identified the limitations of existing anomaly detection
approaches for team communication platforms, which do not incorporate graph structure for
their predictions. Therefore we employed a GNN, as it can process a platform’s full graph
representation and also leverage its structure to detect anomalies.
By introducing multiple views to handle graph heterogeneity and custom augmentation
strategies to incorporate human knowledge about previous attacks, ECONAD was fine-tuned
to detect specific types of attacks, threats, and malicious activities within team communication
platforms.
To evaluate the effectiveness of ECONAD, we created a custom team communication dataset,
capturing the activity of 250 users over three years. This dataset enabled us to thoroughly
assess the performance of ECONAD on a closed organization’s team communication platform,
with access to relevant user features and the entire message history of all public channels.
Initially, we tested the impact of batch size and graph structure on each augmentation strategy.
Our findings revealed that incorporating graph structure enhances the detection of anoma-
lies, especially when detecting specific attacks solely based on anomalous node features is
challenging. Additionally, we observed that the batch size, used to split a graph into smaller
subgraphs, has varying effects on each augmentation strategy, depending on the type of
anomaly being sought.
Next, the effectiveness of each introduced view in ECONAD was evaluated. We found that a
homogeneous view containing only the same types of nodes performed better than a hetero-
geneous view, which included two node types. Furthermore, transforming the graph into
different views based on the searched anomaly significantly improved the overall performance
compared to processing the full graph at once.
When benchmarked against other state-of-the-art GNN models with comparable design
architecture, using our novel dataset for a classification test with 14 injected anomalies, we
found that ECONAD outperformed the best-performing current GNN model by up to 36% in
recall and 14% in the overall F1 score, demonstrating the effectiveness of our novel model
and its ability to detect anomalies in team communication platforms.

Applying GNNs to team communication platforms is a promising approach for detecting

63

8 Conclusion

anomalies and malicious actors. By incorporating the graph structure of team communication
platforms, GNNs have the capability to uncover anomalies that traditional feature-based deep
learning approaches are unable to detect. This research was potentially the first to apply
GNNs to team communication platforms, and we hope that it will inspire future research in
this field.

8.1 Future Work

The introduced dataset and ECONAD model serve as the foundation for numerous future
experiments in the field of anomaly detection on team communication platforms. However,
there is room for future improvements, which are outlined in the following:

• Extending the dataset: Our Masterclass dataset relied on the Slack pro plan and did
not incorporate direct communication between users. It only included communication
from users in public channels. This limitation could be addressed by upgrading to a
more advanced Slack plan. Furthermore, user nodes could be extended with additional
features, which could be utilized to detect new anomalies within the dataset.

• Fine Tuning Augmentation strategies: We tested ECONAD using four augmentation
strategies: Neighborhood Phishing, Poweruser Phishing, User Impersonation, and
Channel Sniffing. However, as outlined in 6.4.3 we found the Poweruser Phishing
augmentation does not have a meaningful impact on the final classification. More
fine-tuning is needed here. Furthermore, ECONAD could be enhanced by incorporating
a new set of augmentation strategies to detect additional anomalies.

• Support for More Team Communication Platforms: Expanding the support for com-
munication platforms beyond the current scope is essential. For instance, integrating
with platforms such as Microsoft Teams would make our model accessible to a broader
range of organizations interested in supervising their team communication platform.

• Continuous Integration: To ensure continuous and up-to-date anomaly detection,
it is crucial to integrate the system for real-time data collection. Developing a new
integration for team communication platforms would enable continuous data collection,
facilitating timely anomaly detection and response.

• Notifications: By incorporating alarm systems that adjust based on a severity scale
of the discovered anomalies, proactive measures can be taken quickly in response to
potential threats.

• User-Friendly Frontend: Creating a user-friendly front-end to present the results of
ECONAD would significantly enhance the analysis and interpretation of identified
anomalies. By visually representing the connections and interdependencies among
users and teams, administrators can promptly respond to found threats and identify
impacted users. Figure 8.1 illustrates a draft version of a potential front-end.

64

8 Conclusion

Figure 8.1: Draft for a possible frontend. On the main page, a quick overview of the overall
workspace health is given using a honeycomb diagram. Here, anomalous users
are highlighted in red, while normal users stay green. Each found anomaly
is grouped by severity. A list of the latest alerts gives a brief overview of the
types of anomalies that were found and how many users were impacted. When
investigating a single alert, the graph of the team communication platform with
all impacted users is shown.

ar

65

9 Appendix

"client_msg_id": "5b6bbd94-edee-4db6-b484-07ca26423afe",
"type": "message",
"text": "Dear alumni, as always, you’re warmly invited to join! :smiling_face..",
"user": "U01KSJZHLAW",
"ts": "1665122315.915109",
"blocks": [

{
"type": "rich_text",
"block_id": "tWzY",
"elements": [

{
"type": "rich_text_section",
"elements": [

{
"type": "text",
"text": "TUM EMC Offsite ",
"style": {

"bold": true
}

},
{

"type": "emoji",
"name": "mountain",
"unicode": "26f0-fe0f"

}

Figure 9.1: Slack message JSON export

66

List of Figures

3.1 Event-focused graph and model design, as demonstrated by Dou et al. [44].
For each written message, a user-interaction graph and text embeddings were
created and processed separately. 10

3.2 DOMINANT [39] employed an autoencoder design in which the entire graph
is processed at once. The classification was based on the reconstruction error
of a siamese decoder, which was specifically trained to reconstruct the original
graph. 10

3.3 Design of a multi view graph system, as described in the work by Peng
et al. [47]. This approach involved splitting the graph into distinct views
according to its features. Each graph view was subsequently processed by
an independent Graph Neural Network (GNN). The final classification was
determined by combining the individual GNN classifications. 11

3.4 CONAD [45] system design. In contrast to other GNN-based anomaly detection
approaches for social networks, CONAD incorporates human knowledge about
anomalies into its model design. 12

3.5 Four different kinds of anomalies are modeled through a data augmentation
strategy. These augmentations can be based on the graph structure or node
attributes. 13

4.1 Message activity in of the Slack workspaces recorded by the paper Software-
related Slack Chats with Disentangled Conversations [52]. Especially during week-
ends, indicated with blue background, less activity can be seen. 19

4.2 Communication cluster of the elmlang Slack workspace, recorded in the paper
Software-related Slack Chats with Disentangled Conversations [52]. Many single
edges toward the outer edge of the graph can be seen, indicating that a lot
of users were only active for a limited number of time. This behavior does
not represent the communication patterns of a closed organization’s team
communication platform. 20

4.3 Total number of sent messages per day within the Masterclass dataset dur-
ing November 2021. Most activity occurred on weekdays, with a peak on
Wednesday. During weekends, indicated with blue background, less activity
was observed. 22

67

List of Figures

4.4 Cluster 1 comprises pairs of identical message types, either anomalous-anomalous
or regular-regular. In contrast, Cluster -1 encapsulates pairs of different mes-
sage types, anomalous-regular. Optimizing embeddings has a clear effect in
distinguishing the two types of message pairs. 29

4.5 Node structure and relations of the heterogeneous knowledge graph. Different
colors and shapes represent node types. Edges between the nodes are non-
attributed and do not carry any features or weights. 32

4.6 Snapshot taken of the final Masterclass knowledge graph, showing all conver-
sations between users in the channel emc_amlumni within March 2023. Node
types are represented by different colors and shapes. 32

4.7 Creation flow of the Masterclass dataset. The raw data is loaded from the
exported JSON files and transformed into a graph representation. 34

5.1 Graph transformation with meta-paths P1 and P2. After applying the meta-
paths, the graph is split into two views, that can be used for different augmen-
tation strategies. 38

5.2 Multihop neighborhood sampling. The red node vi is taken as source node.
Nodes of different colors represent the sampled nodes at k-hops. Here vj is
one of the 3-hop neighbors of vi. The orange arrows mark the shortest path
ranging from vi to vj. Graphic and description taken from Xu et al. [96] 39

5.3 Node predictions for each view are projected onto the original graph to obtain
the final prediction. If a message node is predicted as anomalous in the P1

message view, it will be colored yellow in the final prediction on the original
graph. 41

5.4 Multiple types of attacks found within the Masterclass dataset. Anomalous
nodes are highlighted in yellow, normal nodes in purple. As all channels are
non-malicious in the dataset, they are colored in green. 42

5.5 Final ECONAD model design. The graph is split into two views, based on
the meta-paths P1 and P2. Each view is processed by a CONAD model, that
combines team communication tailored data augmentation strategies with base
CONAD augmentation strategies. The final prediction is created by projecting
the predictions of each node in a single view to the original graph. 43

6.1 Classification metrics of single applied message augmentation strategies with
a different focus on graph structure or node attributes. All experiments are
conducted with a batch size of 30 nodes and no other augmentation strategies
enabled. The standard deviation, used by CONAD as the default strategy to
determine the α value, only produces moderate metrics compared to the as
best determined α value of 1. 46

6.2 Impact of batch size on classification performance for single applied message
augmentation strategies. All experiments are conducted with an α value of 1.
No other augmentation strategies are enabled. 47

68

List of Figures

6.3 Impact of augmentation strategies on lateral phishing detection. All experi-
ments were conducted with the previously determined best batch size of 30
nodes and an α value of 1. 48

6.4 Classification metrics of single applied augmentation strategies with a different
focus on graph structure or node attributes. All experiments are conducted
with a batch size of 140 nodes and no other augmentation strategies enabled.
The standard deviation, used by CONAD as the default strategy to determine
the α value, only produces moderate metrics compared to as best determined
α value of 1 in Figure 6.4a and 0.8 in Figure 6.4b. 50

6.5 Impact of batch size on classification performance for single applied augmen-
tation strategies. All experiments are conducted with an α = 0.8. No other
augmentation strategies are enabled. 51

6.6 Impact of augmentation strategies on P2 user channel view. All experiments
were conducted with the previously determined best batch size of 140 nodes
and an α value of 0.8. 52

6.7 Metrics for top performing models on the P1 and P2 view. Classification
metrics on the P1 view are overall better than on the P2 view. The final
classification for the full graph, is obtained by projecting the predictions of
both views onto the graph. 53

6.8 Confusion matrix of the final ECONAD model. ECONAD identified 13 out of
14 injected anomalies. 54

6.9 Improvements of the multi-view approach for ECONAD. When compared
to ECONAD without multiple views, the multi-view approach demonstrates
a 20% enhancement in the recall metric. Moreover, compared to the base
CONAD model, the multi-view approach showcases an even more impressive
35% improvement in the recall metric. 54

8.1 Draft for a possible frontend. On the main page, a quick overview of the overall
workspace health is given using a honeycomb diagram. Here, anomalous users
are highlighted in red, while normal users stay green. Each found anomaly
is grouped by severity. A list of the latest alerts gives a brief overview of the
types of anomalies that were found and how many users were impacted. When
investigating a single alert, the graph of the team communication platform
with all impacted users is shown. 65

9.1 Slack message JSON export . 66

69

List of Tables

4.1 Comparison between the Masterclass dataset and the "Software-related Slack
Chats with Disentangled Conversations" dataset, published by Chatterjee et
al. [52]. While Chatterjee et al. published more conversations and included
different workspaces, they only monitored a handful of selected channels.
Additionally, no user-specific features are provided, which can be leveraged
for anomaly detection. 23

4.2 Columns of the Message Dataframe. Bold indicated features are computed
and cannot be found in the original JSON files. 25

4.3 Columns of the User Dataframe. Bold indicated features are computed and
cannot be found in the original JSON files. 26

4.4 Columns of the Channel Dataframe. All features are taken from JSON files. . . 26
4.5 Final node features used in the graph representation of the Masterclass dataset.

Private user data, such as emails and irrelevant features for anomaly detection
are excluded from the graph. 33

6.1 Benchmark of various graph anomaly detection models against our ECONAD
model. The best performance of each metric is highlighted in bold. 56

70

Bibliography

[1] Alfresco. Dimesional Research Collab Survey Findings Report. https://www.alfresco.
com / sites / www . alfresco . com / files / dimesional - research - collab - survey -
findings-report-082415.pdf. [Accessed 11-Jul-2023].

[2] Global Team Collaboration Software Industry — reportlinker.com. https://www.reportlinker.
com / p06050492 / Global - Team - Collaboration - Software - Industry . html ? utm _
source=GNW. [Accessed 13-Jul-2023].

[3] O. Maor. Are You Ready for a Breach in Your Organization’s Slack Workspace? — darkread-
ing.com. https://www.darkreading.com/attacks-breaches/are-you-ready-for-a-
breach-in-your-organization-s-slack-workspace-. [Accessed 18-Jun-2023].

[4] M. Große-Kampmann and M. Gruber. “Business Chat is Confused. It Hurt Itself in its
Confusion-Chishing”. In: ().

[5] M. Binder. A teen hacked Uber and announced it in the company Slack. Employees thought
it was a joke — mashable.com. https://mashable.com/article/uber-teen-hacker-
slack-joke. [Accessed 18-Jun-2023].

[6] Hacker Breaches Activision Slack, Steals Call of Duty Info — vice.com. https://www.vice.
com/en/article/pkg7pn/hacker-breaches-activision-slack-steals-call-of-
duty-info. [Accessed 18-Jun-2023].

[7] How Hackers Used Slack to Break into EA Games — vice.com. https://www.vice.com/en/
article/7kvkqb/how-ea-games-was-hacked-slack. [Accessed 18-Jun-2023].

[8] K. MacDonald. Grand Theft Auto 6 leak: who hacked Rockstar and what was stolen? —
theguardian.com. https://www.theguardian.com/games/2022/sep/19/grand-theft-
auto-6-leak-who-hacked-rockstar-and-what-was-stolen. [Accessed 18-Jun-2023].

[9] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun. “Graph
neural networks: A review of methods and applications”. In: AI open 1 (2020), pp. 57–
81.

[10] X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and L. Akoglu. “A
comprehensive survey on graph anomaly detection with deep learning”. In: IEEE
Transactions on Knowledge and Data Engineering (2021).

[11] E. Müller, P. I. Sánchez, Y. Mülle, and K. Böhm. “Ranking outlier nodes in subspaces
of attributed graphs”. In: 2013 IEEE 29th international conference on data engineering
workshops (ICDEW). IEEE. 2013, pp. 216–222.

71

https://www.alfresco.com/sites/www.alfresco.com/files/dimesional-research-collab-survey-findings-report-082415.pdf
https://www.alfresco.com/sites/www.alfresco.com/files/dimesional-research-collab-survey-findings-report-082415.pdf
https://www.alfresco.com/sites/www.alfresco.com/files/dimesional-research-collab-survey-findings-report-082415.pdf
https://www.reportlinker.com/p06050492/Global-Team-Collaboration-Software-Industry.html?utm_source=GNW
https://www.reportlinker.com/p06050492/Global-Team-Collaboration-Software-Industry.html?utm_source=GNW
https://www.reportlinker.com/p06050492/Global-Team-Collaboration-Software-Industry.html?utm_source=GNW
https://www.darkreading.com/attacks-breaches/are-you-ready-for-a-breach-in-your-organization-s-slack-workspace-
https://www.darkreading.com/attacks-breaches/are-you-ready-for-a-breach-in-your-organization-s-slack-workspace-
https://mashable.com/article/uber-teen-hacker-slack-joke
https://mashable.com/article/uber-teen-hacker-slack-joke
https://www.vice.com/en/article/pkg7pn/hacker-breaches-activision-slack-steals-call-of-duty-info
https://www.vice.com/en/article/pkg7pn/hacker-breaches-activision-slack-steals-call-of-duty-info
https://www.vice.com/en/article/pkg7pn/hacker-breaches-activision-slack-steals-call-of-duty-info
https://www.vice.com/en/article/7kvkqb/how-ea-games-was-hacked-slack
https://www.vice.com/en/article/7kvkqb/how-ea-games-was-hacked-slack
https://www.theguardian.com/games/2022/sep/19/grand-theft-auto-6-leak-who-hacked-rockstar-and-what-was-stolen
https://www.theguardian.com/games/2022/sep/19/grand-theft-auto-6-leak-who-hacked-rockstar-and-what-was-stolen

Bibliography

[12] J. Li, H. Dani, X. Hu, and H. Liu. “Radar: Residual Analysis for Anomaly Detection in
Attributed Networks.” In: IJCAI. Vol. 17. 2017, pp. 2152–2158.

[13] A. Anders. “Team communication platforms and emergent social collaboration prac-
tices”. In: International Journal of Business Communication 53.2 (2016), pp. 224–261.

[14] B. Lin, A. Zagalsky, M.-A. Storey, and A. Serebrenik. “Why developers are slacking off:
Understanding how software teams use slack”. In: Proceedings of the 19th acm conference
on computer supported cooperative work and social computing companion. 2016, pp. 333–336.

[15] Y. Chen, Y. Gao, N. Ceccio, R. Chatterjee, K. Fawaz, and E. Fernandes. “Experimental
Security Analysis of the App Model in Business Collaboration Platforms”. In: 31st
USENIX Security Symposium (USENIX Security 22). 2022, pp. 2011–2028.

[16] J. Edu, C. Mulligan, F. Pierazzi, J. Polakis, G. Suarez-Tangil, and J. Such. “Exploring
the security and privacy risks of chatbots in messaging services”. In: Proceedings of the
22nd ACM Internet Measurement Conference. 2022, pp. 581–588.

[17] Uber. https://uber.com. [Accessed 11-Jul-2023].

[18] Activision Blizzard. https://www.activisionblizzard.com. [Accessed 11-Jul-2023].

[19] Slack. https://slack.com. [Accessed 04-Jul-2023].

[20] J. Davalos. Uber Slack Hacked. https://www.bloomberg.com/news/articles/2022-
09- 16/uber- says- it- s- investigating- extent- of- cybersecurity- incident.
[Accessed 04-Jul-2023].

[21] Electronic Arts Home Page. https://www.ea.com. [Accessed 11-Jul-2023].

[22] R. Games. Rockstar Games. https://www.rockstargames.com. [Accessed 11-Jul-2023].

[23] B. Perozzi and L. Akoglu. “Scalable anomaly ranking of attributed neighborhoods”.
In: Proceedings of the 2016 SIAM International Conference on Data Mining. SIAM. 2016,
pp. 207–215.

[24] B. Perozzi, L. Akoglu, P. Iglesias Sánchez, and E. Müller. “Focused clustering and
outlier detection in large attributed graphs”. In: Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. 2014, pp. 1346–1355.

[25] P. I. Sánchez, E. Müller, O. Irmler, and K. Böhm. “Local context selection for outlier
ranking in graphs with multiple numeric node attributes”. In: Proceedings of the 26th
international conference on scientific and statistical database management. 2014, pp. 1–12.

[26] P. I. Sánchez, E. Müller, F. Laforet, F. Keller, and K. Böhm. “Statistical selection of
congruent subspaces for mining attributed graphs”. In: 2013 IEEE 13th international
conference on data mining. IEEE. 2013, pp. 647–656.

[27] R. Kawase, F. Diana, M. Czeladka, M. Schüler, and M. Faust. “Internet fraud: the case
of account takeover in online marketplace”. In: Proceedings of the 30th ACM Conference
on Hypertext and Social Media. 2019, pp. 181–190.

72

https://uber.com
https://www.activisionblizzard.com
https://slack.com
https://www.bloomberg.com/news/articles/2022-09-16/uber-says-it-s-investigating-extent-of-cybersecurity-incident
https://www.bloomberg.com/news/articles/2022-09-16/uber-says-it-s-investigating-extent-of-cybersecurity-incident
https://www.ea.com
https://www.rockstargames.com

Bibliography

[28] G. Ho, A. Cidon, L. Gavish, M. Schweighauser, V. Paxson, S. Savage, G. M. Voelker, and
D. Wagner. “Detecting and characterizing lateral phishing at scale”. In: 28th USENIX
Security Symposium (USENIX Security 19). 2019, pp. 1273–1290.

[29] X. Shen, W. Lv, J. Qiu, A. Kaur, F. Xiao, and F. Xia. “Trust-Aware Detection of Malicious
Users in Dating Social Networks”. In: IEEE Transactions on Computational Social Systems
(2022).

[30] X. He, Q. Gong, Y. Chen, Y. Zhang, X. Wang, and X. Fu. “DatingSec: Detecting
malicious accounts in dating apps using a content-based attention network”. In: IEEE
Transactions on Dependable and Secure Computing 18.5 (2021), pp. 2193–2208.

[31] Immomo. http://immomo.com. [Accessed 03-Jul-2023].

[32] D. Seyler, L. Li, and C. Zhai. “Semantic text analysis for detection of compromised
accounts on social networks”. In: 2020 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM). IEEE. 2020, pp. 417–424.

[33] J. Yang and J. Leskovec. “Patterns of temporal variation in online media”. In: Proceedings
of the fourth ACM international conference on Web search and data mining. 2011, pp. 177–
186.

[34] L. Ilias and I. Roussaki. “Detecting malicious activity in Twitter using deep learning
techniques”. In: Applied Soft Computing 107 (2021), p. 107360.

[35] Twitter. https://www.twitter.com. [Accessed 11-Jul-2023].

[36] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip. “A comprehensive survey
on graph neural networks”. In: IEEE transactions on neural networks and learning systems
32.1 (2020), pp. 4–24.

[37] H. Kim, B. S. Lee, W.-Y. Shin, and S. Lim. “Graph Anomaly Detection with Graph
Neural Networks: Current Status and Challenges”. In: IEEE Access (2022).

[38] Z. Peng, M. Luo, J. Li, H. Liu, Q. Zheng, et al. “ANOMALOUS: A Joint Modeling
Approach for Anomaly Detection on Attributed Networks.” In: IJCAI. 2018, pp. 3513–
3519.

[39] K. Ding, J. Li, R. Bhanushali, and H. Liu. “Deep anomaly detection on attributed
networks”. In: Proceedings of the 2019 SIAM International Conference on Data Mining.
SIAM. 2019, pp. 594–602.

[40] M. W. Mahoney and P. Drineas. “CUR matrix decompositions for improved data
analysis”. In: Proceedings of the National Academy of Sciences 106.3 (2009), pp. 697–702.

[41] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger. “Simplifying graph
convolutional networks”. In: International conference on machine learning. PMLR. 2019,
pp. 6861–6871.

[42] J. An and S. Cho. “Variational autoencoder based anomaly detection using reconstruc-
tion probability”. In: Special lecture on IE 2.1 (2015), pp. 1–18.

73

http://immomo.com
https://www.twitter.com

Bibliography

[43] A. Chaudhary, H. Mittal, and A. Arora. “Anomaly detection using graph neural
networks”. In: 2019 international conference on machine learning, big data, cloud and parallel
computing (COMITCon). IEEE. 2019, pp. 346–350.

[44] Y. Dou, K. Shu, C. Xia, P. S. Yu, and L. Sun. “User preference-aware fake news
detection”. In: Proceedings of the 44th International ACM SIGIR Conference on Research
and Development in Information Retrieval. 2021, pp. 2051–2055.

[45] Z. Xu, X. Huang, Y. Zhao, Y. Dong, and J. Li. “Contrastive attributed network anomaly
detection with data augmentation”. In: Advances in Knowledge Discovery and Data
Mining: 26th Pacific-Asia Conference, PAKDD 2022, Chengdu, China, May 16–19, 2022,
Proceedings, Part II. Springer. 2022, pp. 444–457.

[46] Y. Zhang, Y. Fan, Y. Ye, L. Zhao, and C. Shi. “Key player identification in underground
forums over attributed heterogeneous information network embedding framework”.
In: Proceedings of the 28th ACM international conference on information and knowledge
management. 2019, pp. 549–558.

[47] Z. Peng, M. Luo, J. Li, L. Xue, and Q. Zheng. “A deep multi-view framework for
anomaly detection on attributed networks”. In: IEEE Transactions on Knowledge and
Data Engineering 34.6 (2020), pp. 2539–2552.

[48] Facebook. https://www.facebook.com. [Accessed 11-Jul-2023].

[49] D. Mesquita, A. Souza, and S. Kaski. “Rethinking pooling in graph neural networks”.
In: Advances in Neural Information Processing Systems 33 (2020), pp. 2220–2231.

[50] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. “Graph
attention networks”. In: arXiv preprint arXiv:1710.10903 (2017).

[51] V. Nair and G. E. Hinton. “Rectified linear units improve restricted boltzmann ma-
chines”. In: Proceedings of the 27th international conference on machine learning (ICML-10).
2010, pp. 807–814.

[52] P. Chatterjee, K. Damevski, N. A. Kraft, and L. Pollock. “Software-related slack chats
with disentangled conversations”. In: Proceedings of the 17th international conference on
mining software repositories. 2020, pp. 588–592.

[53] E. Parra, A. Ellis, and S. Haiduc. “Gittercom: A dataset of open source developer
communications in gitter”. In: Proceedings of the 17th International Conference on Mining
Software Repositories. 2020, pp. 563–567.

[54] GitHub - freeCodeCamp/open-data — github.com. https://github.com/freeCodeCamp/
open-data. [Accessed 19-Jun-2023].

[55] Gitter; Where developers come to talk. — gitter.im. https://gitter.im/. [Accessed
30-Jun-2023].

[56] Reddit. https://www.reddit.com. [Accessed 11-Jul-2023].

[57] J. Leskovec and J. Mcauley. “Learning to discover social circles in ego networks”. In:
Advances in neural information processing systems 25 (2012).

74

https://www.facebook.com
https://github.com/freeCodeCamp/open-data
https://github.com/freeCodeCamp/open-data
https://gitter.im/
https://www.reddit.com

Bibliography

[58] K. Shu, D. Mahudeswaran, S. Wang, D. Lee, and H. Liu. “Fakenewsnet: A data
repository with news content, social context, and spatiotemporal information for
studying fake news on social media”. In: Big data 8.3 (2020), pp. 171–188.

[59] W. Hamilton, Z. Ying, and J. Leskovec. “Inductive representation learning on large
graphs”. In: Advances in neural information processing systems 30 (2017).

[60] B. Klimt and Y. Yang. “Introducing the Enron corpus.” In: CEAS. Vol. 45. 2004, pp. 92–
96.

[61] Enron. https://www.enron.ca. [Accessed 11-Jul-2023].

[62] B. Klimt and Y. Yang. “The enron corpus: A new dataset for email classification
research”. In: European conference on machine learning. Springer. 2004, pp. 217–226.

[63] C. P. S. Technologies. Slack Security | Avanan — avanan.com. https://www.avanan.
com/slack-security. [Accessed 19-Jun-2023].

[64] Zerofox. https://www.zerofox.com/slack/. [Accessed 19-Jun-2023].

[65] Nightfall Cloud-Native DLP for Slack. https://www.nightfall.ai/integrations/slack.
[Accessed 19-Jun-2023].

[66] S. Alneyadi, E. Sithirasenan, and V. Muthukkumarasamy. “A survey on data leakage
prevention systems”. In: Journal of Network and Computer Applications 62 (2016), pp. 137–
152.

[67] Slack API. https://api.slack.com/admins/audit-logs-anomaly. [Accessed 19-Jun-
2023].

[68] TUM Entrepreneurial Masterclass. https://masterclass.tum.de/. [Accessed 14-Jun-
2023].

[69] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An Open Source Software for Exploring
and Manipulating Networks. 2009. url: http://www.aaai.org/ocs/index.php/ICWSM/
09/paper/view/154.

[70] T. M. Fruchterman and E. M. Reingold. “Graph drawing by force-directed placement”.
In: Software: Practice and experience 21.11 (1991), pp. 1129–1164.

[71] Zentrum für Innovation & Gründung — unternehmertum.de. https://www.unternehmertum.
de. [Accessed 14-Jul-2023].

[72] Slack. Pricing — slack.com. https://slack.com/intl/en-gb/pricing. [Accessed
01-Jul-2023].

[73] Export Slack Workspace. https://slack.com/help/articles/201658943- Export-
your-workspace-data. [Accessed 15-Jun-2023].

[74] Slack. team.accessLogs API method — api.slack.com. https://api.slack.com/methods/
team.accessLogs. [Accessed 01-Jul-2023].

[75] OpenAI API — platform.openai.com. https : / / platform . openai . com / docs / api -
reference/completions. [Accessed 15-Jun-2023].

75

https://www.enron.ca
https://www.avanan.com/slack-security
https://www.avanan.com/slack-security
https://www.zerofox.com/slack/
https://www.nightfall.ai/integrations/slack
https://api.slack.com/admins/audit-logs-anomaly
https://masterclass.tum.de/
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
https://www.unternehmertum.de
https://www.unternehmertum.de
https://slack.com/intl/en-gb/pricing
https://slack.com/help/articles/201658943-Export-your-workspace-data
https://slack.com/help/articles/201658943-Export-your-workspace-data
https://api.slack.com/methods/team.accessLogs
https://api.slack.com/methods/team.accessLogs
https://platform.openai.com/docs/api-reference/completions
https://platform.openai.com/docs/api-reference/completions

Bibliography

[76] W. McKinney et al. “Data structures for statistical computing in python”. In: Proceedings
of the 9th Python in Science Conference. Vol. 445. 1. Austin, TX. 2010, pp. 51–56.

[77] ChatGPT — openai.com. https://openai.com/chatgpt. [Accessed 15-Jun-2023].

[78] T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Efficient estimation of word represen-
tations in vector space”. In: arXiv preprint arXiv:1301.3781 (2013).

[79] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “Bert: Pre-training of deep bidirec-
tional transformers for language understanding”. In: arXiv preprint arXiv:1810.04805
(2018).

[80] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud, D. Yogatama, M. Bosma,
D. Zhou, D. Metzler, et al. “Emergent abilities of large language models”. In: arXiv
preprint arXiv:2206.07682 (2022).

[81] A. Neelakantan, T. Xu, R. Puri, A. Radford, J. M. Han, J. Tworek, Q. Yuan, N. Tezak,
J. W. Kim, C. Hallacy, et al. “Text and code embeddings by contrastive pre-training”.
In: arXiv preprint arXiv:2201.10005 (2022).

[82] H. Xiao. bert-as-service. https://github.com/hanxiao/bert-as-service. 2018.

[83] N. Muennighoff. “Sgpt: Gpt sentence embeddings for semantic search”. In: arXiv
preprint arXiv:2202.08904 (2022).

[84] openai Cookbook — github.com. https://github.com/openai/openai-cookbook/blob/
main/examples/Customizing_embeddings.ipynb. [Accessed 15-Jun-2023].

[85] G. Van Rossum and F. L. Drake. Python 3 Reference Manual. Scotts Valley, CA: CreateS-
pace, 2009. isbn: 1441412697.

[86] A. Hagberg, P. Swart, and D. S Chult. Exploring network structure, dynamics, and function
using NetworkX. Tech. rep. Los Alamos National Lab.(LANL), Los Alamos, NM (United
States), 2008.

[87] M. Y. Wang. “Deep graph library: Towards efficient and scalable deep learning on
graphs”. In: ICLR workshop on representation learning on graphs and manifolds. 2019.

[88] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. “Pytorch: An imperative style, high-performance deep
learning library”. In: Advances in neural information processing systems 32 (2019).

[89] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z.
Zhang. “Mxnet: A flexible and efficient machine learning library for heterogeneous
distributed systems”. In: arXiv preprint arXiv:1512.01274 (2015).

[90] M. Abadi. “TensorFlow: learning functions at scale”. In: Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming. 2016, pp. 1–1.

[91] M. Fey and J. E. Lenssen. “Fast graph representation learning with PyTorch Geometric”.
In: arXiv preprint arXiv:1903.02428 (2019).

[92] torchGeometric Data. https://pytorch- geometric.readthedocs.io/en/latest/
modules/data.html. [Accessed 01-Jul-2023].

76

https://openai.com/chatgpt
https://github.com/hanxiao/bert-as-service
https://github.com/openai/openai-cookbook/blob/main/examples/Customizing_embeddings.ipynb
https://github.com/openai/openai-cookbook/blob/main/examples/Customizing_embeddings.ipynb
https://pytorch-geometric.readthedocs.io/en/latest/modules/data.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/data.html

Bibliography

[93] B. Rozemberczki, P. Scherer, Y. He, G. Panagopoulos, A. Riedel, M. Astefanoaei, O. Kiss,
F. Beres, G. López, N. Collignon, et al. “Pytorch geometric temporal: Spatiotemporal
signal processing with neural machine learning models”. In: Proceedings of the 30th
ACM International Conference on Information & Knowledge Management. 2021, pp. 4564–
4573.

[94] N. Shah, A. Beutel, B. Hooi, L. Akoglu, S. Gunnemann, D. Makhija, M. Kumar, and
C. Faloutsos. “Edgecentric: Anomaly detection in edge-attributed networks”. In: 2016
IEEE 16Th international conference on data mining workshops (ICDMW). IEEE. 2016,
pp. 327–334.

[95] P. Hu and W. C. Lau. “A survey and taxonomy of graph sampling”. In: arXiv preprint
arXiv:1308.5865 (2013).

[96] M. Xu. “Understanding graph embedding methods and their applications”. In: SIAM
Review 63.4 (2021), pp. 825–853.

[97] K. Liu, Y. Dou, Y. Zhao, X. Ding, X. Hu, R. Zhang, K. Ding, C. Chen, H. Peng, K.
Shu, G. H. Chen, Z. Jia, and P. S. Yu. “PyGOD: A Python Library for Graph Outlier
Detection”. In: arXiv preprint arXiv:2204.12095 (2022).

[98] A. Tharwat. “Classification assessment methods”. In: Applied computing and informatics
17.1 (2020), pp. 168–192.

[99] Y. Liu, S. Pan, Y. G. Wang, F. Xiong, L. Wang, Q. Chen, and V. C. Lee. “Anomaly
detection in dynamic graphs via transformer”. In: IEEE Transactions on Knowledge and
Data Engineering (2021).

[100] H. Fan, F. Zhang, and Z. Li. “Anomalydae: Dual autoencoder for anomaly detection on
attributed networks”. In: ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE. 2020, pp. 5685–5689.

[101] Z. Chen, B. Liu, M. Wang, P. Dai, J. Lv, and L. Bo. “Generative adversarial attributed
network anomaly detection”. In: Proceedings of the 29th ACM International Conference on
Information & Knowledge Management. 2020, pp. 1989–1992.

[102] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath.
“Generative adversarial networks: An overview”. In: IEEE signal processing magazine
35.1 (2018), pp. 53–65.

77

	Abstract
	Contents
	Introduction
	Background
	Recent Attacks on Team Collaboration Platforms
	Attack Vectors

	Related Work
	Anomaly Detection on Social Networks
	Heuristic Based Anomaly Detection
	Non-Graph DL Based Anomaly Detection on Social Networks
	Graph Based DL Anomaly Detection on Social Networks

	System Designs
	Contrastive Anomaly Detection (CONAD)
	Design
	Knowledge Modeling Module
	Knowledge Integration Module
	Anomaly Detection Module

	Datasets
	Team Communication Datasets
	Non-Team Communication Datasets

	Commercial Solutions

	Dataset
	Choosing the Best Dataset
	Existing Datasets
	Masterclass Dataset
	Datasets in Numbers

	Data Collection
	Data Pre-Processing
	Synthesized Attacks
	Message Embeddings
	Data Representation
	Graph Dataset Libraries
	Knowledge Graphs
	Final Graph Design

	Final Node Features
	Dataset Creation Flow

	ECONAD
	Custom Augmentation Strategies
	Multi-View Graph
	Sampling Strategies
	Validation
	Prediction

	Experiments
	Setup
	Metrics
	P1 Message View
	Impact of Structure and Attribute
	Impact of Batch Size
	Comparing Augmentation Strategies

	P2 User Channel View
	Impact of Structure and Attribute
	Impact of Batch Size
	Comparing Augmentation Strategies

	ECONAD Evaluation
	Multi-View compared to Full Graph
	Comparison to Further Graph Anomaly Detection Algorithms

	Discussion
	Dataset
	Limitations
	Alternative Representations

	ECONAD
	Multi-View Splitting
	Augmentation Strategies
	Impact of Node Attributes and Graph Structure
	Impact of Batch Size
	Benchmark with Further Anomaly GNN Models
	Limitations
	Alternative Design Approaches

	Conclusion
	Appendix
	List of Figures
	List of Tables
	Bibliography

