Saltar ao contido

Complementario (conxuntos)

Na Galipedia, a Wikipedia en galego.

Modelo:Testcases other

A circle filled with red inside a square. The area outside the circle is unfilled. The borders of both the circle and the square are black.
Se A é a área coloreada en vermello nesta imaxe…
… daquela o complementario de A é todo o resto.

Na teoría de conxuntos, o complementario ou complemento dun conxunto A, denotado usualamente por (ou A),[1] é o conxunto de elementos que non están en A.[2]

Cando todos os elementos do universo, é dicir, todos os elementos en consideración, considéranse membros dun conxunto dado U, o complemento absoluto de A é o conxunto de elementos en U que non están en A.

O complemento relativo de A en relación a un conxunto B, tamén denominado diferenza de conxuntos de B e A, escrito é o conxunto de elementos en B que non están en A.

O complemento absoluto do disco branco é a zona vermella

Complemento absoluto

[editar | editar a fonte]

Se A é un conxunto, entón o complemento absoluto de A (ou simplemente o complemento de A) é o conxunto de elementos que non están en A (dentro dun conxunto maior que está implicitamente definido): [3]Adoita denotarse por . Outras notacións son [2] [4]

  • Supoña que o universo é o conxunto de números enteiros. Se A é o conxunto de números impares, entón o complemento de A é o conxunto de números pares. Se B é o conxunto de múltiplos de 3, entón o complemento de B é o conxunto de números congruentes con 1 ou 2 módulo 3 (ou, en termos máis sinxelos, os enteiros que non son múltiplos de 3).
  • Supoña que o universo é a baralla de tute de 40 cartas. Se o conxunto A é o pau dos ouros, entón o complemento de A é a unión dos paus de espadas, bastos e copas.
  • Cando o universo é o universo de conxuntos descrito na teoría de conxuntos, o complemento absoluto dun conxunto xeralmente non é un conxunto, senón unha clase propia. Para obter máis información, consulte conxunto universal.

Propiedades

[editar | editar a fonte]

Sexan A e B dous conxuntos nun universo U. As seguintes identidades mostran propiedades importantes dos complementos absolutos:

Leis de De Morgan: [5]

Leis do complementario: [5]

  • (isto despréndese da equivalencia dun condicional co seu contrapositivo).

Lei da involución ou do dobre complemento:

Relacións entre complementos relativos e absolutos:

Relación coa diferenza:

As dúas primeiras leis do complementario anteriores mostran que se A é un subconxunto propio non baleiro de U, entón {A, A} é unha partición de U.

Complemento relativo

[editar | editar a fonte]
O complemento relativo de A en B:

Definición

[editar | editar a fonte]

Se A e B son conxuntos, entón o complemento relativo de A en B (expresado ), [5] tamén denominado diferenza de conxuntos de B e A (por iso ás veces tamén se expresa como ), [6] é o conxunto de elementos que están en B pero non están en A.

Formalmente:

  • Se é o conxunto dos números reais e é o conxunto de números racionais, entón é o conxunto de números irracionais.

Propiedades

[editar | editar a fonte]

Sexan A, B e C tres conxuntos. As seguintes identidades mostran propiedades importantes dos complementos relativos:

  • co caso especial importante demostrando que a intersección pode expresarse usando só a operación do complemento relativo.
  • Se , entón .
  • é equivalente a .

Relación complementaria

[editar | editar a fonte]

Unha relación binaria defínese como un subconxunto dun produto de conxuntos A relación complementaria é o complemento do conxunto de en O complemento de relación pódese escribirXunto coa composición de relacións e as relacións inversas, as relacións complementarias e a álxebra de conxuntos son as operacións elementais do cálculo de relacións.

  1. "complement". web.mnstate.edu. 
  2. 2,0 2,1 "complement set". www.mathsisfun.com. 
  3. O conxunto no que se considera o complemento menciónase implícitamente nun complemento absoluto, e explicitamente nun complemento relativo.
  4. Bourbaki 1970, p. E II.6.
  5. 5,0 5,1 5,2 Halmos 1960, p. 17.
  6. Devlin 1979, p. 6.

Véxase tamén

[editar | editar a fonte]

Bibliografía

[editar | editar a fonte]

Outros artigos

[editar | editar a fonte]

Ligazóns externas

[editar | editar a fonte]