-
Notifications
You must be signed in to change notification settings - Fork 46
/
reeds_shepp.py
410 lines (309 loc) · 10.6 KB
/
reeds_shepp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
"""
Implementation of the optimal path formulas given in the following paper:
OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS
J. A. REEDS AND L. A. SHEPP
notes: there are some typos in the formulas given in the paper;
some formulas have been adapted (cf http://msl.cs.uiuc.edu/~lavalle/cs326a/rs.c)
Each of the 12 functions (each representing 4 of the 48 possible words)
have 3 arguments x, y and phi, the goal position and angle (in degrees) of the
object given it starts at position (0, 0) and angle 0, and returns the
corresponding path (if it exists) as a list of PathElements (or an empty list).
(actually there are less than 48 possible words but this code is not optimized)
"""
from utils import *
import math
from enum import Enum
from dataclasses import dataclass, replace
class Steering(Enum):
LEFT = -1
RIGHT = 1
STRAIGHT = 0
class Gear(Enum):
FORWARD = 1
BACKWARD = -1
@dataclass(eq=True)
class PathElement:
param: float
steering: Steering
gear: Gear
@classmethod
def create(cls, param: float, steering: Steering, gear: Gear):
if param >= 0:
return cls(param, steering, gear)
else:
return cls(-param, steering, gear).reverse_gear()
def __repr__(self):
s = "{ Steering: " + self.steering.name + "\tGear: " + self.gear.name \
+ "\tdistance: " + str(round(self.param, 2)) + " }"
return s
def reverse_steering(self):
steering = Steering(-self.steering.value)
return replace(self, steering=steering)
def reverse_gear(self):
gear = Gear(-self.gear.value)
return replace(self, gear=gear)
def path_length(path):
"""
this one's obvious
"""
return sum([e.param for e in path])
def get_optimal_path(start, end):
"""
Return the shortest path from start to end among those that exist
"""
paths = get_all_paths(start, end)
return min(paths, key=path_length)
def get_all_paths(start, end):
"""
Return a list of all the paths from start to end generated by the
12 functions and their variants
"""
path_fns = [path1, path2, path3, path4, path5, path6, \
path7, path8, path9, path10, path11, path12]
paths = []
# get coordinates of end in the set of axis where start is (0,0,0)
x, y, theta = change_of_basis(start, end)
for get_path in path_fns:
# get the four variants for each path type, cf article
paths.append(get_path(x, y, theta))
paths.append(timeflip(get_path(-x, y, -theta)))
paths.append(reflect(get_path(x, -y, -theta)))
paths.append(reflect(timeflip(get_path(-x, -y, theta))))
# remove path elements that have parameter 0
for i in range(len(paths)):
paths[i] = list(filter(lambda e: e.param != 0, paths[i]))
# remove empty paths
paths = list(filter(None, paths))
return paths
def timeflip(path):
"""
timeflip transform described around the end of the article
"""
new_path = [e.reverse_gear() for e in path]
return new_path
def reflect(path):
"""
reflect transform described around the end of the article
"""
new_path = [e.reverse_steering() for e in path]
return new_path
def path1(x, y, phi):
"""
Formula 8.1: CSC (same turns)
"""
phi = deg2rad(phi)
path = []
u, t = R(x - math.sin(phi), y - 1 + math.cos(phi))
v = M(phi - t)
path.append(PathElement.create(t, Steering.LEFT, Gear.FORWARD))
path.append(PathElement.create(u, Steering.STRAIGHT, Gear.FORWARD))
path.append(PathElement.create(v, Steering.LEFT, Gear.FORWARD))
return path
def path2(x, y, phi):
"""
Formula 8.2: CSC (opposite turns)
"""
phi = M(deg2rad(phi))
path = []
rho, t1 = R(x + math.sin(phi), y - 1 - math.cos(phi))
if rho * rho >= 4:
u = math.sqrt(rho * rho - 4)
t = M(t1 + math.atan2(2, u))
v = M(t - phi)
path.append(PathElement.create(t, Steering.LEFT, Gear.FORWARD))
path.append(PathElement.create(u, Steering.STRAIGHT, Gear.FORWARD))
path.append(PathElement.create(v, Steering.RIGHT, Gear.FORWARD))
return path
def path3(x, y, phi):
"""
Formula 8.3: C|C|C
"""
phi = deg2rad(phi)
path = []
xi = x - math.sin(phi)
eta = y - 1 + math.cos(phi)
rho, theta = R(xi, eta)
if rho <= 4:
A = math.acos(rho / 4)
t = M(theta + math.pi/2 + A)
u = M(math.pi - 2*A)
v = M(phi - t - u)
path.append(PathElement.create(t, Steering.LEFT, Gear.FORWARD))
path.append(PathElement.create(u, Steering.RIGHT, Gear.BACKWARD))
path.append(PathElement.create(v, Steering.LEFT, Gear.FORWARD))
return path
def path4(x, y, phi):
"""
Formula 8.4 (1): C|CC
"""
phi = deg2rad(phi)
path = []
xi = x - math.sin(phi)
eta = y - 1 + math.cos(phi)
rho, theta = R(xi, eta)
if rho <= 4:
A = math.acos(rho / 4)
t = M(theta + math.pi/2 + A)
u = M(math.pi - 2*A)
v = M(t + u - phi)
path.append(PathElement.create(t, Steering.LEFT, Gear.FORWARD))
path.append(PathElement.create(u, Steering.RIGHT, Gear.BACKWARD))
path.append(PathElement.create(v, Steering.LEFT, Gear.BACKWARD))
return path
def path5(x, y, phi):
"""
Formula 8.4 (2): CC|C
"""
phi = deg2rad(phi)
path = []
xi = x - math.sin(phi)
eta = y - 1 + math.cos(phi)
rho, theta = R(xi, eta)
if rho <= 4:
u = math.acos(1 - rho*rho/8)
A = math.asin(2 * math.sin(u) / rho)
t = M(theta + math.pi/2 - A)
v = M(t - u - phi)
path.append(PathElement.create(t, Steering.LEFT, Gear.FORWARD))
path.append(PathElement.create(u, Steering.RIGHT, Gear.FORWARD))
path.append(PathElement.create(v, Steering.LEFT, Gear.BACKWARD))
return path
def path6(x, y, phi):
"""
Formula 8.7: CCu|CuC
"""
phi = deg2rad(phi)
path = []
xi = x + math.sin(phi)
eta = y - 1 - math.cos(phi)
rho, theta = R(xi, eta)
if rho <= 4:
if rho <= 2:
A = math.acos((rho + 2) / 4)
t = M(theta + math.pi/2 + A)
u = M(A)
v = M(phi - t + 2*u)
else:
A = math.acos((rho - 2) / 4)
t = M(theta + math.pi/2 - A)
u = M(math.pi - A)
v = M(phi - t + 2*u)
path.append(PathElement.create(t, Steering.LEFT, Gear.FORWARD))
path.append(PathElement.create(u, Steering.RIGHT, Gear.FORWARD))
path.append(PathElement.create(u, Steering.LEFT, Gear.BACKWARD))
path.append(PathElement.create(v, Steering.RIGHT, Gear.BACKWARD))
return path
def path7(x, y, phi):
"""
Formula 8.8: C|CuCu|C
"""
phi = deg2rad(phi)
path = []
xi = x + math.sin(phi)
eta = y - 1 - math.cos(phi)
rho, theta = R(xi, eta)
u1 = (20 - rho*rho) / 16
if rho <= 6 and 0 <= u1 <= 1:
u = math.acos(u1)
A = math.asin(2 * math.sin(u) / rho)
t = M(theta + math.pi/2 + A)
v = M(t - phi)
path.append(PathElement.create(t, Steering.LEFT, Gear.FORWARD))
path.append(PathElement.create(u, Steering.RIGHT, Gear.BACKWARD))
path.append(PathElement.create(u, Steering.LEFT, Gear.BACKWARD))
path.append(PathElement.create(v, Steering.RIGHT, Gear.FORWARD))
return path
def path8(x, y, phi):
"""
Formula 8.9 (1): C|C[pi/2]SC
"""
phi = deg2rad(phi)
path = []
xi = x - math.sin(phi)
eta = y - 1 + math.cos(phi)
rho, theta = R(xi, eta)
if rho >= 2:
u = math.sqrt(rho*rho - 4) - 2
A = math.atan2(2, u+2)
t = M(theta + math.pi/2 + A)
v = M(t - phi + math.pi/2)
path.append(PathElement.create(t, Steering.LEFT, Gear.FORWARD))
path.append(PathElement.create(math.pi/2, Steering.RIGHT, Gear.BACKWARD))
path.append(PathElement.create(u, Steering.STRAIGHT, Gear.BACKWARD))
path.append(PathElement.create(v, Steering.LEFT, Gear.BACKWARD))
return path
def path9(x, y, phi):
"""
Formula 8.9 (2): CSC[pi/2]|C
"""
phi = deg2rad(phi)
path = []
xi = x - math.sin(phi)
eta = y - 1 + math.cos(phi)
rho, theta = R(xi, eta)
if rho >= 2:
u = math.sqrt(rho*rho - 4) - 2
A = math.atan2(u+2, 2)
t = M(theta + math.pi/2 - A)
v = M(t - phi - math.pi/2)
path.append(PathElement.create(t, Steering.LEFT, Gear.FORWARD))
path.append(PathElement.create(u, Steering.STRAIGHT, Gear.FORWARD))
path.append(PathElement.create(math.pi/2, Steering.RIGHT, Gear.FORWARD))
path.append(PathElement.create(v, Steering.LEFT, Gear.BACKWARD))
return path
def path10(x, y, phi):
"""
Formula 8.10 (1): C|C[pi/2]SC
"""
phi = deg2rad(phi)
path = []
xi = x + math.sin(phi)
eta = y - 1 - math.cos(phi)
rho, theta = R(xi, eta)
if rho >= 2:
t = M(theta + math.pi/2)
u = rho - 2
v = M(phi - t - math.pi/2)
path.append(PathElement.create(t, Steering.LEFT, Gear.FORWARD))
path.append(PathElement.create(math.pi/2, Steering.RIGHT, Gear.BACKWARD))
path.append(PathElement.create(u, Steering.STRAIGHT, Gear.BACKWARD))
path.append(PathElement.create(v, Steering.RIGHT, Gear.BACKWARD))
return path
def path11(x, y, phi):
"""
Formula 8.10 (2): CSC[pi/2]|C
"""
phi = deg2rad(phi)
path = []
xi = x + math.sin(phi)
eta = y - 1 - math.cos(phi)
rho, theta = R(xi, eta)
if rho >= 2:
t = M(theta)
u = rho - 2
v = M(phi - t - math.pi/2)
path.append(PathElement.create(t, Steering.LEFT, Gear.FORWARD))
path.append(PathElement.create(u, Steering.STRAIGHT, Gear.FORWARD))
path.append(PathElement.create(math.pi/2, Steering.LEFT, Gear.FORWARD))
path.append(PathElement.create(v, Steering.RIGHT, Gear.BACKWARD))
return path
def path12(x, y, phi):
"""
Formula 8.11: C|C[pi/2]SC[pi/2]|C
"""
phi = deg2rad(phi)
path = []
xi = x + math.sin(phi)
eta = y - 1 - math.cos(phi)
rho, theta = R(xi, eta)
if rho >= 4:
u = math.sqrt(rho*rho - 4) - 4
A = math.atan2(2, u+4)
t = M(theta + math.pi/2 + A)
v = M(t - phi)
path.append(PathElement.create(t, Steering.LEFT, Gear.FORWARD))
path.append(PathElement.create(math.pi/2, Steering.RIGHT, Gear.BACKWARD))
path.append(PathElement.create(u, Steering.STRAIGHT, Gear.BACKWARD))
path.append(PathElement.create(math.pi/2, Steering.LEFT, Gear.BACKWARD))
path.append(PathElement.create(v, Steering.RIGHT, Gear.FORWARD))
return path