-
Notifications
You must be signed in to change notification settings - Fork 310
/
Fuzzer.swift
1025 lines (866 loc) · 46.3 KB
/
Fuzzer.swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2019 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import Foundation
public class Fuzzer {
/// Id of this fuzzer.
public let id: UUID
/// Has this fuzzer been initialized?
public private(set) var isInitialized = false
/// Has this fuzzer been stopped?
public private(set) var isStopped = false
/// The configuration used by this fuzzer.
public let config: Configuration
/// The list of events that can be dispatched on this fuzzer instance.
public let events: Events
/// Timer API for this fuzzer.
public let timers: Timers
/// The script runner used to execute generated scripts.
public let runner: ScriptRunner
/// The fuzzer engine producing new programs from existing ones and executing them.
public let engine: FuzzEngine
/// The active code generators. It is possible to change these (temporarily) at runtime. This is e.g. done by some ProgramTemplates.
public private(set) var codeGenerators: WeightedList<CodeGenerator>
/// The active program templates. These are only used if the HybridEngine is enabled.
public let programTemplates: WeightedList<ProgramTemplate>
/// The mutators used by the engine.
public let mutators: WeightedList<Mutator>
/// The evaluator to score generated programs.
public let evaluator: ProgramEvaluator
/// The model of the target environment.
public let environment: Environment
/// The lifter to translate FuzzIL programs to the target language.
public let lifter: Lifter
/// The corpus of "interesting" programs found so far.
public let corpus: Corpus
/// The minimizer to shrink programs that cause crashes or trigger new interesting behaviour.
public let minimizer: Minimizer
/// The engine used for initial corpus generation (if performed).
public let corpusGenerationEngine = GenerativeEngine()
/// The possible states of a fuzzer.
public enum State {
// Initial state of the fuzzer. Will be changed to one of the below states during
// initialization.
case uninitialized
// When running as a child node for distributed fuzzing, indicates that we're waiting
// for our parent node to send as our initial corpus.
// Child nodes remain in this state (and do effectively nothing) until they have
// received a corpus (containing at least one program) from their parent node.
case waiting
// Importing and potentially minimizing an existing corpus.
case corpusImport
// Generating an initial corpus. Used when no existing corpus is imported and when
// this instance isn't configured to receive a corpus from its parent node.
case corpusGeneration
// Fuzzing with the configured engine.
case fuzzing
}
/// The current state of this fuzzer.
public private(set) var state: State = .uninitialized
private func changeState(to newState: State) {
logger.info("Changing state from \(state) to \(newState)")
// Some state transitions are forbidden, check for those here.
assert(newState != .uninitialized) // We never transition into .uninitialized
assert(newState != .waiting || state == .uninitialized) // We're only transitioning into .waiting during initialization
assert(state != .fuzzing) // Currently we never transition out of .fuzzing (although we could allow scheduling a corpus import while already fuzzing)
state = newState
}
/// Start time of this fuzzing session
private let startTime = Date()
/// Returns the uptime of this fuzzer as TimeInterval.
public func uptime() -> TimeInterval {
return -startTime.timeIntervalSinceNow
}
/// The modules active on this fuzzer.
var modules = [String: Module]()
/// The DispatchQueue this fuzzer operates on.
/// This could in theory be publicly exposed, but then the stopping logic wouldn't work correctly anymore and would probably need to be implemented differently.
private let queue: DispatchQueue
/// DispatchGroup to group all tasks related to a fuzzing iteration together and thus be able to determine when they have all finished.
/// The next fuzzing iteration will only be performed once all tasks in this group have finished. As such, this group can generally be used
/// for all (long running) tasks during which it doesn't make sense to perform fuzzing.
private let fuzzGroup = DispatchGroup()
/// The logger instance for the main fuzzer.
private var logger: Logger
public enum ExitCondition {
// Fuzz indefinitely.
case none
// Fuzz until a specified number of iterations have been performed.
case iterationsPerformed(Int)
// Fuzz for a specified amount of time.
case timeFuzzed(TimeInterval)
}
/// How long to fuzz?
private var exitCondition = ExitCondition.none
/// State management.
private var iterations = 0
private var iterationOfLastInteratingSample = 0
/// Currently active corpus import job, if any.
private var currentCorpusImportJob = CorpusImportJob(corpus: [], mode: .full)
private var iterationsSinceLastInterestingProgram: Int {
assert(iterations >= iterationOfLastInteratingSample)
return iterations - iterationOfLastInteratingSample
}
/// Fuzzer instances can be looked up from a dispatch queue through this key. See below.
private static let dispatchQueueKey = DispatchSpecificKey<Fuzzer>()
/// Constructs a new fuzzer instance with the provided components.
public init(
configuration: Configuration, scriptRunner: ScriptRunner, engine: FuzzEngine, mutators: WeightedList<Mutator>,
codeGenerators: WeightedList<CodeGenerator>, programTemplates: WeightedList<ProgramTemplate>, evaluator: ProgramEvaluator,
environment: Environment, lifter: Lifter, corpus: Corpus, minimizer: Minimizer, queue: DispatchQueue? = nil
) {
let uniqueId = UUID()
self.id = uniqueId
self.queue = queue ?? DispatchQueue(label: "Fuzzer \(uniqueId)", target: DispatchQueue.global())
self.config = configuration
self.events = Events()
self.timers = Timers(queue: self.queue)
self.engine = engine
self.mutators = mutators
self.codeGenerators = codeGenerators
self.programTemplates = programTemplates
self.evaluator = evaluator
self.environment = environment
self.lifter = lifter
self.corpus = corpus
self.runner = scriptRunner
self.minimizer = minimizer
self.logger = Logger(withLabel: "Fuzzer")
// Register this fuzzer instance with its queue so that it is possible to
// obtain a reference to the Fuzzer instance when running on its queue.
// This creates a reference cycle, but Fuzzer instances aren't expected
// to be deallocated, so this is ok.
self.queue.setSpecific(key: Fuzzer.dispatchQueueKey, value: self)
}
/// Returns the fuzzer for the active DispatchQueue.
public static var current: Fuzzer? {
return DispatchQueue.getSpecific(key: Fuzzer.dispatchQueueKey)
}
/// Schedule work on this fuzzer's dispatch queue.
public func async(do block: @escaping () -> ()) {
queue.async {
guard !self.isStopped else { return }
block()
}
}
/// Schedule work on this fuzzer's dispatch queue and wait for its completion.
public func sync(do block: () -> ()) {
queue.sync {
guard !self.isStopped else { return }
block()
}
}
/// Set the CodeGenerators (and their respecitve weight) to use when generating new code.
public func setCodeGenerators(_ generators: WeightedList<CodeGenerator>) {
guard generators.contains(where: { $0.isValueGenerator }) else {
fatalError("Code generators must contain at least one value generator")
}
self.codeGenerators = generators
}
/// Adds a module to this fuzzer. Can only be called before the fuzzer is initialized.
public func addModule(_ module: Module) {
assert(!isInitialized)
assert(modules[module.name] == nil)
modules[module.name] = module
// We only allow one instance of certain modules.
assert(modules.values.filter( { $0 is DistributedFuzzingChildNode }).count <= 1)
}
/// Initializes this fuzzer.
///
/// This will initialize all components and modules, causing event listeners to be registerd,
/// timers to be scheduled, communication channels to be established, etc. After initialization,
/// task may already be scheduled on this fuzzer's dispatch queue.
public func initialize() {
dispatchPrecondition(condition: .onQueue(queue))
assert(!isInitialized)
// Initialize the script runner first so we are able to execute programs.
runner.initialize(with: self)
// Then initialize all components.
engine.initialize(with: self)
evaluator.initialize(with: self)
environment.initialize(with: self)
corpus.initialize(with: self)
minimizer.initialize(with: self)
corpusGenerationEngine.initialize(with: self)
// Finally initialize all modules.
for module in modules.values {
module.initialize(with: self)
}
// Install a watchdog to monitor the utilization of this instance.
var lastCheck = Date()
timers.scheduleTask(every: 1 * Minutes) {
// Monitor responsiveness
let now = Date()
let interval = now.timeIntervalSince(lastCheck)
lastCheck = now
if interval > 180 {
self.logger.warning("Fuzzer appears unresponsive (watchdog only triggered after \(Int(interval))s instead of 60s).")
}
}
// Install a timer to monitor for faulty code generators and program templates.
timers.scheduleTask(every: 5 * Minutes) {
for generator in self.codeGenerators {
if generator.totalSamples >= 100 && generator.correctnessRate < 0.05 {
self.logger.warning("Code generator \(generator.name) might be broken. Correctness rate is only \(generator.correctnessRate * 100)% after \(generator.totalSamples) generated samples")
}
}
for template in self.programTemplates {
if template.totalSamples >= 100 && template.correctnessRate < 0.05 {
self.logger.warning("Program template \(template.name) might be broken. Correctness rate is only \(template.correctnessRate * 100)% after \(template.totalSamples) generated samples")
}
}
}
// Determine our initial state if necessary.
assert(state == .uninitialized || state == .corpusImport)
if state == .uninitialized {
let isChildNode = modules.values.contains(where: { $0 is DistributedFuzzingChildNode })
if isChildNode {
// We're a child node, so wait until we've received some kind of corpus from our parent node.
// We'll change our state when we're synchronized with our parent, see updateStateAfterSynchronizingWithParentNode() below.
changeState(to: .waiting)
} else {
// Start with corpus generation.
assert(corpus.isEmpty)
changeState(to: .corpusGeneration)
}
}
dispatchEvent(events.Initialized)
logger.info("Initialized")
isInitialized = true
}
/// Determine the new state of this fuzzer after synchronizing with its parent node during distributed fuzzing.
///
/// This method is expected to be called by child node modules during distributed fuzzing when they have connected
/// to their parent node and synchronized this fuzzer's state with that of the parent node. This method will then
/// determine the appropriate new state (typically .fuzzing) and dispatch the Synchronized event.
public func updateStateAfterSynchronizingWithParentNode() {
if state != .waiting {
// Nothing to do
return
}
if corpus.isEmpty && config.staticCorpus {
// This is a bit unfortunate: we are synchronized with our parent, which is presumably
// doing a corpus import, but haven't received any samples yet, so can't start fuzzing.
// Since we'll receive corpus samples as they are imported by our parent, we simply
// stay in the .waiting mode for some more time...
logger.info("Waiting some more time to receive corpus samples from parent instance...")
return timers.runAfter(15 * Seconds, updateStateAfterSynchronizingWithParentNode)
} else if corpus.isEmpty {
// Even after synchronizing with our parent node, we may still be left with an empty corpus.
// This can for example happen if the parent is configured to not share its corpus with its children,
// or because it itself still has an empty corpus. In that case, we simply do corpus generation.
changeState(to: .corpusGeneration)
} else {
changeState(to: .fuzzing)
}
// We only dispatch the Synchronized event once, when we do the .waiting -> someOtherState transition.
assert(state != .waiting)
dispatchEvent(events.Synchronized)
}
/// Starts the fuzzer and runs for the specified number of iterations.
///
/// This must be called after initializing the fuzzer.
/// Use -1 for maxIterations to run indefinitely.
public func start(runUntil exitCondition: ExitCondition = .none) {
dispatchPrecondition(condition: .onQueue(queue))
assert(isInitialized)
self.exitCondition = exitCondition
logger.info("Let's go!")
fuzzOne()
}
/// Shuts down this fuzzer.
public func shutdown(reason: ShutdownReason) {
dispatchPrecondition(condition: .onQueue(queue))
guard !isStopped else { return }
// No more scheduled tasks will execute after this point.
isStopped = true
timers.stop()
logger.info("Shutting down due to \(reason)")
dispatchEvent(events.Shutdown, data: reason)
dispatchEvent(events.ShutdownComplete, data: reason)
}
/// Registers a new listener for the given event.
public func registerEventListener<T>(for event: Event<T>, listener: @escaping Event<T>.EventListener) {
dispatchPrecondition(condition: .onQueue(queue))
event.addListener(listener)
}
/// Dispatches an event, potentially with some data attached to the event.
public func dispatchEvent<T>(_ event: Event<T>, data: T) {
dispatchPrecondition(condition: .onQueue(queue))
for listener in event.listeners {
listener(data)
}
}
private func dispatchEvent(_ event: Event<Void>) {
dispatchEvent(event, data: ())
}
/// Tuple containing the result of importing a program.
public typealias ImportResult = (wasImported: Bool, executionOutcome: ExecutionOutcome)
/// Imports a potentially interesting program into this fuzzer.
///
/// When importing, the program will be treated like one that was generated by this fuzzer. As such it will
/// be executed and evaluated to determine whether it results in previously unseen, interesting behaviour.
/// When dropout is enabled, a configurable percentage of programs will be ignored during importing. This
/// mechanism can help reduce the similarity of different fuzzer instances.
@discardableResult
public func importProgram(_ program: Program, origin: ProgramOrigin, enableDropout: Bool = false) -> ImportResult {
dispatchPrecondition(condition: .onQueue(queue))
if enableDropout && probability(config.dropoutRate) {
return ImportResult(wasImported: false, executionOutcome: .succeeded)
}
let execution = execute(program, purpose: .programImport)
var wasImported = false
switch execution.outcome {
case .crashed(let termsig):
// Here we explicitly deal with the possibility that an interesting sample
// from another instance triggers a crash in this instance.
processCrash(program, withSignal: termsig, withStderr: execution.stderr, withStdout: execution.stdout, origin: origin, withExectime: execution.execTime)
case .succeeded:
if let aspects = evaluator.evaluate(execution) {
wasImported = processMaybeInteresting(program, havingAspects: aspects, origin: origin)
}
if case .corpusImport(let mode) = origin, mode == .full, !wasImported {
// We're performing a full corpus import, so the sample still needs to be added to our corpus even though it doesn't trigger any new behaviour.
corpus.add(program, ProgramAspects(outcome: .succeeded))
// We also dispatch the InterestingProgramFound event here since we technically found an interesting program, but also so that the program is forwarded to child nodes.
dispatchEvent(events.InterestingProgramFound, data: (program, origin))
wasImported = true
}
default:
break
}
return ImportResult(wasImported: wasImported, executionOutcome: execution.outcome)
}
/// Imports a crashing program into this fuzzer.
///
/// Similar to importProgram, but will make sure to generate a CrashFound event even if the crash does not reproduce.
public func importCrash(_ program: Program, origin: ProgramOrigin) {
dispatchPrecondition(condition: .onQueue(queue))
let execution = execute(program, purpose: .programImport)
if case .crashed(let termsig) = execution.outcome {
processCrash(program, withSignal: termsig, withStderr: execution.stderr, withStdout: execution.stdout, origin: origin, withExectime: execution.execTime)
} else {
// Non-deterministic crash
dispatchEvent(events.CrashFound, data: (program, behaviour: .flaky, isUnique: true, origin: origin))
}
}
/// Helper function for removing calls to certain functions from a Program.
///
/// This is useful for example for importing programs that contain function calls to functions that are
/// not available in the fuzzing enviroment.
/// Internally, this function simply replace all uses of the specified functions with calls to a dummy function.
/// We then rely on minimization to remove the actual call instructions (or any other uses).
///
/// The function names may contain the wildcard character `*`, but _only_ as last character, in which case
/// a prefix match will be performed instead of a string comparison.
///
/// TODO We could consider moving this function into a "ProgramTransformations" or similar static class if we
/// have other program transformations that could go there as well.
private func removeCallsTo(_ filteredFunctions: [String], from program: Program) -> Program {
func shouldRemoveUsesOf(_ name: String) -> Bool {
for filteredFunction in filteredFunctions {
if filteredFunction.last == "*" {
if name.starts(with: filteredFunction.dropLast()) {
return true
}
} else {
assert(!filteredFunction.contains("*"))
if name == filteredFunction {
return true
}
}
}
return false
}
let b = makeBuilder()
let dummy = b.buildPlainFunction(with: .parameters(n: 0)) { _ in }
var variablesToReplaceWithDummy = VariableSet()
b.adopting(from: program) {
for instr in program.code {
var removeInstruction = false
switch instr.op.opcode {
case .loadNamedVariable(let op):
if shouldRemoveUsesOf(op.variableName) {
removeInstruction = true
variablesToReplaceWithDummy.insert(instr.output)
}
case .loadBuiltin(let op):
// We expect builtins to always be available and don't want to filter them out.
assert(!shouldRemoveUsesOf(op.builtinName))
default:
break
}
if !removeInstruction {
let inouts = instr.inouts.map({ variablesToReplaceWithDummy.contains($0) ? dummy : b.adopt($0) })
let newInstr = Instruction(instr.op, inouts: inouts, flags: instr.flags)
b.append(newInstr)
}
}
}
let foundAnyFunctionsToRemove = !variablesToReplaceWithDummy.isEmpty
if foundAnyFunctionsToRemove {
return b.finalize()
} else {
// Just return the original program to avoid adding a dummy function when it isn't needed
return program
}
}
/// Imports and potentially modifies a program into this fuzzer
///
/// For the most part, this is similar to `importProgram`. However, if the imported program fails to execute
/// (e.g. because it throws a runtime exception), then this function will try to "fix" the program so that it
/// executes successfully and can be imported.
private static let maxProgramImportFixupAttempts = 3
public func importProgramWithFixup(_ originalProgram: Program, origin: ProgramOrigin) -> (result: ImportResult, fixupAttempts: Int) {
var program = originalProgram
var result = importProgram(program, origin: origin)
// Only attempt fixup if the program failed to execute successfully. In particular, ignore timeouts and
// crashes here, but also take into account that not all successfully executing programs will be imported.
if !result.executionOutcome.isFailure() {
return (result, 0)
}
assert(!result.wasImported)
let b = makeBuilder()
// First attempt at fixing the program: remove known test functions from the program which are
// available in the unit test environment but not in the default environment.
let filteredFunctions = [
// Functions used in V8's test suite
"assert*",
"print*",
// Functions used in Mozilla's test suite
"startTest",
"enterFunc",
"exitFunc",
"report*",
"options*",
]
program = removeCallsTo(filteredFunctions, from: program)
result = importProgram(program, origin: origin)
if !result.executionOutcome.isFailure() {
return (result, 1)
}
assert(!result.wasImported)
// Second attempt at fixing the program: enable guards (try-catch) for all guardable operations, then
// remove all guards that aren't needed (because no exception is thrown).
for instr in program.code {
var newOp = instr.op
if let op = instr.op as? GuardableOperation {
newOp = GuardableOperation.enableGuard(of: op)
}
b.append(Instruction(newOp, inouts: instr.inouts, flags: instr.flags))
}
program = b.finalize()
if let result = currentCorpusImportJob.fixupMutator.mutate(program, for: self) {
program = result
}
result = importProgram(program, origin: origin)
if !result.executionOutcome.isFailure() {
return (result, 2)
}
assert(!result.wasImported)
// Third and final attempt at fixing up the program: simply wrap the entire program in a try-catch block.
b.buildTryCatchFinally(tryBody: {
b.adopting(from: program) {
for instr in program.code {
b.adopt(instr)
}
}
}, catchBody: { _ in })
program = b.finalize()
result = importProgram(program, origin: origin)
assert(Fuzzer.maxProgramImportFixupAttempts == 3)
return (result, 3)
}
/// Schedules the given corpus of programs to be imported into this fuzzer.
///
/// Corpus import happens asynchronously as it may take a considerable amount of time (each program
/// needs to be executed and possibly minimized). During corpus import, the current progress can be
/// obtained from corpusImportProgress().
public func scheduleCorpusImport(_ corpus: [Program], importMode: CorpusImportMode, enableDropout: Bool = false) {
dispatchPrecondition(condition: .onQueue(queue))
// Currently we only allow corpus import when the fuzzer is still uninitialized.
// If necessary, this can be changed, but we'd need to be able to correctly handle the .waiting -> .corpusImport state transition.
assert(state == .uninitialized)
guard state != .corpusImport && currentCorpusImportJob.isFinished else {
// TODO support this
return logger.error("Cannot currently schedule multiple corpus imports")
}
guard !corpus.isEmpty else {
// Nothing to do.
return
}
// In the default corpus import mode (where we only keep interesting samples), the order
// of imported programs matters as earlier samples may cause later samples to not be
// added to the corpus (because they no longer add any new coverage). To not create an
// artifical bias due to the order/filenames, we shuffle the corpus here.
let shuffledCorpus = corpus.shuffled()
currentCorpusImportJob = CorpusImportJob(corpus: shuffledCorpus, mode: importMode)
changeState(to: .corpusImport)
}
/// Computes and returns the corpus import progress as percentage.
public func corpusImportProgress() -> Double {
assert(state == .corpusImport)
return currentCorpusImportJob.progress()
}
/// Executes a program.
///
/// This will first lift the given FuzzIL program to the target language, then use the configured script runner to execute it.
///
/// - Parameters:
/// - program: The FuzzIL program to execute.
/// - timeout: The timeout after which to abort execution. If nil, the default timeout of this fuzzer will be used.
/// - purpose: The purpose of this program execution.
/// - Returns: An Execution structure representing the execution outcome.
public func execute(_ program: Program, withTimeout timeout: UInt32? = nil, purpose: ExecutionPurpose) -> Execution {
dispatchPrecondition(condition: .onQueue(queue))
assert(runner.isInitialized)
let script = lifter.lift(program)
dispatchEvent(events.PreExecute, data: (program, purpose))
let execution = runner.run(script, withTimeout: timeout ?? config.timeout)
dispatchEvent(events.PostExecute, data: execution)
return execution
}
/// Process a program that appears to have interesting aspects.
/// This function will first determine which (if any) of the interesting aspects are triggered reliably, then schedule the program for minimization and inclusion in the corpus.
/// Returns true if this program was interesting (i.e. had at least some interesting aspects that are triggered reliably), false if not.
@discardableResult
func processMaybeInteresting(_ program: Program, havingAspects aspects: ProgramAspects, origin: ProgramOrigin) -> Bool {
var aspects = aspects
// Determine which (if any) aspects of the program are triggered deterministially.
// For that, the sample is executed at a few more times and the intersection of the interesting aspects of each execution is computed.
// Once that intersection is stable, the remaining aspects are considered to be triggered deterministic.
let minAttempts = 5
let maxAttempts = 50
var didConverge = false
var attempt = 0
repeat {
attempt += 1
if attempt > maxAttempts {
logger.warning("Sample did not converage after \(maxAttempts) attempts. Discarding it")
return false
}
guard let intersection = evaluator.computeAspectIntersection(of: program, with: aspects) else {
// This likely means that no aspects are triggered deterministically, so discard this sample.
return false
}
// Since evaluateAndIntersect will only ever return aspects that are equivalent to, or a subset of,
// the provided aspects, we can check if they are identical by comparing their sizes
didConverge = aspects.count == intersection.count
aspects = intersection
} while !didConverge || attempt < minAttempts
if origin == .local {
iterationOfLastInteratingSample = iterations
}
// Determine whether the program needs to be minimized, then, using this helper function, dispatch the appropriate
// event and insert the sample into the corpus.
func finishProcessing(_ program: Program) {
if config.enableInspection {
if origin == .local {
program.comments.add("Program is interesting due to \(aspects)", at: .footer)
} else {
program.comments.add("Imported program is interesting due to \(aspects)", at: .footer)
}
}
assert(!program.code.contains(where: { $0.op is JsInternalOperation }))
dispatchEvent(events.InterestingProgramFound, data: (program, origin))
// If we're running in static corpus mode, we only add programs to our corpus during corpus import.
if !config.staticCorpus || origin.isFromCorpusImport() {
corpus.add(program, aspects)
}
}
if !origin.requiresMinimization() {
finishProcessing(program)
} else {
// Minimization should be performed as part of the fuzzing dispatch group. This way, the next fuzzing iteration
// will only start once the curent sample has been fully processed and inserted into the corpus.
fuzzGroup.enter()
minimizer.withMinimizedCopy(program, withAspects: aspects, limit: config.minimizationLimit) { minimizedProgram in
self.fuzzGroup.leave()
finishProcessing(minimizedProgram)
}
}
return true
}
/// Process a program that causes a crash.
func processCrash(_ program: Program, withSignal termsig: Int, withStderr stderr: String, withStdout stdout: String, origin: ProgramOrigin, withExectime exectime: TimeInterval) {
func processCommon(_ program: Program) {
let hasCrashInfo = program.comments.at(.footer)?.contains("CRASH INFO") ?? false
if !hasCrashInfo {
program.comments.add("CRASH INFO", at: .footer)
program.comments.add("==========", at: .footer)
if let tag = config.tag {
program.comments.add("INSTANCE TAG: \(tag)", at: .footer)
}
program.comments.add("TERMSIG: \(termsig)", at: .footer)
program.comments.add("STDERR:", at: .footer)
program.comments.add(stderr.trimmingCharacters(in: .newlines), at: .footer)
program.comments.add("STDOUT:", at: .footer)
program.comments.add(stdout.trimmingCharacters(in: .newlines), at: .footer)
program.comments.add("FUZZER ARGS: \(config.arguments.joined(separator: " "))", at: .footer)
program.comments.add("TARGET ARGS: \(runner.processArguments.joined(separator: " "))", at: .footer)
program.comments.add("CONTRIBUTORS: \(program.contributors.map({ $0.name }).joined(separator: ", "))", at: .footer)
program.comments.add("EXECUTION TIME: \(Int(exectime * 1000))ms", at: .footer)
}
assert(program.comments.at(.footer)?.contains("CRASH INFO") ?? false)
// Check for uniqueness only after minimization
let execution = execute(program, withTimeout: self.config.timeout * 2, purpose: .checkForDeterministicBehavior)
if case .crashed = execution.outcome {
let isUnique = evaluator.evaluateCrash(execution) != nil
dispatchEvent(events.CrashFound, data: (program, .deterministic, isUnique, origin))
} else {
dispatchEvent(events.CrashFound, data: (program, .flaky, true, origin))
}
}
if !origin.requiresMinimization() {
return processCommon(program)
}
fuzzGroup.enter()
minimizer.withMinimizedCopy(program, withAspects: ProgramAspects(outcome: .crashed(termsig))) { minimizedProgram in
self.fuzzGroup.leave()
processCommon(minimizedProgram)
}
}
/// Constructs a new ProgramBuilder using this fuzzing context.
public func makeBuilder(forMutating parent: Program? = nil) -> ProgramBuilder {
dispatchPrecondition(condition: .onQueue(queue))
// Program ancestor chains are only constructed if inspection mode is enabled
let parent = config.enableInspection ? parent : nil
return ProgramBuilder(for: self, parent: parent)
}
/// Performs one round of fuzzing.
private func fuzzOne() {
dispatchPrecondition(condition: .onQueue(queue))
assert(currentCorpusImportJob.isFinished || state == .corpusImport)
guard !self.isStopped else { return }
// Check if we are done fuzzing.
switch exitCondition {
case .none:
break
case .iterationsPerformed(let maxIterations):
if iterations > maxIterations {
return shutdown(reason: .finished)
}
case .timeFuzzed(let maxRuntime):
if uptime() > maxRuntime {
return shutdown(reason: .finished)
}
}
switch state {
case .uninitialized:
fatalError("This state should never be observed here")
case .waiting:
// Nothing to do, we're waiting for our parent node to send us a corpus.
// To avoid idle spinning, just sleep for a short while
Thread.sleep(forTimeInterval: 5 * Seconds)
if uptime() > 15 * Minutes {
logger.fatal("Did not receive a corpus from our parent node within 15 minutes")
}
case .corpusImport:
assert(!currentCorpusImportJob.isFinished)
let program = currentCorpusImportJob.nextProgram()
if currentCorpusImportJob.numberOfProgramsProcessedSoFar % 500 == 0 {
logger.info("Corpus import progress: processed \(currentCorpusImportJob.numberOfProgramsProcessedSoFar) of \(currentCorpusImportJob.totalNumberOfProgramsToImport) programs")
}
let (result, fixupAttempts) = importProgramWithFixup(program, origin: .corpusImport(mode: currentCorpusImportJob.importMode))
currentCorpusImportJob.notifyImportOutcome(result, fixupAttempts: fixupAttempts)
if currentCorpusImportJob.isFinished {
logger.info("Corpus import finished:")
logger.info("\(currentCorpusImportJob.numberOfProgramsThatExecutedSuccessfullyDuringImport)/\(currentCorpusImportJob.totalNumberOfProgramsToImport) programs executed successfully")
logger.info(" Of which \(currentCorpusImportJob.numberOfProgramsThatWereImport) programs were added to the corpus")
logger.info("\(currentCorpusImportJob.numberOfProgramsThatNeededFixup)/\(currentCorpusImportJob.totalNumberOfProgramsToImport) programs needed fixup during import")
logger.info(" \(currentCorpusImportJob.numberOfProgramsThatNeededOneFixupAttempt) succeeded after attempt 1")
logger.info(" \(currentCorpusImportJob.numberOfProgramsThatNeededTwoFixupAttempts) succeeded after attempt 2")
logger.info(" \(currentCorpusImportJob.numberOfProgramsThatNeededThreeFixupAttempts) succeeded after attempt 3")
logger.info("\(currentCorpusImportJob.numberOfProgramsThatFailedDuringImport)/\(currentCorpusImportJob.totalNumberOfProgramsToImport) programs failed to execute (even after fixup) and weren't imported")
logger.info("\(currentCorpusImportJob.numberOfProgramsThatTimedOutDuringImport)/\(currentCorpusImportJob.totalNumberOfProgramsToImport) programs timed out and weren't imported")
let successRatio = Double(currentCorpusImportJob.numberOfProgramsThatExecutedSuccessfullyDuringImport) / Double(currentCorpusImportJob.totalNumberOfProgramsToImport)
let failureRatio = 1.0 - successRatio
if failureRatio >= 0.25 {
logger.warning("\(String(format: "%.2f", failureRatio * 100))% of imported programs failed to execute successfully and therefore couldn't be imported.")
}
dispatchEvent(events.CorpusImportComplete)
changeState(to: .fuzzing)
}
case .corpusGeneration:
// We should never perform corpus generation if we're using a static corpus.
assert(!config.staticCorpus)
iterations += 1
corpusGenerationEngine.fuzzOne(fuzzGroup)
// Perform initial corpus generation until we haven't found a new interesting sample in the last N
// iterations. The rough order of magnitude of N has been determined experimentally: run two instances with
// different values (e.g. 10 and 100) for roughly the same number of iterations (approximately until both
// have finished the initial corpus generation), then compare the corpus size and coverage.
if iterationsSinceLastInterestingProgram > 100 {
guard !corpus.isEmpty else {
logger.fatal("Initial corpus generation failed, corpus is still empty. Is the evaluator working correctly?")
}
logger.info("Initial corpus generation finished. Corpus now contains \(corpus.size) elements")
changeState(to: .fuzzing)
}
case .fuzzing:
iterations += 1
engine.fuzzOne(fuzzGroup)
}
// Perform the next iteration as soon as all tasks related to the current iteration are finished.
fuzzGroup.notify(queue: queue) {
self.fuzzOne()
}
}
/// Constructs a non-trivial program. Useful to measure program execution speed.
private func makeComplexProgram() -> Program {
let b = makeBuilder()
let f = b.buildPlainFunction(with: .parameters(n: 2)) { params in
let x = b.getProperty("x", of: params[0])
let y = b.getProperty("y", of: params[0])
let s = b.binary(x, y, with: .Add)
let p = b.binary(s, params[1], with: .Mul)
b.doReturn(p)
}
b.buildRepeatLoop(n: 1000) { i in
let x = b.loadInt(42)
let y = b.loadInt(43)
let arg1 = b.createObject(with: ["x": x, "y": y])
let arg2 = i
b.callFunction(f, withArgs: [arg1, arg2])
}
return b.finalize()
}
/// Runs a number of startup tests to check whether everything is configured correctly.
public func runStartupTests() {
assert(isInitialized)
// Check if we can execute programs
var execution = execute(Program(), purpose: .startup)
guard case .succeeded = execution.outcome else {
logger.fatal("Cannot execute programs (exit code must be zero when no exception was thrown, but execution outcome was \(execution.outcome)). Are the command line flags valid?")
}
// Check if we can detect failed executions (i.e. an exception was thrown)
var b = makeBuilder()
let exception = b.loadInt(42)
b.throwException(exception)
execution = execute(b.finalize(), purpose: .startup)
guard case .failed = execution.outcome else {
logger.fatal("Cannot detect failed executions (exit code must be nonzero when an uncaught exception was thrown, but execution outcome was \(execution.outcome))")
}
var maxExecutionTime: TimeInterval = 0
// Dispatch a non-trivial program and measure its execution time
let complexProgram = makeComplexProgram()
for _ in 0..<5 {
let execution = execute(complexProgram, purpose: .startup)
maxExecutionTime = max(maxExecutionTime, execution.execTime)
}
// Check if the profile's startup tests pass.
var hasAnyCrashTests = false
for (test, expectedResult) in config.startupTests {
b = makeBuilder()
b.eval(test)
execution = execute(b.finalize(), purpose: .startup)
switch expectedResult {
case .shouldSucceed where execution.outcome != .succeeded:
logger.fatal("Testcase \"\(test)\" did not execute successfully")
case .shouldCrash where !execution.outcome.isCrash():
logger.fatal("Testcase \"\(test)\" did not crash")
case .shouldNotCrash where execution.outcome.isCrash():
logger.fatal("Testcase \"\(test)\" unexpectedly crashed")
default:
// Test passed
break
}
if expectedResult == .shouldCrash {
// In this case, also measure the execution time here to make sure that
// we don't set our timeout too low to detect crashes.
maxExecutionTime = max(maxExecutionTime, execution.execTime)
hasAnyCrashTests = true
}
}
if !hasAnyCrashTests {
logger.warning("Cannot check if crashes are detected as there are no startup tests that should cause a crash")
}
// Determine recommended timeout value (rounded up to nearest multiple of 10ms)
let maxExecutionTimeMs = (Int(maxExecutionTime * 1000 + 9) / 10) * 10
let recommendedTimeout = 10 * maxExecutionTimeMs
logger.info("Recommended timeout: at least \(recommendedTimeout)ms. Current timeout: \(config.timeout)ms")
// Check if we can receive program output
b = makeBuilder()
let str = b.loadString("Hello World!")
b.doPrint(str)
let output = execute(b.finalize(), purpose: .startup).fuzzout.trimmingCharacters(in: .whitespacesAndNewlines)
if output != "Hello World!" {
logger.warning("Cannot receive FuzzIL output (got \"\(output)\" instead of \"Hello World!\")")
}
logger.info("Startup tests finished successfully")
}
/// A pending corpus import job together with some statistics.
private struct CorpusImportJob {
private var corpusToImport: [Program]
let importMode: CorpusImportMode
let totalNumberOfProgramsToImport: Int
// We use a fixup mutator for fixing imported programs that throw an exception.
let fixupMutator = FixupMutator(name: "CorpusImportFixupMutator")
private(set) var numberOfProgramsProcessedSoFar = 0
private(set) var numberOfProgramsThatExecutedSuccessfullyDuringImport = 0
private(set) var numberOfProgramsThatWereImport = 0
private(set) var numberOfProgramsThatFailedDuringImport = 0
private(set) var numberOfProgramsThatTimedOutDuringImport = 0
private(set) var numberOfProgramsThatNeededOneFixupAttempt = 0
private(set) var numberOfProgramsThatNeededTwoFixupAttempts = 0
private(set) var numberOfProgramsThatNeededThreeFixupAttempts = 0
var numberOfProgramsThatNeededFixup: Int {
assert(Fuzzer.maxProgramImportFixupAttempts == 3)
return numberOfProgramsThatNeededOneFixupAttempt + numberOfProgramsThatNeededTwoFixupAttempts + numberOfProgramsThatNeededThreeFixupAttempts
}
init(corpus: [Program], mode: CorpusImportMode) {
self.corpusToImport = corpus.reversed() // Programs are taken from the end.
self.importMode = mode
self.totalNumberOfProgramsToImport = corpus.count
}
var isFinished: Bool {
return corpusToImport.isEmpty
}
mutating func nextProgram() -> Program {
assert(!isFinished)
numberOfProgramsProcessedSoFar += 1
return corpusToImport.removeLast()
}
mutating func notifyImportOutcome(_ result: ImportResult, fixupAttempts: Int) {
switch result.executionOutcome {
case .crashed:
assert(!result.wasImported)
// This is unexpected so we don't track these
break
case .failed:
assert(!result.wasImported)
numberOfProgramsThatFailedDuringImport += 1