-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline_nn.py
347 lines (304 loc) · 15.6 KB
/
baseline_nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
try:
import waitGPU
waitGPU.wait(utilization=50, memory_ratio=0.5, available_memory=5000, interval=9, nproc=1, ngpu=1)
except ImportError:
pass
import torch
import torch.nn as nn
import torch.optim as optim
torch.set_default_dtype(torch.float64)
import operator
from functools import reduce
from torch.utils.data import TensorDataset, DataLoader
import numpy as np
import pickle
import time
from setproctitle import setproctitle
import os
import argparse
from utils import my_hash, str_to_bool
import default_args
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
def main():
parser = argparse.ArgumentParser(description='baseline_nn')
parser.add_argument('--probType', type=str, default='T2F',
choices=['simple', 'nonconvex', 'acopf57','T2F'], help='problem type')
parser.add_argument('--mode', type=str, default='local_3state',
choices=['local', 'global', 'local_2state','local_3state','global_2state'], help='problem type')
parser.add_argument('--simpleVar', type=int,
help='number of decision vars for simple problem')
parser.add_argument('--simpleIneq', type=int,
help='number of inequality constraints for simple problem')
parser.add_argument('--simpleEq', type=int,
help='number of equality constraints for simple problem')
parser.add_argument('--simpleEx', type=int,
help='total number of datapoints for simple problem')
parser.add_argument('--nonconvexVar', type=int,
help='number of decision vars for nonconvex problem')
parser.add_argument('--nonconvexIneq', type=int,
help='number of inequality constraints for nonconvex problem')
parser.add_argument('--nonconvexEq', type=int,
help='number of equality constraints for nonconvex problem')
parser.add_argument('--nonconvexEx', type=int,
help='total number of datapoints for nonconvex problem')
parser.add_argument('--epochs', type=int,
help='number of neural network epochs')
parser.add_argument('--batchSize', type=int,
help='training batch size')
parser.add_argument('--lr', type=float,
help='neural network learning rate')
parser.add_argument('--hiddenSize', type=int,
help='hidden layer size for neural network')
parser.add_argument('--softWeight', type=float,
help='total weight given to constraint violations in loss')
parser.add_argument('--softWeightEqFrac', type=float,
help='fraction of weight given to equality constraints (vs. inequality constraints) in loss')
parser.add_argument('--useTestCorr', type=str_to_bool,
help='whether to use correction during testing')
parser.add_argument('--corrTestMaxSteps', type=int,
help='max number of correction steps during testing')
parser.add_argument('--corrEps', type=float,
help='correction procedure tolerance')
parser.add_argument('--corrLr', type=float,
help='learning rate for correction procedure')
parser.add_argument('--corrMomentum', type=float,
help='momentum for correction procedure')
parser.add_argument('--saveAllStats', type=str_to_bool,
help='whether to save all stats, or just those from latest epoch')
parser.add_argument('--resultsSaveFreq', type=int,
help='how frequently (in terms of number of epochs) to save stats to file')
args = parser.parse_args()
args = vars(args) # change to dictionary
defaults = default_args.baseline_nn_default_args(args['probType'])
for key in defaults.keys():
if args[key] is None:
args[key] = defaults[key]
print(args)
setproctitle('baselineNN-{}'.format(args['probType']))
# Load data, and put on GPU if needed
prob_type = args['probType']
if prob_type == 'T2F':
filepath = os.path.join('datasets', 'T2F', "recon2.2_{}_dataset_var(R){}_ineq(2R){}_eq(M){}_ex(Samples){}".format(
args['mode'], args['simpleVar'], args['simpleIneq'], args['simpleEq'], args['simpleEx']))
elif prob_type == 'simple':
torch.set_default_dtype(torch.float64)
filepath = os.path.join('datasets', 'simple', "random_simple_dataset_var{}_ineq{}_eq{}_ex{}".format(
args['simpleVar'], args['simpleIneq'], args['simpleEq'], args['simpleEx']))
elif prob_type == 'nonconvex':
filepath = os.path.join('datasets', 'nonconvex', "random_nonconvex_dataset_var{}_ineq{}_eq{}_ex{}".format(
args['nonconvexVar'], args['nonconvexIneq'], args['nonconvexEq'], args['nonconvexEx']))
elif prob_type == 'acopf57':
filepath = os.path.join('datasets', 'acopf', 'acopf57_dataset')
else:
raise NotImplementedError
with open(filepath, 'rb') as f:
data = pickle.load(f)
for attr in dir(data):
var = getattr(data, attr)
if not callable(var) and not attr.startswith("__") and torch.is_tensor(var):
try:
setattr(data, attr, var.to(DEVICE))
except AttributeError:
pass
data._device = DEVICE
save_dir = os.path.join('results', str(data), 'baselineNN',
my_hash(str(sorted(list(args.items())))), str(time.time()).replace('.', '-'))
if not os.path.exists(save_dir):
os.makedirs(save_dir)
with open(os.path.join(save_dir, 'args.dict'), 'wb') as f:
pickle.dump(args, f)
# Run pure neural network baseline
solver_net, stats = train_net(data, args, save_dir)
def train_net(data, args, save_dir):
solver_step = args['lr']
nepochs = args['epochs']
batch_size = args['batchSize']
train_dataset = TensorDataset(data.trainX)
valid_dataset = TensorDataset(data.validX)
test_dataset = TensorDataset(data.testX)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=False)
valid_loader = DataLoader(valid_dataset, batch_size=len(valid_dataset))
test_loader = DataLoader(test_dataset, batch_size=len(test_dataset))
solver_net = NNSolver(data, args)
solver_net.to(DEVICE)
solver_opt = optim.Adam(solver_net.parameters(), lr=solver_step)
stats = {}
for i in range(nepochs):
epoch_stats = {}
# Get valid loss
solver_net.eval()
for Xvalid in valid_loader:
Xvalid = Xvalid[0].to(DEVICE)
eval_net(data, Xvalid, solver_net, args, 'valid', epoch_stats)
# Get test loss
solver_net.eval()
for Xtest in test_loader:
Xtest = Xtest[0].to(DEVICE)
eval_net(data, Xtest, solver_net, args, 'test', epoch_stats)
# Get train loss
solver_net.train()
for Xtrain in train_loader:
Xtrain = Xtrain[0].to(DEVICE)
start_time = time.time()
solver_opt.zero_grad()
Yhat_train = solver_net(Xtrain)
train_loss = softloss(data, Xtrain, Yhat_train, args,'train')
train_loss.sum().backward()
solver_opt.step()
train_time = time.time() - start_time
dict_agg(epoch_stats, 'train_loss', train_loss.detach().cpu().numpy())
dict_agg(epoch_stats, 'train_time', train_time, op='sum')
# Print results
print(
'Epoch {}: train loss {:.4f}, eval {:.4f}, dist {:.4f}, ineq max {:.4f}, ineq mean {:.4f}, ineq num viol {:.4f}, eq max {:.4f}, steps {}, time {:.4f}'.format(
i, np.mean(epoch_stats['train_loss']), np.mean(epoch_stats['valid_eval']),
np.mean(epoch_stats['valid_dist']), np.mean(epoch_stats['valid_ineq_max']),
np.mean(epoch_stats['valid_ineq_mean']), np.mean(epoch_stats['valid_ineq_num_viol_0']),
np.mean(epoch_stats['valid_eq_max']), np.mean(epoch_stats['valid_steps']), np.mean(epoch_stats['valid_time'])))
if args['saveAllStats']:
if i == 0:
for key in epoch_stats.keys():
stats[key] = np.expand_dims(np.array(epoch_stats[key]), axis=0)
else:
for key in epoch_stats.keys():
stats[key] = np.concatenate((stats[key], np.expand_dims(np.array(epoch_stats[key]), axis=0)))
else:
stats = epoch_stats
if (i % args['resultsSaveFreq'] == 0):
with open(os.path.join(save_dir, 'stats.dict'), 'wb') as f:
pickle.dump(stats, f)
with open(os.path.join(save_dir, 'solver_net.dict'), 'wb') as f:
torch.save(solver_net.state_dict(), f)
with open(os.path.join(save_dir, 'stats.dict'), 'wb') as f:
pickle.dump(stats, f)
with open(os.path.join(save_dir, 'solver_net.dict'), 'wb') as f:
torch.save(solver_net.state_dict(), f)
return solver_net, stats
# Modifies stats in place
def dict_agg(stats, key, value, op='concat'):
if key in stats.keys():
if op == 'sum':
stats[key] += value
elif op == 'concat':
stats[key] = np.concatenate((stats[key], value), axis=0)
else:
raise NotImplementedError
else:
stats[key] = value
# Modifies stats in place
def eval_net(data, X, solver_net, args, prefix, stats):
eps_converge = args['corrEps']
make_prefix = lambda x: "{}_{}".format(prefix, x)
start_time = time.time()
Y = solver_net(X)
raw_end_time = time.time()
Ycorr, steps = grad_steps_all(data, X, Y, args,prefix)
dict_agg(stats, make_prefix('time'), time.time() - start_time, op='sum')
dict_agg(stats, make_prefix('steps'), np.array([steps]))
dict_agg(stats, make_prefix('loss'), softloss(data, X, Y, args,prefix).detach().cpu().numpy())
dict_agg(stats, make_prefix('eval'), data.obj_fn(Ycorr).detach().cpu().numpy())
dict_agg(stats, make_prefix('dist'), torch.norm(Ycorr - Y, dim=1).detach().cpu().numpy())
dict_agg(stats, make_prefix('ineq_max'), torch.max(data.ineq_dist(X, Ycorr,prefix), dim=1)[0].detach().cpu().numpy())
dict_agg(stats, make_prefix('ineq_mean'), torch.mean(data.ineq_dist(X, Ycorr,prefix), dim=1).detach().cpu().numpy())
dict_agg(stats, make_prefix('ineq_num_viol_0'),
torch.sum(data.ineq_dist(X, Ycorr,prefix) > eps_converge, dim=1).detach().cpu().numpy())
dict_agg(stats, make_prefix('ineq_num_viol_1'),
torch.sum(data.ineq_dist(X, Ycorr,prefix) > 10 * eps_converge, dim=1).detach().cpu().numpy())
dict_agg(stats, make_prefix('ineq_num_viol_2'),
torch.sum(data.ineq_dist(X, Ycorr,prefix) > 100 * eps_converge, dim=1).detach().cpu().numpy())
dict_agg(stats, make_prefix('eq_max'),
torch.max(torch.abs(data.eq_resid(X, Ycorr)), dim=1)[0].detach().cpu().numpy())
dict_agg(stats, make_prefix('eq_mean'), torch.mean(torch.abs(data.eq_resid(X, Ycorr)), dim=1).detach().cpu().numpy())
dict_agg(stats, make_prefix('eq_num_viol_0'),
torch.sum(torch.abs(data.eq_resid(X, Ycorr)) > eps_converge, dim=1).detach().cpu().numpy())
dict_agg(stats, make_prefix('eq_num_viol_1'),
torch.sum(torch.abs(data.eq_resid(X, Ycorr)) > 10 * eps_converge, dim=1).detach().cpu().numpy())
dict_agg(stats, make_prefix('eq_num_viol_2'),
torch.sum(torch.abs(data.eq_resid(X, Ycorr)) > 100 * eps_converge, dim=1).detach().cpu().numpy())
dict_agg(stats, make_prefix('raw_time'), raw_end_time - start_time, op='sum')
dict_agg(stats, make_prefix('raw_eval'), data.obj_fn(Y).detach().cpu().numpy())
dict_agg(stats, make_prefix('raw_ineq_max'), torch.max(data.ineq_dist(X, Y,prefix), dim=1)[0].detach().cpu().numpy())
dict_agg(stats, make_prefix('raw_ineq_mean'), torch.mean(data.ineq_dist(X, Y,prefix), dim=1).detach().cpu().numpy())
dict_agg(stats, make_prefix('raw_ineq_num_viol_0'),
torch.sum(data.ineq_dist(X, Y,prefix) > eps_converge, dim=1).detach().cpu().numpy())
dict_agg(stats, make_prefix('raw_ineq_num_viol_1'),
torch.sum(data.ineq_dist(X, Y,prefix) > 10 * eps_converge, dim=1).detach().cpu().numpy())
dict_agg(stats, make_prefix('raw_ineq_num_viol_2'),
torch.sum(data.ineq_dist(X, Y,prefix) > 100 * eps_converge, dim=1).detach().cpu().numpy())
dict_agg(stats, make_prefix('raw_eq_max'),
torch.max(torch.abs(data.eq_resid(X, Y)), dim=1)[0].detach().cpu().numpy())
dict_agg(stats, make_prefix('raw_eq_mean'),
torch.mean(torch.abs(data.eq_resid(X, Y)), dim=1).detach().cpu().numpy())
dict_agg(stats, make_prefix('raw_eq_num_viol_0'),
torch.sum(torch.abs(data.eq_resid(X, Y)) > eps_converge, dim=1).detach().cpu().numpy())
dict_agg(stats, make_prefix('raw_eq_num_viol_1'),
torch.sum(torch.abs(data.eq_resid(X, Y)) > 10 * eps_converge, dim=1).detach().cpu().numpy())
dict_agg(stats, make_prefix('raw_eq_num_viol_2'),
torch.sum(torch.abs(data.eq_resid(X, Y)) > 100 * eps_converge, dim=1).detach().cpu().numpy())
return stats
def softloss(data, X, Y, args,mode='full'):
obj_cost = data.obj_fn(Y)
ineq_cost = torch.norm(data.ineq_dist(X, Y,mode), dim=1)
eq_cost = torch.norm(data.eq_resid(X, Y), dim=1)
return obj_cost + args['softWeight'] * (1 - args['softWeightEqFrac']) * ineq_cost + \
args['softWeight'] * args['softWeightEqFrac'] * eq_cost
# Used only at test time, so let PyTorch avoid building the computational graph
def grad_steps_all(data, X, Y, args,mode='full'):
take_grad_steps = args['useTestCorr']
if take_grad_steps:
lr = args['corrLr']
eps_converge = args['corrEps']
max_steps = args['corrTestMaxSteps']
momentum = args['corrMomentum']
Y_new = Y
i = 0
old_step = 0
with torch.no_grad():
while (i == 0 or torch.max(torch.abs(data.eq_resid(X, Y_new))) > eps_converge or
torch.max(data.ineq_dist(X, Y_new.mode)) > eps_converge) and i < max_steps:
with torch.no_grad():
ineq_step = data.ineq_grad(X, Y_new,mode)
eq_step = data.eq_grad(X, Y_new)
Y_step = (1 - args['softWeightEqFrac']) * ineq_step + args['softWeightEqFrac'] * eq_step
new_step = lr * Y_step + momentum * old_step
Y_new = Y_new - new_step
old_step = new_step
i += 1
return Y_new, i
else:
return Y, 0
######### Models
class NNSolver(nn.Module):
def __init__(self, data, args):
super().__init__()
self._data = data
self._args = args
layer_sizes = [data.xdim, self._args['hiddenSize'], self._args['hiddenSize']]
layers = reduce(operator.add,
[[nn.Linear(a,b), nn.BatchNorm1d(b), nn.ReLU(), nn.Dropout(p=0.2)]
for a,b in zip(layer_sizes[0:-1], layer_sizes[1:])])
layers += [nn.Linear(layer_sizes[-1], data.ydim)]
for layer in layers:
if type(layer) == nn.Linear:
nn.init.kaiming_normal_(layer.weight)
self.net = nn.Sequential(*layers)
def forward(self, x):
prob_type = self._args['probType']
if prob_type == 'T2F':
return self.net(x)
elif prob_type == 'simple':
return self.net(x)
elif prob_type == 'nonconvex':
return self.net(x)
elif 'acopf' in prob_type:
out = self.net(x)
data = self._data
out2 = nn.Sigmoid()(out[:, :-data.nbus])
pg = out2[:, :data.ng] * data.pmax + (1-out2[:, :data.ng]) * data.pmin
qg = out2[:, data.ng:2*data.ng] * data.qmax + (1-out2[:, data.ng:2*data.ng]) * data.qmin
vm = out2[:, 2*data.ng:] * data.vmax + (1- out2[:, 2*data.ng:]) * data.vmin
return torch.cat([pg, qg, vm, out[:, -data.nbus:]], dim=1)
else:
raise NotImplementedError
if __name__=='__main__':
main()