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1 Introduction

This document complements the Genode Foundations book with low-level hardware-
related topics. It is primarily intended for integrators and developers of device drivers.
Before studying the Genode Platforms material, it is highly recommended to give the
Genode Foundations book a read. The book can be downloaded at https://genode.org.

In this first edition, the document features a practical guide for the steps needed
to bring Genode to a new ARM SoC. The content is based on the ongoing Pine Fun
article series at Genodians.org1. Note that the document is not set in stone. We plan to
continuously extend it with further practical topics as we go.

1https://genodians.org
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2 Porting Genode to a new SoC

We get repeatedly asked about the principle steps and costs needed to enable Genode -
and in particular Sculpt OS 1 - for various ARM-based hardware platforms. The variety
of SoCs is too great to give a general answer. However, drawing from our experience
with the porting Genode to several ARM-based platforms such as NXP’s i.MX8, this
chapter provides a practical guide for the steps of such a porting endeavour.

The guide is based on an article series at https://genodians.org. It is written in an in-
formal style from the perspective of a developer carrying out the work, taking a specific
board - namely the Pine-A64-LTS single board computer - as a playground. The code
discussed throughout this chapter is available at the following public Git repository.

Git repository of the Allwinner board support

https://github.com/nfeske/genode-allwinner

The guide is not carved in stone. It will be progressively enhanced with further infor-
mation - e. g., details about various classes of drivers - over time. Should you happen
find important topics missing or spot mistakes or have suggestions for improving the
material, please don’t hesitate to send your feedback to norman.feske@genode-labs.com.

Goals Our goal would be to get the bare-bones Sculpt system up and running on an
ARM SoC not yet supported by Genode. This bare-bones Sculpt system entails

• The principal ability for the user to interact with the system via a graphical user
interface,

• Support for installing and deploying the existing arsenal of Genode components
from regular packages,

• The ability to store information persistently on the device, and

• Network connectivity.

Thanks to Sculpt’s built-in ability to integrate 3rd-party components - including func-
tionality that is traditionally attributed to the core of the operating system - into the
system in the form of packages, this bare-bones system enables a great variety of usage
scenarios.

1https://genode.org/download/sculpt
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Non-goals That said, the following features remain beyond the scope of this docu-
ment because they are either too vendor-specific to be described in a general fashion or
can be realized in the form of supplemental components.

• Hardware-accelerated graphics,

• Audio,

• Power management,

• Mobile data communication,

• Secure boot.

Working steps The work of enabling Genode for a new SoC requires the following
steps in the described order. To give an indicator of the effort to be expected, each step
is accompanied with a rough estimation.

1. Preparing the development testbed

Before the actual development work can start, a few preparations are needed or
at least recommended.

One of our team members typically spends up to one month for this step.

• Building and running a working Linux-based OS on the target board as ref-
erence, following the instructions of the vendor

• Exploration and configuration of the target’s boot mechanism

• Creation of a test-control loop for triggering the booting the target board via
the run tool, serving the boot image over the local network, and obtaining
the log output.

• Familiarization with the available board and SoC-vendor documentation
and the Vendor-specific subsystems in the vendor’s Linux kernel

• Studying the device tree, correlating it with information gathered from the
documentation.

2. Code skeleton for a new SoC

Given the impressions gathered during the preparatory step, we take one of the
SoCs that are already supported by Genode as reference. One should select the
SoC with the most similarities such as the same ARM core revision or the same
interrupt controller. The goal of this step is an almost empty skeleton code of
Genode that gives us a little life sign when booted on the real hardware.

It does not take a seasoned Genode developer longer than two weeks to complete
this step. However, for a developer with no prior experience with Genode’s code

7



base, an additional effort of two weeks for the required familiarization should be
planned for.

• Mirroring the files of another SoC but with empty bodies, (describing roles
of the individual files)

• Creating a bare-bone base-hw kernel ELF image

• Booting the custom image on the target hardware

• Serial output driver

3. Basic kernel functionality

The goal of this step is getting the most basic Genode system scenario to run on
the new SoC. This scenario comprises three components, namely the Genode core
component (including the kernel), the init component, and a test program that
produces some log output.

On this way, one has to overcome the challenges of initializing the kernel, en-
abling the MMU, and exercising the kernel’s IPC and context-switching mecha-
nism. Assuming that the new SoC has the same architecture revision as the ones
already supported by Genode, this step should take no longer than two weeks.

• Enabling the MMU

• Enabling caches

• Memory layout parameters

• Entering and returning from the user land (IPC, context switches)

• Running Genode’s log scenario

4. Support for user-level device drivers

With the principal ability of running multiple user-level components, it is time to
enable preemptive scheduling and the kernel mechanisms needed by user-level
device drivers. Assuming the new SoC uses standard ARM building blocks like
the core-local timer and the GIC interrupt controller as readily supported by Gen-
ode, this step does not entail much risks and should be completed within a week.

However, should the SoC deviate from the beaten track of standard ARM build-
ing blocks, e. g., using a custom interrupt controller, the step may additionally
require the development of an in-kernel driver for such a device. Genode pro-
vides several existing drivers that can be taken as a blue print. Depending of the
quirkiness of the device, the development can take one or two weeks. Fortunately,
vendor-specific timers and interrupt controllers are largely a problem of the past.

• Enabling the in-kernel interrupt controller driver

• Enabling in-kernel timer driver
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• Definition of I/O resources

• IOMUX configuration (board-specific)

Once the principal support for user-level device drivers is in place, the develop-
ment work can be tackled by multiple developers in parallel.

5. Network driver

We usually plan to spend about one month for enabling a network driver for
Genode. Depending on the complexity of the network controller, the driver may
be ported from the Linux kernel, from the U-Boot boot loader, or written from
scratch.

6. SD-card driver

For driving SD-cards, we usually extend Genode’s custom SD-card driver with
SoC-specific support, which takes usually two weeks. One should be prepared
for device-specific peculiarities though. In some cases, in the presence of flaky
hardware, it took us up to 3 weeks more to reach a stable and performant state.

7. Framebuffer driver

In the past, we used to develop framebuffer drivers from scratch. But nowa-
days, we prefer to reuse the vendor-provided driver code from the Linux ker-
nel to attain feature parity with Linux. That said, depending on the driver, such
porting work still requires substantial manual labour because the driver often
does not only drive one device but multiple (such as power-gating via additional
I2C-connected controllers, or a dedicated HDMI chip). As an indicator for the
expected effort, the i.MX framebuffer driver took us two months to bring to life.

8. USB host-controller driver

Genode’s USB host-controller driver is based on the Linux USB driver. Adding
supplemental support for a new SoC should generally possible within one
month. With the USB host-controller driver in place, the actual USB device
drivers (e. g., for HID and storage) should work out of the box.

As a note of caution, in rare cases, in particular for the Raspberry Pi, the USB host
controller driver can become an almost infinite time sink though.

9. Multi-processor support

Real-world workloads demand multi-processor support. In theory, this should
generally be covered well by Genode’s ARM support as long as the SoC stays
close to ARM’s reference design. However, the bring-up of secondary CPUs,
inter-processor interrupts, and the maintenance of TLB/cache coherence still
poses risks because those topics may involve upcalls to vendor-specific firmware
or may depend on the unexpected vendor-specific boot-time configuration (like
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the surprise of one CPU core left configured with a different byte order). To stay
on the safe side, one should plan one month for the potential troubleshooting
around these areas.

10. Sculpt OS integration

With the four peripheral drivers in place, Sculpt’s demands on the platform’s
feature set is satisfied. The remaining task is the integration of those drivers into
Sculpt, which should be doable in no more than two weeks.

• Drivers subsystem definition

• Sculpt-manager tweaks

• Configuration

Summary Based on the steps outlined above, the effort seems to be modest but -
given a healthy dose of enthusiasm - quite doable for an individual or a small team.
The biggest risk is the incomplete or lacking documentation for most ARM SoCs.

Granted, such a bare-bone system is still a far cry from a sophisticated product like
a smart phone, which features plenty of additional peripheral devices, an aggressive
power-management regime, GPU-accelerated rendering, or Bluetooth. But once a bare-
bones Sculpt system is ready to run, further device drivers can be developed as regular
components independent from each other, which is the beauty of a component-based
operating system like Sculpt OS.
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2.1 Preparatory steps

2.1 Preparatory steps

After getting a rough overview of undertaking the port of Sculpt OS to another SoC
in the previous section, let us take a closer look at the first step - taking technical and
non-technical preparations.

For the preparatory work, I recommend taking one month of time. This may sound
excessive but there are good reasons. First, Genode’s tooling deviates from the beaten
tracks known from commodity operating systems. In particular Genode’s run tool is
quite unique and powerful. But it comes at the price of a learning curve. The learn-
ing should not be done as a side activity but requires the focus of the developer. Sec-
ond, the initial steps of enabling a new hardware tend to be fiddly. Especially when it
comes to compiling and testing out a vendor-customized boot loader and Linux kernel
from source, this can become a walk on muddy ground. Without patience or with time
pressure, it can get messy and exhausting. Third, contemplating about non-technical
preparatory aspects like licensing deserves some nights to sleep over it.

2.1.1 Licensing considerations

I see your raised eyebrows. Why bother with software licensing at this point? To pursue
the upcoming steps with as little friction as possible, make up your mind about your
objectives behind pursuing the porting work. The licensing of your code should follow
from that. From the chosen license, in turn, follows the way of how to interact with the
community. Let me illustrate this point with three example scenarios:

No strings attached

Open-source driver code authored by hardware vendors is often published under
a permissive license to make the code broadly usable across projects with differ-
ent open-source and proprietary licenses. Even for code contributed to the GPL-
licensed Linux kernel, some vendors like Intel provide their contributions under
the terms of the permissive MIT or BSD licenses, and thereby allow anyone to
incorporate such code into other operating systems without licensing constraints.
Usually such code is a clean-room implementation developed in-house at the ven-
dor without incorporating 3rd-party code. This approach is preferable whenever
the objective is the highest possible adoption of the code.

Submitting code upstream to the Genode project

A second possible objective may be the integration of your work upstream into
the official Genode project to make the new SoC platform straight-forward to use
for the Genode community and to benefit from the ongoing maintenance of the
code by Genode Labs. However, with this ambition in mind, you need to en-
sure that you and your employer agree with the process of contributing1 and in

1https://genode.org/community/contributions
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2.1 Preparatory steps

particular with the terms of the Genode contributor’s agreement (PDF1), which
grants Genode Labs the right to offer Genode - including your code - under both
open-source and commercial licensing terms.

Pursuing a dual-licensing business

At the other extreme, your objective may be offering the results of your work as
a commercial product, following a dual-licensing business model. In this case,
you may consider publishing the code under the most restrictive copyleft license
possible, along with the option for a commercial license. Or you may even go
as far as considering the Genode Component Public License2 (CPL). This route
should be considered only when planning a long-term commitment in actively
productising and supporting your code. Note that the GCPL is no win for the
open-source community beyond Genode.

The path taken has far-reaching ramifications. The ability to incorporate 3rd-party code
into your work. The visibility of your work within the Genode community. The selec-
tion of a suitable place for hosting your code. Community spirit. Or the viability of
contributions by others to your code.

The decision may be taken for different components individually. For example, when
taking the Linux USB stack as the basis for a USB host-controller driver component, this
component naturally inherits Linux’ GPLv2 license. At the same time, your custom in-
kernel timer driver might fit best into the upstream Genode project.

In our experience, taking and openly communicating licensing decisions up front
before starting actual development work reduces possible friction - especially if a legal
department is involved - and avoids wrong expectations.

2.1.2 Selecting a suitable SoC

The question of which particular SoC to select as the basis for your work is of course
closely related with the same objectives as discussed above. You may consider the
following points:

• Costs of the chip and the devices featuring the chip. E.g., if you primarily intend
to accommodate hobbyists, a low-end device might be preferable. But there are
other arguments:

• Availability of accessible hardware featuring the SoC. Many SoCs are available
only in large volumes and thereby end up in consumer devices only. More of-
ten than not, such consumer devices are completely locked down, rendering the
attempt to install a custom operating system moot.

1https://genode.org/community/gca.pdf
2https://genode.org/documentation/articles/component_public_license
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2.1 Preparatory steps

With accessible hardware, I’m also referring to the availability of development
boards that mirror the architecture of a consumer device but with additional con-
nectors for obtaining serial output, network connectivity, and possibly JTAG.

• Availability and quality of technical documentation. Even for many SoCs popular
in the Linux community - think of the Raspberry Pi devices - public documenta-
tion is sparse or of questionable quality. If you find a “reference manual” of only a
few hundred pages online, possibly imprinted with the term “CONFIDENTIAL”,
it’s probably better to stay away from this chip. A modern SoC has usually more
than 4000 pages of documentation. When browsing through it, look out for prose
and architectural diagrams. Some “reference manuals” are merely disguised reg-
ister listings, which are not very insightful.

• Support by the official Linux kernel. Even though most ARM devices run Linux,
many vendors do not even attempt to contribute vendor-specific code upstream
to the Linux project. Should the official Linux kernel features support for a par-
ticular SoC, this is a good sign for the maturity of the open-source drivers. In
contrary, if only a certain whacky vendor kernel is known to work well with the
SoC, it’s probably best to shy away.

• Presence of hardware-based I/O protection (System-MMU). To fully leverage the
advantages of Genode’s architecture, the sandboxing of device drivers is impor-
tant. Otherwise, all device drivers must be considered trusted.

When we originally embraced the i.MX8M SoC, we silently assumed that every
modern 64-bit SoC should feature a System-MMU in our modern times. We even-
tually learned that this is actually not the case for the i.MX8M.

If different variants of one SoC with and without System-MMU are available,
make sure to pick the variant that includes this feature.

2.1.3 Start by taking the known-good path

Even though you may be eager with bringing Genode to the new device, let us first
exercise the device with its known-to work software stack.

1. Usually, development boards come with a Linux-based system pre-installed. Try
it out. Test the functioning of all hardware connectors that are important to you.

2. Chase down the source code of the exact Linux kernel that is pre-installed on your
board. In most cases, this so-called vendor kernel is a customized version of Linux,
with the source code provided at a vendor-specific place. Download it. Follow
the vendor-provided instructions to build it from source. Boot your custom built
Linux kernel on your device.
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2.1 Preparatory steps

This kernel will serve us as a working reference later. It allows us to cross-
correlate problems between Genode and Linux, obtain traces of Linux device
drivers, or to get hold of system-register states initialized by the Linux kernel
to a working state.

3. Study the device tree of the working Linux kernel and correlate this information
with the documentation. This helps to form a mental picture of the hardware and
to identify possible risks (indicated by your level of confusion) early on.

...slowly leaving the known-good path...

4. Now that you are familiar with the vendor kernel, let’s cross fingers and hope that
the vanilla Linux kernel works just as well. Download the vanilla Linux kernel
and look out for the support for your SoC. In the worst case, you won’t find any.
In the best case, the vanilla kernel works out of the box. In case the vanilla kernel
works well, better use this one a reference for your further work.

2.1.4 Setting up an efficient development workflow

For the few test drives taken until this point, juggling SD-cards is probably fine. But
down the road, you will need to boot your device with custom system image hundreds
of times. Take the time for setting up a convenient test-control loop for your device to
make this work enjoyable.

Explore Genode’s run tool Read Section 5.4 “System integration and automated
testing” of the Genode Foundations book as found at https://genode.org.

Try out the various options with an already supported platform. Browse the files
at tool/run/1 to learn about the various backend modules and options. E.g., look at
tool/run/image/uboot2 to demystify the creation of uImage files by Genode.

Run and test the U-Boot loader on your device U-Boot is the de-facto standard
of booting embedded ARM boards today. We primarily use U-Boot for its ability to
fetch a system image over the network. There is a good chance that your board comes
equipped with U-Boot already. If not, investigate the option to chain-load U-Boot from
your board’s boot loader.

Once you got U-Boot to work, continue with reproducing the U-Boot binary from
source. This may become handy for investigating device-driver issues later on (e. g.,
taking U-Boot’s IOMUX or power or clock configuration as reference, peeking device
states at boot time). Consider extending Genode’s tool/create_uboot3 utility, thereby

1https://github.com/genodelabs/genode/tree/master/tool/run
2https://github.com/genodelabs/genode/tree/master/tool/run/image/uboot
3https://github.com/genodelabs/genode/blob/master/tool/create_uboot
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2.1 Preparatory steps

documenting the steps for reproducing the U-Boot version for your particular board
from source.

Create a working test-control loop The goal of this step is to reach a state where you
can type only one command like following from the Genode build directory to trigger
a complete build-test cycle.

make run/log KERNEL=hw BOARD=<your-board>

The build-test cycle entails:

1. Compiling the source code of Genode components,

2. Applying a system configuration,

3. Assembling a system image,

4. Making the system image available over TFTP,

5. Power-cycling the board,

6. Letting the board fetch the system image and start it, and

7. Getting the serial output of the board right in your terminal.

To reach this level of convenience, the following topics must be addressed:

Network boot

• Set up TFTP server on you development machine

• Test your TFTP server locally from your development machine

• Configure DHCP server in your network to direct the boot loader of your
development board to the TFTP server on your development machine

Let the run tool obtain the serial output from your board

Take a look at the various options of run tool at tool/run/log1.

Network-controlled reset / power switch

As the icing on the cake, consider powering your board via a network-controlled
power socket as described in 2.

1https://github.com/genodelabs/genode/blob/master/tool/run/log
2https://genodians.org/chelmuth/2019-03-13-powerplug
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More options can be found at at tool/run/power_off 1 and tool/run/power_on 2.

For further inspiration, you may also enjoy the article 3.

1https://github.com/genodelabs/genode/blob/master/tool/run/power_off
2https://github.com/genodelabs/genode/blob/master/tool/run/power_on
3https://genodians.org/tomga/2019-08-13-rpi-automation
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2.2 Getting acquainted with the target platform

The undertaking of bringing Genode - and Sculpt OS in particular - to a new ARM
SoC comes with a great deal of uncertainties, namely the inner functioning of overly
complex hardware, picking appropriate tools and methodologies, taking informed de-
cisions about porting versus developing drivers, and relating all this to Genode.

Combined, these uncertainties pose a huge barrier. At Genode Labs, we have con-
quered this barrier a few times in the past, e. g., for supporting the NXP i.MX8 SoC.
However, the porting of Genode to new hardware should not be left as an activity ex-
clusive to Genode Labs. In order to assist developers outside of Genode’s inner circle
with joining the fun, we’d like to share what we know. This sharing should have the
form of profound documentation that serves as a guide and removes points of friction
as much as possible.

To deliver substance, I figured that I should not merely talk the talk by speaking from
past experience, but also walk the walk again while writing down my practical steps as
I go. So I went forward looking around for tasty hardware, when Pine641 caught my
eyes.

Why Pine64? I got excited about Pine64 for several reasons.
First, devices in the form factors of the PinePhone and the A64 development boards

are readily available at affordable prices. The Pine64 website carries a very positive
message, highlighting community, openness, sustainability, transparency, no marketing
nonsense.

Second, the products are designed for hackability. This is evidenced by the vibrant
developer community, mainline Linux kernel support, and the availability of literally
more than a dozen Linux distributions. One can boot the PinePhone directly from SD-
card. How cool is that!

Third, the used Allwinner SoC - introduced as early as 2015 - is rather aged. In con-
trast to bleeding-edge hardware, I would not need to explore unconquered territory.
Others have hopefully discovered most pitfalls before me. The SoC seems to strike a
nice balance of modern features (64 bit, multi core, virtualization) with modest com-
plexity. The performance of the SoC is notably at the lower end of the smartphone
product category. From the perspective of an operating-systems developer, I don’t see
this as a con but more as a welcome challenge. Will Genode be able to shine on such a
constrained device? Let’s find out!

The only downside of the SoC worth mentioning is the lack of an IO-MMU as protec-
tion mechanism against rampant I/O devices or drivers. So the sandboxing of device
drivers can never be water-tight.

1https://www.pine64.org/
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2.2.1 Getting a first impression

We ordered a Pine64-LTS1 board, a PinePhone2, and a serial cable3 for the PinePhone
directly from the online store. For some kind of safety reason, the phone had to be
ordered separately. In hindsight, we better had ordered a power supply for the Pine64-
LTS board as well. We skipped it as we already have kilograms of AC power supplies
of other boards at hand. However, it turned out that kilograms of power supplies with
5mm connectors are of little use when the board features a less mainstream 3.5mm
connector. Such details matter sometimes.

For getting our hands dirty with technical work, we will have to leave the PinePhone
alone for a while and turn our attention to the Pine-A64-LTS board. The Pine64 wiki4

provides the perfect starting point.

Booting an officially supported GNU/Linux image The wiki lists numerous ready-
to-use Linux distributions5. I went for Armbian6. Just a few minutes later, after down-
loading the disk image from https://dl.armbian.com/pine64so/Buster_current, writ-
ing the image to an SD card, connecting an HDMI display and a USB keyboard, and
booting the board with the SD card inserted, I was greeted with Armbian login, allow-
ing me to login as root user.

At this point, I’m most interested in getting a first overview of the hardware. The
following information are insightful:

root@pine64so:/# cat /proc/cpuinfo
...
root@pine64so:/# cat /proc/meminfo

Well, that is not too surprising. It’s more like a ritual.

root@pine64so:/# dmesg | less

The kernel boot log is quite chatty. The following lines caught my eyes.

1https://pine64.com/product-category/pinephone/
2https://pine64.com/product-category/pinephone/
3https://pine64.com/product/pinebook-pinephone-pinetab-serial-console/
4https://wiki.pine64.org/index.php/PINE_A64-LTS/SOPine_Main_Page
5https://wiki.pine64.org/wiki/SOPINE_Software_Release
6https://www.armbian.com
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[ 2.228675] sun4i-drm display-engine: bound 1100000.mixer...
[ 2.230477] sun4i-drm display-engine: bound 1200000.mixer...
[ 2.231001] sun4i-drm display-engine: No panel or bridge found...
[ 2.231018] sun4i-drm display-engine: bound 1c0c000.lcd-controller...
[ 2.231227] sun4i-drm display-engine: bound 1c0d000.lcd-controller...
[ 2.231293] sun8i-dw-hdmi 1ee0000.hdmi: Couldn’t get regulator
[ 2.231734] sun4i-drm display-engine: Couldn’t bind all pipelines...

...once we get to graphics, we have to grep the Linux kernel for “sun4i-drm” and
“sun8i-dw-hdmi”. Whatever sun4i and sun8i means. Does “dw” stands for Design-
ware? I shudder for a moment...

[ 2.250163] 1c28000.serial: ttyS0 at MMIO 0x1c28000 (irq = 31,...
[ 2.250239] printk: console [ttyS0] enabled
[ 2.250893] sun50i-a64-pinctrl 1c20800.pinctrl: supply vcc-pg...
[ 2.251327] 1c28400.serial: ttyS1 at MMIO 0x1c28400 (irq = 32,...
[ 2.251471] serial serial0: tty port ttyS1 registered

...the Linux kernel uses the serial controller at 0x1c28000 by default. That will be the
first device we need a driver for. Never heard of a “16550A” device though...

[ 2.277178] ehci-platform 1c1b000.usb: EHCI Host Controller
[ 2.277210] ehci-platform 1c1b000.usb: new USB bus registered,...
[ 2.277359] ehci-platform 1c1b000.usb: irq 22, io mem 0x01c1b000
[ 2.289613] ehci-platform 1c1b000.usb: USB 2.0 started, EHCI 1.00
...
[ 2.291208] ohci-platform 1c1b400.usb: Generic Platform OHCI controller
[ 2.291228] ohci-platform 1c1b400.usb: new USB bus registered,...
[ 2.291342] ohci-platform 1c1b400.usb: irq 23, io mem 0x01c1b400

...an OHCI USB controller, I get a little blast from the past...

[ 2.384988] sunxi-mmc 1c0f000.mmc: initialized,...
[ 2.410167] sunxi-mmc 1c10000.mmc: initialized,...
[ 2.422925] mmc0: Problem switching card into high-speed mode!
[ 2.423025] mmc0: new SDHC card at address 0001

...two multi-media card (MMC) devices, apparently driven by an Allwinner-specific
controller. “Problem switching card into high-speed mode!”. MMC and problem are
almost synonymous. Allwinner will not positively surprise us...

[ 3.412571] dwmac-sun8i 1c30000.ethernet: IRQ eth_wake_irq not found
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...the good news is that there is a dedicated Ethernet controller, not merely a USB-
network device. The bad news is that the controller is an IP core purchased from De-
signware. After the deep scars I got from USB on the Raspberry Pi, I was hoping not to
touch anything with “dw” in its name again...

[ 9.189128] Call trace:
[ 9.191219] ktime_get_update_offsets_now+0x5c/0x100
[ 9.193340] hrtimer_interrupt+0xa0/0x2f0
[ 9.195466] sun50i_a64_read_cntpct_el0+0x30/0x38
[ 9.197542] arch_counter_read+0x18/0x28
[ 9.199712] arch_timer_handler_phys+0x34/0x48
[ 9.201813] handle_percpu_devid_irq+0x84/0x148
[ 9.203971] ktime_get_update_offsets_now+0x5c/0x100
[ 9.206022] hrtimer_interrupt+0xa0/0x2f0
[ 9.208071] generic_handle_irq+0x30/0x48
[ 9.210150] __handle_domain_irq+0x64/0xc0
... many more lines ...

...a Linux kernel thread died during boot. The “sun50i” symbol hints at an Allwinner-
related driver issue. The kernel marches on nevertheless...

[ 9.703995] lima 1c40000.gpu: gp - mali400 version major 1 minor 1
...

...it’s really nice to have a GPU without the need for any proprietary blobs, thanks to
the reverse-engineering efforts by the Lima project.

The kernel log is not the only place revealing information about the hardware.

root@pine64so:/# cat /proc/iomem

01000000-0100ffff : 1000000.clock clock@0
01100000-011fffff : 1100000.mixer mixer@100000
01200000-012fffff : 1200000.mixer mixer@200000
...
...
40000000-bdffffff : System RAM

Here, we get a complete view of the physical-memory layout, including the loca-
tions of all memory-mapped devices as well as the actual RAM. The (almost) 2 GiB of
physical memory does not start at 0 but rather at 0x40000000.

root@pine64so:/# cat /proc/interrupts
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Here, we see how the relationship between devices, interrupt numbers, and CPUs
(interrupt routing) as configured by the Linux kernel.

Another point of interest is the device tree that can be found at /proc/device-tree, which
is actually a symbolic link to /sys/firmware/devicetree/base.

At this point, it is too early to digest all this information. Let’s save it for later. The
easiest way is storing data on a USB stick.

1. When plugging in a USB stick to the second USB port, the kernel’s dmesg output
tells us that it is detected as /dev/sdb as well as the partitions, e. g., /dev/sdb1 for the
first partition.

2. Knowing the device name of the partition, we can mount its file system at /mnt
via mount /dev/sdb1 /mnt.

3. Now we can copy any files interest to /mnt/.

As an additional function test, one can quickly give the network interface a try. Once
when plugging in a network cable to our local network, the LED on the network PHY
starts blinking happily, and ifconfig reveals that the board got an IP address from our
local DHCP server. A quick wget https://genode.org works just as expected.

Serial line Knowing that the board is fully functional when running a Linux-based
OS, we have to work towards using the board as an embedded development target.
Textual output over serial is the most important prerequisite for that. The times when
development boards featured 9-pin D-SUB connectors is long past. Nowadays, we need
to look out for the right pins on one of the board’s expansion sockets. The board has
several of them. So now is a good time to get acquainted with the board’s schematics1.

The schematics hint at several serial devices (UART). E.g., UART1 at the SDIO WIFI
+ BT pin header. The go-to solution is not obvious. Fortunately, a little web search later,
we land on a nice wiki page describing the UART on Pine642. In particular, we learn
“Better always use UART0 on the EXP connector nearby, accessible on pins 7 (TXD), 8
(RXD), 9 (GND).”

Everyone should have a few TTL-232R-RPi cables at hand. If you don’t, hurry up
and order some. Pay attention to signal level. In our case, the board needs a 3.3V cable.
All we need is cross-connecting TX to RX, RX to TX, and ground to ground.

On Linux-based development machines, we usually use picocom3 as serial terminal
program. When connecting the USB cable, the Linux kernel’s dmesg output tells us
about the new device /dev/ttyUSB0, which we can readily access with picocom.

1https://files.pine64.org/doc/SOPINE-A64/PINE%20A64-TLS-20180130.pdf
2https://linux-sunxi.org/Pine64#Serial_port_.2F_UART
3https://www.mankier.com/1/picocom
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picocom --baud 115200 /dev/ttyUSB0

When pressing enter, we are greeted with the login of Armbian.
For the next steps, display and keyboard are no longer needed. All we need is the

serial line.

JTAG I’m hopeful that serial output will suffice for most debugging work. However,
in desperate situations like when facing cache-coherency issues, a JTAG debugger like
Lauterbach or Flyswatter can really save the day (or the week). So when encountering
a new board, we always look out for JTAG debugging pins. If present, we get the cozy
feeling of having this option available as a last resort.

In the case of the Pine64, we must live without this cozy feeling. While searching the
forum https://forum.pine64.org, I learned that the SoC is indeed equipped with JTAG
pins but the wiring of the Pine board does not make them accessible. Apparently, there
is too little interest in JTAG by the community at large, which is perfectly understand-
able. Most users don’t mess around at the low level where JTAG becomes the tool of
choice.

2.2.2 The U-Boot boot loader

U-Boot1 is widely regarded as the canonical boot loader for ARM platforms, and we
Genode developers agree. The primary reason for our high opinion is U-Boot’s ability
to fetch boot images over the network from a TFTP server, which is fundamental to our
work flows.

The secondary reason is that U-Boot brings the hardware into a state that is conve-
nient for the booted operating system. For example, since U-Boot prints messages over
serial, it needs to initialize the serial controller correctly, fiddly stuff like setting up the
baud rate or powering the USB FUE. With those preparations done by the boot loader,
Genode’s drivers can conveniently skip those steps and still work nicely.

The third great benefit of U-Boot to us is the arsenal of drivers supported by the
project. Granted, we don’t actually use most of those drivers in practice. But others are
using them. So the drivers work reliably, are well maintained, and are usually much
less complex compared to drivers found in the Linux kernel. This makes the drivers a
very useful reference while developing drivers for Genode.

Since Armbian uses U-Boot, we can in principle keep using it. During the boot, one
can press <space> at the serial terminal to intercept the automated boot. This brings us
to the interactive U-Boot prompt.

1https://www.denx.de/wiki/U-Boot
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Building U-Boot from source Building the boot loader from source is not just an
affair of honor, it also fosters our understanding and our full control over the boot
process. The ability to control the boot loader is empowering and can serve as an ex-
perimentation ground. The steps for building U-Boot manually for Allwinner-based
devices are described in the excellent documentation1.

For reference, here are the steps I took.

1. Cloning the git repository and checking a recent release branch:

$ git clone git://git.denx.de/u-boot.git
$ cd u-boot
u-boot$ git checkout -b v2020.10 v2020.10

2. Looking out for a suitable default configuration for the Pine64-LTS board, guess-
ing it would have something like “pine” in the name:

u-boot$ find configs/ | grep -i pine
configs/pinebook-pro-rk3399_defconfig
configs/sopine_baseboard_defconfig
configs/pine64_plus_defconfig
configs/pine64-lts_defconfig
configs/pinebook_defconfig
configs/pine_h64_defconfig

Well, pine64-lts_defconfig sounds like I’m lucky for the Pine64 board. But the Pine-
Phone is notably absent. A look at https://linux-sunxi.org/PinePhone clarifies
the situation: “As we currently do not have any specific U-Boot config for this
device, Use the pine64-lts_defconfig build target temporarily as a hack.” That’s
fine by me.

3. Building the ARM Trusted Firmware

The ARM Trusted Firmware is the effort to unify low-level firmware interfaces -
think of the bring-up secondary CPU cores - across SoC vendors. A recent article2

by Stefan Kalkowski goes into more detail.

The building steps described at linux-sunxi.org are easy to follow. For us, the
build output is quite instructive for guiding our attention.

1https://linux-sunxi.org/Mainline_U-Boot
2http://genodians.org/skalk/2020-02-18-armv8-smp
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$ make CROSS_COMPILE=aarch64-linux-gnu- PLAT=sun50i_a64 DEBUG=1 bl31
...
CC drivers/allwinner/axp/axp803.c
CC drivers/allwinner/axp/common.c
CC drivers/allwinner/sunxi_msgbox.c
CC drivers/allwinner/sunxi_rsb.c
...
CC plat/allwinner/sun50i_a64/sunxi_power.c
CC plat/common/plat_gicv2.c
...
Built /home/no/pine64/arm-trusted-firmware/build/sun50i_a64/debug/bl31.bin successfully

There are many more lines. They point us to interesting details. For exam-
ple, drivers/allwinner/axp/axp803.c contains the default settings of the AXP power-
management chip, plat/allwinner/sun50i_a64/sunxi_power.c tells us how the AXP
chip is accessed via memory-mapped I/O.

4. Installing the boot loader on the SD-card

The steps are described in detail at https://linux-sunxi.org/Bootable_SD_card.
For me, it is great to see the option of using a GPT partitioning scheme, which we
already use for Sculpt OS on PC hardware. This will hopefully become handy at
a later stage.

A few useful U-Boot commands When booting U-Boot from our freshly prepared
SD card, we can see U-Boot initializing and probing a bunch of devices. In our current
situation, booting over the network is the most important functionality. So we turn
our attention to the bootp command.

=> help bootp
bootp - boot image via network using BOOTP/TFTP protocol

Usage:
bootp [loadAddress] [[hostIPaddr:]bootfilename]

Let’s give it a quick try. My development machine has the IP address 10.0.0.32 within
the local network and happens to have a TFTP server running. Just for the test, I put a
little file called something into the TFTP directory and issue the following command to
U-Boot:
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=> bootp 10.0.0.32:/var/lib/tftpboot/something

TFTP from server 10.0.0.32; our IP address is 10.0.0.178
Filename ’/var/lib/tftpboot/something’.
Load address: 0x42000000

Of course, I don’t want to manually type this command on every boot. It is much
better to tell U-Boot to execute the command automatically for us. This is possible by
customizing U-Boot’s bootcmd environment variable.

=> help editenv
editenv - edit environment variable

Usage:
editenv name

- edit environment variable ’name’

=> editenv bootcmd
edit: bootp 10.0.0.32:/var/lib/tftpboot/something

With the bootcmd customized to our liking, lets save the new setting. U-Boot pro-
vides the command saveenv for that, which stores the settings at a predefined location
on the MMC / SD card.

=> saveenv
Saving Environment to FAT... Card did not respond to voltage select!
Failed (1)

Well, this did not work as anticipated. The reason is that there are two MMC devices
present. The SD-card is connected to the first MMC controller whereas U-Boot is appar-
ently configured to store its environment via the second MMC controller. Fortunately,
the latter setting can be configured in U-Boot’s build configuration.

Inside the u-boot/ .config, we find a configuration variable called CONFIG_ENV_FAT_DEVICE_AND_PART.
In the interactive menuconfig, the corresponding setting is located at the Environment
sub menu:

(1:auto) Device and partition for where to store the environemt in FAT

Changing the setting to 0:auto should do the trick. Of course, we have to go again
through the steps of building U-Boot and writing it to the SD-card. But that is a small
price to pay for the convenience that awaits us.

Next time in U-Boot, editing the bootcmd again to our liking and invoking the
saveenv command makes us smile:
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=> saveenv
Saving Environment to FAT... OK

From now on, we can save a number of key strokes on each boot. One final tweak
would increase our comfort even more. By default, U-Boot initializes the USB controller
at boot time. This takes a few seconds, delaying our boot time. Since we don’t plan to
boot from any USB device during our development workflow, it is better to skip the
USB initialization. This can be done by changing the preboot environment variable
from “usb start” to nothing, and of course make the change persistent via the saveenv
command.

26



2.3 Bare-metal serial output

2.3 Bare-metal serial output

In the previous section, we started getting acquainted with the Pine64 hardware, estab-
lished a serial connection using Linux, and explored the use of the U-Boot boot loader.
Now we can move towards running Genode’s kernel on the device. Before touching
Genode, however, we need to take two precautions.

1. We need to understand the hand-over of execution from the boot loader to the
loaded kernel code.

2. In order to know that the right things are happening within our custom code, we
need a way to get information out.

To address both questions, we are going to build a custom code blob that can be copied
to a predefined physical-memory address and, when executed, prints characters over
the serial line. For the latter, we need a primitive way to print debug messages over
a serial connection. This section goes through the steps of executing custom code on
bare-metal hardware with no kernel underneath, and attaining serial output by poking
UART device registers directly.

Information gathering During our initial exploration in Section 2.2, we stumbled
over a serial device of type “16550A” at address 0x1c28000 that is apparently used by
the Linux kernel by default. We have already seen it in action when we interacted with
U-Boot and the Armbian system over the serial connection. Just for reference, here is
the corresponding dmesg output again:

[ 2.250163] 1c28000.serial: ttyS0 at MMIO 0x1c28000
(irq = 31, base_baud = 1500000) is a 16550A

There are several ways to find out more about this particular device. For example,
one might be inclined to consult chip-vendor documentation. This, however, can be a
muddy approach. More often than not, ARM-based SoCs are poorly covered by public
documentation, or the available documentation contains uncertainties or even errors.
Whenever feasible, I like to follow the path of ground truth, looking at known-to-work
code as reference. Let’s examine the build configuration of our build of U-Boot, which
can be readily found in the u-boot/.config file. When searching it for the string “Serial”,
we quickly end up at the following line:

CONFIG_SYS_NS16550=y

The driver has to have something like “NS16550” in its name. So let’s grep the source
tree for files named after this string:
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$ cd u-boot
$ find | grep -i NS16550
./drivers/serial/ns16550.c
./drivers/serial/ns16550.su
./drivers/serial/.ns16550.o.cmd
./drivers/serial/ns16550.o
./drivers/serial/serial_ns16550.c
./include/ns16550.h
./include/config/sys/ns16550.h
./spl/drivers/serial/ns16550.su
./spl/drivers/serial/serial_ns16550.o
./spl/drivers/serial/.ns16550.o.cmd
./spl/drivers/serial/ns16550.o
./spl/drivers/serial/serial_ns16550.su
./spl/drivers/serial/.serial_ns16550.o.cmd

That looks promising. At this point, we are especially interested in drawing the
connection to the UART device address 0x1c28000. Remember how we specified
PLAT=sun50i_a64 to the build system of U-Boot? The “sun50i_a64” has to refer to our
SoC. So let’s grep the source tree for any connection between “sun” and “NS16550”.

grep -r NS16550 | grep -i sun
...
include/configs/sunxi-common.h:# define CONFIG_SYS_NS16550_COM1 SUNXI_UART0_BASE
include/configs/sunxi-common.h:# define CONFIG_SYS_NS16550_COM2 SUNXI_UART1_BASE
...

Next stop, SUNXI_UART0_BASE:

grep -r SUNXI_UART0_BASE
...
arch/arm/include/asm/arch-sunxi/cpu_sun9i.h:#define SUNXI_UART0_BASE (REGS_APB1_BASE + 0x0000)
arch/arm/include/asm/arch-sunxi/cpu_sun4i.h:#define SUNXI_UART0_BASE 0x01c28000
...

Now seeing the address 0x01c28000, we know for certain that we are looking at the
right device and the corresponding driver code.

The next step consists of cross-checking several pieces of information. Searching the
web for “NS16550 pdf” brings up the data sheet for the device (http://caro.su/msx/
ocm_de1/16550.pdf). In contrast to SoC chip vendor documentation, data sheets of
individual IP cores like this are - if publicly available - usually of good quality. So we
are lucky. Glimpsing over the data sheet, we learn that the register at offset 0 is the
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so-called transmitter holding register (THR). We must write to this register to print a
character. It is interesting to see that all device registers are 8 bits wide. This raises the
question how those registers are mapped to system-bus addresses of the ARM SoC. The
answer can be found at the Allwinner A64 manual1 as linked by the Pine64 wiki. Here,
we learn that the individual registers are mapped to 32-bit aligned memory-mapped
I/O registers. Thus, the register offsets found in the NS16550 data sheet have to be
multiplied with 4. The THR register is of course mapped to offset 0. For cross-checking
this information, the U-Boot driver code at drivers/serial/ns16550.c becomes handy.

What has the NS16550 data sheet has to say about the THR register?

Before writing this register the user must ensure that the UART is
ready to accept data for transmission, for example checking that THR
Empty flag is set in the LSR

LSR stands for line status register. According to the data sheet, it is the 5th register.
Hence, it should be accessible at the ARM system bus at offset 5*4 = 0x14. We also learn
that the mentioned “Empty” flag hides behind bit 5 of the LSR.

20 bytes yelling “U” As a preliminary test, let’s try to unconditionally write the char-
acter U (ASCII value 0x55) to the THR register in an infinite loop. The corresponding C
program (saving the file as main.c) looks as follows:

int _start()
{
for (;;)

*(unsigned long *)0x1c28000 = ’U’;
}

Since we will ultimately have to use Genode’s tool chain very soon, now would be a
good time to install it2. The tool chain comes with AARCH64 support. All the utilities
can be found at /usr/local/genode/tool/current/bin/. One may consider adding this direc-
tory to the shell’s PATH variable to avoid the need for typing out this rather long path.
But that is just a matter of convenience.

The following invocation of GCC compiles our little C program into an ELF binary:

$ genode-aarch64-gcc -nostdlib main.c -o serial_test

1https://files.pine64.org/doc/datasheet/pine64/Allwinner_A64_User_Manual_V1.0.pdf
2https://genode.org/download/tool-chain
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The -nostdlib flag tells the compiler that we don’t want to link any C runtime or de-
fault startup code. Let’s inspect the result by disassembling the binary using objdump.

$ genode-aarch64-objdump -ld serial_test

serial_test: file format elf64-littleaarch64

Disassembly of section .text:

0000000000400000 <_start>:
_start():
400000: d2900000 mov x0, #0x8000 // #32768
400004: f2a03840 movk x0, #0x1c2, lsl #16
400008: d2800aa1 mov x1, #0x55 // #85
40000c: f9000001 str x1, [x0]
400010: 17fffffc b 400000 <_start>

Even though the instructions look quite alien to me (not being too familiar with the
AARCH64 ISA at this point), this looks very reasonable. It’s good that the generated
code does not rely on a stack pointer because we cannot assume to have a valid stack.
However, the link address 0x400000 is concerning because the RAM base address of
the A64 SoC is not lower than 0x40000000. Remember, when we looked at Linux’
/proc/iomem, we spotted the following line:

40000000-bdffffff : System RAM

So we will have to tweak the linker arguments a bit. From our experiments with U-
Boot, we learned that U-Boot’s default load address 0x42000000 lies within this range.
We can use the linker argument -Ttext to explicitly specify our desired link address
for the text (code) segment:

genode-aarch64-gcc -Wl,-Ttext=0x42000000 -nostdlib main.c -o serial_test

The -Wl, prefix is merely needed to tell the GCC frontend to pass the following
argument to the linker. With this tweak, the disassembled binary looks even better:
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Disassembly of section .text:

0000000042000000 <_start>:
_start():

42000000: d2900000 mov x0, #0x8000 // #32768
42000004: f2a03840 movk x0, #0x1c2, lsl #16
42000008: d2800aa1 mov x1, #0x55 // #85
4200000c: f9000001 str x1, [x0]
42000010: 17fffffc b 42000000 <_start>

The serial_test is a complete ELF binary with all kinds of meta data. For running
the instructions on the target, we either need an ELF loader (U-Boot can of course do
that for us) or we climb the hill barefoot. The latter gives us more control. So let’s
convert the ELF binary into a raw binary using objcopy.

genode-aarch64-objcopy -Obinary serial_test serial_test.img

We named the raw binary serial_test.img. Checking its size, it is quite thrilling to see
that it is just 20 bytes of pure usefulness! No overhead.

The next step would be fetching the image via U-Boot’s TFTP support. The TFTP
server running my development machine serves the directory /var/lib/tftpboot/. So we
have to copy our serial_test.img to this directory before turning to U-Boot’s console:

=> bootp 10.0.0.32:/var/lib/tftpboot/serial_test.img
BOOTP broadcast 1
BOOTP broadcast 2
BOOTP broadcast 3
DHCP client bound to address 10.0.0.178 (1100 ms)
Using ethernet@1c30000 device
TFTP from server 10.0.0.32; our IP address is 10.0.0.178
Filename ’/var/lib/tftpboot/serial_test.img’.
Load address: 0x42000000
Loading: #

4.9 KiB/s
done
Bytes transferred = 20 (14 hex)

It seems our program in its entirety reached its designated place. Now it’s time to
take a jump!

=> go 0x42000000
## Starting application at 0x42000000 ...
UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU...

31



2.3 Bare-metal serial output

The serial console gets flooded with U characters. What a joyful moment!
Let’s reiterate what we gained by this experiment:

• We know how to compile a custom C program into binary code that works on the
target.

• We successfully loaded our binary onto the target and passed control from the
boot loader to our code.

• We got a positive lifesign back from our code.

Evolving from primordial vocals to words Until now, we just violently poked the
THR register without listening for the status of the UART device. To make the program
utter words instead of merely vocals, this ignorance has to stop.

While modifying our program, we have to be careful to not using the stack. While
doing these iterative experiments, a little Makefile becomes handy, which prints the
disassembled program after each compilation:

CROSS_DEV_PREFIX := /usr/local/genode/tool/current/bin/genode-aarch64-

serial_test: main.c
$(CROSS_DEV_PREFIX)gcc -Wl,-Ttext=0x42000000 -nostdlib $< -o $@
$(CROSS_DEV_PREFIX)objdump -ld $@

serial_test.img: serial_test
$(CROSS_DEV_PREFIX)objcopy -Obinary $< $@

test: serial_test.img
cp $< /var/lib/tftpboot/

This little workflow tool not only makes life so much more convenient but it also
documents the use of the various commands for the future me. Since I regard it as a
mere personal tool of mine, I even don’t hesitate place commands like the copying of
the image to my TFTP directory in there. Now, by issuing make test, the command
takes all the steps of compiling, showing the assembly code, creating the raw binary,
and copying to the TFTP directory all at once.

Turning back to our actual program, the next baby step would be the output of a
string of characters instead of just one character, like so:
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static char const *text = "Aye aye.\n\r";
static char const *s;

for (;;)
for (s = text; *s; s++)

*(unsigned int volatile *)0x1c28000 = *s;

You may wonder why the variables text and s are marked as static? If I made them
local variables, which would normally be the better practice, the compiler would gen-
erate a stack frame. For example, by merely changing the for loop to the innocent
looking line

for (char const *s = text; *s; s++)

the corresponding assembly program will generate instructions changing and de-
referencing the stack-pointer register:

42000000: d10043ff sub sp, sp, #0x10
42000004: 90000080 adrp x0, 42010000 <_start+0x10000>
42000008: 91018000 add x0, x0, #0x60
4200000c: f9400000 ldr x0, [x0]
42000010: f90007e0 str x0, [sp, #8]
...

Since we don’t have a stack, this is a big no-no! The static keyword tells the com-
piler to statically allocate the variable at the data (or bss) segment of the binary. Speak-
ing of binary segments, for a bit of a shock, have a look at the binary size now:

$ ls -la serial_test.img
-rwxrwxr-x 1 no no 65640 Dez 17 15:30 serial_test.img

Isn’t that embarrassing? With our change, we inflated the binary size from 20 bytes
to more than 64 KiB. This effect is caused by our use of variables, which were com-
pletely absent in the initial version. The use of at least one variable prompts the compil-
er/linker to generate a data segment in addition to the text (code) segment. By default,
the linker places each segment at an aligned address using a default alignment. On
AARCH64, this default alignment is 64 KiB so that the segment always starts at the be-
ginning of a MMU page when using virtual memory. Because of this default behavior,
our few instructions are followed by almost 64 KiB of zeros before the variables start
at the next 64 KiB boundary. As of now, we don’t use any MMU. So we could in prin-
ciple weaken the default alignment. Just for reference, the GCC argument for defining
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a segment alignment of 16 bytes would be -Wl,-z -Wl,max-page-size=0x10. Voila!
The image shrunk from 64 KiB to less that 200 bytes. Well, I’ll stop the bean counting
for now and run this version of the program:

## Starting application at 0x42000000 ...
Aye aye.
Aye aye.
Aye aye.
Aye aye.
Aye aye.
Aye aye.
Ayeaaaaaaaaaaaaaaaaaaaa...

Figure 1

Even though we can see strings of characters, at one point, the output regresses to
primordial vocals again. This had to be anticipated since we don’t yet check the TX
status bit before writing a new character to the THR register. Interestingly, it worked
for a while, presumably as long as the capacity of the UART’s TX FIFO buffer could
swallow the characters.

By the way, while tinkering with devices at such a bare-bones level with almost no
infrastructure, an artificial delay can be accomplished as follows:

for (i = 0; i < 1000000; i++)
asm volatile("nop");
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By adding these lines to the body of the outer for loop, we can indeed observe stable
output. But that is of course just a hack. Let’s us better change the code to actually
evaluate the status bit.

int _start()
{
enum {
UART_BASE = 0x1c28000,

THR = UART_BASE,
LSR = UART_BASE + 0x14,

LSR_THRE = (1 << 5)
};

/* static is needed to prevent the compiler from creating a stack frame */
static char const *text = "Aye aye.";

for (;;) {

static char const *s;

for (s = text; *s; s++) {

/* poll ’TX Holding Register Empty’ bit */
while (((*(unsigned int volatile *)LSR) & LSR_THRE) == 0);

*(unsigned int volatile *)THR = *s;
}

}
}

Note the amount of lipstick I applied to the code.

• Adding a comment here and there.

• Grouping things with vertical whitespace.

• Using enum values to give magic values tangible names.

I agree that this may be a little excessive for such a temporary test program. But keep
in mind that I wrote it not for my present me, but for you, and my future me. Also note
that I removed the line break from the text, which has no reason other than making
the following picture more pretty.
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Figure 2: Infinite obedience

Thanks to listening to the UART’s TX status bit, the output has become reliable.
So now, we have a minimal and known-to-work blueprint for our upcoming kernel’s
UART driver. With this primitive way to get information out of the board, we can turn
our attention to the kernel-porting work, which is the topic of the next section.
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2.4 Kernel skeleton

Of the several kernels supported by the Genode OS framework, the so-called base-hw
kernel is our go-to microkernel for ARM-based devices. Section 7.7. “Execution on
bare hardware” of the Genode Foundations book goes into detail about its underlying
software design. This section describes the process of porting this kernel to a new
board, specifically the Pine-A64-LTS single-board computer.

Equipped with the bare-metal serial-output facility developed in the previous sec-
tion, we are eager to turn our attention to the kernel. Before attempting the porting of
the kernel to the new board, however, it is recommended to run it first on one of the al-
ready supported boards to have a working reference. In the case of the Pine-A64 board,
which is based on an Allwinner multi-core 64-bit ARM SoC, the closest approximation
would be the NXP i.MX8Q EVK board, which ticks the boxes ARM, multi-core, and
64-bit. At the very least, one should give the kernel a try using Qemu’s virtual pbxa9
board, which is a 32-bit platform. Even though this board has not much in common
with ours, it is still useful for seeing how the various bits and pieces described below
are supposed to work together.

2.4.1 A tour through the code base

The starting point of our line of work will be the existing board support for the i.MX8Q
EVK. To get an idea of the amount of work ahead of us, let’s examine the base-hw source
tree within Genode for occurrences of the board’s name. The search pattern “imx” is a
good start.

$ find repos/base-hw -type f | grep imx8
repos/base-hw/lib/mk/spec/arm_v8/core-hw-imx8q_evk.mk
repos/base-hw/lib/mk/spec/arm_v8/bootstrap-hw-imx8q_evk.mk
repos/base-hw/recipes/src/base-hw-imx8q_evk/hash
repos/base-hw/recipes/src/base-hw-imx8q_evk/content.mk
repos/base-hw/recipes/src/base-hw-imx8q_evk/used_apis
repos/base-hw/src/bootstrap/board/imx8q_evk/platform.cc
repos/base-hw/src/bootstrap/board/imx8q_evk/board.h
repos/base-hw/src/include/hw/spec/arm_64/imx8q_evk_board.h
repos/base-hw/src/core/board/imx8q_evk/board.h

We can ignore everything inside the recipes/ directory for now. This directory contains
package descriptions. We will come back to the packaging topic later. A grep -v hides
these files from our view.
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$ find repos/base-hw -type f | grep imx8 | grep -v recipes
repos/base-hw/lib/mk/spec/arm_v8/core-hw-imx8q_evk.mk
repos/base-hw/lib/mk/spec/arm_v8/bootstrap-hw-imx8q_evk.mk
repos/base-hw/src/bootstrap/board/imx8q_evk/platform.cc
repos/base-hw/src/bootstrap/board/imx8q_evk/board.h
repos/base-hw/src/include/hw/spec/arm_64/imx8q_evk_board.h
repos/base-hw/src/core/board/imx8q_evk/board.h

On the one hand, it is nice to see such a small number of files to be concerned about.
On the other hand, those files appear quite scattered throughout the source tree with
a deep hierarchy, which is a bit confusing. To lift the clouds, let’s have a look at the
source-tree structure.

imx/

lib/

mk/

spec/

arm_v8/

bootstrap-hw-imx8q_evk.mk

core-hw-imx8q_evk.mk

src/

include/

hw/

spec/

arm_64/

imx8q_evk_board.h

bootstrap/

board/

imx8q_evk/

platform.cc

board.h

core/

board/

imx8q_evk

board.h

The files appearing under lib/mk/ are build-description files for libraries. There are
two such files, having the file extension .mk. They are located in a sub directory called
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spec/arm_v8/, which means that the build system1 considers them only when building
for an instruction set architecture that matches ARMv8.

Distinction between bootstrap and core Given the set of files depicted above, we
can immediately spot two construction sites, namely “bootstrap” and “core”. The dis-
tinction between those two parts is illustrated in the following picture.

U-Boot

Bootstrap

Core / Kernel

Init
user mode

privileged mode

ELF load

ELF load

ELF load

MMU disabled

physical memory

MMU enabled

virtual memory

The bootstrap program is started by the boot loader while the CPU is running in
physical mode. The MMU is disabled at this point. Only one CPU - usually referred
to as the boot CPU - is active. Bootstrap is tasked with all the dirty and quirky work
needed in preparation to bring up the so-called core component. This involves board-
specific trickery like tweaking clocks and voltages, setting up the page tables for ex-
ecuting the core program in virtual memory, enabling the MMU, the initialization of
additional CPU cores, and the ELF-loading of the core ELF executable. Once these
steps are taken, bootstrap passes the control to the core component and ceases to exist.

The core component contains the microkernel executed in privileged mode. When
using Genode on a traditional microkernel like NOVA or seL4, core is the first user-
level program started by the kernel. It is usually called roottask. In contrast, when
using base-hw as we are going to do now, core and the kernel are one single program.
Core is the microkernel at the root of Genode’s component tree. Hence, in the following,
the terms core and kernel are used synonymously.

Core is executed with the MMU enabled. It is globally mapped at the upper part of
the virtual address space. To operate as the kernel, it contains basic drivers for the inter-
rupt controller, kernel timer (for preemptive scheduling), cache maintenance, and cross-
CPU synchronization. For the interplay with the user level components running on top

1https://genode.org/documentation/genode-foundations/20.05/development/Build_system.html
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of core, it features code paths for exiting the kernel into the user land and, vice versa, for
entering the kernel from the user land (syscalls, exceptions, interrupts). Functionality-
wise, it implements mechanisms for inter-component communication, asynchronous
notifications, physical-memory allocation, the management of virtual address spaces,
and the world-switching between virtual machines (if used as a hypervisor). In short,
everything a microkernel needs to do and - more importantly - nothing a microkernel
shouldn’t do.

Review of the board-specific code Before starting the work on the new board sup-
port, let us briefly look into each of the files for the existing i.MX8q EVK board. Gen-
ode’s support for the NXP i.MX family is hosted in the dedicated genode-imx reposi-
tory1. Let’s draw our attention to the files named after board.

repos/imx$ find | grep imx8q_evk

In the list of files, we spot three header files, one board.h header under src/boot-
strap/, one board.h header under src/core/, and one imx8q_evk_board.h header under
src/include/. The former two files are specific for bootstrap and core, whereas the latter
contains definitions useful for both programs. The board.h files are located in directories
named after the board. With this structure, generic (board-agnostic) code can #include
<board.h>. The build system picks the right board.h file by adding the board-specific
directory to the include-search path.

Let us start with with definitions used across bootstrap and core.

repos/imx/src/include/hw/spec/arm_64/imx8q_evk_board.h

1https://github.com/genodelabs/genode-imx
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#include <drivers/uart/imx.h>
#include <hw/spec/arm/boot_info.h>

namespace Hw::Imx8q_evk_board {
using Serial = Genode::Imx_uart;

enum {
RAM_BASE = 0x40000000,
RAM_SIZE = 0xc0000000,

UART_BASE = 0x30860000,
UART_SIZE = 0x1000,
UART_CLOCK = 250000000,

};

namespace Cpu_mmio {
enum {

IRQ_CONTROLLER_DISTR_BASE = 0x38800000,
IRQ_CONTROLLER_DISTR_SIZE = 0x10000,
IRQ_CONTROLLER_VT_CPU_BASE = 0x31020000,
IRQ_CONTROLLER_VT_CPU_SIZE = 0x2000,
IRQ_CONTROLLER_REDIST_BASE = 0x38880000,
IRQ_CONTROLLER_REDIST_SIZE = 0xc0000,

};
};

}

Both bootstrap and core need to know the memory-mapped device registers for the
UART device to print diagnostic messages. The UART driver (drivers/uart.imx.h) is in-
cluded. The Serial type refers to the concrete UART driver implementation as present
on the board. Thanks to this definition, generic code is able to rely on the UART func-
tionality via the type name Serial.

The start and size of physical memory must be known by both bootstrap and core.
So it is defined here.

Both bootstrap and core access the interrupt controller. Whereas bootstrap performs
the one-time initializations needed in order to start secondary CPU cores, core drives
the interrupt controller at runtime.

The bootstrap-specific files concern build descriptions and actual code. The build
description looks as follows.

repos/imx/lib/mk/spec/arm_v8/bootstrap-hw-imx8q_evk.mk
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REP_INC_DIR += src/bootstrap/board/imx8q_evk

SRC_CC += bootstrap/board/imx8q_evk/platform.cc
SRC_CC += bootstrap/spec/arm/gicv3.cc
SRC_CC += bootstrap/spec/arm_64/cortex_a53_mmu.cc
SRC_CC += lib/base/arm_64/kernel/interface.cc
SRC_CC += spec/64bit/memory_map.cc
SRC_S += bootstrap/spec/arm_64/crt0.s

NR_OF_CPUS = 4

vpath spec/64bit/memory_map.cc $(call select_from_repositories,src/lib/hw)

vpath bootstrap/% $(REP_DIR)/src

include $(call select_from_repositories,lib/mk/bootstrap-hw.inc)

The i.MX8 SoC uses the GICv3 as interrupt-controller. Hence, the driver gicv3.cc is
included. In contrast, as we learned from the Linux boot log, the Allwinner A64 SoC
uses the GICv2 interrupt controller.

The MMU driver differs between the various ARM versions. The i.MX8 is based on
A53 CPU cores. The Allwinner A64 uses the same.

The assembly file arm_64/crt0.s contains the entry point into the program as jumped
to by the boot loader.

The NR_OF_CPUS definition is used for the static allocation of data structures that
must be present for each CPU. Hence, this value is globally defined.

The strange looking $(call select_from_repositories...) is a mechanism for
accessing files across different source repositories. You can find the mechanism de-
scribed in Section 5.3. “Build system” in the Genode Foundations book.

repos/imx/src/bootstrap/board/imx8q_evk/board.h
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#include <hw/spec/arm_64/imx8q_evk_board.h>
#include <hw/spec/arm_64/cpu.h>
#include <hw/spec/arm/gicv3.h>
#include <hw/spec/arm/lpae.h>

namespace Board {
using namespace Hw::Imx8q_evk_board;

struct Cpu : Hw::Arm_64_cpu
{

static void wake_up_all_cpus(void*);
};

using Hw::Pic;
}

The Board namespace aggregates the knowledge of the board details that matter to
the bootstrap code, namely the specific interrupt controller (gicv3.h) and the decla-
ration of the wake_up_all_cpus function. The Board namespace hosts the Pic (pro-
grammable interrupt controller) type, which allows the generic code of bootstrap to
interact with the interrupt controller without knowing the exact type of device.

repos/imx/src/bootstrap/board/imx8q_evk/platform.cc

Bootstrap::Platform::Board::Board()
:
early_ram_regions(Memory_region { ::Board::RAM_BASE, ::Board::RAM_SIZE }),
late_ram_regions(Memory_region { }),
core_mmio(Memory_region { ::Board::UART_BASE, ::Board::UART_SIZE },

Memory_region { ::Board::Cpu_mmio::IRQ_CONTROLLER_DISTR_BASE,
::Board::Cpu_mmio::IRQ_CONTROLLER_DISTR_SIZE },

Memory_region { ::Board::Cpu_mmio::IRQ_CONTROLLER_REDIST_BASE,
::Board::Cpu_mmio::IRQ_CONTROLLER_REDIST_SIZE })

{
::Board::Pic pic {};

... incomprehensible magic spells, some gibberish about GPIO, CCM, PLL ...
}

void Board::Cpu::wake_up_all_cpus(void * ip)
{

... more magic spells, digressing into assembly code ...
}
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The early_ram_regions, late_ram_regions, and core_mmio data structures are
initialized with the known ranges of physical memory and memory-mapped I/O reg-
isters. This information is designated to be passed further to core.

The call of ::Board::Pic pic ; performs basic interrupt-controller initialization
that is needed only once. It is followed by a sequence of board-specific tweaks to bring
the board into a defined state for the kernel to rely on. For instance, setting the I/O
MUX configuration, default voltages, and frequencies. The U-boot boot loader already
does a fine job for establishing a base line but it is rather conservative. The code for the
i.MX8 EVK boosts the voltages and frequencies for improving the performance.

The wake_up_all_cpus call invokes a hook to enable secondary CPU cores. The
used mechanism varies from board to board, specifically depending on the operation
of the ARM Trusted Firmware. We have to brace ourself for some investigation once
we look into multi-processor support. At the beginning, however, we will use only the
boot CPU. So we can ignore this function for now.

Finally, let’s turn our attention to the core-specific files.

repos/imx/lib/mk/spec/arm_v8/core-hw-imx8q_evk.mk

REP_INC_DIR += src/core/board/imx8q_evk
REP_INC_DIR += src/core/spec/arm/virtualization

# add C++ sources
SRC_CC += kernel/vm_thread_on.cc
SRC_CC += spec/arm/gicv3.cc
SRC_CC += spec/arm_v8/virtualization/kernel/vm.cc
SRC_CC += spec/arm/virtualization/platform_services.cc
SRC_CC += spec/arm/virtualization/vm_session_component.cc
SRC_CC += vm_session_common.cc
SRC_CC += vm_session_component.cc

#add assembly sources
SRC_S += spec/arm_v8/virtualization/exception_vector.s

NR_OF_CPUS = 4

# include less specific configuration
include $(call select_from_repositories,lib/mk/spec/arm_v8/core-hw.inc)

Core needs to know the type of the interrupt controller because it processes interrupts
at runtime. Here, the GICv3 driver is incorporated.

Similar to bootstrap, a few data structures within core are statically allocated for each
CPU, hence the NR_OF_CPUS must be specified here as well.
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We can ignore the files with vm_* and virtualization in their names for now. They
are important for hosting virtual machines. Since the virtualization support is a generic
feature of the ARM CPU, we don’t have to take board-specific precautions.

repos/imx/src/core/board/imx8q_evk/board.h

#include <hw/spec/arm_64/imx8q_evk_board.h>
#include <spec/arm/generic_timer.h>
#include <spec/arm/virtualization/gicv3.h>
#include <spec/arm_v8/cpu.h>
#include <spec/arm_64/cpu/vm_state_virtualization.h>
#include <spec/arm/virtualization/board.h>

namespace Board {
using namespace Hw::Imx8q_evk_board;

enum {
TIMER_IRQ = 14 + 16,
VT_TIMER_IRQ = 11 + 16,
VT_MAINTAINANCE_IRQ = 9 + 16,
VCPU_MAX = 16

};
}

In addition to the aggregation of headers matching the board and SoC - like the
generic timer driver - we see the definitions of just the few interrupt numbers that are
important to core. The kernel is completely oblivious about all other peripheral devices.

The VCPU_MAX definition is solely used for the dimensioning of an array that keeps
the state of virtual CPUs for virtual machine. It is not important for now.

2.4.2 A new home for the board support

The easiest way to add support for a new board is the mirroring of the files introduced
above. We could march forward with adding new files and directories to a new branch
of the Genode repository. Alternatively, the Genode build system allows us to host
our custom board-specific files in a dedicated source repository that we can maintain
independently from the Genode main repository. The latter approach has the following
advantages.

First, it reinforces a clean separation between board-specific code from generic Gen-
ode code. In particular, the segregation of code constricts the working set of files relevant
for a given board, keeping only important code in view.

Operationally, it allows the decoupling of code ownership in terms of responsibility,
quality assurance, licensing hygiene, development process, and the choice of source
hosting.
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Finally, it alleviates the pressure to agree on one big joint code base, removing poten-
tial points of friction between developers.

In the following, we will put our code into a new repository named allwinner.

mkdir repos/allwinner

In principle, the directory can be anywhere but I find it practical to host it under the
repos directory of the Genode source tree. One may also opt to use a symlink, e. g.,
repos/allwinner pointing to ~/src/genode-allwinner.git.

We need to come up with with a concise name for our board support. Throughout
Genode, we follow certain naming conventions. In particular, we use underscore _ for
tightly coupled words, and minus - for loosely coupled terms. For example, in the file
name core-hw-imx8q_evk.mk, “imx8q_evk” belong closely together whereas the words
“core” and “hw” are used as some kind of category (read: the “core” component for the
“hw” kernel for the “imx8q_evk” board). With the background of these conventions,
the board name pine_a64lts seems sensible. Specific enough while still concise.

For the initial content from our new allwinner repository be blatantly mirror the files
of the base-hw repository.
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At the current stage, we are concerned about getting the build process right. To
concentrate at this one thing at a time, let us pretend that the Pine-A64-LTS board works
equal to the i.MX8 EVK. We don’t mind that the technicalities copied from the existing
board don’t match our new board until we run the code on the board. That said, as
the build-description files (those with the mk suffix) steer the build process, they must
be made consistent with our directory structure. So we have to revisit those files while
looking out for the pattern imx8q_evk.

A look into lib/mk/spec/arm_v8/bootstrap-hw-pine_a64lts.mk reveals the following line:

REP_INC_DIR += src/bootstrap/board/imx8q_evk

We have to replace it with

REP_INC_DIR += src/bootstrap/board/pine_a64lts
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Similarly, allwinner/lib/mk/spec/arm_v8/core-hw-pine_a64lts.mk contains the line:

REP_INC_DIR += src/core/board/imx8q_evk

This must be changed to

REP_INC_DIR += src/core/board/pine_a64lts

System-integration dry-run Let us see how the Genode build system swallows - or
chokes on - our new board support. First, we need a build directory for the ARMv8
architecture.

$ ./tool/create_builddir arm_v8a
Successfully created build directory at /.../genode/build/arm_v8a.
Please adjust /.../genode/build/arm_v8a/etc/build.conf according to your needs.

As suggested, we open build/etc/build.conf in our favorite text editor. Normally, I
enable parallel builds by uncommenting the corresponding line right at the beginning
of the file. But for now, let us keep it disabled until the skeleton builds successfully. The
steps of the build system are easier to follow if it operates deterministically.

We need to extend the REPOSITORIES variable with the path to our custom repository.
For the allwinner repository, that would be following line:

REPOSITORIES += $(GENODE_DIR)/repos/allwinner

Note that the order of REPOSITORIES defines the search order of the build system
for files. If the allwinner repository should be able to override content of the other
repositories, specifically base-hw, the above line should appear before the others.

With these changes in place, we can issue the build of bootstrap for new board.

$ cd build/arm_v8a
$ make bootstrap/hw KERNEL=hw BOARD=pine_a64lts
...
Library bootstrap-hw-pine_a64lts
...
MERGE bootstrap-hw-pine_a64lts.lib.a

Program bootstrap/hw/bootstrap_hw_pine_a64lts

The result can be found in the sub directory bootstrap/hw/. We find a single object file
named bootstrap-hw-pine_a64lts.o along with a stripped version of this file.

Likewise, core for the base-hw kernel and the new board can be built as follows.
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$ make core KERNEL=hw BOARD=pine_a64lts
...
MERGE core-hw-pine_a64lts.lib.a

Program core/hw/core_hw_pine_a64lts

Similar to the build of bootstrap, we can find the result at the corresponding subdi-
rectory, here core/hw/. We find a single archive file named core-hw-pine_a64lts.a along
with a stripped version of this file.

Next up, we are going to build a system image that contains both core and bootstrap.
Now would be a good time to enable parallel builds. Edit the etc/build.conf file by un-
commenting the following line (removing the hash # character).

#MAKE += -j4

One may also opt to write the BOARD and KERNEL arguments directly into the
build.conf file as illustrated by the commented-out examples. This spares the need to
specify the arguments each time when issuing a build command.

A system image contains bootstrap, core, and additional boot modules. The first
two puzzle pieces are already in place. But what about the boot modules? In contrast
to bootstrap and core, which are always the same for each system scenario, the boot
modules vary between system scenarios. Genode system scenarios are defined in the
form of run scripts. The run script at repos/base/run/log.run is a good starting point. As
defined by this particular run script, the system image for the “log” system scenario
is comprised of core, init, ld.lib.so, init, and test-log in addition to a configuration. A
system image (image.elf) for this scenario would look like this:
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image.elf

Executable
bootstrap/hw/bootstrap-hw-pine_a64lts.o

Executable
core/hw/core-hw-pine_a64lts.a

var/run/log.boot_modules.o

core.elf

config
init
ld.lib.so
test-log

Genode’s run tool automates the process of assembling such Matryoshkas from the
various pieces. Let’s give it a try:

$ make run/log KERNEL=hw BOARD=pine_a64lts
...
... long sequence of compile steps
...
genode build completed
using ’ld-hw.lib.so’ as ’ld.lib.so’
core link address is 0xffffffc000000000

Error: unknown image link address

File board/pine_a64lts/image_link_address not present in any repository.

Makefile:329: recipe for target ’run/log’ failed

This message should prompt us to have closer look at the run tool.

$ cd genode
$ grep -r "unknown image link address" tool
tool/run/boot_dir/hw: puts stderr "\nError: unknown image link address\n"

The file tool/run/boot_dir/hw is the part of the run tool that defines the integration of a
system image from its parts for the base-hw kernel. It is worth skimming over the file to
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get a rough understanding of how the system image is assembled from its ingredients.
The error message above comes from the function bootstrap_link_address called
during the system-image integration step.

The link address is evaluated by the boot loader when loading the system image as
ELF binary. It defines the start of the text segment of the system image in physical
memory. As the physical memory layout differs between SoCs and boards, we must
provide a value that is suitable for the memory layout of the Pine-A64-LTS board. From
looking at Linux’ /proc/iomem, we remember that the system RAM of our board starts at
0x40000000.

As indicated by the error message above, the run tool expects to find the link address
in a file called board/pine_a64lts/image_link_address. Let’s create such a file with a sensible
value. It is common practice to leave some room at the very beginning of the memory,
which is often occupied by the boot loader. It is usually fine to link the system image to
64 KiB after the start of the physical memory.

$ cd allwinner
$ mkdir -p board/pine_a64lts
$ echo 0x40010000 > board/pine_a64lts/image_link_address

With the link address defined, another attempt to build the system image for the
log scenario succeeds. The result can be found in the build directory’s var/run/ sub
directory:

$ find var/run
var/run
var/run/log.boot_modules.o
var/run/log
var/run/log/boot
var/run/log/boot/image.elf
var/run/log.core
var/run/log.bootstrap
var/run/log.config

The most interesting file is certainly var/run/log/boot/image.elf, which is the final sys-
tem image. To quickly validate the link address, let’s check the ELF entrypoint.

$ readelf -a var/run/log/boot/image.elf | grep Entry
Entry point address: 0x40010000

The value looks familiar. While we are at it, the other files are also worth inspecting.
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var/run/log.boot_modules.o is an aggregate of all boot modules of the system sce-
nario.

var/run/log.core is an ELF binary of core without the boot modules. The binary con-
tains all debug information. This is handy for debugging the core component. For
example, using this binary, the instruction pointer of a page fault within core can
be related to the matching source code using objdump.

var/run/log.bootstrap is an ELF binary of the bootstrap code without core and the
boot modules. As for the core log.core binary, it is handy for debugging the boot-
strap code.

var/run/log.config is the config boot module passed to the initial init component. It
corresponds to the snippet passed the install_config function as found in the
log.run script.

By the way, one may prefer booting a uImage instead of an ELF image because a uIm-
age is compressed using gzip by default, which reduces the boot time. The run tool
supports that via the argument -include image/uboot. One can either extend the
RUN_OPT variable by adding a corresponding line to etc/build.conf or pass the option
to the make command line:

$ RUN_OPT=’--include image/uboot’ make run/log BOARD=pine_a64lts KERNEL=hw

After completing the build, the uImage file can be found at var/run/log/uImage.
This is not magic. At this point, I recommend taking a look at the run tool’s snippets

located at tool/run/. In particular, tool/run/image/uboot contains the sequence of com-
mands used for generating the uImage from the ELF image.

2.4.3 Getting to grips using meaningful numbers

The faux system image that we just created contains information cowardly copied from
the imx8q_evk board, and which certainly mismatches the pine_a64lts board. So let’s
revisit the files in our repository one by one and look out for any numbers. Numbers
are important. According to my experience, hexadecimal numbers are especially im-
portant. Don’t forget to squinch your eyes when looking at them. Change them with
caution.
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$ cd repos/allwinner
$ find -type f
./lib/mk/spec/arm_v8/bootstrap-hw-pine_a64lts.mk
./lib/mk/spec/arm_v8/core-hw-pine_a64lts.mk
./board/pine_a64lts/image_link_address
./src/bootstrap/board/pine_a64lts/platform.cc
./src/bootstrap/board/pine_a64lts/board.h
./src/include/hw/spec/arm_64/pine_a64lts_board.h
./src/core/board/pine_a64lts/board.h

lib/mk/spec/arm_v8/bootstrap-hw-pine_a64lts.mk

The following line catches our attention:

SRC_CC += bootstrap/spec/arm/gicv3.cc

The i.MX8 SoC uses ARM’s Generic Interrupt Controller version 3 (GICv3). From
booting Linux on the Pine-A64 board, we learned that the Allwinner SoC uses the GIC
version 2. Fortunately, the base-hw kernel supports both versions. So we can change
the line to:

SRC_CC += bootstrap/spec/arm/gicv2.cc

The NR_OF_CPUS value can stay unmodified because the Allwinner SoC has 4 cores.

lib/mk/spec/arm_v8/core-hw-pine_a64lts.mk

We merely also have to adjust the GIC version from 3 to 2.

src/bootstrap/board/pine_a64lts/platform.cc

The file contains a lot of i.MX8Q-specific initialization steps like tweaking clocks
and voltages. We can remove this code without looking back. The body of the
Bootstrap::Platform::Board constructor can be reduced to the mere initialization
of the interrupt controller:

{
::Board::Pic pic { };

}

The list of memory regions passed to the core_mmio member can be pruned to the
single entry for the UART. The other entries that refer to the IRQ controller should be re-
moved because they refer to the wrong version of the GIC anyway. We will supplement
the proper regions for the GICv2 later, once we turn our attention to interrupts.
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core_mmio(Memory_region { ::Board::UART_BASE, ::Board::UART_SIZE })

At this point, I am admittedly unsure about the wake_up_all_cpus implementation,
in particular whether the opcode of the CPU_ON smc instruction would match. I guess
not. We will come to multi-processor support at a later stage. So let’s better remove the
uncertainty by reducing the implementation to

void Board::Cpu::wake_up_all_cpus(void *) { }

src/bootstrap/board/pine_a64lts/board.h

We see several things that cry for adjustment.

• Updating the include guards

• Including the correct board definitions by replacing

#include <hw/spec/arm_64/imx8q_evk_board.h>

by

#include <hw/spec/arm_64/pine_a64lts_board.h>

• Incorporating the GICv2 driver instead of the GICv3 driver by changing

#include <hw/spec/arm/gicv3.h>

to

#include <hw/spec/arm/gicv2.h>

• Defining the C++ type Pic such that it refers to the Hw::Gicv2 driver:

using Pic = Hw::Gicv2;

src/include/hw/spec/arm_64/pine_a64lts_board.h

To our despair, the file is full of numbers.

• It includes the driver for the UART used for printing debug messages. Of course,
the specified drivers/uart/imx.h driver won’t work. While experimenting with
the bare-metal serial output, we have learned that the Allwinner SoC uses a
NS16550 UART controller. Let us pretend having a driver by changing the line to
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#include <drivers/uart/ns16550.h>

• The board-specific name space should reflect the name of our board:

namespace Hw::Pine_a64lts_board {

• We want the C++ type Hw::Serial to refer to our hypothetical NS16550 driver.

using Serial = Genode::Ns16550_uart;

• The RAM_BASE and RAM_SIZE values must match those we found from the
look at Linux /proc/iomem.

RAM_BASE = 0x40000000,
RAM_SIZE = 0x7e000000,

• We already have found known-good values for UART_BASE and UART_SIZE
during our bare-metal serial output experimentation. The UART_CLOCK value
won’t be needed in our case. So we define it as zero.

UART_BASE = 0x1c28000,
UART_SIZE = 0x1000,
UART_CLOCK = 0,

• The IRQ_CONTROLLER_REDIST_BASE and SIZE are not used for the GICv2. So
the values can be removed.

• The values for IRQ_CONTROLLER_DISTR_BASE and SIZE as well as VT_CPU_BASE
and SIZE will become important once we will turn our attention to the interrupt
controller. But this is not today. So we keep the existing numbers, keeping in
mind that they won’t work.

• When using the GICv2, we need to add the definition of IRQ_CONTROLLER_CPU_BASE
and VT_CTRL_BASE. Until we use interrupts, we can pick an arbitrary number.
To display good manners, let’s leave the lowest 12 bits to zero, pretending that
each device resource starts at a page boundary.

IRQ_CONTROLLER_CPU_BASE = 0xaaaaa000,
IRQ_CONTROLLER_VT_CTRL_BASE = 0xbbbbb000,

55



2.4 Kernel skeleton

/src/core/board/pine_a64lts/board.h

The file contains mostly interrupt numbers. We will turn our attention to interrupts
later. Let’s not touch them for now because we cannot validate the values anyway at
this point. Apart from these numbers, a few adjustments must be made.

• Updating the include guard

• Including the board definitions from pine_a64lts_board.h

• Adjusting the GIC version of the included header from gicv3.h to gicv2.h

• Importing the board-specific namespace Hw::Pine_a64lts_board

To wrap up this step, let’s check if we missed any leftover by grepping for remaining
occurrences of patterns like “imx” or “gicv3”.

$ grep -ri imx repos/allwinner

Now would also be a good time to revisit the file headers, updating the information
about the author, creation date, brief description, and copyright. Should the code be
considered to eventually become part of the Genode upstream project at some point, it
is sensible to leave the license disclaimer as is, clarifying that the code is designated be
a part of the Genode OS framework.

UART driver for bootstrap and core The next attempt to build the system image for
the log scenario fails predictably:

$ make run/log KERNEL=hw BOARD=pine_a64lts
...

COMPILE core_region_map.o
In file included from /.../repos/allwinner/src/core/board/pine_a64lts/board.h:17,

from /.../repos/base-hw/src/core/platform.h:37,
from /.../repos/base-hw/src/core/core_region_map.cc:18:

/.../repos/allwinner/src/include/hw/spec/arm_64/pine_a64lts_board.h:17:10:
fatal error: drivers/uart/ns16550.h: No such file or directory

#include <drivers/uart/ns16550.h>
^~~~~~~~~~~~~~~~~~~~~~~~

We can find a number of blueprints for our new UART driver at repos/base/include/-
drivers/uart/. By following the lines of the existing drivers and combining our knowl-
edge from the bare-metal serial experiments, we can come up with the following little
driver placed at allwinner/include/drivers/uart/ns16550.h.
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#include <util/mmio.h>

namespace Genode { class Ns16550_uart; }

class Genode::Ns16550_uart : Mmio
{
private:

struct Thr : Register<0x00, 32>
{
struct Data : Bitfield<0,8> { };

};

struct Lsr : Register<0x14, 32>
{
struct Thr_empty : Bitfield<5,1> { };

};

public:

Ns16550_uart(addr_t const base, uint32_t, uint32_t) : Mmio(base) { }

void put_char(char const c)
{
while (read<Lsr::Thr_empty>() == 0);

write<Thr::Data>(c);
}

};

Like all drivers dedicatedly developed for Genode, it uses Genode’s Register API to
safely access bits of memory-mapped I/O registers. You can find the API described in
Section 8.18 “Utilities for user-level device drivers” in the Genode-Foundations book.

Climbing the mountain step by step We are almost there. On our walk, we repeat-
edly try to build the system image, look at the compiler and linker errors, fix them, and
repeat.
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$ make run/log KERNEL=hw BOARD=pine_a64lts
...
COMPILE bootstrap/spec/arm/gicv2.o

/.../repos/base-hw/src/bootstrap/spec/arm/gicv2.cc:
In constructor ’Hw::Gicv2::Gicv2()’:

/.../repos/base-hw/src/bootstrap/spec/arm/gicv2.cc:23:28:
error: ’NON_SECURE’ is not a member of ’Board’

bool use_group_1 = Board::NON_SECURE &&
^~~~~~~~~~

The interrupt-controller driver apparently needs to distinguish the cases where the
kernel is running in the so-called “secure world” or “normal world” of ARM Trust-
Zone. If you want to learn more about schizophrenia as a feature of ARM processors,
let me point you to our article on ARM TrustZone1. Admittedly, I’m not completely
sure about which of both worlds are executing our kernel. But it is probably safe to
assume that the boot process switches to the normal world before loading and starting
our system image. So we add the definition of NON_SECURE to allwinner/src/boot-
strap/board/pine_a64lts/board.h.

namespace Board {
...
static constexpr bool NON_SECURE = true;

}

The next slope on our way up the hill:

$ make run/log KERNEL=hw BOARD=pine_a64lts
...
MERGE bootstrap-hw-pine_a64lts.lib.a

/.../genode-aarch64-ar: bootstrap/board/pine_a64lts/platform.o:
No such file or directory

/.../repos/base/mk/lib.mk:180: recipe for target
’bootstrap-hw-pine_a64lts.lib.a’ failed

We have to guide the build system to consider source files in the allwinner repository,
by adding the following line to lib/mk/spec/arm_v8/bootstrap-hw-pine_a64lts.mk.

vpath bootstrap/% $(REP_DIR)/src

1https://genode.org/documentation/articles/trustzone
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Next try. This time, we get a link error:

/.../aarch64-none-elf/bin/ld: debug/core-hw-pine_a64lts.a(cpu.o):
in function ‘Board::Pic::Pic()’:

/.../repos/base-hw/src/core/spec/arm/virtualization/gicv2.h:22:
undefined reference to ‘Board::Pic::Gich::Gich()’

It turns out that the virtualization-related parts of the GICv2 driver reside in a distinct
compilation unit located at base-hw/src/core/spec/arm/virtualization/gicv2.cc, which is not
yet included in the build description for core. We have to add the following line to
allwinner/lib/mk/spec/arm_v8/core-hw-pine_a64lts.mk.

SRC_CC += spec/arm/virtualization/gicv2.cc

With these minor obstacles addressed, we get a system image that should largely be
compatible with our board. The urge to try out the freshly baked system image on the
board is strong. Why not?

2.4.4 A first life sign of the kernel

Testing the system image on the board comes down to the following few steps.

1. Make sure to build the uImage using the image/uboot RUN_OPT.

$ RUN_OPT=’--include image/uboot’ make run/log BOARD=pine_a64lts KERNEL=hw

2. Copy the uImage from build/arm_v8a/var/run/log/uImage to the TFTP directory. In
my case, that is /var/lib/tftpboot/.

3. Boot the board and use U-Boot’s bootp and bootm commands to load the uImage
via TFTP and start it.
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=> bootp 10.0.0.32:/var/lib/tftpboot/uImage
BOOTP broadcast 1
BOOTP broadcast 2
BOOTP broadcast 3
DHCP client bound to address 10.0.0.178 (1121 ms)
Using ethernet@1c30000 device
TFTP from server 10.0.0.32; our IP address is 10.0.0.178
Filename ’/var/lib/tftpboot/uImage’.
Load address: 0x42000000
Loading: #############################################################

2.7 MiB/s
done
=> bootm
## Booting kernel from Legacy Image at 42000000 ...

Image Name:
Image Type: AArch64 Linux Kernel Image (gzip compressed)
Data Size: 887610 Bytes = 866.8 KiB
Load Address: 40010000
Entry Point: 40010000
Verifying Checksum ... OK
Uncompressing Kernel Image

Starting kernel ...

Error: Assertion failed: id < _count && _cpus[id].constructed()
Error: File: /.../repos/base-hw/src/core/kernel/cpu.cc:205
Error: Function: Kernel::Cpu& Kernel::Cpu_pool::cpu(unsigned int)

The excitement is real! That’s the first life sign of Genode’s kernel! We get three
satisfactory results at once. First, our custom Ns16550_uart driver is working, as ev-
idenced by the beautifully formatted error messages. So we did not mess up any of
the important numbers there. Second, in contrast to the archaic experiments with the
bare-metal serial output, which did not even use a stack, we can now enjoy the comfort
of Genode’s C++ runtime. We don’t feel like living in a cave any longer.
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2.5 Low-level debugging

Some kids from the city once told me about programs called “debuggers”. They also
use a technology named “green light” to cross the streets. City kids. As we are still far
away from urban territory, we are in need of the rural ways of debugging. What are
our options?

Remember, at the end of the previous section, we were greeted with the first life sign
of the kernel:

Error: Assertion failed: id < _count && _cpus[id].constructed()
Error: File: /.../repos/base-hw/src/core/kernel/cpu.cc:205
Error: Function: Kernel::Cpu& Kernel::Cpu_pool::cpu(unsigned int)

This raises the questions: What is the trouble about? How did we get there? What
went wrong? Thankfully, the message gives us a concrete reference to the code cpu.cc
at line 205.

Cpu & Cpu_pool::cpu(unsigned const id)
{

assert(id < _count && _cpus[id].constructed());
return *_cpus[id];

}

By looking at this code, I’m tempted to draw the connection to the corners we cut
regarding the Board::Cpu::wake_up_all_cpus method, which we deliberately left
empty. But let us leave this speculation for later.

To get hold of the situation, it is useful to know which part of the condition fails.
This can be revealed by adding the following instrumentation at the beginning of the
method.

Genode::log("cpu: id=", id, " _count=", _count, " "
"constructed=", _cpus[id].constructed());

The Genode::log function is declared in the base/log.h header. Note that it relies on
a fair bit of framework infrastructure such as synchronization primitives. In desper-
ate situations during the debugging of lowest-level framework code, the Genode::raw
function can become handy as a drop-in replacement. In contrast to log, the raw func-
tion relies on less infrastructure. In practice, I use log by default and raw as last resort.
After rebuilding the system image and rebooting the board, it turns out that the log
function works well at this point.
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...
cpu: id=0 _count=4 constructed=0
Error: Assertion failed: id < _count && _cpus[id].constructed()

The instrumentation tells us that the first element of the _cpus array has not been
properly constructed. But how to find out why? We ultimately need to know the call
chain that led to execution of the Cpu_pool::cpu method.

2.5.1 Option 1: Walking the source code

The most obvious approach is studying the source code, and determining the immedi-
ate callers of the method using grep.

repos/base-hw$ grep -r "\<cpu("

Unfortunately, “cpu” is a pretty bad pattern to grep for. It is too generic. However,
we know that the code in question must reside inside repos/base-hw/ and can thereby
restrict the search to only this part of the source tree. Furthermore, by using “
mbox<" (match only the start of a word) and appending "(" to the pattern (as expected
at the caller site), we can narrow down the number of matches to a useful level.

src/test/cpu_quota/main.cc: env.cpu()),
src/test/cpu_quota/main.cc: Cpu_session::Quota quota = env.cpu().quota();
src/core/spec/arm_v8/virtualization/kernel/vm.cc: _vcpu_context(cpu_pool().cpu(cpu))
src/core/spec/arm_v8/virtualization/kernel/vm.cc: affinity(cpu_pool().cpu(cpu));
src/core/spec/arm_v7/virtualization/kernel/vm.cc: _vcpu_context(cpu_pool().cpu(cpu))
src/core/spec/arm_v7/virtualization/kernel/vm.cc: affinity(cpu_pool().cpu(cpu));
src/core/kernel/kernel.cc: Cpu &cpu = cpu_pool().cpu(Cpu::executing_id());
src/core/kernel/cpu_mp.cc: Irq(Board::Pic::IPI, cpu), cpu(cpu)
src/core/kernel/cpu.h: Cpu & cpu(unsigned const id);
src/core/kernel/cpu.h: Cpu & primary_cpu() { return cpu(Cpu::primary_id()); }
src/core/kernel/cpu.h: Cpu & executing_cpu() { return cpu(Cpu::executing_id()); }
src/core/kernel/cpu.h: for (unsigned i = 0; i < _count; i++) func(cpu(i));
src/core/kernel/cpu.cc:Cpu & Cpu_pool::cpu(unsigned const id)
src/core/kernel/cpu_up.cc:Kernel::Cpu::Ipi::Ipi(Kernel::Cpu & cpu) : ...
src/core/kernel/cpu_context.h: void cpu(Cpu &cpu) { _cpu = &cpu; }
src/core/kernel/thread.cc: Cpu & cpu = cpu_pool().cpu(user_arg_2());

From these results, we can immediately disregard the lines referring to src/test/. Also
the virtualization-related matches are most likely not of interest. When inspecting the
remaining lines, the number of potential callers comes down to 5:
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src/core/kernel/kernel.cc: Cpu &cpu = cpu_pool().cpu(Cpu::executing_id());
src/core/kernel/cpu.h: Cpu & primary_cpu() { return cpu(Cpu::primary_id()); }
src/core/kernel/cpu.h: Cpu & executing_cpu() { return cpu(Cpu::executing_id()); }
src/core/kernel/cpu.h: for (unsigned i = 0; i < _count; i++) func(cpu(i));
src/core/kernel/thread.cc: Cpu & cpu = cpu_pool().cpu(user_arg_2());

With such a low amount of callers, we can apply brute force by adding the following
line just before each call.

Genode::log(__FILE__, ":", __LINE__);

The compiler replaces __FILE__ with a string of the file name of the source code and
__LINE__ with a string of the line number where __LINE__ appears within the source
file. Another useful magic macro is __PRETTY_FUNCTION__, which expands to the name
of the surrounding function.

After rebooting the board with the instrumentations in place, we see the origin of the
call:

/.../repos/base-hw/src/core/kernel/kernel.cc:25

A look at the surrounding code reveals that the function call originates from a func-
tion called kernel:

extern "C" void kernel()
{
...
Cpu &cpu = cpu_pool().cpu(Cpu::executing_id());
...

}

You might guess what’s next?

repos/base-hw$ grep -r "\<kernel(" *

There is only one caller, which is at src/core/kernel/init.cc and brings the kernel_init
function to our attention.

Granted, this step-wise instrumentation may feel a bit like chopping wood with a nail
clipper. But I sometimes enjoy the process anyway. By following call chains in reverse
by browsing and instrumenting the code, one develops some kind of peripheral vision
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for the code around the call path, which fosters the sense of familiarity with the code
base.

Of course, using grep manually as described above may be too archaic for your taste.
There exist plenty of dedicated tools (like ctags, cscope) and IDEs for aiding source-
code discovery after all. Personally, I prefer simple tools. As a small life hack, I have
put the following snippet in my Vim configuration:

nnoremap <leader>g :execute
\ "grep! -R -I --exclude-dir=.git

\ --exclude=*.orig
\ --exclude=.*.swp
\ --exclude=*.rej
\ --exclude=*~ "
\ . shellescape("\\<" . expand("<cword>") . "\\>")
\ . " ."<cr>:copen<cr><cr>

Similar to how the * and # commands search for the word under the cursor in the
current buffer, the <leader>g command above allows me to grep the word under the
cursor in the source tree and presents the results in a quickfix window. So I can quickly
jump to each occurrence and travel across source files like a poor man’s hypertext sys-
tem.

That all said, once when ending up in a situation with many callers, the approach
of manually instrumenting all caller sites becomes a nuisance, which leads us to the
second option.

2.5.2 Option 2: One step of ground truth at a time

Instead of instrumenting all potential caller sites, we can let the return addresses as
found on the stack guide us by using the following line as instrumentation:

Genode::log("called from ", __builtin_return_address(0));

When executed, this line prints us the return address of the current function scope.
This address corresponds to the caller. By placing this line into the Cpu_pool::cpu
method, we get the following output.

Starting kernel ...

called from 0xffffffc000058720
Error: Assertion failed: id < _count && _cpus[id].constructed()
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The high number immediately tells us that the executed code resides somewhere
high up in virtual memory. That means, we have already passed the bootstrap stage,
the MMU is enabled, and core/kernel code is executed. As explained in the Section
2.4, the corresponding ELF binary resides at build/arm_v8a/var/run/log.core and can be
inspected via readelf.

build/arm_v8a$ readelf -l var/run/log.core | grep LOAD
LOAD 0x0000000000001000 0xffffffc000000000 0xffffffc000000000
LOAD 0x00000000000c1000 0xffffffc0000c0000 0xffffffc0000c0000
LOAD 0x00000000000ef5c0 0x0000000000000000 0x0000000000000000

The addresses of the ELF segments correlate nicely with the value printed by our
instrumentation. To determine the exact source-code location for the given return ad-
dress, the objdump tool becomes handy. It allows one to disassemble an ELF binary
while displaying the source-code intermixed. The tool is specific to the used CPU ar-
chitecture. That is, for 64-bit ARM, it is called genode-aarch64-objdump. To use it interac-
tively from the shell, the tool chain’s bin/ directory should be added to the shell’s PATH
variable:

$ export PATH=/usr/local/genode/tool/current/bin/:$PATH

With the PATH variable set, we can disassemble the log.core ELF binary and pipe the
result to less for inspection:

build/arm_v8a$ genode-aarch64-objdump -lSd var/run/log.core | less

Note that the amount of output generated by objdump can be huge. By replacing
less by wc -l one can see that the output comprises more than 300,000 lines! Still, this
amount of data leaves less unimpressed, which leaves me impressed. We can simply
search for our address ffffffc000058720 (with the 0x prefix stripped away) via the
slash (/) command and end up at the following section of output:

kernel():
/.../base-hw/src/core/kernel/kernel.cc:25
ffffffc000058718: 12001c21 and w1, w1, #0xff
ffffffc00005871c: 97fff8e3 bl ffffffc000056aa8 <_ZN6Kernel8Cpu
_pool3cpuEj>
ffffffc000058720: aa0003f4 mov x20, x0
/.../base-hw/src/core/kernel/kernel.cc:29

Cpu_job * new_job;
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The source location kernel.cc line 25 looks familiar.
Alternatively to going though the disassembled output of objdump, the addr2line

utility can be used to streamline the lookup of a source-code location by a given in-
struction address.

$ genode-aarch64-addr2line -e var/run/log.core 0xffffffc000058720
/.../base-hw/src/core/kernel/kernel.cc:25

This is fast and convenient. But sometimes, in particular when code is excessively in-
lined, the contextual information given by the objdump output can be valuable. Most
often, I scroll upwards until hitting the next occurrence of a .cc file and watch silently
the lines - header-file names and fragments of source code - that scroll by. Again, pe-
ripheral vision at play.

2.5.3 Option 3: Backtraces

The __builtin_return_address feature of the compiler allows us to follow the call
chain one step at a time. Each step involves a manual instrumentation, a compile-test
cycle, and the invocation of the addr2line utility.

To avoid such repetitive work, Genode provides the utility function Genode::backtrace()
to walk the stack and print the return addresses along the way. This function is de-
clared in the os/backtrace.h header. An instrumentation of the Cpu_pool::cpu method
would look as follows.

#include <os/backtrace.h>

Cpu & Cpu_pool::cpu(unsigned const id)
{
Genode::backtrace();
...

}

To assist the backtrace() function to parse stack frames correctly, the Genode build
system must be instructed to preserve frame-pointer information. This can be achieved
by placing the following line to the build directory’s etc/tools.conf file. Note that by
default there is no such file. So you will have to create one containing this line.

CC_OPT += -fno-omit-frame-pointer

After rebuilding and running the system image the next time, we are greeted with
quite a lot of output:
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Starting kernel ...

0xffffffc000058738
0xffffffc00000085c
0xffffffc0000568e0
0xffffffc000056a60
0xffffffc000057e44
0x400273d8
0x40026754
0x40010068
0xffffffc000058738

Each of the values starting with 0xfff... is a valid return address and can be used
with objdump or addr2line as described above. To make matters more convenient,
the addr2line utility can be used in an “interactive” fashion be running the following
command in a separate terminal.

build/arm_v8a$ genode-aarch64-addr2line -e var/run/log.core

With no address specified at the command line, the tool simply waits for standard
input. So we can paste multiple lines of the Genode::backtrace() output directly into
it and get the following result:

0xffffffc000058738
0xffffffc00000085c
0xffffffc0000568e0
0xffffffc000056a60
0xffffffc000057e44
/.../base-hw/src/core/kernel/kernel.cc:25
:?
/.../base-hw/src/core/spec/arm/virtualization/gicv2.h:22
/.../base/include/util/reconstructible.h:56
/.../base-hw/src/core/kernel/init.cc:64 (discriminator 1)

We can spot both of the familiar locations kernel.cc line 25 and init.cc line 64.
As shown above, the standard GNU binutils and compiler features can bring us quite

far without using a debugger. We have gathered a lot of input for investigating the
error. Our next job will be using this information to discharge it.
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2.6 Excursion to the user land

Equipped with the rudimentary debugging skills presented in the previous section, it
is time to conquer the remaining stumbling blocks on our way to the user land.

To quickly recall, the starting point of our investigation was the following error mes-
sage.

Error: Assertion failed: id < _count && _cpus[id].constructed()
Error: File: /.../repos/base-hw/src/core/kernel/cpu.cc:205
Error: Function: Kernel::Cpu& Kernel::Cpu_pool::cpu(unsigned int)

By following the call chain leading to this message in reverse, we ultimately ar-
rived at base-hw/src/core/kernel/init.cc at line 64 right in the middle of the function
kernel_init:

pool_ready = cpu_pool().initialize();

To double check that the error indeed occurs somewhere in the initialize method,
let’s wrap the call with a bit of instrumentation.

Genode::log("call cpu_pool().initialize()");
pool_ready = cpu_pool().initialize();
Genode::log("pool_ready=", pool_ready);

The resulting output confirms our hypothesis.

Starting kernel ...

call cpu_pool().initialize()
Error: Assertion failed: id < _count && _cpus[id].constructed()

It is always good to have the reassurance about still being on the right track. As we
suspected, cpu_pool().initialize() is called but never returns. So let’s look at its
implementation in base-hw/src/core/kernel/cpu.cc.

bool Cpu_pool::initialize()
{

unsigned id = Cpu::executing_id();
_cpus[id].construct(id, _global_work_list);
return --_initialized == 0;

}
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Each element of the _cpus array is a Constructible<Cpu> object. The Constructible
pattern is used throughout Genode. It allows for the static allocation of dynamically
created objects. The construct method triggers the construction of a Cpu object. We
are ultimately faced with a general question: How to instrument the construction of
C++ objects?

Debugging the construction of C++ objects The lowest-hanging fruit is adding a
message right at the beginning of the constructor’s body:

Cpu::Cpu(unsigned const id, Inter_processor_work_list & global_work_list)
:
... plenty of initializers ...

{
Genode::log(__PRETTY_FUNCTION__);
_arch_init();

}

Upon the next run, we see no such message. So we can conclude that we get stuck
in the middle of the construction of one of the base classes or aggregated members. As
illustrated by the following picture, the body of the constructor is called pretty late in
the process of constructing an object.
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class Kernel::Cpu : public Genode::Cpu,

private Irq::Pool,

private Timout

{

...

unsigned const _id;

Board::Pic _pic { };

Cpu_scheduler _scheduler;

...

Cpu(unsigned id, ...)

:

_id(id),

...

{

...

}

...

};

Placing debug messages gets a little bit more cumbersome now. We have to disguise
such messages as object attributes. For example, by placing the following line right at
the start of the class body, we can see whether we get stuck in the construction of one
of the base classes or - later - during the construction of a member.

bool _x1 = ( Genode::log(__FILE__, ":", __LINE__), true );

The effect of this instrumentation looks as follows.
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class Kernel::Cpu : public Genode::Cpu,

private Irq::Pool,

private Timout

{

...

bool _x1 = (Genode::log(__FILE__, ":", __LINE__), true);

unsigned const _id;

Board::Pic _pic { };

Cpu_scheduler _scheduler;

...

Cpu(unsigned id, ...)

:

_id(id),

...

{

...

}

...

};

The trick is to wrap the log call into an expression that can be used as initialization of
a dummy member. When the construction of the Cpu object reaches the point of the _x1
member, we see the message as a side effect. The member _x1 is never actually used.

On the next run, we see the following:

Starting kernel ...

call Cpu_pool::initialize()
/.../repos/base-hw/src/core/kernel/cpu.h:77
Error: Assertion failed: id < _count && _cpus[id].constructed()

Since we see the message, we know that the problem occurs not in any of the base
classes but during the construction of a subsequent member. To find out which one, we
can spill dummy members in-between the various members, like so:
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unsigned const _id;
bool _x2 = ( Genode::log(__FILE__, ":", __LINE__), true );
Board::Pic _pic {};
bool _x3 = ( Genode::log(__FILE__, ":", __LINE__), true );
Timer _timer;
bool _x4 = ( Genode::log(__FILE__, ":", __LINE__), true );
Cpu_scheduler _scheduler;
bool _x5 = ( Genode::log(__FILE__, ":", __LINE__), true );
Idle_thread _idle;
bool _x6 = ( Genode::log(__FILE__, ":", __LINE__), true );
Ipi _ipi_irq;
bool _x7 = ( Genode::log(__FILE__, ":", __LINE__), true );

If this looks unsophisticated, it’s because it is. The next run reveals the following.

call cpu_pool().initialize()
bool Kernel::Cpu_pool::initialize()
/plain/no/genode.git/repos/base-hw/src/core/kernel/cpu.h:78
/plain/no/genode.git/repos/base-hw/src/core/kernel/cpu.h:117
Error: Assertion failed: id < _count && _cpus[id].constructed()

From this message, we can conclude that the construction of the _pic member is the
problem. Does that ring a bell? In the backtrace we obtained in Section 2.5.3, observed
the following line.

/.../base-hw/src/core/spec/arm/virtualization/gicv2.h:22

We could have saved some time by following the output of the backtrace utility more
closely, but we would have missed our little excursion to the C++ constructor instru-
mentation.

By continuing the manual instrumentation work, we end up in the Gicv2 construc-
tor, specifically in the initialization of the _max_irq member. The max_irq function
interacts with memory-mapped registers of the interrupt controller. Recalling that we
have merely provided dummy values of the register addresses, the failure is no longer
a mystery at all.

Let’s revisit the corners that we cut while mirroring the i.MX8 EVK board support:

• We kept the definitions for memory-mapped I/O regions for the IRQ controller’s
CPU_BASE and DISTR_BASE untouched, knowing that the values most certainly
mismatch with the Allwinner SoC.

• We pruned the core_mmio regions to cover only the UART. So even if core had
the right numbers, it could not access the underlying hardware registers.
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• We set NR_OF_CPUS to 4 but left Board::Cpu::wake_up_all_cpus empty.

There are quite a few uncertainties. A good way to reduce them is to first take the
multi-core-related issues from the table. From experience, we know that the bring-up
of secondary CPU cores can be a pain. So let us safe this topic for a later step.

By bringing up a single-processor variant of the kernel first, we will certainly
reach the state of a working kernel more quickly. Subsequent user-level develop-
ments like driver-related work can then happen in parallel with the fiddly work on
the kernel’s multi-processor support. Disabling the kernel’s multi-processor sup-
port comes down to changing the NR_OF_CPUS definition from 4 to 1 in the two files
lib/mk/spec/arm_v8/bootstrap-hw-pine_a64lts.mk and lib/mk/spec/arm_v8/core-hw-pine_a64lts.mk.

Making the interrupt controller driver happy The ARM GIC interrupt controller
consists of two parts. Similar to distinction between the I/O APIC and local APIC on
x86 hardware, there exists a so-called distributor and a CPU-local interrupt controller.
The distributor is responsible for routing interrupts to CPU cores whereas the CPU-
local interrupt controller handles the interrupt delivery for an individual CPU. So on
a 4-core SoC, there are one distributor and four CPU-local interrupt controllers. The
memory-mapped registers of all CPU-local interrupt controllers are the same whereas
each CPU can access only its own local controller.

To find out the addresses of both parts for the Allwinner SoC, there are two conve-
nient sources of information. First, the U-Boot boot loader that we built in a Section
2.2.2 comes with a huge database of board specifications in the form of so-called device
tree (dts) files inside the directory u-boot/arch/arm/dts/. By grepping for “pine” we find
many files referring to “sun50i”. By grepping for “gic” in all files named “sun50i”, we
end up at sun50i-a64.dtsi. In there, the following snippet catches our attention:

u-boot/arch/arm/dts$ vim sun50i-a64.dtsi

gic: interrupt-controller@1c81000 {
compatible = "arm,gic-400";
reg = <0x01c81000 0x1000>,

<0x01c82000 0x2000>,
<0x01c84000 0x2000>,
<0x01c86000 0x2000>;

interrupts = <GIC_PPI 9 (GIC_CPU_MASK_SIMPLE(4) | IRQ_TYPE_LEVEL_HIGH)>;
interrupt-controller;
#interrupt-cells = <3>;

};

By looking at the numbers, we unfortunately still don’t know which register ranges
refers to the distributor and the CPU local controller. We could consult ARM’s official
documentation.
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Alternatively, we find the answer in the Allwinner A64 user manual1 on page 74. It
states the following:

GIC_DIST: 0x01C80000 + 0x1000
GIC_CPUIF:0x01C80000 + 0x2000

With this knowledge gained, we can change the definitions in our pine_a64lts_board.h
file to the following.

IRQ_CONTROLLER_DISTR_BASE = 0x01c81000,
IRQ_CONTROLLER_DISTR_SIZE = 0x1000,
IRQ_CONTROLLER_CPU_BASE = 0x01c82000,
IRQ_CONTROLLER_CPU_SIZE = 0x2000,

Additionally, those resources must be registered as core’s memory-mapped I/O re-
gions in board/pine_a64lts/platform.cc.

Bootstrap::Platform::Board::Board()
:
early_ram_regions(Memory_region { ::Board::RAM_BASE, ::Board::RAM_SIZE }),
late_ram_regions(Memory_region { }),
core_mmio(Memory_region { ::Board::UART_BASE, ::Board::UART_SIZE },

Memory_region { ::Board::Cpu_mmio::IRQ_CONTROLLER_DISTR_BASE,
::Board::Cpu_mmio::IRQ_CONTROLLER_DISTR_SIZE },

Memory_region { ::Board::Cpu_mmio::IRQ_CONTROLLER_CPU_BASE,
::Board::Cpu_mmio::IRQ_CONTROLLER_CPU_SIZE })

{
::Board::Pic pic {};

}

When building and running the run/log system image the next time, we get filled
with joy:

1https://linux-sunxi.org/images/b/b4/Allwinner_A64_User_Manual_V1.1.pdf
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Starting kernel ...

kernel initialized
ROM modules:
ROM: [000000004012c000,000000004012c156) config
ROM: [0000000040006000,0000000040007000) core_log
ROM: [00000000401eb000,000000004022c260) init
ROM: [0000000040134000,00000000401eacb0) ld.lib.so
ROM: [0000000040004000,0000000040005000) platform_info
ROM: [000000004012d000,00000000401331e8) test-log

Genode 20.11-197-g635985f542 <local changes>
2010 MiB RAM and 64533 caps assigned to init
[init -> test-log] hex range: [0e00,1680)
[init -> test-log] empty hex range: [0abc0000,0abc0000) (empty!)
[init -> test-log] hex range to limit: [f8,ff]
[init -> test-log] invalid hex range: [f8,08) (overflow!)
[init -> test-log] negative hex char: 0xfe
[init -> test-log] positive hex char: 0x02
[init -> test-log] floating point: 1.70
[init -> test-log] multiarg string: "parent -> child.7"
[init -> test-log] String(Hex(3)): 0x3
[init -> test-log] Very long messages:
[init -> test-log -> log] 1.....................................................................................................................................................................................................................................2
[init -> test-log] 3.....................................................................................................................................................................................................................................4
[init -> test-log] 5.....................................................................................................................................................................................................................................6
[init -> test-log]
[init -> test-log] Test done.

We just witnessed the first successful excursion to the user land. The kernel started
the user-level init component, which in turn started the test-log program as child com-
ponent. The output of test program looks just perfect! To truly appreciate what just
happened, consider that the simple system scenario already entails most of Genode’s
fundamental mechanisms:

• Transition between kernel and user land and vice versa

• Multiple protection domains protected by virtual memory

• Synchronous inter-component communication calls (RPC)

• Asynchronous notifications

• Shared memory between components

• The ELF loading of programs
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• Handling of the system’s configuration

• Multi-threading and inter-thread synchronization

• Dynamic linking

The simple log-test scenario above is just the beginning. In the next section, we take the
board through the entire test suite of the Genode base framework.
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2.7 Kernel packaging and testing

With our toes still a bit frozen from testing the waters of the user land, we now take the
remaining steps towards a cultivated Genode life, largely automating our work flow,
packaging the kernel, and testing the platform like there is no tomorrow.

During the initial user-land bring-up described in the previous Section 2.6, the pro-
cess of building a system image, loading the image onto the board, and obtaining log
output required quite a few manual steps: Starting picocom, issuing the make run/log
command, copying the system image to the TFTP directory, resetting the board, scan-
ning the log output with our eyes. Some parts of this process can be streamlined.

2.7.1 Accelerating our run-script workflow

First, instead of manually instructing the run tool to produce a uImage instead of an
ELF image at the command line, we can place the following line into our etc/built.conf
file.

RUN_OPT += --include image/uboot

Second, we can let the run tool manage the execution of the picocom command in-
stead of manually starting the it by adding the following line:

RUN_OPT += --include log/serial

This way, we can skip the step of spawning of picocom. But more importantly, the
run tool becomes able to detect the success of run scripts automatically! So the part
about “scanning the log output with our eyes” becomes much more relaxing.

Third, the copying of the uImage file into the TFTP directory can be automated by
adding the following lines.

RUN_OPT += --include load/tftp
RUN_OPT += --load-tftp-base-dir /var/lib/tftpboot
RUN_OPT += --load-tftp-offset-dir /$(BOARD)

Upon the next execution of the make run/log KERNEL=hw BOARD=pine_a64lts
command, a new symbolic link appears at /var/lib/tftpboot.

$ ls -la /var/lib/tftpboot/pine_a64lts
lrwxrwxrwx ... /var/lib/tftpboot/pine_a64lts -> /.../build/arm_v8a/var/run/log/uImage
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The symlink is updated each time a run script is executed. It always points to the
most recently built system image. By setting the U-Boot bootcmd to load /var/lib/tftp-
boot/pine_a64lts, the board will automatically fetch the most recently built system image.

=> env edit bootcmd
edit: bootp 10.0.0.32:/var/lib/tftpboot/pine_a64lts ; bootm
=> env save
Saving Environment to FAT... OK

With these little tweaks, the work flow with run scripts becomes almost fully auto-
mated. The only remaining manual steps are:

1. Issuing the make run/... command at the build directory.

2. Once the message Terminal ready appears, pressing the reset button on the
board.

This is a perfectly acceptable level of convenience. If you want to go even further, you
may find the following two articles inspiring.

Remote-control your test target via power scripts

https://genodians.org/chelmuth/2019-03-13-powerplug

Exploring Genode Base HW with Raspberry Pi - further workflow automation

https://genodians.org/tomga/2019-08-13-rpi-automation

There is no better way to celebrate the new level of efficiency than to test-drive a few
hand-picked run scripts.

2.7.2 Stress-testing the init component

The log scenario that we executed so far already employed Genode’s init component,
which is the first (and only) component immediately started by core. Init constructs a
subsystem of components according to a configuration in XML form. The init config-
uration for the log scenario was rather primitive. There exists comprehensive test that
exercises the entire feature set of init by running a dynamically configured instance of
init as a child of init. The test is hosted at the repos/os/ repository and has the form
of a deployable package (more on that later). You can find the test’s ingredients at
recipes/pkg/test-init/ (package with the runtime description) src/test/init/ (driver for exe-
cuting a test sequence) recipes/raw/test-init/test-init.config (sequence executed by the test
driver).

That’s probably be a bit overwhelming. Let’s better just try it out. To run a test
package, the os/run/test.run script becomes handy. We can use it as follows, passing the
name of the test package as PKG argument.
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build/arm_v8a$ make run/test PKG=test-init KERNEL=hw BOARD=pine_a64lts
...
...
genode build completed
...
Terminal ready

At this point, we have to press the reset button of the board.

...

... log output of more than 200 test steps

...
[init -> test -> test-init] --- test complete ---
[init -> test] child "test-init" exited with exit value 0

Run script execution successful.

What else could we ask for! When examining the log output, you can get a glimpse of
the feature set at work: Addition and deletion of subsystems, changing access-control
policies in the fly, reconfiguring child components, chaining services, balancing re-
sources among the components, heartbeat monitoring, and exit handling.

As another noteworthy detail, in contrast to the simple log test, the init test employs a
timer at the user level. Since the test passed, we have the confirmation that the in-kernel
timer driver and interrupt-controller driver work in principle.

2.7.3 Timer accuracy test

Speaking of the timer, it is generally not enough to know that the timer works in prin-
ciple but also that it is precise, which comes down to its correct calibration. Genode
provides a ready-to-use test that compares the notion of time as observed by the Gen-
ode system with the wall-clock time as known on your host system. The run script for
this low-level test is located at repos/base/run/timer_accuracy.run.
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build/arm_v8a$ make run/timer_accuracy KERNEL=hw BOARD=pine_a64lts
...
...
Genode 20.11-197-g635985f542 <local changes>
2010 MiB RAM and 64533 caps assigned to init
[init -> test-timer_accuracy]
[init -> test-timer_accuracy]
[init -> test-timer_accuracy]
[init -> test-timer_accuracy]
[init -> test-timer_accuracy]
[init -> test-timer_accuracy]
[init -> test-timer_accuracy]
[init -> test-timer_accuracy]
[init -> test-timer_accuracy]
[init -> test-timer_accuracy]
Good: round 1, host measured 1000 ms, test measured 1008 ms
Good: round 2, host measured 2000 ms, test measured 2000 ms
Good: round 3, host measured 3000 ms, test measured 3006 ms
Good: round 4, host measured 4000 ms, test measured 3997 ms
Good: round 5, host measured 5000 ms, test measured 5003 ms
Good: round 6, host measured 6000 ms, test measured 6007 ms
Good: round 7, host measured 7000 ms, test measured 6995 ms
Good: round 8, host measured 8000 ms, test measured 7984 ms
Good: round 9, host measured 9000 ms, test measured 9005 ms

Run script execution successful.

Be patient, the test can take up to 40 seconds. The output looks just perfect.

2.7.4 Testing the dynamic linker

The ldso test exercises the functionality of the dynamic linker, including the execu-
tion of global constructors, transitive library dependencies, exception handling across
libraries, and cross-library symbol resolution.

build/arm_v8a$ make run/test PKG=test-ldso KERNEL=hw BOARD=pine_a64lts
...
... build libc
...
[init -> test] child "test-ldso" exited with exit value 123

Run script execution successful.

Given that the init test succeeded, which already employed the dynamic linker, the
result is not surprising but reassuring.
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2.7.5 Packaging the kernel

All but the most basic run scripts leverage Genode’s package management1, often re-
ferred to as depot. A run script can conveniently incorporate packaged components
into a system scenario via the import_from_depot function. When reviewing the var-
ious existing run scripts in the Genode source tree for this function, one can spot the
following pattern.

import_from_depot [depot_user]/src/[base_src] \
[depot_user]/...

Each argument denotes a path of a depot archive. The depot_user and base_src
are function calls. The depot_user function returns the name of the originator/creator
of the given depot archive. It returns genodelabs by default and can be customized in
the etc/build.conf file.

The base_src function returns the archive name of the so-called “base” source
archive for a given combination of board and kernel. It contains the lowest-level and
kernel-specific fundamentals any system scenario relies on, namely the kernel/core, the
dynamic linker, and a timer driver. In order to execute any of the run scripts that follow
this pattern, we need to create such a depot archive for our version of the kernel. When
using the “hw” kernel, the base_src function can be found at tool/run/boot_dir/hw.

$ grep -r base_src tool/run/
...
run/boot_dir/hw:proc base_src { } { return "base-hw-[board]" }
...

In the case of our pine_a64lts board, the source archive would hence be named
base-hw-pine_a64lts. The tool/depot/create tool can be used to populate the depot.
Even though we have not yet provided any declaration for our base archive, let’s call
the tool and see how it breaks:

$ ./tool/depot/create x/src/base-hw-pine_a64lts UPDATE_VERSIONS=1 FORCE=1
Error: incomplete or missing recipe (x/src/base-hw-pine_a64lts)

The following things are worth noting about the command-line arguments.

• I supply x as depot user, which is just a dummy name that is good enough while
pursuing the packaging work. Once the work is finished, it allows me to just
remove the depot/x/ directory and all testing artifacts are gone.

1https://genode.org/documentation/genode-foundations/22.05/development/Package_
management.html
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• The UPDATE_VERSIONS=1 argument tells the tool to automatically increase the
version of the depot archive whenever the content differs from the previously
packaged version. During the packaging work, I always set it to 1.

• The FORCE=1 argument tells the tool to perform all packaging steps from scratch
instead of reusing artifacts from previous runs.

Now, let’s address the error message. It tell us that the tool expected a so-called recipe
for the given depot archive, which does not exist yet. The so-called recipes describe
how a depot archive can be extracted from the source tree. They are searched in the
<repo>/recipes/ directories of all repositories. E.g., the recipe for the base source archive
for the i.MX8 EVK board resides at repos/base-hw/recipes/src/base-hw-imx8q_evk/. This is
a suitable template for out pine_a64lts recipe.

$ mkdir -p repos/allwinner/recipes/src/base-hw-pine_a64lts
$ cp -r repos/base-hw/recipes/src/base-hw-imx8q_evk/* \

repos/allwinner/recipes/src/base-hw-pine_a64lts/

The directory hosts three files:

content.mk

This is Makefile snippet with rules for gathering the content of the archive from
the source tree. The copied file, however, merely includes rules from a file called
base-hw_content.inc. We can keep this line.

include $(GENODE_DIR)/repos/base-hw/recipes/src/base-hw_content.inc

used_apis

This file contains a list of APIs required to build a binary archive from the source
archive. The copied template contains merely two lines, which we can keep that
way. Naturally, the base-hw kernel requires the definitions of the generic Genode
API (base API) and the supplements that are specific for the base-hw kernel (base-
hw API).

base-hw
base

hash

The hash file tells the depot tools about the current version of the archive and
draws the connection to the corresponding archive content by specifying a hash
value.
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2021-02-24 d122ddee70f0b075de8cec50a41c9f4783702e05

The hash value is computed over the entire content of the archive. Should the
hash of a freshly created archive deviate from the hash stored at the recipe, we
know that the version should better be updated. Of course, it would be tiresome
to calculate such hash values manually. Thankfully, the depot tools do this job
for us. While keeping in mind that the hash is most certainly wrong for our the
pine_a64lts source archive, we leave it as is because we don’t know any better
value anyway at this point.

With the new source recipe in place, let’s give the package creation another try.

$ ./tool/depot/create x/src/base-hw-pine_a64lts UPDATE_VERSIONS=1 FORCE=1

This time, the output looks different:

$ ./tool/depot/create x/src/base-hw-pine_a64lts UPDATE_VERSIONS=1 FORCE=1
created x/api/base/2021-02-22
created x/api/base-hw/2021-02-22

Error: CPU architecure for board pine_a64lts undefined

missing file /.../repos/allwinner/board/pine_a64lts/arch

The tool has successfully created the API archives for the dependencies we stated
in the used_apis file. However, the source-archive creation still backs out, missing the
information of the board’s CPU architecture. The CPU architecture dictates the subset
of files of the base-hw repository that are relevant for the given board. This information
is expected at the path printed by the error message. That’s our call!

$ mkdir -p repos/allwinner/board/pine_a64lts
$ echo arm_v8a > repos/allwinner/board/pine_a64lts/arch

Upon the next attempt to create the source archive, the creation-process succeeds.

$ ./tool/depot/create x/src/base-hw-pine_a64lts UPDATE_VERSIONS=1 FORCE=1
created x/api/base/2021-02-22
created x/api/base-hw/2021-02-22
created x/src/base-hw-pine_a64lts/2021-03-04 (new version)
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The last line tells us that the tool has detected the inconsistency of our recipe’s hash
file with the assembled archive content and has automatically adjusted the version (tak-
ing the current date) and hash in the hash file. Now it looks as follows:

$ cat repos/allwinner/recipes/src/base-hw-pine_a64lts/hash
2021-03-04 4589eb3b4d816d17a2f2a539031a54eff9dd3712

You may like to have a look at the resulting archive.

$ ls depot/x/src/base-hw-pine_a64lts/2021-03-04/
etc include lib LICENSE src used_apis

Finally, let us check that it is possible to create a binary archive from our source
archive by specifying x/bin/arm_v8a/base-hw-pine_a64lts as depot-archive path
to the depot-create tool. To accelerate the build, we can append -j8 as argument to
enable the use of multiple CPUs.

$ ./tool/depot/create x/bin/arm_v8a/base-hw-pine_a64lts \
UPDATE_VERSIONS=1 FORCE=1 -j8

created x/api/base-hw/2021-02-22
created x/api/base/2021-02-22
created x/src/base-hw-pine_a64lts/2021-03-04
checking library dependencies...
...
... many build steps
...

LINK timer
created x/bin/arm_v8a/base-hw-pine_a64lts/2021-03-04

This time, the tool was satisfied with the current hash of our source recipe, the build
process ran to completion, and we can inspect the results at the printed location within
the depot.

$ ls -1 depot/x/bin/arm_v8a/base-hw-pine_a64lts/2021-03-04/
bootstrap-hw-pine_a64lts.o
core-hw-pine_a64lts.a
ld.lib.so
timer
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2.7.6 Combined test suite of over 80 system scenarios

With the kernel packaged, a whole new world of run scripts opens up for us. The most
intriguing one is repos/gems/run/depot_autopilot.run. It is a system that does not only
execute a single test scenario but orchestrates the execution of more than 80 system
scenarios one after the other. The init test we executed earlier is just one of these sce-
narios. Combined, the scenarios form the comprehensive test suite for Genode’s base
framework covering the following topics.

• Low-level data structures and allocators

• Parsing and generating XML, UTF-8

• Integration of Ada/SPARK with Genode’s C++ API

• Publisher-subscriber mechanism

• Management of dynamic subsystems

• Fault detection mechanism

• Synthetic tests for low-level components and interfaces such as init, timer, VFS,
block access, terminal

• VFS infrastructure

• C runtime (I/O, execve, fork, pthreads)

• Standard C++ library

• TCP/IP

• Network routing

• Tracing

• On-target deployment of depot packages
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VFS Server

depot.tar

Depot Query

read package

Depot Autopilot

Timer
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package
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test logs
result list
statistics

Dynamic (Init)

reconfigure

Test Runtime

read binaries

logs

The diagram gives an overview of the architecture of the system scenario. It is de-
scribed in great detail in the release documentation of Genode 18.111.

As a prerequisite for executing the depot-autopilot scenario, the depot packages for
the whole arsenal of tests must be made available. We can instruct the build system to
automatically create the depot content as needed, by enabling the following option at
the etc/build.conf file:

RUN_OPT += --depot-auto-update

Furthermore, we need to make sure to have the following repositories enabled in the
etc/build.conf file.

REPOSITORIES += $(GENODE_DIR)/repos/libports
REPOSITORIES += $(GENODE_DIR)/repos/dde_linux
REPOSITORIES += $(GENODE_DIR)/repos/gems

The dde_linux repository is solely needed for the TCP/IP stack ported from the Linux
kernel (lxip). The gems repository hosts the depot-autopilot. With these precautions
taken, we can kick off the depot_autopilot.run script as usual.

build/arm_v8a$ make run/depot_autopilot KERNEL=hw BOARD=pine_a64lts

1https://genode.org/documentation/release-notes/18.11#Automated_test_infrastructure_hosted_
on_top_of_Genode
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You will most likely encounter an error like the following.

Error: Ports not prepared or outdated:
ada-runtime dde_linux expat gcov gmp libc lwip sanitizer stdcxx

You can prepare respectively update them as follows:
/.../tool/ports/prepare_port ada-runtime dde_linux expat gcov \

gmp libc lwip sanitizer stdcxx

The printed ports of 3rd-party software are required. They can be imported into Gen-
ode’s contrib/ directory by executing the command as suggested by the error message.

Once the prepare_port command has completed, we can give the depot_autopilot.run
script another try. This time, we can lay back and enjoy tons of build output scroll by,
take a nip at a cup of coffee, maybe stretch our back a little, continue watching the build
output, relax, not to forget to keep breathing. Have I mentioned looking at the build
output?

When finally loading the resulting uImage on the board, we are greeted with a shock-
ing message:
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TFTP from server 10.0.0.32; our IP address is 10.0.0.178
Filename ’/var/lib/tftpboot/uImage’.
Load address: 0x42000000
Loading: #################################################################

#################################################################
#################################################################
#################################################################
#################################################################
#################################################################
#################################################################
#################################################################
#################################################################
##
3.5 MiB/s

done
Bytes transferred = 8608974 (835cce hex)
## Booting kernel from Legacy Image at 42000000 ...

Image Name:
Image Type: AArch64 Linux Kernel Image (gzip compressed)
Data Size: 8608910 Bytes = 8.2 MiB
Load Address: 40010000
Entry Point: 40010000
Verifying Checksum ... OK
Uncompressing Kernel Image

Error: inflate() returned -5
Image too large: increase CONFIG_SYS_BOOTM_LEN
Must RESET board to recover
resetting ...

Just at the climax of our expectations, U-Boot’s ELF loader went on strike. The ELF
image is apparently too large. We take the mental note to adjust CONFIG_SYS_BOOTM_LEN
and re-build and re-install U-Boot taking the steps of the [?].

To satisfy our urgent need of a reward for our patience during the build of the depot-
autopilot system image, we can side step U-Boot’s image-size constraint by loading
a raw binary image. Since we need an ELF image instead of a uImage, we have to
temporarily disable the -include image/uboot RUN_OPT in the etc/build.conf file and
rebuild the image.

build/arm_v8a$ make run/depot_autopilot KERNEL=hw BOARD=pine_a64lts
....

A quick look at the result reveals that the uncompressed ELF image is quite large
compared to the uImage file of 8 MiB. Here we can see the benefit of uImage files.
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build/arm_v8a$ ls -lh var/run/depot_autopilot/boot/image.elf
-rwxrwxr-x 1 ... 49M ... var/run/depot_autopilot/boot/image.elf

The ELF image is swiftly converted to a raw binary placed in our TFTP directory.

build/arm_v8a$ /usr/local/genode/tool/current/bin/genode-aarch64-objcopy \
-Obinary \
var/run/depot_autopilot/boot/image.elf \
/var/lib/tftpboot/depot_autopilot.img

build/arm_v8a$ ls -lh /var/lib/tftpboot/depot_autopilot.img
-rwxrwxr-x 1 ... 49M ... /var/lib/tftpboot/depot_autopilot.img

Now, we can use the following U-Boot command to load it on the board.

=> bootp 0x40010000 10.0.0.32:/var/lib/tftpboot/depot_autopilot.img
BOOTP broadcast 1
DHCP client bound to address 10.0.0.178 (109 ms)
Using ethernet@1c30000 device
TFTP from server 10.0.0.32; our IP address is 10.0.0.178
Filename ’/var/lib/tftpboot/depot_autopilot’.
Load address: 0x40010000
Loading: #################################################################
...

######################################################
3.2 MiB/s

done
Bytes transferred = 51351552 (30f9000 hex)

... and run it!

=> go 0x40010000
## Starting application at 0x40010000 ...

kernel initialized
...

... massive amount of log output scrolls by for about 9 minutes ...
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...
[init -> depot_autopilot] --- Finished after 519.179 sec ---
[init -> depot_autopilot]
[init -> depot_autopilot] test-spark ok 0.239
[init -> depot_autopilot] test-spark_exception ok 0.161
[init -> depot_autopilot] test-spark_secondary_stack ok 0.518
[init -> depot_autopilot] test-block ok 1.124
[init -> depot_autopilot] test-block_cache ok 0.692
[init -> depot_autopilot] test-clipboard ok 3.676
[init -> depot_autopilot] test-depot_query_index ok 0.289
[init -> depot_autopilot] test-ds_ownership ok 0.227
[init -> depot_autopilot] test-dynamic_config ok 3.154
[init -> depot_autopilot] test-dynamic_config_loader ok 3.211
[init -> depot_autopilot] test-dynamic_config_slave ok 2.640
[init -> depot_autopilot] test-entrypoint ok 40.117
[init -> depot_autopilot] test-weak_ptr ok 2.900
...
...
...
[init -> depot_autopilot] test-xml_generator ok 0.570
[init -> depot_autopilot] test-xml_node ok 1.028
[init -> depot_autopilot] gcov ok 39.064
[init -> depot_autopilot]
[init -> depot_autopilot] succeeded: 82 failed: 0 skipped: 4
[init -> depot_autopilot]
[init] child "depot_autopilot" exited with exit value 0

The entire test suite succeeded with no errors!
It took 519 seconds. To cross-correlate this duration with the depot-autopilot test on

the i.MX8q EVK board: The i.MX board takes 465 seconds, which makes the Pine-A64-
LTS around 10% slower than the i.MX8 EVK. This is of course no benchmark to draw
meaningful conclusions from. But the fact that both values are in the same ballpark re-
assures us that nothing fundamental (like the low-level CPU or memory configuration)
went wrong with our port.
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2.8 Device access from the user level

Genode’s peripheral device drivers live outside the kernel and have the form of regular
user-level components. This article presents how the device-hardware access works
under these conditions, while taking the general-purpose I/O pins of the Pine-A64-LTS
single-board computer as playground.

In the previous section, we reached a solid base line of functionality for the kernel and
Genode framework on the Pine-A64-LTS board. Now it is time to turn out attention
to the main topic of our SoC porting effort, which is the interaction with peripheral
devices.

As a warm-up, there is no better peripheral than a general-purpose-I/O pin (GPIO)
controller. It is a relatively simple device while enabling us to observe very satisfy-
ing physical effects. Despite the simplicity, we are faced with the two most important
device-driver-related topics, namely accessing device registers and dispatching inter-
rupts.

The investigation starts with the quest of finding a suitable pin at one of the various
connectors present on the board. The board schematics1 as found in the PINE64 Wiki2

are our guide. While skimming the 19 pages of the document and glancing at the head-
lines above the very technical looking drawings, the so-called Euler connector at page
12 catches my attention because this name appears besides a prominently visible 34-pin
header on the board.

Figure 3

By looking at the schematics, it is easy to guess that the box with the 34 connectors
corresponds to this pin header. The pins have labels, which give us clues about their

1https://files.pine64.org/doc/SOPINE-A64/PINE%20A64-TLS-20180130.pdf
2https://wiki.pine64.org/wiki/PINE_A64-LTS/SOPine
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designated purposes. E.g., some pins are wired to fixed voltages like 5V or 3.3V or
ground. Some others hint at specific functionality present in the SoC or another com-
ponent on the board, e. g., those prefixed with I2S or UART or EAROUT. Some pins
however, stand out by being named PB2, PB8, PD7 and such. The prefix P presumably
stands for pin. Other usual signal-labeling schemes as found in schematics documents
contain the pattern “IO” or “GPIO”. Let’s settle on the pin PB2 and see where this leads
us. By searching the document for “PB2”, we can see that the same signal appears at a
box labeled “R18” (on the page for the Pi-2 connector). By searching for the ominous
component “R18”, we quickly learn that this label refers to the Allwinner SoC. So the
pin is directly connected to the SoC. Did we ask for more? To sum up our findings, the
following pins of the Euler connector are of interest to us:

• Pin 8: 5V

• Pin 27: PB2 (wired to the SoC)

• Pin 34: ground

The label PB2 has to have a meaning for the SoC, which is hopefully cleared up in the
SoC’s documentation1. For SoCs with no public documentation, the most compelling
alternative source for such information are device-tree source (dts) files as usually pro-
vided by the SoC vendors for the Linux kernel and U-Boot. But let us save the device-
tree topic for later. Being lucky that the Allwinner A64 SoC documentation is public,
we can search it for “PB2”, which brings us to Page 377, specifically to the description
of a bit field named “PB2_SELECT” at a so-called “PB Configure Register 0”.

Figure 4

1https://linux-sunxi.org/images/b/b4/Allwinner_A64_User_Manual_V1.1.pdf
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The surrounding Section 3.21 “Port Controller(CPUx-PORT)" gives us the insights we
need. PB2 is apparently one of the 10 input/output pins of Port B of the PIO peripheral,
which presumably stands for Pin I/O. There exist plenty of device registers that are
mirrored for different ports (B, C, D, ...).

2.8.1 Using a GPIO pin for sensing a digital signal

As a first exercise, let’s write a little program at allwinner/src/test/pin_state/main.cc that
accesses the PB Configure Register 0.
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#include <base/component.h>
#include <base/log.h>
#include <base/attached_io_mem_dataspace.h>
#include <util/mmio.h>

namespace Test {
using namespace Genode;
struct Main;

}

struct Test::Main
{

Env &_env;

Attached_io_mem_dataspace _pio_ds { _env, 0x1c20800u, 0x400u };

struct Pio : Mmio
{

struct Pb_cfg0 : Register<0x24, 32>
{

struct Pb2_select : Bitfield<8, 3> { };
};

Pio(addr_t base) : Mmio(base)
{

log("PB2_SELECT: ", read<Pb_cfg0::Pb2_select>());
}

};

Pio _pio { (addr_t)_pio_ds.local_addr<void>() };

Main(Env &env) : _env(env) { }
};

void Component::construct(Genode::Env &env)
{

static Test::Main main(env);
}

The following details are worth noting.

• The program comes in the form of a Main object as opposed to a main() function.
To learn more about this structure, please refer to the article Genode’s Conscious
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C++ dialect1.

• The Env interface allows the code to interact with the environment of the Gen-
ode component such as allocating memory, or opening a connection to a service
provided by another component.

• The _pio_ds member opens a connection to an IO_MEM service and obtains a
virtual-memory mapping of the specified range of the system bus. The numbers
are taken from the Allwinner A64 manual.

• The Pio struct represents a memory-mapped I/O region, inheriting the Mmio type.
The Mmio constructor takes the base address of the underlying device-register
range as argument. The structs defined in the scope of the Pio struct mirrors the
register structure of the memory-mapped I/O range: There exists a 32-bit wide
register Pb_cfg0 at offset 0x24.

struct Pb_cfg0 : Register<0x24, 32>

The bits 8 to 10 of this register correspond to the bit field Pb2_select.

struct Pb2_select : Bitfield<8, 3> { };

These declarations correspond one-to-one with the register definitions as found
in the SoC user manual.

• In tho Pio constructor, we print the value of the Pb2_select bitfield by using the
Mmio::read method.

log("PB2_SELECT: ", read<Pb_cfg0::Pb2_select>());

Note that the code is completely free of (often bug-prone) bit-masking/shifting
operations.

To build the program, we have to accompany it with a target.mk file as follows.

TARGET := test-pin_state
SRC_CC := main.cc
LIBS += base

Finally, we need to embed the program into a Genode system scenario. The following
run script accomplishes this.

1https://genodians.org/nfeske/2019-01-22-conscious-c++
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build { core init test/pin_state }

create_boot_directory

install_config {
<config>
<parent-provides>
<service name="LOG"/>
<service name="PD"/>
<service name="CPU"/>
<service name="ROM"/>
<service name="IO_MEM"/>
<service name="IRQ"/>

</parent-provides>

<default caps="100"/>

<start name="test-pin_state">
<resource name="RAM" quantum="1M"/>
<route> <any-service> <parent/> </any-service> </route>

</start>
</config>

}

build_boot_image { core ld.lib.so init test-pin_state }

run_genode_until forever

When executing this run script, we can observe the following output:

kernel initialized
ROM modules:
ROM: [000000004012c000,000000004012c17f) config
ROM: [0000000040006000,0000000040007000) core_log
ROM: [00000000401eb000,000000004022c260) init
ROM: [000000004012d000,00000000401e4bd0) ld.lib.so
ROM: [0000000040004000,0000000040005000) platform_info
ROM: [00000000401e5000,00000000401ea0d0) test-pin_state

Genode 21.02-61-g446df00d0d8
2010 MiB RAM and 64533 caps assigned to init
[init -> test-pin_state] PB2_SELECT: 7

The PB2_SELECT bits have the value 7, which is the default value (I/O disable) ac-
cording to the documentation. You may ask, what’s behind those bits? The number
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of connectors of a chip is physically limited by the space of the chip’s package and the
practicalities of PCB routing. To make one SoC applicable to a wide variety of products,
SoC vendors implement a feature set much larger than the pin count would allow and
leave the selection of a board-specific subset of those features to the board vendor. So
different boards can use the same SoC but with different functionality exposed. The
ultimate meaning of the physical pins is left to a software configuration. This multi-
plexing of pins to multiple SoC functionalities is often referred to as I/O muxing or pin
muxing. On some SoCs, the I/O mux configuration is presented as a distinct device.
On the Allwinner A64, it is part of the PIO device. For the pin PB2, the SoC provides
the following options.

000: Input
010: UART2_RTS
100: JTAG_DO0
110: PB_EINT2
001: Output
011: Reserved
101: SIM_VPPEN
111: IO Disable <- default

To sample the state of pin 27 of the Euler connector, we have to change the configu-
ration value to 0 (input). Let’s set the configuration value and validate that the change
has the desired effect by changing the body of the Pio struct as follows.

struct Pb_cfg0 : Register<0x24, 32>
{

struct Pb2_select : Bitfield<8, 3>
{

enum { IN = 0 };
};

};

Pio(addr_t base) : Mmio(base)
{

log("PB2_SELECT: ", read<Pb_cfg0::Pb2_select>());

write<Pb_cfg0::Pb2_select>(Pb_cfg0::Pb2_select::IN);

log("PB2_SELECT: ", read<Pb_cfg0::Pb2_select>());
}

Note the enum value definition for IN, which helps us to self-document the code as
opposed to just writing the value 0. The output looks as expected. We read back the
value that we have just written.
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[init -> test-pin_state] PB2_SELECT: 7
[init -> test-pin_state] PB2_SELECT: 0

With the PB2 pin configured as input, let’s see if we can observe a signal change at
the Euler connector pin 27. The pin state is captured by the so-called PB Data Register
(PB_DATA_REG) at offset 0x34. The register hosts one bit for each pin of the port B. For
the PB2 pin, we have to poll bit 2. Or, to put it in other words:

...
struct Pb_data : Register<0x34, 32>
{

struct Pb2 : Bitfield<2, 1> { };
};

Pio(addr_t base) : Mmio(base)
{

write<Pb_cfg0::Pb2_select>(Pb_cfg0::Pb2_select::IN);

while (true)
log("PB2_STATE: ", read<Pb_data::Pb2>());

}

This gives us the following output:

[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 1

The pattern looks interesting, like if the PB2 pin is not quite sure about its state. For
the experiment, let’s try to connect the PB2 pin to ground. That is shorting the pins 27
(PB2) with 34 (GND). As a matter of courtesy, it is good to avoid connecting the pins
directly but instead placing a resistor of a few hundred Ohm between both pins. Should
we have done a mistake along our way and accidentally connect a 5V pin to GND, the
current will flow nicely through our resistor instead of producing a short circuit. So
what happens when connecting both pins?
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[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
[init -> test-pin_state] PB2_STATE: 0
...

That looks clean! What about connecting pin 27 (PB2) to pin 8 (5V)?

[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 1
[init -> test-pin_state] PB2_STATE: 1
...

Isn’t that wonderful?
The following picture summarizes our scenario.
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The pin 27 of the Euler connector goes to the PB2 pin of the SoC. Via the PB_CFG0
register, we configure this pin to be used as general-purpose I/O pin reflected by bit 2
in the PB_DATA register. The register set of the PIO device unit is visible at physical
address 0x1c20800 at the system bus. Thanks to the MMIO service of Genode’s core, our
test component becomes able to access this register range as part of its virtual address
space. So what’s this PB_PULL0 register shown in the picture?
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This register can be used to prevent the fluctuating state when leaving the PB2 pin
unconnected. Jargon speaks of high impedance, which sounds super educated but means
the same thing. In real-world applications, this floating state is often not wanted. After
all, digital means 0 or 1 but not maybe. Fortunately, the state can easily be avoided by
connecting the PB2 pin via a very high resistor to ground (or 5V). This resistor pulls
the floating potential down to ground (or up to 5V). Since this is such a common need,
the SoC comes readily equipped with pull-down or pull-up resistors. We just need to
enable either option, which can be done via the PB PULL Register 0 (PB_PULL0).

...
struct Pb_pull0 : Register<0x40, 32>
{

enum { PULL_DOWN = 2 };

struct Pb2 : Bitfield<4, 2> { };
};

Pio(addr_t base) : Mmio(base)
{

...
write<Pb_pull0::Pb2>(Pb_pull0::PULL_DOWN);
...

}

With this little change, the output stays at 0 even when leaving the pin 27 (PB2)
disconnected.

2.8.2 Driving an LED via a GPIO pin

Let’s try the reverse, using the PB2 pin as a digital output signal. At this point, it is easy
to connect the dots at the software side.

1. Configure the PB2_SELECT bits of the PB_CFG0 register to operate the pin in
output mode, which is value 1.

2. Write the desired state to the bit 2 of the PB_DATA register.

The following code sets up the PB_CFG0 register and equips the Pio struct with a
toggle_pb2 method that reads the PB2 state from the PB_DATA register and writes
back the inverted state.
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struct Pio : Mmio
{

struct Pb_cfg0 : Register<0x24, 32>
{

struct Pb2_select : Bitfield<8, 3>
{

enum { OUT = 1 };
};

};

struct Pb_data : Register<0x34, 32>
{

struct Pb2 : Bitfield<2, 1> { };
};

Pio(addr_t base) : Mmio(base)
{

/* configure PB2 pin to output mode */
write<Pb_cfg0::Pb2_select>(Pb_cfg0::Pb2_select::OUT);

}

void toggle_pb2()
{

bool const value = read<Pb_data::Pb2>();

/* write back inverted value */
write<Pb_data::Pb2>(!value);

}
};

To let the test program blink the LED at a visible rate, we need a timer mechanism.
Here, Genode’s Timer::Connection becomes handy. By adding following few lines to
the Main object, the toggle_pb2 method gets called every 250 milliseconds.
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#include <timer_session/connection.h>
...
struct Main
{

Timer::Connection _timer { _env };

void _handle_timeout(Duration)
{

_pio.toggle_pb2();
}

Timer::Periodic_timeout<Main> _timout_handler {
_timer, *this, &Main::_handle_timeout, Microseconds { 250*1000 } };

};

Until now, the simple test scenario lack a timer service. So we have to extend the run
script a bit.

1. Adding the timer service to the list of components to build.

build { ... timer }

2. Adding a start node to the static system configuration.

<start name="timer">
<resource name="RAM" quantum="1M"/>
<route> <any-service> <parent/> </any-service> </route>
<provides> <service name="Timer"/> </provides>

</start>

3. Routing the timer-session request by the test program to the timer service.

<start name="test-pin_control">
<resource name="RAM" quantum="1M"/>
<route>
<service name="Timer"> <child name="timer"/> </service>
<any-service> <parent/> </any-service>

</route>
</start>

4. Adding the timer executable to the boot image.

build_boot_image { ... timer }
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At the hardware side, we need to connect an LED in series with a resistor dimensioned
such that the potential difference over the LED will be approximately 2V. When con-
necting a 5V pin over the LED and the resistor to ground, the resistor should hence take
away 3V. Most LEDs draw a current of 20mA. Hence, Ohm’s law (R = U / I) tells us that
the resistor should have a value of 3V / 0.02 A = 15O Ohm. Picking a higher resistor
cannot hurt. It will just reduce the brightness of the LED. Long story short, a resistor of
a few hundred Ohm should be fine.

If any electrical engineer is reading this and finds I’m writing nonsense, please contact me.
To see if the LED is able to light up in principle when connected with the resistor in

series, the pins 8 (5V) and 34 (GND) become handy. The anode contact (the long one)
of the LED must face the 5V side.

Now its time to bring software and hardware together by connecting the LED’s anode
to pin 27 (PB2) and starting the test program. The final setup looks like this. What’s not
captured in the photo is that the LED is indeed blinking.

Figure 5

2.8.3 Responding to device interrupts

Besides sensing and driving digital signals, GPIO pins are often used as an interrupt
source. So some external circuity can trigger a sporadic response by the software.

To explore the interrupt facility, let’s first ignore the ARM GIC interrupt controller
for a moment and just focus on the PIO device. In the PB_CFG0 register, the value 6
configures the pin as operating in PB_EINT2 mode. Whatever the meaning of the E or
the 2, the pattern “INT” hints at what we want.
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...
struct Pb_cfg0 : Register<0x24, 32>
{

struct Pb2_select : Bitfield<8, 3>
{

enum { EINT2 = 6 };
};

};
...
Pio(addr_t base) : Mmio(base)
{

write<Pb_pull0::Pb2>(Pb_pull0::PULL_DOWN);

write<Pb_cfg0::Pb2_select>(Pb_cfg0::Pb2_select::EINT2);
}

The PB External Interrupt Status Register (PB_EINT_STATUS_REG) reflects the in-
terrupt state.

struct Pb_eint_status : Register<0x214, 32> { };

As an intermediate test, we can poll this register and see what happens when we
connect the pin 27 (PB2) to pin 8 (5V). The polling loop can be directly added to the Pio
constructor.

while (true)
log("PB_EINT_STATUS: ", read<Pb_eint_status>());

After starting the program, we see the following output scrolling by.

[init -> test-pin_interrupt] PB_EINT_STATUS: 0
[init -> test-pin_interrupt] PB_EINT_STATUS: 0
[init -> test-pin_interrupt] PB_EINT_STATUS: 0
...

Once after connecting PB2 to 5V, the output changes to:

[init -> test-pin_interrupt] PB_EINT_STATUS: 4
[init -> test-pin_interrupt] PB_EINT_STATUS: 4
[init -> test-pin_interrupt] PB_EINT_STATUS: 4
...
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The 4 corresponds to the bit 2 set, which is what we anticipated. The status bit never
returns to the original state. To clear the bit, a 1 must be written to the status bit. This
can be tested by slightly changing the while loop.

while (true) {
if (read<Pb_eint_status::Pb2>()) {

log("PB2 EINT status went high");
write<Pb_eint_status::Pb2>(1);

}
}

The scrolling log output is no more. Now, we see only one message each time we
fiddle with the PB2 pin.

[init -> test-pin_interrupt] PB2 EINT status went high

The clearing of the interrupt status works as advertised.
Until now, we have observed the PIO device behavior via a polling loop, which is

of course not in the spirit of using interrupts. To complete the scenario, we have to
tell the PIO to inform the CPU’s interrupt controller (GIC) whenever the EINT status
goes high. The connection between the PIO and the GIC can be established via the PB
External Interrupt Control Register.

struct Pb_eint_ctl : Register<0x210, 32>
{

struct Pb2 : Bitfield<2, 1> { };
};

When setting bit 2 in this register, the GIC will see a device interrupt from the PIO
device. The GIC interrupt numbers are documented in the Allwinner A64 manual at
page 211. PB_EINT is interrupt number 43.

To obtain an interrupt in our component, we can use core’s IRQ service as follows.

105



2.8 Device access from the user level

#include <irq_session/connection.h>
...

struct Test::Main
{

...

enum { PB_EINT = 43 };

Irq_connection _irq { _env, PB_EINT };

unsigned _count = 0;

void _handle_irq()
{

log("interrupt ", _count++, " occurred");

_pio.clear_pb2_status();

_irq.ack_irq();
}

Signal_handler<Main> _irq_handler { _env.ep(), *this, &Main::_handle_irq };

Main(Env &env) : _env(env)
{

_irq.sigh(_irq_handler);
_handle_irq();

}
};

The following details about this code fragment are worth highlighting.

• The GIC interrupt number is passed as argument to the IRQ connection to core.

• Interrupts are delivered as signals. The _irq_handler is a signal handler that
is registered at the IRQ session via the _irq.sigh method. Each time the signal
occurs, the Main::_handle_irq method is executed.

• The _pio.clear_pb2_status method performs the clearing of the PB2 interrupt
status.
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struct Pio
{

...
void clear_pb2_status()
{

write<Pb_eint_status::Pb2>(1);
}

};

The _irq.ack_irq call acknowledges the interrupt at the GIC.

• The _handle_irq method is manually called once after registering the signal han-
dler at the IRQ session. This pattern ensures that an initially pending interrupt
that occurred just before the call of _irq.sigh is processed before the component
goes into idle state.

The following illustration summarizes the scenario.
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The exact conditions for triggering an interrupt can be configured for the pin using
the PB External Interrupt Configure Register 0 (PB_EINT_CFG0). By default, the status
goes to 1 as soon as a rising edge is detected. The other alternatives are falling edge,
level-high (interrupt stays pending as long as the signal is high), level-low, and double
edge (interrupt on any change of the signal).

Only if the bit 2 of the status register (PB_EINT_STATUS) and the bit 2 of the control
register (PB_EINT_CTL) are set, the interrupt controller (GIC) receives an interrupt.
This GIC interrupt (number 43) is propagated via core’s IRQ service to our user-level
component, which implements the interrupt handler.

Thanks to the interrupt mechanism, we can now respond to sporadic hardware
events without active polling. When executing the scenario, we can see that a single
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message occurs each time when fiddling with the PB2 pin. The system stays completely
idle otherwise.

[init -> test-pin_interrupt] interrupt 0 occurred
[init -> test-pin_interrupt] interrupt 1 occurred
[init -> test-pin_interrupt] interrupt 2 occurred
[init -> test-pin_interrupt] interrupt 3 occurred
[init -> test-pin_interrupt] interrupt 4 occurred

Pointers to the corresponding code The test programs described above can be
found at the genode-allwinner1 Git repository. The C++ code is located at src/test/pin_state/2,
src/test/pin_control/3, and src/test/pin_interrupt/4. These test programs are accom-
panied with matching run scripts located at the run/5 directory.

1https://github.com/genodelabs/genode-allwinner
2https://github.com/genodelabs/genode-allwinner/tree/master/src/test/pin_state
3https://github.com/genodelabs/genode-allwinner/tree/master/src/test/pin_control
4https://github.com/genodelabs/genode-allwinner/tree/master/src/test/pin_interrupt
5https://github.com/genodelabs/genode-allwinner/tree/master/run
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2.9 One Platform driver to rule them all

In the previous section, we exercised direct-device access from user-level components.
In Genode systems beyond such toy scenarios, however, it would be irresponsible to
follow the path of allowing arbitrary drivers to access any device willy-nilly. Our call
for discipline and rigidity is answered by the (rising drum roll) platform driver.

Let’s recap the scenario of the previous article.

Core / Init
MMIOIRQ

PIO Test

ultimate
authority

access to
any device

Our user-level test program created connections to core’s services for accessing
memory-mapped I/O registers and receiving notifications for device interrupts. The
choice of physical register addresses and the GIC interrupt number was up to the
test program. So in principle, our program could access any part of the platform by
just requesting it. Hence, the mere fact that the driver code has the form of a regular
user-level component does not buy us a security gain per se. To benefit from Gen-
ode’s architecture, we need to rigidly limit the reach of each individual driver to the
smallest-possible set of device resources.

Remember, even though we want to use drivers, we distrust them. Consequently,
besides enforcing access control, we generally don’t want to expose system-global in-
formation to such untrusted components, asking questions like: Does a driver even
need to know the physical address of a memory-mapped I/O register? Does it need to
know the GIC interrupt number of the device it is driving? The perhaps surprising an-
swer is that - no! - many drivers can happily do their job without any knowledge about
these technicalities. All a driver needs to know is how to speak to a device of a certain
type, not where a particular instance of a device is located and how it is wired up. This
principled approach leads to a clear-cut separation of driver logic from parametriza-
tion.

2.9.1 Platform driver

To separate the concerns of parametrization and access control from the device drivers,
Genode employs the so-called platform driver as a level of indirection between core’s
services and the individual drivers. The platform driver has a global view over all de-
vice resources and follows a configured policy to partition those resources between its
clients. Each session to the platform service can comprise potentially multiple devices,
depending on the configured policy.
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Core / Init
MMIOIRQ
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To integrate the notion the platform driver into our existing scenario of accessing
general-purpose I/O pins via a to-be-developed PIO device driver, it is best to first
sketch a run script that mirrors the picture above. We have to find a suitable name and
location within our source tree for our designated driver component.

The naming of driver components within Genode follows the pattern

<device-or-platform>_<driver-type>_drv

For example, the imx8_fb_drv is a framebuffer (fb) driver for the i.MX8 SoC. In our
case of a PIO driver for the Allwinner A64 SoC, the name a64_pio_drv is a sensible
choice.

Even though there is no strict convention of the directory where a driver is lo-
cated, drivers usually reside in a subdirectory of src/drivers/ that corresponds to the
primary purpose of the driver. E.g., framebuffer drivers are located at src/driver-
s/framebuffer/. Our designated driver drives GPIO pins. So I settled on placing it
at src/driver/pin/a64/ within the genode-allwinner repository1. With the complicated
naming-things-topics behind us, let’s turn our attention to the run script, appropriately
named a64_pio_drv.run.

1. Building the components including the platform driver along with our new cus-
tom driver.

build { core init drivers/platform drivers/pin/a64 }

2. Creating a boot directory with the configuration of the init component.

1https://github.com/genodelabs/genode-allwinner
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create_boot_directory

install_config {
<config>
<parent-provides>
<service name="LOG"/>
<service name="PD"/>
<service name="CPU"/>
<service name="ROM"/>
<service name="IO_MEM"/>
<service name="IRQ"/>

</parent-provides>

<default caps="100"/>
...

</config>
}

At this time the scenario consists of only two components, namely the platform
driver and our PIO driver. The <start> node for the platform driver is particularly
interesting.

<start name="platform_drv">
<resource name="RAM" quantum="1M"/>
<provides> <service name="Platform"/> </provides>
<route> <any-service> <parent/> </any-service> </route>
<config devices_rom="config">
<device name="pio">
<io_mem address="0x1c20800" size="0x400"/>
<irq number="43"/>

</device>
<policy label="a64_pio_drv -> ">
<device name="pio"/>

</policy>
</config>

</start>

The routing rule states that the platform driver is permitted to open arbitrary
sessions to core, including IRQ and IO_MEM. There are no restrictions.

The <provides> declaration states that this component offers a “Platform” ser-
vice.

The <config> node tells the platform driver to determine the information about
the present devices from the ROM module labeled “config”, which allows us to
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specify both the device information and the policy inside the same <config> node.
Without the devices_rom=“config” attribute, the platform driver would request
a “devices” ROM session instead. We declare the existence of a single “pio” device
that features one memory-mapped I/O range and the GIC interrupt 43. You may
recall those values from Section 2.8.

The <config> node also tells the platform driver about the access-control policy
applied to clients that connect to the platform service. In the case at hand, we
dictate that a client labeled as “a64_pio_drv → " gets access to the “pio” device.
You may wonder about the trailing → part of the label. The part before the arrow
is hard-wired by the parent of the a64_pio_drv and thereby reflects the identity
of the client in a way that cannot be forged by the client. The part after the arrow
is controlled by the client. The client can use this part to provide hints about the
purpose of the session. So a client that creates multiple sessions to the same server
can express the intention behind those sessions. In our case, this client-controlled
part remains unused.

The <start> node for our designated PIO driver looks as follows.

<start name="a64_pio_drv">
<resource name="RAM" quantum="1M"/>
<route>
<service name="ROM"> <parent/> </service>
<service name="CPU"> <parent/> </service>
<service name="PD"> <parent/> </service>
<service name="LOG"> <parent/> </service>
<service name="Platform"> <child name="platform_drv"/> </service>

</route>
<config/>

</start>

Let me bring the <route> node to your attention. In contrast to the wildcard
rule <any-service> used for the platform driver, the rules for the PIO driver state
explicit permissions. From these rules, we can immediately infer the potential
reach of the component.

The driver is permitted to connect to the platform driver. That’s what we want.
It is also able to use core’s ROM, CPU, PD, and LOG services, which provide the
fundamental ingredients for executing the program.

Most importantly, no other service is reachable. In particular, the direct use of
core’s IRQ and IO_MEM is out of question. The only way to access a device is the
platform driver that imposes its policy.

3. Building the boot image containing the ELF binaries for the components and exe-
cuting the scenario.
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build_boot_image { core ld.lib.so init platform_drv a64_pio_drv }

run_genode_until forever

For reference you can find a commit for this step here1.
To exercise the interplay between the designated PIO driver with the platform driver,

it is a good idea to transplant the test/pin_state2 program of the previous section from
the use of core’s services to the use of the platform driver. The following snippet high-
lights the important changes.

#include <platform_session/device.h>
...

struct Pio_driver::Main
{

Env &_env;

Platform::Connection _platform { _env };

Platform::Device _device { _platform };

struct Pio : Platform::Device::Mmio
{

struct Pb_cfg0 : Register<0x24, 32>
{

...
};

...

Pio(Platform::Device &device) : Mmio(device)
{

...
}

};
...
Pio _pio { _device };
...

};

• The API for using the platform driver becomes available via

1https://github.com/genodelabs/genode-allwinner/commit/febf53b8ad6819757eeeaf20eeb1b634ade0b668
2https://github.com/genodelabs/genode-allwinner/blob/pio/src/test/pin_state/main.cc
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#include <platform_session/device.h>

• A session to the platform service is established by creating an instance of a
Platform::Connection passing the Genode environment as argument.

Platform::Connection _platform { _env };

By passing the _env, we explicitly give our consent that the Platform::Connection
can have global side effects such as the communication with the outside world.

• Access to one particular device of the platform session can be obtained by creating
an instance of a Platform::Device.

Platform::Device _device { _platform };

When called with only the Platform::Connection as argument, the device refers
to the first - and in our case only - device of the platform session. In cases where
multiple devices appear grouped in one platform session, a second argument al-
lows for the selection of the device.

• The memory-mapped registers of the PIO device are represented by a custom Pio
type that inherits the Platform::Device::Mmio type.

struct Pio : Platform::Device::Mmio

The constructor takes a Platform::Device and an optional index as arguments.

Pio _pio { _device };

If no index is provided, it refers to the first <io_mem> resources as declared in
the platform-driver’s configuration.

• Thanks to the inherited Platform::Device::Mmio type, the individual registers
can be accessed in the same way as we did in the previous article.

Note that in contrast to the previous examples, the code is void of physical addresses.
Now, those addresses are the business of the platform driver only.

2.9.2 Session interfaces for accessing pins

We ultimately want to allow multiple programs to interact with different GPIO pins.
So our PIO driver must evolve into a server component that allows clients to interact
with pins. Analogously to how the platform driver safeguards the access to device
resources by different - mutually distrusting - device drivers, the PIO driver’s job will
be the safeguarding of GPIO pins.
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Traditionally, Genode features the “Gpio” session interface for this purpose. This
interface allows a client to access an individual pin. Once assigned to a pin, the session
grants the client the full responsibility for the pin. In particular the direction of the I/O
pin is laid into the hands of the client. We later realized that the wiring and thereby the
direction of a pin is ultimately a board-level decision. Wrongly operating an input pin
in output mode can easily result in a short-circuit. Therefore, the client of an individual
pin should better not be burdened with the responsibility to control the pin direction
or pull resistors. To address this concern, it is best to split the roles of GPIO pins into
clear-cut session interfaces. Those roles are:

1. The sensing of the state of a GPIO pin, e. g., detecting whether a button is pressed
or not: operating a pin as an input signal. This role is now covered by the
“Pin_state” session interface with the single RPC function

bool state() const;

By calling this function, the client can request the state of the pin. That’s it.

2. Controlling the signal level of a pin: operating a pin as an output signal. This role
is now addressed by the “Pin_control” session interface that provides an interface
of only one rather unsurprising RPC function

void state(bool);

3. Receiving a notification of a change of the signal level of a GPIO pin: operating
a pin as an interrupt source. This role can be represented by Genode’s existing
IRQ session interface - the same interface as provided by Genode’s core for GIC
interrupts.

2.9.3 PIO device driver

The A64 PIO driver implements the three session interfaces outlined above. It resides
at src/drivers/pin/a641 within the genode-allwinner repository. The accompanied
README covers the details about its use and configuration.

Similar to how the platform-driver configuration declares device resources like IRQs
and memory-mapped I/O regions, the PIO driver’s configuration declares pins.

1https://github.com/genodelabs/genode-allwinner/tree/master/src/drivers/pin/a64
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<config>
<out name="led" bank="B" index="2" default="on"/>
<in name="button" bank="H" index="8" pull="up" irq="edges"/>
...

</config>

Here we see the declaration of an output pin named “led” and an input pin “button”.
The bank and index denote the physical location of the pin at the SoC. Further pin
parameters are expressed as attributes. For example, in the absence of a “Pin_control”
client for the “led”, the led is set to state “on” according to the default attribute.

Since the A64 PIO device subsumes GPIO functionality as well as I/O MUX func-
tionality, the driver also offers the selection of pin functions beyond <in> and <out>.

For reference, the commit for the driver implementation can be found here1. A few
technical tidbits and caveats I encountered during its development are worth sharing:

Device-register interaction

The actual interplay of the driver with the hardware registers is completely cov-
ered by the code found in pio.h2. Genode’s Mmio framework API makes this code
strikingly simple, almost self-describing. There is no manual bit fiddling to be
found, thanks to the wonderful Register_array.

Code organization

I deliberately split the code into a boring and an interesting part.

The boring part models the SoC-specific terminology as a bunch of corresponding
C++ types. In types.h3 one can find types for any term we deal with - however
boring it is. Most of these types have a local Value type that is as rigid as pos-
sible. E.g., the Pull type contains an enum with the values DISABLE, UP, and
DOWN as the Value type. The degrees of freedom mirror the information found
in the SoC manual. Each type is equipped with a class function from_xml that
encodes the knowledge of how values of the type relate to XML representation.
Some of the types go as far as deliberately disabling any means to construct in-
stances of the type without using from_xml by deleting the default constructor.
This way, program-global invariants of the type can be enforced at a single place.
The boring code makes up the biggest part of the driver. This is good because
with “boring” I mean simple and easy to assess for correctness.

The interesting part lives in the main.cc4 file where all the strings are coming
together.

1https://github.com/genodelabs/genode-allwinner/commit/11ec1ae2b8fe39de4f8059eb1e28c9a1bcb263a5
2https://github.com/genodelabs/genode-allwinner/blob/master/src/drivers/pin/a64/pio.h
3https://github.com/genodelabs/genode-allwinner/blob/master/src/drivers/pin/a64/types.h
4https://github.com/genodelabs/genode-allwinner/blob/master/src/drivers/pin/a64/main.cc
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Stumbling blocks

Quite a bit of time went wasted because of silly mistakes of mine.

Sometimes I went too hastily over the SoC documentation without double check-
ing. In particular, I allowed myself be become misled by a table in the SoC docu-
mentation1 at page 376 where I wrongly identified patterns that do not exist. In
one part of the table, the symbol n seemingly refers to a zero-indexed value corre-
sponding to GPIO banks in alphabetic order. Some lines below (at the Pn_INT_*)
definitions, the n refers only to a few banks, namely B, G, H. I wrongly assumed
the same linearity of register layouts to apply for both parts of the table. In reality,
n must just be read as a shorthand of “some value”. Note to myself: Double check
my assumptions each time I’m overconfident that I got it.

Because of my prolonged intimacy with pin 2 at bank B, I lost sight of the other
banks, in particular the fact that each bank is wired up with a distinct GIC inter-
rupt. Once I tried to receive interrupts for pin 8 at bank H, I first struggled to get
the interrupt mechanism to work, until I realized that bank H interrupts end up at
GIC IRQ 53, not 43. In fact, the “pio” device in the platform driver configuration
now looks like this:

<device name="pio">
<io_mem address="0x1c20800" size="0x400"/>
<irq number="43"/> <!-- Port B -->
<irq number="49"/> <!-- Port G -->
<irq number="53"/> <!-- Port H -->

</device>

Implementation of dynamic re-configurability

For maintaining the internal data model of the pin-state configuration, the driver
employs Genode’s List_model utility. By using this utility, the creation and up-
dating of such a data model from XML data becomes very simple. It comes down
to providing hook functions for creating, destroying, matching, and updating
model items.

It is worth noting that the driver configuration is not static but it can be dynam-
ically adjusted during runtime. So in principle, we can attain a blinking LED by
the sole means of re-configuring the driver.

2.9.4 Dynamic configuration testing

Wait what!?

1https://linux-sunxi.org/images/b/b4/Allwinner_A64_User_Manual_V1.1.pdf
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If blinking an LED by reconfiguring the PIO driver sounds as irresistible to you as to
me, follow me for a moment.

For test-driving the dynamic configuration handling of components like the A64 PIO
driver, there exists a handy utility component called dynamic_rom, which provides a
ROM service that feeds the client with different version of ROM content over time.
Here is how a <start> node of a dynamic_rom server looks like.

<start name="dynamic_rom">
<resource name="RAM" quantum="1M"/>
<provides> <service name="ROM"/> </provides>
<route>
<service name="Timer"> <child name="timer"/> </service>
<any-service> <parent/> </any-service>

</route>
<config>
<rom name="config">
<inline description="LED off">
<config>
<out name="led" bank="B" index="2" default="off"/>

</config>
</inline>
<sleep milliseconds="1000"/>
<inline description="LED on">
<config>
<out name="led" bank="B" index="2" default="on"/>

</config>
</inline>
<sleep milliseconds="1000"/>

</rom>
</config>

</start>

The <rom> node within its configuration defines a PIO <config>. After 1 second, the
<config> is replaced with a new version where the default attribute of the <out> pin
is toggled. After one more second, the first <config> becomes active again.

The remaining piece of the puzzle is feeding the ROM provided by the dynamic_rom
server as config ROM to the a64_pio_drv driver. This can be achieved by the following
routing rule in the <start> node of the a64_pio_drv component.
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<start name="a64_pio_drv">
...
<route>
<service name="ROM" label="config">
<child name="dynamic_rom"/> </service>

...
</route>

</start>

By wiring up the driver configuration to the dynamic_rom we can see the LED hap-
pily blinking even without any “Pio_control” client present.

The dynamic_rom server is handy utility in many testing situations. Besides issuing
time-triggered configuration updates, it can be used to mock system-state changes that
are normally driven by real components or sensory input that is difficult to fabricate
manually.

2.9.5 Cascaded authorities

Similarly to the configuration concept of the platform driver, the pin-declarations of
the PIO driver configuration are followed by a policy part of the configuration that
associates clients with pins.

<config>
...
<policy label_prefix="pin_event ->" pin="button"/>
<policy label_prefix="pin_pulse ->" pin="led"/>

</config>

This configuration assigns the “led” pin to the program “pin_pulse”, and the “but-
ton” to the program “pin_event”. Note that - like the pin declarations - these assign-
ments can be dynamically changed by the means of configuration updates.

The “pin_pulse” component uses the “Pin_control” session to drive the digital signal
of an LED with a pulse-width-modulated pattern. Effectively, the program toggles the
LED 200 times per second while adjusting the relation of the durations of the low and
high signal levels over time. The result is a nice breathing effect.

The “pin_event” component watches the state of a pin using a combination of
an IRQ session and a “Pin_state” session. Each time when the signal changes, an
IRQ is triggered, which prompts the component to obtain the pin state by calling
Pin_state::state.

The component composition of the scenario looks as follows.
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Core / Init
MMIOIRQ

Platform Driver
Platform

PIO Driver

Pin
control

IRQ Pin
state

LED
Pulse

Pin
Button

ultimate
authority

authority over
all device resources

authority over
all GPIO pins

authority to observe
GPIO pin 8 at bank H

authority to control
GPIO pin 2 at bank B

The higher up we get, the less influential the components become. Whereas the ker-
nel has ultimate authority over everything, the reach of the pin-pulse component is
limited to the control of the output signal of a single GPIO pin only.

As indicated by the coloring of the components, policy and mechanisms are nicely
separated. The pin-pulse component does not even know which pin it is driving. It
merely contains the logic needed to modulate the PWM pattern on a digital output
signal. At the bottom end of the picture, the core / kernel component does have no
interpretation of physical device addresses or IRQ numbers. It is indifferent regarding
GIC IRQ number 43 and free from policy. The policy is encapsulated in the forms of
the platform and PIO driver components, each respectively applying a policy at a useful
level of abstraction.

2.9.6 Integrated test scenario

The final version of the a64_pio_drv.run1 script contains the combinations of the vari-
ous fragments discussed above. It test-drives the dynamic re-configurability of the PIO
driver along with the “Pin_state”, “Pin_control”, and IRQ session interfaces.

For the test of the GPIO input, I selected pin 8 of bank H. This pin is accessible at
the Euler connector at pin 10 of the Pine-A64-LTS board. The board has a button la-
beled “power” just besides the reset button. Although this “power” button is con-
nected to the AXP803 power management chip, it doesn’t appear to have any effect
when pressed while the board is on. According to the board schematics2, the button

1https://github.com/genodelabs/genode-allwinner/blob/master/run/a64_pio_drv.run
2https://files.pine64.org/doc/SOPINE-A64/PINE%20A64-TLS-20180130.pdf
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happens to be also wired to pin 5 of the smaller 10-pin Euler header. I figured that I
can thereby feed the button state to the GPIO pin H8 be connecting pin 5 of the small
Euler header with pin 10 of the large Euler header. The signal is active-low, which can
be explained by the schematics that shows that the button pulls the PWR_ON signal to
ground when pressed. Long story short, with this wiring in place, the power button
can be observed via GPIO H8. The GPIO pin B2 can be connected to an LED as we did
for the test/pin_control example described in the previous article.
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2.10 Taking Linux out for a walk

In preparation of the porting of drivers from Linux to Genode, we have to gather knowl-
edge about the drivers’ natural habitat. This article goes through the steps of building
a custom Linux system that is tailored to a driver of our choice.

Most of Genode’s device drivers are not written from scratch specifically for Genode
but ported from time-tested code bases such as the Linux kernel. In the case of most
ARM SoC drivers, the driver code is provided by the SoC vendors and is often the
only reference of how the hardware works. Given the staggering complexity of the
devices, their rapid product cycles, and the diversity of employed IP cores, developing
the drivers from scratch is out of question.

Motivation In the past, we sometimes directly jumped into the driver-porting work
guided by mere intuition, transplanting chewable bites of Linux kernel code into Gen-
ode components, and reanimating the code to life. In some cases like our our first port1

of the Intel GPU driver, we were lucky with bringing up a driver on Genode without
even testing the driver code on Linux beforehand. However, this remained a rare excep-
tion. In most cases, especially when a predictable success and development schedule is
desired, we had to engage with the building and integration of custom Linux systems
as part of the driver-porting work. Even though jumping thought the hoops of Linux
is additional work, it gives us three invaluable benefits.

First, it gives us reassurance how the driver works on the reference hardware. We
can set our expectations regarding the feature set, stability, and performance. Once the
driver is ported, we can reflect on the success by the means of benchmarking the driver
in both systems Linux and Genode.

Second, it allows us to study and instrument the driver’s interaction with the user-
level interfaces and the hardware. For getting hold of the userland’s interaction with
the driver, it is useful to exercize the driver interfaces - think of ioctl calls - by walking
the beaten tracks.

Third and most importantly, it allows for cross-correlating the behavior of the driver
in its natural environment against its execution within an isolated Genode component.
We have to mimick Linux kernel APIs so that the driver is happy, after all. The com-
parison of the driver running in both environments is instructive for crafting the driver
environment.

Picking a tangible goal Among the various classes of peripherals, network devices
are an attractive target for porting a first driver. In contrast to the PIO device dis-
cussed in Section 2.9, network devices are complicated enough to get a tangible benefit
out of the porting approach. Conversely, network drivers are simple enough to not get

1https://genode.org/documentation/release-notes/10.08#Gallium3D_and_Intel_s_Graphics_
Execution_Manager
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overwhelmed. Furthermore, network connectivity is easy to test in an automated way,
avoiding distractions from fiddly manual workflows. Finally, the reward of enabling
networking support is quite substantial. A single driver opens up a whole world of
Genode system scenarios.

In the following, we will walk towards a minimally complex custom Linux system
by taking the following steps.

• Learning how to use U-Boot to start an arbitrary Linux-based OS,

• Using a custom initrd based on Busybox,

• Booting a custom-built kernel,

• Getting the network device to work,

• Stripping down the kernel configuration,

• Making the findings reproducible

2.10.1 Bootstrapping Linux using U-Boot

For our development work flow, we’d like to retain the convenience of network boot
as explored in Sections 2.2 and 2.3. Booting Linux differs from booting a single binary
as we did so far. For grokking those differences, it is nice to rely on known-to-work
ingredients.

Remembering from Section 2.2 how well the image of the Armbian1 distribution
worked on the board, we know where to look. There are various ways for accessing
the content of the image. When using Gnome, you may be able to mount the image
by clicking on it. In my case, I loop-mounted the image manually. First, looking in the
partition table to find out where the file system starts.

$ fdisk -l Armbian_21.05....img
Disk Armbian_21.05....img: 1,7 GiB, 1782579200 bytes, 3481600 sectors
...
Armbian_21.05....img1 8192 3481599 3473408 1,7G 83 Linux

It starts at block 8192. Given the usual block size of 512 and the help of a multipli-
cation device, we get to know the byte offset as an argument for loop-mounting the file
system.

$ python -c "print 8192*512"
4194304
$ sudo mount -oloop,offset=4194304 Armbian_21.05....img /mnt

1https://www.armbian.com
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In the file-system’s /boot/ directory, the files of interest are:

Image is a symlink to the Linux kernel. In my case, it refers to vmlinuz-5.10.34-sunxi64,
which is a file of 21 MiB.

config-5.10.34-sunxi64 is the kernel configuration, which will become handy once we
build the kernel from source. Save it for later.

dtb/allwinner/ is a directory of so-called device-tree files, which we will cover in a
minute. For now, it suffices to know that each dtb file contains a hardware de-
scription of a specific board. Among the 48 dtb files present in the directory, I
identified the one for the Pine-A64-LTS board via

$ ls -1 /mnt/boot/dtb/allwinner/ | grep a64 | grep lts
sun50i-a64-pine64-lts.dtb

initrd.img-5.10.34-sunxi64 is the initial ram disk used for bootstrapping the userland.

For booting Linux, we have to supply the kernel (Image), the dtb file (pine64.dtb) for
our board, and the initrd via our TFTP directory and can use the following U-Boot
commands to bring the combination of the pieces to life. The addresses are picked such
that they do not overlap, using U-Boot’s default load address for the kernel.

1. Load the kernel.

=> bootp 0x42000000 10.0.0.32:/var/lib/tftpboot/Image

2. Load the initial RAM disk.

=> bootp 0x41000000 10.0.0.32:/var/lib/tftpboot/initrd

3. Load the device-tree file

=> bootp 0x41f00000 10.0.0.32:/var/lib/tftpboot/pine64.dtb

4. Modifying the device tree to supply kernel parameters. First, telling U-Boot’s
FDT tool where the location of our DTB data.

=> fdt addr 0x41f00000

Making space for adding additional content.

=> fdt resize 0x1000
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Modifying the chosen device-tree node that contains the kernel parameters such
as the location of the initrd (start and end address)

=> fdt chosen 0x41000000 0x41996388

or the kernel command line

=> fdt set /chosen bootargs "rdinit=/bin/sh"

5. Start the kernel by specifying the kernel’s address and DTB address. We can spec-
ify - as the second (initrd) argument because we already tell the kernel the loca-
tion of the initrd via the chosen DTB node.

=> booti 0x42000000 - 0x41f00000

It goes without saying that manually executing this sequence of commands would be
error-prone and unnerving. Fortunately, U-Boot allows us to store a sequence of com-
mands in an environment variable, like so:

=> setenv lx ’command; another command; ...’

The variable named lx now contains the sequence of the commands separated by
semicolons. The value of lx variable can be made persistent via the mechanism dis-
cussed in Section 2.2.2.

=> saveenv

The sequence of commands stored in the variable lx can be executed via the run
command:

=> run lx

The machinery takes over...
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ethernet@1c30000 Waiting for PHY auto negotiation to complete........ done
...
Using ethernet@1c30000 device
TFTP from server 10.0.0.32; our IP address is 10.0.0.178
Filename ’/var/lib/tftpboot/Image’.
Load address: 0x42000000
Loading: #################################################################

#################################################################
....
#####################################
1.6 MiB/s

done
Bytes transferred = 32020992 (1e89a00 hex)
BOOTP broadcast 1
DHCP client bound to address 10.0.0.178 (3 ms)
Using ethernet@1c30000 device
TFTP from server 10.0.0.32; our IP address is 10.0.0.178
Filename ’/var/lib/tftpboot/initrd’.
Load address: 0x41000000
Loading: #################################################################

....
##############
2.2 MiB/s

done
Bytes transferred = 10052488 (996388 hex)
BOOTP broadcast 1
DHCP client bound to address 10.0.0.178 (2 ms)
Using ethernet@1c30000 device
TFTP from server 10.0.0.32; our IP address is 10.0.0.178
Filename ’/var/lib/tftpboot/pine64.dtb’.
Load address: 0x41f00000
Loading: ##

1.2 MiB/s
done
Bytes transferred = 28418 (6f02 hex)
## Flattened Device Tree blob at 41f00000

Booting using the fdt blob at 0x41f00000
EHCI failed to shut down host controller.

Loading Device Tree to 0000000049ff5000, end 0000000049ffffff ... OK

Starting kernel ...

[ 0.000000] Booting Linux on physical CPU 0x0000000000 [0x410fd034]
[ 0.000000] Linux version 5.10.34-sunxi64 ...
...
... a few hundred lines of boot messages ...
...
[ 6.593071] Freeing unused kernel memory: 5888K
[ 37.865818] vcc-1v2-hsic: disabling
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Pressing enter...

#

A root shell awaits our commands. Could we ask for more?

2.10.2 A custom initrd based on Busybox

With the clarity gained about the network boot process of Linux via U-Boot, we can
now stepwise replace each of the three ingredients.

First, we replace Armbian’s initrd with a custom-built RAM disk based on Busybox1.
This will give us a functional, reproducible, and customizable userland to play with
while being ten times smaller than the initrd we scraped off the Armbian image. Since
we ultimately strive for a minimalistic Linux kernel with all batteries for our board
included and dynamic modules switched off, we don’t need the initrd as a carrier of
kernel modules after all.

Presuming that a regular ARM tool chain and the cpio utilities are installed (e. g., the
Debian packages gcc-aarch64-linux-gnu and cpio), the following steps produce a custom
initrd from scratch.

1. Download and extract BusyBox

$ wget https://busybox.net/downloads/busybox-1.29.3.tar.bz2

$ tar xjf busybox-1.29.3.tar.bz2
$ mkdir build-busybox-aarch64
$ cd busybox-1.29.3

2. Configure BusyBox

$ make O=../build-busybox-aarch64 defconfig
$ make O=../build-busybox-aarch64 menuconfig

Check the following setting in the menu:

[*] Setting -> Build static binary (no shared libs)

3. Compile BusyBox with the installed cross-compile tool chain

$ cd ../build-busybox-aarch64
$ make CROSS_COMPILE=aarch64-linux-gnu- install -j6

1https://www.busybox.net/
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4. Useful setups for the ram disk

$ cd <busbox-build-dir>/_install

Create fstab by editing etc/fstab as follows.

none /proc proc defaults 0 0
none /sys sysfs defaults 0 0

Enable DNS resolution via a predefined name server.

$ echo "nameserver 1.1.1.1" > etc/resolv.conf

Create a run-level script using mdev by creating a etc/init.d/rcS file with the fol-
lowing content.

#/bin/sh

mkdir -p /proc
mkdir -p /sys
mkdir -p /var/shm
mkdir -p /var/run
mkdir -p /var/tmp
mkdir -p /tmp
mkdir -p /home/tc
mkdir -p /root
mkdir -p /dev

/bin/mount -t tmpfs mdev /dev
mkdir /dev/pts
/bin/mount -t devpts devpts /dev/pts

echo "Mount everything ${1}"
/bin/mount -a

echo /sbin/mdev > /proc/sys/kernel/hotplug
/sbin/mdev -s
echo "Finished"
/bin/sh

5. Create the initial ram disk using cpio

$ find . | cpio -H newc -o | gzip > ../initrd
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After replacing Armbian’s initrd with our custom initrd in the TFTP directory, the U-
Boot command for tweaking the chosen device-tree node must be slightly adjusted to
the different size.

2.10.3 Vendor kernel source

For most SoCs, the chip vendor provides a vendor-blessed version of the Linux ker-
nel source somewhere on the internet. Those so-called vendor kernels are usually a
somewhat sour compromise. On the one hand, they contain the know-how of the ven-
dor regarding the device drivers. The vendor kernels are usually tailored well to the
hardware. On the other hand, the “tailoring” does not always follow the written and
unwritten rules of Linux kernel development, standing in the way of cleanly integrat-
ing the vendor code into the upstream kernel. Some vendors don’t even try. Hence,
after the vendor kernel for a specific chip is publicly released, it must be assumed a
dead branch of kernel development, receiving no further love. In our situation - where
we are after the vendor’s drivers - we have to take the SoC’s vendor kernel as our
reference.

In the case of the Allwinner A64 SoC, the vendor kernel1 is based on Linux as old
as version 3.10. However, thanks to the tremendous efforts of the Sunxi2 open-source
community that works independently from the SoC vendor, the A64 is fully supported
by the upstream Linux kernel by now. The instructions3 for building a kernel suitable
for the A64 SoC come down to compiling the Linux kernel for the AARCH64 architec-
ture using its default configuration.

The bottom line is that we can pick a recent kernel from https://kernel.org and go
with it.

$ wget https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.12.1.tar.xz
...
$ tar xf linux-5.12.1.tar.xz

This will extract the kernel source to the linux-5.12.1 subdirectory. In the following,
we will refer to this directory as LX_DIR. Let’s remember the path in a environment
variable. That’s just for convenience.

export LX_DIR=$PWD/linux-5.12.1

1https://linux-sunxi.org/Pine64#BSP
2https://linux-sunxi.org
3https://linux-sunxi.org/Pine64#Linux_Kernel
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2.10.4 Building and booting a custom-built kernel

Let’s give the default kernel configuration a try. For hygienic reasons, I prefer us-
ing a build directory separate from the source tree. Let’s call the build directory
LX_BUILD_DIR pointing at some place that does not exist yet.

export LX_BUILD_DIR=$PWD/lx_build

When using the Linux build system targeting the AARCH64 architecture, one always
has to specify ARCH=arm64 as argument to make. Note that this argument even changes
the output of make help. So we should apply it consistently. Let’s stuff it into an
environment variable so that we don’t need to repeat it over and over again.

export ARCH=arm64

Similarly to the ARCH argument, we need to tell the kernel’s build system about the
tool chain used for cross compiling the kernel. In our case, we want to use Genode’s
tool chain, which is usually installed at /usr/local/genode/tool/<version>/bin/ and pre-
fixed with genode-aarch64-. The kernel’s build system expects this information as
CROSS_COMPILE argument or environment variable.

export CROSS_COMPILE=/usr/local/genode/tool/21.05/bin/genode-aarch64-

With these precautions taken, we can initialize the build directory with the default
configuration via

make -C $LX_DIR O=$LX_BUILD_DIR defconfig

The kernel configuration can be found at the .config file inside the build directory.
To get an idea what a “default” configuration entails, the number of enabled options is
telling.

$ grep =y $LX_BUILD_DIR/.config | wc -l
2482

I translate this number to not processable by my mind.
A further feel of defeat sets in when trying to compare the default configuration with

the config-5.10.21-sunxi64 found on the Armbian image.
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$ diff $LX_BUILD_DIR/.config config-5.10.21-sunxi64 | wc -l
10363

We seem to be out of luck if we think of correlating both configurations with each
other.

Without further ado, the kernel image can be built as follows.

$ make -C $LX_BUILD_DIR Image -j8
...

LD vmlinux
SORTTAB vmlinux
SYSMAP System.map
OBJCOPY arch/arm64/boot/Image

On my laptop, this takes about 20 minutes. As indicated by the build-system mes-
sages, the resulting kernel Image can be found at the arch/arm64/boot/. It has a size of 32
MiB.

By the way, the kernel’s build system offers a number of other useful targets such as
a compressed kernel image. It is worth taking a look at the options.

$ make -C $LX_BUILD_DIR help

Here, we can learn that there exists a convenient target for creating DTB files.

$ make -C $LX_BUILD_DIR dtbs

So we can pick the dtb file matching our board from arch/arm64/boot/dts/, in our case
allwinner/sun50i-a64-pine64-lts.dtb replacing the third magical puzzle piece of the boot
process by a variant created from source.

When trying out the fresh baked kernel on the board, we can see the kernel booting
up, showing the kernel log over the serial line, and presenting us with the root shell.
We have a solid ground to walk on!

Next up, let us turn our attention to networking. The first impulse is to issue
ifconfig to see the presence of network devices. Well, the bad news is that there
are none.

We can look at this problem from several angles.

• Grep’ing the .config file for patterns like ALLWINNER, SUNXI, NET, etc.

• Wandering through the menus of make menuconfig on the hunt for cues.
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• Comparing the boot logs of the Armbian kernel and the custom built kernel, look-
ing out for network-related messages.

Of these points, the last one is probably the least futile. However, there is an alternative
route towards success and happiness: Let’s have a closer look at the device tree for our
board.

2.10.5 Device-tree treasure trove

The so-called device trees1 are semi-formal descriptions of a hardware platforms, which
may consist of several peripherals, buses, interrupt controllers, clocks, and so on. In
the context of Linux, it serves two purposes. First, it fills the gap of dynamic device
discovery on platforms where devices cannot be probed in a reliable way at runtime.
This applies for most ARM SoCs. By looking at the device tree, the kernel learns which
drivers are to use. Second, the device tree parametrizes the individual drivers. This
allows drivers to stay clear from vendor-specific parameters hard-coded in the source
code. By taking parameters from the device tree, drivers can more easily re-targeted to
other SoC revisions.

For our aspiration to port drivers to Genode, device trees are a blessing. Since they
are curated by the SoC vendors, they contain a form of hardware documentation that
can often not be found anywhere else. Moreover, in contrast to sketchy documentation
- if available at all - the information present in the device trees can be assumed to be
correct because it plays a role in driving the hardware. In a way, device trees look like
a social engineering trick to wrest hardware docs from vendors. To lift the treasure, we
have to look in the source tree at arch/arm64/boot/dts/.

$ find $LX_DIR/arch/arm64/boot/dts

We find almost 800 files there. But the forest is well organized. It is straight-forward
to spot the vendor and narrow the search. In my case:

$ find $LX_DIR/arch/arm64/boot/dts | grep allwinner
...
$ find $LX_DIR/arch/arm64/boot/dts | grep allwinner | grep pine
...
$ find $LX_DIR/arch/arm64/boot/dts | grep allwinner | grep pine | grep lts
.../arch/arm64/boot/dts/allwinner/sun50i-a64-pine64-lts.dts

When looking into this file, we see that it uses the C preprocessor to include a bunch
of includes. To get the entire picture, we have to apply the C-preprocessing step.

1https://github.com/devicetree-org/devicetree-specification/releases/download/v0.3/
devicetree-specification-v0.3.pdf
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$ cpp -I $LX_DIR/include -x assembler-with-cpp -P \
$LX_DIR/arch/arm64/boot/dts/allwinner/sun50i-a64-pine64-lts.dts \
> flat_pine64lts.dts

The -x assembler-with-cpp argument is needed to prevent the C preprocessor
from misinterpreting lines with a leading # as preprocessor directive. The -P argu-
ment removes line markers from the output. It is useful to save the result in a file
(flat_pine64lts.dts), which we can consult at any time later. For the Pine-A64-LTS board,
the file comprises 1600 lines of insights: the relationships of many important numbers
to human-readable terminology.

2.10.6 Enabling network support

Refreshed from studying the device tree for our board, now is a good time to come back
to the topic of enabling the networking for our board. By skimming over the flattened
dts file, the following node featuring the term “ethernet” catches our attention.

emac: ethernet@1c30000 {
compatible = "allwinner,sun50i-a64-emac";
syscon = <&syscon>;
reg = <0x01c30000 0x10000>;
interrupts = <0 82 4>;
interrupt-names = "macirq";
resets = <&ccu 13>;
reset-names = "stmmaceth";
clocks = <&ccu 36>;
clock-names = "stmmaceth";
status = "disabled";
mdio: mdio {
compatible = "snps,dwmac-mdio";
#address-cells = <1>;
#size-cells = <0>;
};
};

Let me draw your attention to the two lines defining a property called compatible.
Those properties denote the driver that should be used to talk to this piece of hardware.
It actually draws a direct connection to the source code. To put the device-tree node in
other words:

To use ethernet on our board, the kernel configuration must include the source code related to
“allwinner,sun50i-a64-emac” and “snps,dwmac-mdio”.

Let’s start with “allwinner,sun50i-a64-emac”.
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$ grep -r "allwinner,sun50i-a64-emac" $LX_DIR/drivers/net
.../stmmac/dwmac-sun8i.c: { .compatible = "allwinner,sun50i-a64-emac",

Apparently, a sledgehammer is sometimes the perfect device for singling out a needle
from a haystack. Let’s not waste too much time with looking at the code. The only
information important to us is the name of the compilation unit dwmac-sun8i.c. As a
matter of convention, the corresponding object file is usually present in the makefile for
the subsystem.

$ grep "dwmac-sun8i.o" $LX_DIR/drivers/net/ethernet/stmicro/stmmac/Makefile
obj-$(CONFIG_DWMAC_SUN8I) += dwmac-sun8i.o

What a revelation! We have just drawn the connection from a node found it a device
tree to a kernel-configuration option. When looking at the kernel’s .config file, it
becomes clear that the kernel does not drive the ethernet device with builtin drivers
because the driver is configured as a module.

$ grep CONFIG_DWMAC_SUN8I $LX_BUILD_DIR/.config
CONFIG_DWMAC_SUN8I=m

Often, kernel options have dependencies. To get a picture of the dependencies of the
CONFIG_DWMAC_SUN8I driver, one can consult the accompanied Kconfig files or show
the Help for the corresponding item in the menus of the kernel’s make menuconfig
interactive configuration tool.

$ make -C $LX_BUILD_DIR menuconfig

Use search (/) to search for the desired option (e. g., CONFIG_DWMAC_SUN8I),
learn about the location of the option in the menu hierarchy, and look out for depen-
dencies not marked with y. In our concrete case, the two options STMMAC_ETH and
STMMAC_PLATFORM must be enabled to satisfy DWMAC_SUN8I.

To enable the options, one may use the interactive menu config tool. But I prefer a
non-interactive way that can be scripted. There exists a handy tool at scripts/config in
the kernel source tree that allows us to enable and disable options, like so:

$ $LX_DIR/scripts/config --file $LX_BUILD_DIR/.config \
--enable STMMAC_ETH --enable STMMAC_PLATFORM --enable DWMAC_SUN8I

The tool merely sets or removes individual options. It must be followed by an invo-
cation of make olddefconfig to resolve possible inconsistencies and dependencies.
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$ make -C $LX_BUILD_DIR olddefconfig

By looking at the resulting .config we get the reassurance that all dependencies are
indeed met.

$ grep CONFIG_DWMAC_SUN8I $LX_BUILD_DIR/.config
CONFIG_DWMAC_SUN8I=y

The steps above may appear long-winded. But in contrast to hit-and-miss juggling
of kernel configurations, the steps form a deterministic and explainable process.

With the driver for the “allwinner,sun50i-a64-emac” device-tree node covered, we
are left to repeat the process for the “snps,dwmac-mdio” node. It turns out this node is
covered by STMMAC_PLATFORM already.

As a convenient way to quickly test-drive our network-equipped Linux kernel, the
kernel can be instructed to issue a DHCP request as part of the boot process. This can be
enabled by specifying the argument ip=dhcp to the kernel command line. For reference,
when using U-Boot’s fdt command, the chosen device-tree node can be adjusted as
follows:

=> fdt set /chosen bootargs "rdinit=/bin/sh ip=dhcp"

Once all driver dependencies are resolved, ifconfig reports the Ethernet device
with its IP address. At this point we know that network packets were successfully
transmitted in both directions.

/ # ifconfig
ifconfig: /proc/net/dev: No such file or directory
eth0 Link encap:Ethernet HWaddr 02:BA:FE:7B:59:38

inet addr:10.0.0.178 Bcast:10.0.0.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
Interrupt:39

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:65536 Metric:1

2.10.7 Stripping down the kernel configuration

Even though the custom built kernel works in principle, the situation it not satisfactory.
First, the kernel image of 32 MiB carries a lot of excess weight when considering that
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we merely want to take the network driver for a joyride. Second, we learned that the
default configuration deliberately excludes features that we deem interesting.

To overcome this situation, we have to dive into the world of Linux kernel configu-
ration more than knee deep. But first, let’s backup the known-to-work .config file.

cp $LX_BUILD_DIR/.config $LX_BUILD_DIR/config_works

In addition to the defconfig build target that results in 2482 options enabled in the
.config file, the kernel’s build system also features a tinyconfig target that leaves
only 323 options enabled. By using this configuration, the Image build time goes down
from 20 minutes to only 1.5 minutes with the image weighting only 1.6 MiB. That is
much more to my taste!

The only downside of the tiny kernel is that it does not show a life sign when booted
on our board. But that is expected because the configuration does not accommodate any
specific SoC out of the box. In order to bring it to life, all we need to do is to enable the
right options, don’t we? The first goal should be to find the options needed to get the
boot log over the serial line. Once we accomplish that, we can turn our attention to
supporting our initrd. Once that works, we can revive the networking support.

At this point, we know that serial output works with the defconfig kernel. The
2482 options enabled for the defconfig have to contain the right ones. Most obviously,
we need to enable the platform support for our SoC (ARCH_SUNXI). We can let our
intuition guide us for a bit. Which kernel options found in the defconfig could possibly
contribute to serial output of the kernel console? Searching the config_works file for
terms like “SERIAL”.

$ grep =y $LX_BUILD_DIR/config_works | grep SERIAL
...

E.g., SERIAL_EARLYCON looks certainly useful to have.
The second strategy for finding the right options is the device-tree-driven approach

we used for the network device. Searching the DTS file for “serial” leads us to a node
referring to “snps,dw-apb-uart”, which relates to 8250_dw.c and 8250_early.c, which
in turn brings CONFIG_SERIAL_8250_DW and CONFIG_SERIAL_8250_CONSOLE to
our attention. Fast forward, the following options can be directly inferred from the
device tree: SERIAL_8250, SERIAL_8250_16550A_VARIANTS, SERIAL_8250_DW, SE-
RIAL_8250_CONSOLE.
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gap

Device-tree
analysis

Rational
thinkingIntuition

Looking from above, looking from below, however we look, there is still a gap of con-
fig options to fill. To uncover the missing options, we can apply brute force, bisecting
the configurations as illustrated by the following commands:

1. Create a fresh tinyconfig

$ make -C $LX_BUILD_DIR tinyconfig

2. Enable options we already know we need for sure

$ $LX_DIR/scripts/config --file $LX_BUILD_DIR/.config \
--enable SERIAL_8250 ...

3. Enable half of the candidates found in the backed up defconfig

$ grep =y $LX_BUILD_DIR/config_works |\
head -n 1200 |\
sed "s/=y//" |\
xargs -ixxx $LX_DIR/scripts/config \

--file $LX_BUILD_DIR/.config --enable xxx

This command adjusts the .config file by enabling the first 1200 config options
we find enabled in the config_works file, which are the upper half of the enabled
options.

4. Sanitize the .config file

$ make -C $LX_BUILD_DIR olddefconfig

5. Build the kernel and copy the resulting image the TFTP directory

$ make -C $LX_BUILD_DIR dtbs Image -j8 \
&& cp $LX_BUILD_DIR/arch/arm64/boot/Image /var/lib/tftpboot/
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6. Boot the board. If the kernel shows a life sign over serial, we know that all the
needed options are covered by the first 1200 ones. Otherwise, we know that a
missing option is somewhere beyond those 1200. So we can continue with the
first step while cutting the search space in half for each iteration.

For example, in the case of the Pine-A64-LTS board, I found that the first 1200 options
sufficed for the serial output. So I went for the first 600 options in the next iteration.

Since the search space is cut into half in each iteration, resolving the mystery of miss-
ing kernel options comes down to about 10 iterations and a bit of patience. Using
this process, I uncovered the need for CONFIG_PRINTK, CONFIG_BINFMT_ELF, or
BLK_DEV_INITRD, which look obvious in hindsight but are very unlikely to find by
the means of grep, intuition, or device-tree analysis.

By following this process, I eventually came up with a kernel has networking and
serial output enabled. The bisecting work is not taxing but rather mechanic. It is nice
knowing that it leads to predictable success. With about 500 options enabled and an
image size of 4.2 MiB (uncompressed), the resulting kernel is a workable basis for the
upcoming porting and instrumentation work.

2.10.8 Making the findings reproducible

As with any Genode-related working topic, I’m trying to make the essence of the above
findings easily reproducible, for others and me. This way, the next developer can pick
up a topic where I left it.

To download the kernel using Genode’s ports tool, we can start with the follow-
ing initial ports file placed at allwinner/ports/a64_linux.port. The prefix a64 refers to the
name of the Allwinner SoC, which expresses our intent that the downloaded version of
the Linux kernel is blessed for the use of this particular SoC.

LICENSE := GPLv2
VERSION := 5.12.1
DOWNLOADS := a64_linux.archive

URL(a64_linux) := https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-$(VERSION).tar.xz
SHA(a64_linux) := 123
DIR(a64_linux) := src/linux

The SHA hash is not known at this point, just putting an arbitrary number 123 there.
The accompanied allwinner/ports/a64_linux.hash hash file can be created with a made-up
number.

456
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With the port-description file and hash file in place, we can give the a64_linux port
a try.

genode$ ./tool/ports/prepare_port a64_linux
a64_linux download https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.12.1.tar.xz
Error: Hash sum check for a64_linux failed

Even though the hash-sum check predictably failed, the download of the archive
succeeded. It can be found in the genode/contrib/ directory in a subdirectory named
after the port file.

genode$ ls -lh contrib/a64_linux-456.incomplete/linux-5.12.1.tar.xz
... 113M ... contrib/a64_linux-456.incomplete/linux-5.12.1.tar.xz

The correct SHA hash value is just one invocation of sha256sum away:

genode$ sha256sum contrib/a64_linux-456.incomplete/linux-5.12.1.tar.xz
c0fc1cf...fe5f37 contrib/a64_linux-456.incomplete/linux-5.12.1.tar.xz

Now we can replace the dummy value 123 in the port description file with the correct
value and retry the prepare_port call.

genode$ ./tool/ports/prepare_port a64_linux
a64_linux extract linux-5.12.1.tar.xz (a64_linux)
a64_linux generate a64_linux.hash
Error: allwinner/ports/a64_linux.port is out of date, expected 155f...

This time, the extraction step succeeded. However, the port tool rightfully argues
about the port hash, which is a hash over the port description file. The hash ensures
that port is consistent with the Genode source tree. This can be conveniently updated
using the ports/update_hash tool.

genode$ ./tool/ports/update_hash a64_linux
generate a64_linux.hash

With the hash updated, the next attempt to prepare_port succeeds:

genode$ ./tool/ports/prepare_port a64_linux
a64_linux extract linux-5.12.1.tar.xz (a64_linux)
a64_linux generate a64_linux.hash
genode$ ls contrib/a64_linux-155f8b01cd911f42f23178571d70a2220612b634/
a64_linux.hash linux-5.12.1.tar.xz src
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The src/linux/ subdirectory contains the source tree of the kernel.

genode$ ls contrib/a64_linux-155f8b01cd911f42f23178571d70a2220612b634/src/linux/
arch CREDITS fs Kbuild LICENSES net security virt
block crypto include Kconfig MAINTAINERS README sound
certs Documentation init kernel Makefile samples tools
COPYING drivers ipc lib mm scripts usr

Finally, to conserve the information about configuring and building a Linux ker-
nel tailored to our porting work, I added a Genode build target at allwinner/s-
rc/a64_linux/target.mk1 / target.inc2, which applies the kernel configuration and
builds the kernel image. Thanks to this target.mk file, the custom Linux kernel can be
built from within Genode’s build directory via:

build/arm_v8a$ make a64_linux

1https://github.com/genodelabs/genode-allwinner/blob/master/src/a64_linux/target.mk
2https://github.com/genodelabs/genode-allwinner/blob/master/src/a64_linux/target.inc
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2.11 Pruning device trees

We briefly touched the treasure trove called device trees in the previous section. To
leverage the wealth of information for the development and porting of Genode device
drivers, this article introduces a handy new tool set.

As summarized in the previous article, device-tree files as found at Linux source
tree under arch/<arch>/boot/dts/ provide both a structural description of an SoC and
parametrization data for individual device drivers. It goes without saying that this
information is extremely valuable. On the other hand, the encoding of the information
in the form of so-called Devicetree Specification (PDF1) files is not ideal for us.

The authors of DTS files anticipate a monolithic kernel where a global view of the
system is natural. In contrast, Genode fosters a strict separation of drivers from each
other where each driver gets to see only a tiny part of the picture. With a DTS file
of more than 1600 lines (as for the Pine-A64-LTS) board given, it is really hard to see
to see clear lines of responsibilities between drivers. This is where Genode’s tool at
tool/dts/extract comes into play. Just for reference, usage information are provided by
executing the tool without arguments.

Let’s assume we have generated an all-encompassing DTS file flat_pine64lts.dts for
our board via the C preprocessor as described in Section 2.10.5.

The tool/dts/extract utility allows us to generate a dot graph from the source, which
can be processed by the Graphviz2 dot tool to generate a PNG file.

tool/dts$ ./extract --dot-graph flat_pine64lts.dts > pine64.dot
tool/dts$ dot -Tpng pine64.dot > pine64.png

1https://github.com/devicetree-org/devicetree-specification/releases/download/v0.3/
devicetree-specification-v0.3.pdf

2https://graphviz.org/
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Figure 6: Does this count as generative art?
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Even though the picture presents only a tiny fraction of the information present in
the DTS file - neither any properties, nor device addresses, nor unlabeled nodes are
shown - it is too overwhelming to be useful.

Let’s say we are interested in the porting of the ethernet driver. In the previous article
we already manually walked the DTS tree and spotted the corresponding node along
the way. With the -labels option, the extract tool provides a convenient way to get an
overview of the nodes present in the tree.

tool/dts$ ./extract --labels flat_pine64lts.dts
...
uart1 /soc/serial@1c28400
spi0_pins /soc/pinctrl@1c20800/spi0-pins
ve_sram /soc/syscon@1c00000/sram@1d00000/sram-section@0
reg_aldo1 /soc/rsb@1f03400/pmic@3a3/regulators/aldo1
emac /soc/ethernet@1c30000
uart2 /soc/serial@1c28800
lradc /soc/lradc@1c21800
...

Each line presents a label accompanied with the corresponding path of the device
node. Of course, the command is best combined with grep.

tool/dts$ ./extract --labels flat_pine64lts.dts | grep ether
emac /soc/ethernet@1c30000
mdio /soc/ethernet@1c30000/mdio
ext_rgmii_phy /soc/ethernet@1c30000/mdio/ethernet-phy@1

The emac label should ring a bell from the previous article. To find out about the
interaction of the emac device with the other parts of the device tree, the extract tool
allows us to generate a new DTS tree with only a selection of devices and their depen-
dencies present.

tool/dts$ ./extract --select emac flat_pine64lts.dts > emac.dts

From the more of 1600 lines of the original DTS file, the result comprises only about
200 lines. This amount of information can be digested without choking.

tool/dts$ wc -l emac.dts
213 emac.dts
tool/dts$ ./extract --dot-graph emac.dts > emac.dot
tool/dts$ dot -Tpng emac.doc > emac.png
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With a few final manual tweaks of the layout parameters, one can get a picture as
nice as this.

Figure 7: A sudden moment of clarity.

Finally, we can create a device-tree binary out of the pruned device-tree source.

tool/dts$ dtc -Idts emac.dts > emac.dtb

The device-tree compiler does not complain, which gives us the reassurance that the
tree is in a healthy state after the brutal pruning.

Test-driving Linux with the tuned device tree In order to successfully boot the
Linux kernel, the supplied device tree needs a few mandatory ingredients. First, we
need to supply the information about the timer to be used by the kernel, which is
provided by the /timer node. Furthermore, /chosen node contains the stdout-path
property, which tells the kernel where messages should go. In the device tree for the
Pine-A64-LTS board, it is defined as

stdout-path = "serial0:115200n8";
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The serial0 part of the string refers to an entry of the /aliases node, which is defines
as follows. Note that it contains an alias referring to our Ethernet device emac.

aliases {
ethernet0 = &emac;
serial0 = &uart0;
serial1 = &uart1;
serial2 = &uart2;
serial3 = &uart3;
serial4 = &uart4;

};

The following command extracts a device tree featuring those mandatory nodes.
Since the emac device is implicitly pulled in by the /alias node, we don’t need to
explicitly specify the -select emac argument.

tool/dts$ ./extract --select /chosen --select /aliases --select /timer \
flat_pine64lts.dts

The resulting device tree, once compiled into its dtb representation, suffices to boot
the hand-crafted Linux kernel we built in the previous article. It looks as follows.
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Figure 8: This fine-tuned device tree suffices for using Ethernet with Linux.

The /timer, /chosen, and /aliases nodes are not shown because the graph omits
unlabeled nodes. It still contains a few obviously unneeded parts such as the ones
relates to the simplefb nodes (defined inside the /chosen node) or the uart1 to uart4
nodes (referenced by the /aliases node). To remove those, one may consider cutting
off those dependencies by commenting out those parts in the flat_pine64lts.dts file.

Prospects Even though the primary motivation behind the new tooling is the prun-
ing of device trees to attain driver-specific miniature device trees to be fed to ported
Linux driver code, I already see myself using the graph feature as an aid for under-
standing SoC hardware. As of now, the graph is admittedly just a quick hack. The dot
language allows for generating nicely structured images, e. g., presenting child nodes
contained in parent nodes. It’s also tempting to generate XML configuration data for
Genode’s platform driver from the device-tree information.
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2.12 Networking

Given the insights gained by driving a device using a tailored bare-bones Linux system
as discussed in the previous sections, we are ready to take the next step, namely trans-
planting Linux driver code into self-sufficient Genode components. This section walks
through the challenge of porting a network driver from the Linux kernel to Genode.
It thereby exemplifies Genode’s device-driver environment approach for the reuse of
unmodified Linux kernel code, touches crucial technicalities of the Linux kernel, and
provides practical clues.

For reference, the result of the work described herein can be found at the genode-
allwinner repository.

Git repository of the Allwinner board support

https://github.com/genodelabs/genode-allwinner

Overview The activity of porting a Linux driver is too elaborate for one swift step. To
get a sense of measurable progress, it is useful and motivating to define intermediate
goals that can be wrapped up one by one.

1. Creating a minimal Linux kernel configuration that accommodates barely more
than the single driver we are interested in, similar to what we did in the Section
2.10. While pursuing this goal, one can solely keep the focus on the Linux kernel
configuration.

2. Getting a tangible feeling for the targeted device and the interplay with other
devices. Looking at the pruned device tree as described in Section 2.11 is a good
aid. Look at the cobweb of device nodes and try to make a mental picture out of it.
E.g., in the case of the network driver, we have to consider the ethernet PHY, the
actual network controller (emac), and spot the dependency from certain clocks
and voltages as potential risks. To double-check the findings, it is recommended
to test-drive Linux with the pruned device tree to see if it is still able to operate
the device.

3. Creating the initial source skeleton of the driver component and successfully com-
piling and linking Linux code into a first executable ELF binary. During this step,
one can focus solely on the build system, symbols, and compilation units. One
doesn’t have to understand the code in order to link it. This step is described in
Sections 2.12.1 and 2.12.2.

4. Creation of a test scenario (run script) and a convenient work flow to execute and
quickly update the binary. At this step, which is covered by Section 2.12.3, we are
merely concerned with the relationships between components without looking
inside them. For the work flow, it is satisfying to string together a few convenient
shell commands to ease ones life.
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5. Complete the execution of low-level Linux initcalls until the first device re-
sources are requested. Here, one has to get close to the Linux code but can ignore
any hardware-specific concerns.

6. Moving the work flow over to the real hardware leveraging the capabilities of
Genode’s run tool, and possibly tweaking it using custom plugins. The focus is
on the use of shell commands and glueing them together using Tcl script snippets,
possibly even automating the powering1 of the target hardware to make one’s life
better.

7. Successively completing all Linux initcalls including those of the driver code.
One has to iteratively boot the target hardware, look at the log output, compare
the log with the Linux kernel log obtained beforehand. Whenever both logs di-
verge in non-plausible ways, investigate and instrument the code of both native
Linux and Genode. In other words, taking a deep dive into the Linux kernel code,
adding additional Linux subsystems, curating dummy functions, supplementing
custom emulation code, and extending the platform-driver’s configuration when-
ever encountering the driver’s request for additional hardware resources. This
step is addressed by Sections 2.12.4 and 2.12.5.

8. Once all initcalls are executed, provoke a small operation of the driver. For exam-
ple, exercising the link detection of the network driver by plugging/unplugging
the cable, comparing the resulting log output with native Linux. For the first time,
the driver’s actual functionality and its interplay with the physical world comes
into focus. During the iterative debugging and learning, the tips and tricks given
by Sections 2.12.7 and [?] may be of help.

9. Get the driver’s core functionality in the form of a self-sufficient program to
work. In the network driver’s case, this would be the determination of the de-
vice’s MAC address as well as the transmission and reception of network packets.
At this stage, the driver remains co-located with the test code in one program. In
other words, the test program uses the Linux kernel’s internal APIs directly. For
the network driver, one can conveniently use Linux’ builtin DHCP support as test
program as described in below in Section 2.12.13.

10. Adding the Genode service interface to the driver, e. g., by using the building
blocks of the genode_c_api. To test this integration, the test scenario must be en-
hanced by a separate component that interacts with the driver component using
a Genode session interface. Knowing that the Linux code and the device is oper-
ational, one can focus solely on the Genode integration at this stage. This step is
covered in more detail in Section 2.12.17.

1https://genodians.org/chelmuth/2019-03-13-powerplug
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11. Once the driver works reliably in a minimalistic setting, it is time to expose it to
regular networking scenarios by packaging it into a form that is digestible by the
arsenal of existing run scripts. The packaging step is covered in Section 2.12.18.

12. With non-trivial work loads at hand, one can take a critical look at the driver’s
behavior, in particular at its performance, and optimize it if desired.

13. Finally, one can wrap up the work by cleaning up the code, potentially consol-
idating parts shared with other drivers, reviewing the result, and documenting
the component.

When broken up into these steps - each with a different focus and a tangible interme-
diate result - the work can be conducted in manageable pieces and can even passed-on
between developers.

2.12.1 Directory structure of the driver component

Being a network driver, it naturally should reside somewhere under src/drivers/nic/. To
avoid possible path ambiguities with network drivers hosted in other Genode source
repositories, placing the driver inside a uniquely named subdirectory is a good practice.
In our case - with the driver being referred to as “EMAC” - we settle on the directory
src/drivers/nic/emac/. This directory will host the following files, for which we can ini-
tially create skeleton versions based on one of the already existing drivers. E.g., one
may take the emac driver1 as reference when porting a new network driver.

target.mk The build-description file of the driver

main.cc The main program, which initializes the Linux emulation (Lx_kit::initialize)
along with the Genode service frontend (genode_uplink_init), hosts the com-
ponent’s central I/O signal handler, defines the interplay between the execution
of Linux and Genode code (lx_emul_start_kernel and Lx_kit::env().scheduler),
and supplies device-tree-binary information to the Linux code (_dtb). It is rec-
ommended to take a main.cc of an existing driver as starting point.

generated_dummies.c Dummy implementations of symbols normally provided by
the Linux kernel. As the name suggests, the content won’t be manually main-
tained but generated. So we best start with an empty file.

dummies.c Whenever a generated dummy will be called, the execution will stop with
a message along with a backtrace, which will prompt us to closely inspect the
situation and decide whether the call of the dummy can be ignored by return-
ing an appropriate return code or must be replaced by an actual implementa-
tion. In the former case, the dummy implementation must be moved from gener-
ated_dummies.c to the manually curated dummies.c file.

1https://github.com/genodelabs/genode-allwinner/tree/master/src/drivers/nic/emac
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lx_emul.c This file contains the implementation of symbols that require more thought
than merely being a dummy.

lx_emul.h This header is included by both dummies.c and generated_dummies.c. It can
thereby be used as a manually maintained supplement to the automatically gen-
erated generated_dummies.c.

lx_user.c This file contains the implementation of a representative of a Linux user task.
It provides the symbol lx_user_init that is called once the Linux kernel initial-
ization is completed. As a skeleton, an empty implementation suffices.

#include <lx_user/init.h>

void lx_user_init(void)
{
}

At a later stage, lx_user.c will be our hook for connecting the Linux kernel world
with a Genode service interface.

source.list This file contains the selection of Linux source codes to be included in our
driver. Each line refers to file specified relative to the root of the Linux kernel
tree. Most of the development work revolves around the curation of this list. As
a starting point, it is useful to take an existing source list as starting point, in
particular the selection of lib/, kernel/, and arch/ files.

src/include/lx_emul/initcall_order.h In contrast to the files above, which reside lo-
cal to the driver’s directory, the initcall_order.h header is used across the Linux
drivers. It equips the Linux emulation with the information about the correct init-
call sequence. Later, we will see how to generate this file automatically. Until
then, the following empty skeleton will do.

static const char * lx_emul_initcall_order[] = {
"END_OF_INITCALL_ORDER_ARRAY_DUMMY_ENTRY"

};

Build magic When reviewing the target.mk file of the emac driver, it is obvious that
there must be more to the build rules than those few dull lines. The magic happens
in the lib-import file import-a64_lx_emul.mk1. This file is supplemented to the build
process because the target.mk specifies a64_lx_emul as a library dependency.

1https://github.com/genodelabs/genode-allwinner/blob/master/lib/import/import-a64_lx_emul.
mk
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LIBS = base a64_lx_emul

The content of import-a64_lx_emul.mk is worth studying. It lists several building
blocks of the lx_kit and lx_emul libraries that are used across all Linux drivers ported for
the A64 SoC, it defines the compiler flags used for building Linux C code, and it obtains
the list of C source files from the driver’s sources.list file. Furthermore, it evaluates the
BOARDS and DTS_EXTRACT variables to generate driver-specific device-tree binary files.
Given this mechanism, the target.mk of a driver solely needs to declare the supported
BOARDS and the driver-specific selection of device-tree nodes to produce a ready-to-use
dtb file, e. g.,

BOARDS := pine_a64lts
DTS_EXTRACT(pine_a64lts) := --select emac

Finally, the import file contains a number of tweaks and quirks such as disabling
certain warnings for individual compilation units or generating build artifacts that are
implicitly generated by the Linux build system (crc32table.h).

Generated Linux headers The Linux build system generates a number of header
files when preparing a build directory. When compiling Linux code outside the
Linux build system - as we do - those headers are badly missed. This is where the
a64_linux_generated1 library comes in. This pseudo library has the sole purpose of
creating a Linux build directory with the generated headers we need. It takes the same
Linux kernel configuration2 as used for the a64_linux target we discussed earlier in
Section [?].

2.12.2 Identifying Linux source codes of interest

How to spot the files needed to drive our network device among the many thousands
of C files found in the Linux source tree?

Taking the device tree as our guide In the remainder of this article, we refer an
all-encompassing device-tree source (DTS) file flat_pine64lts.dts for our board. This file
can be extracted from the Linux kernel source via the C preprocessor as described in
Section 2.10.5.

Given the flat_pine64lts.dts file, let Genode’s dts/extract tool (Section 2.11) guide our
attention:

1https://github.com/genodelabs/genode-allwinner/blob/master/lib/mk/spec/arm_v8/a64_
linux_generated.mk

2https://github.com/genodelabs/genode-allwinner/blob/master/src/a64_linux/target.inc
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$ .../tool/dts/extract --select emac flat_pine64_lts.dts \
| grep "compatible = "

compatible = "fixed-clock";
compatible = "fixed-clock";
compatible = "simple-bus";
compatible = "allwinner,sun50i-a64-system-control";
compatible = "mmio-sram";
compatible = "allwinner,sun50i-a64-sram-c";
compatible = "mmio-sram";
compatible = "allwinner,sun50i-a64-sram-c1",

compatible = "allwinner,sun50i-a64-ccu";
compatible = "allwinner,sun50i-a64-pinctrl";
compatible = "allwinner,sun50i-a64-emac";
compatible = "snps,dwmac-mdio";
compatible = "arm,gic-400";
compatible = "allwinner,sun50i-a64-rtc",
compatible = "allwinner,sun50i-a64-r-intc",
compatible = "allwinner,sun50i-a64-r-ccu";
compatible = "allwinner,sun50i-a64-r-pinctrl";
compatible = "allwinner,sun8i-a23-rsb";
compatible = "x-powers,axp803";
compatible = "pine64,sopine-baseboard", "pine64,sopine",
compatible = "ethernet-phy-ieee802.3-c22";
compatible = "pine64,pine64-lts", "allwinner,sun50i-r18",

Note that some compatible attributes span multiple lines (the lines ending with a
comma). So it’s probably best to manually inspect the device-tree source to get the full
information.

Recap that we already used the compatible device-node attributes in Section 2.10.6
to connect the dots between the device tree and kernel-configuration options. Analo-
gously, we can use those attribute values to look up the associated source codes.

Let’s take “snps,dwmac-mdio” as an pattern to grep Linux source tree:

linux$ grep -rl "snps,dwmac-mdio" drivers
drivers/net/ethernet/stmicro/stmmac/stmmac_platform.c

By looking at the Makefile where the driver code is located, we can immediately spot
the set of driver sources declared by looking at the listed object files. This information
is all we need to expand our sources.list file.
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...
drivers/net/ethernet/stmicro/stmmac/stmmac_platform.c
drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
drivers/net/ethernet/stmicro/stmmac/stmmac_ethtool.c
drivers/net/ethernet/stmicro/stmmac/stmmac_mdio.c
drivers/net/ethernet/stmicro/stmmac/ring_mode.c
drivers/net/ethernet/stmicro/stmmac/chain_mode.c
drivers/net/ethernet/stmicro/stmmac/dwmac_lib.c
drivers/net/ethernet/stmicro/stmmac/dwmac1000_core.c
drivers/net/ethernet/stmicro/stmmac/dwmac1000_dma.c
drivers/net/ethernet/stmicro/stmmac/dwmac100_core.c
drivers/net/ethernet/stmicro/stmmac/dwmac100_dma.c
drivers/net/ethernet/stmicro/stmmac/enh_desc.c
drivers/net/ethernet/stmicro/stmmac/norm_desc.c
drivers/net/ethernet/stmicro/stmmac/mmc_core.c
drivers/net/ethernet/stmicro/stmmac/stmmac_hwtstamp.c
drivers/net/ethernet/stmicro/stmmac/stmmac_ptp.c
drivers/net/ethernet/stmicro/stmmac/dwmac4_descs.c
drivers/net/ethernet/stmicro/stmmac/dwmac4_dma.c
drivers/net/ethernet/stmicro/stmmac/dwmac4_lib.c
drivers/net/ethernet/stmicro/stmmac/dwmac4_core.c
drivers/net/ethernet/stmicro/stmmac/dwmac5.c
drivers/net/ethernet/stmicro/stmmac/hwif.c
drivers/net/ethernet/stmicro/stmmac/stmmac_tc.c
drivers/net/ethernet/stmicro/stmmac/dwxgmac2_core.c
drivers/net/ethernet/stmicro/stmmac/dwxgmac2_dma.c
drivers/net/ethernet/stmicro/stmmac/dwxgmac2_descs.c

Taking the Linux build directory as our guide Alternatively to taking the device-
tree as the starting point, the build directory of our bare-bones Linux kernel contains
instructive information, specifically the object files that went into the kernel.

build/arm_v8a$ find a64_linux/ -name "*.o"

Remember that we have previously slimmed down the Linux kernel configuration as
far as we could, keeping only the bare minimum needed for networking. So the list of
object files found in the Linux build directory serves as a reasonably small superset of
the compilation units that are of interest to us. Any compilation unit not listed cannot
be important.

By combining both perspectives, taking the compatible device-nodes attributes as
cues while using the Linux kernel’s object files as plausibility check, our mental pic-
ture of the driver code and its dependencies becomes more and more clear and our
sources.list file grows.
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Build test With the sources.list enriched with the list of Linux source codes we are
interested in, let’s have the Genode build system chew a bit on our driver:

build/arm_v8a$ make drivers/emac
...
Program drivers/nic/emac/emac_nic_drv
COMPILE arch/arm64/lib/memchr.o
COMPILE arch/arm64/lib/memcmp.o
...
COMPILE drivers/net/ethernet/stmicro/stmmac/stmmac_main.o
COMPILE drivers/net/ethernet/stmicro/stmmac/stmmac_platform.o
COMPILE drivers/net/ethernet/stmicro/stmmac/stmmac_mdio.o
COMPILE drivers/net/ethernet/stmicro/stmmac/stmmac_ptp.o
COMPILE drivers/net/ethernet/stmicro/stmmac/stmmac_tc.o
COMPILE dummies.o
COMPILE main.o
LINK emac_nic_drv

drivers/net/ethernet/stmicro/stmmac/stmmac_main.o: in function ‘stmmac_cmdline_opt’:
stmmac_main.c:5379: undefined reference to ‘strsep’

...

... many more undefined references

...

We see the Linux source code being picked up and compiled! The build system backs
out not before the linking stage. During linking, however, the many inter-dependencies
of the driver code from the rest of the Linux kernel become visible in the form of “un-
defined reference” errors.

Tying the loose ends to make the linker happy In principle, we could inspect and
resolve each of those linking errors manually. But given the volume of error messages,
this would be tedious. In this situation, Genode’s dde_linux/create_dummies tool comes
to the rescue.

Let’s remember the location of our driver’s generated_dummies.c file in an environ-
ment variable named DUMMY_FILE, which will later be evaluated by the create_dummies
tool:

build/arm_v8a$ export DUMMY_FILE=/path/to/src/drivers/emac/generated_dummies.c

With the DUMMY_FILE defined, we can instruct the tool to fill the file with a dummy
implementation for each of the unresolved references reported by the linker:
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build/arm_v8a$ echo > $DUMMY_FILE ;\
../../tool/dde_linux/create_dummies generate \

LINUX_KERNEL_DIR=a64_linux \
TARGET=drivers/nic/emac ;\

make drivers/nic/emac

In the command line above, we first wipe any prior content from the file, then invoke
the create_dummies tool, followed by another build of the driver with the new version
of generated file. The create_dummies tool is described in more detail at a dedicated
article1.

With the dummies generated, the linking of the executable binary succeeds! This
won’t be the last time of issuing the command. In fact, each time after adding or re-
moving any content of the sources.list file, it is best to update generated_dummies.c using
the command above.

2.12.3 Executable testbed

With a first executable binary built, it is time to give it a first run. At this point, we
are not yet concerned about accessing any actual hardware. We merely want to obtain
the first life sign of the component and see any hint of Linux initialization code being
executed. The following run script named after the driver - in our case a64_emac_drv.run
is an appropriate name - can serve as our initial test scenario.

1https://genodians.org/skalk/2021-04-08-dde-linux-experiments-1#Generate_missing_
implementations
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build { core init timer drivers/platform drivers/nic/emac }

create_boot_directory

install_config {
<config>
<parent-provides>
<service name="LOG"/>
<service name="PD"/>
<service name="CPU"/>
<service name="ROM"/>
<service name="IO_MEM"/>
<service name="IRQ"/>

</parent-provides>

<default caps="100"/>

<start name="timer">
<resource name="RAM" quantum="1M"/>
<route> <any-service> <parent/> </any-service> </route>
<provides> <service name="Timer"/> </provides>

</start>

<start name="platform_drv">
<resource name="RAM" quantum="1M"/>
<provides> <service name="Platform"/> </provides>
<route> <any-service> <parent/> </any-service> </route>
<config devices_rom="config">
<policy label="emac_nic_drv -> ">
</policy>

</config>
</start>

<start name="emac_nic_drv">
<resource name="RAM" quantum="1M"/>
<route>
<service name="ROM"> <parent/> </service>
<service name="CPU"> <parent/> </service>
<service name="PD"> <parent/> </service>
<service name="LOG"> <parent/> </service>
<service name="Timer"> <child name="timer"/> </service>
<service name="Platform"> <child name="platform_drv"/> </service>

</route>
<config/>

</start>

</config>
}

build_boot_image { core ld.lib.so init timer platform_drv
emac_nic_drv emac-pine_a64lts.dtb }

run_genode_until forever
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The emac_nic_drv is connected to the platform_drv but no device resources are
assigned to the corresponding policy yet. In fact, the device hardware remains com-
pletely untouched, which allows us to execute the run script for an arbitrary boards, in
particular Qemu. The use of Qemu instead of the targeted board at this early stage is
convenient.

The dtb file emac-pine_a64lts.dtb as integrated into the boot image is a side-
product of building the emac driver. It is created according to the definition of the
BOARDS and DTS_EXTRACT variables in the driver’s target.mk file.

2.12.4 Linux initcalls

When executing the run script exemplified above, we are greeted with the following
log output.

kernel initialized
ROM modules:
ROM: [0000000040120000,0000000040120469) config
ROM: [0000000040009000,000000004000a000) core_log
ROM: [0000000040149000,000000004014a094) emac-pine_a64lts.dtb
ROM: [0000000040207000,000000004023cbe8) emac_nic_drv
ROM: [000000004023d000,00000000402841f8) init
ROM: [0000000040159000,0000000040206880) ld.lib.so
ROM: [0000000040121000,0000000040148d30) platform_drv
ROM: [0000000040007000,0000000040008000) platform_info
ROM: [000000004014b000,0000000040158710) timer

Genode 21.05-10-g51f02a668d9
2010 MiB RAM and 64533 caps assigned to init
[init -> emac_nic_drv] Error: Initcall __initcall_initialize_ptr_randomearly unknown in initcall database!
[init -> emac_nic_drv] Error: Initcall __initcall_init_jiffies_clocksource1 unknown in initcall database!
[init -> emac_nic_drv] Error: Initcall __initcall_stmmac_init6 unknown in initcall database!
[init -> emac_nic_drv] Error: Initcall __initcall_sync_state_resume_initcall7 unknown in initcall database!
[init -> emac_nic_drv] Error: Initcall __initcall_devlink_class_init2 unknown in initcall database!
[init -> emac_nic_drv] Error: Function kmem_cache_init not implemented yet!
[init -> emac_nic_drv] Backtrace follows:
[init -> emac_nic_drv] 0x1024034
[init -> emac_nic_drv] 0x1016898
[init -> emac_nic_drv] 0x1022498
[init -> emac_nic_drv] Will sleep forever...

The messages “Error: Initcall ... unknown in initcall database!” tell us that the Linux
code we incorporated into our component features initcalls that are unknown to the
lx_emul execution environment. Hence, lx_emul won’t know the order, in which those
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calls must be executed. More information about the initcall mechanism is available in a
dedicated article1.

For us, it is important to know that the initcall order is supplemented to the lx_emul
library via the header file at src/include/lx_emul/initcall_order.h. The content of this file
depends on the Linux kernel configuration. Fortunately, we won’t need to maintain this
header file by hand. Instead, the handy extract_initcall_order tool allows us to generate
this file from the System.map of a built Linux kernel:

build/arm_v8a$ ../../tool/dde_linux/extract_initcall_order extract \
LINUX_KERNEL_DIR=a64_linux
HEADER_FILE=/path/to/drivers/src/include/lx_emul/initcall_order.h

Note that the directory specified at LINUX_KERNEL_DIR must contain a built Linux
kernel, specifically the System.map file.

When re-running the run script with the updated initcall_order.h, the initcall-related
errors should disappear.

2.12.5 The lx_emul building blocks

A high-level overview of the anatomy of a DDE-Linux-based driver is provided in the
release documentation of Genode 21.082. The lx_emul library provides three kinds of
build blocks.

First, it provides a custom C interface for low-level mechanisms of the runtime.
The corresponding functions are prefixed with lx_emul_. The interface is provided
at dde_linux/include/lx_emul/.

Second, it provides alternative implementations of low-level Linux subsystems.
Those implementations reside at dde_linux/src/lib/lx_emul/shadow/. For example, shad-
ow/mm/slub.c is an alternative to Linux’ mm/slub.c that provides the same binary inter-
face but implements it by the means of the lx_emul mechanisms.

And third, it provides a few shadow headers at dde_linux/src/include/lx_emul/shadow/
that strip away or tweak a few unpleasant parts of the Linux-internal interfaces. In par-
ticular, it redirects Linux’ original initcall mechanism to the use of lx_emul_register_initcall
and it hides low-level aspects of the memory model that are incompatible with Genode.
The latter is concerned with the conversion between virtual addresses, struct page
pointers, and DMA addresses.

1https://genodians.org/skalk/2021-04-08-dde-linux-experiments-1#Initcalls
2https://genode.org/documentation/release-notes/21.08#Linux-device-driver_environment_

re-imagined

158

https://genodians.org/skalk/2021-04-08-dde-linux-experiments-1#Initcalls
https://genode.org/documentation/release-notes/21.08#Linux-device-driver_environment_re-imagined
https://genodians.org/skalk/2021-04-08-dde-linux-experiments-1#Initcalls
https://genode.org/documentation/release-notes/21.08#Linux-device-driver_environment_re-imagined
https://genode.org/documentation/release-notes/21.08#Linux-device-driver_environment_re-imagined


2.12 Networking

2.12.6 Iterative crafting of the driver’s runtime environment

The message “Error: Function ... not implemented yet!” (in the log output above) fol-
lowed by a backtrace is triggered by one of the dummy implementations in generated_dummies.c.
It tells us that we need to replace this particular dummy with either

• A dummy implementation in the manually curated dummies.c with the call to
lx_emul_trace_and_stop replaced by a meaningful return value, or

• An actual implementation of the function in lx_emul.c, or

• Additional Linux source codes incorporated by extending the sources.list.

The decision must be taken on a case-by-case basis. To take the decision, it is worth-
while to inspect the existing drivers. Drivers of the same kind (network, framebuffer)
tend to show similar patterns across SoCs.

Our job at this stage is the repeated execution of the run script while resolving one
unimplemented function in each iteration. Sometimes, this process requires a deep
dive into parts of the Linux kernel architecture in order to asses the potential impact of
the called dummy on the correct functioning of the driver. Sometimes mere intuition
may guide us. In any case, the backtrace printed in the log output can be immensely
helpful. You may remember the addr2line utility mentioned in Section 2.5.2. It accepts
an arbitrary sequence of numbers as standard input when started as follows:

build/arm_v8a$ /usr/local/genode/tool/current/bin/genode-aarch64-addr2line \
-e drivers/nic/emac/emac_nic_drv

To process the list of hexadecimal numbers appearing in the log, I use to copy the
numbers from the terminal using a rectangular selection (by pressing the control key
while selecting an area with the mouse) and pasting the content into the addr2line
instance.

Moving to the target hardware At one point, we will ultimately reach a point where
the driver tries to obtain access to device resources.

[init -> emac_nic_drv] Error: memory-mapped I/O resource 0x1c00000
(size=0x1000) unavailable

It’s time to move the development from Qemu to the actual target hardware.
In order to grant the driver access to the requested resource, we first look up the

requested address in the flat_pine64lts.dts file. In the example above, the range belongs
to a device called syscon. With the information found in the device node, we can enrich
the platform driver’s configuration accordingly.
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<config>
<device name="syscon" type="allwinner,sun50i-a64-system-control">
<io_mem address="0x1c00000" size="0x1000"/>

</device>
<policy label="emac_nic_drv -> " info="yes">
<device name="syscon"/>

</policy>
</config>

The change consist of two parts. First, a <device> is declared. Note that the
type corresponds to the compatible attribute of the DTS device node. Second, the
<policy> for the emac_nic_drv is changed to grant access of this device to the driver.
It is important to set the info attribute to “yes”, which allows the driver to read the
device meta information given in the <device> node.

Besides memory-mapped I/O registers, device interrupts are the second type of
hardware resource of interest for device drivers. Sooner or later during the driver
initialization, we encounter a message like the following.

[init -> emac_nic_drv] Error: irq 114 unavailable

The driver requests GIC interrupt 114. To find out what’s behind this number, the
flat_pine64lts.dts file is the right place for seeking the ground truth. Note that interrupt
numbers as found in DTS files correspond to GIC interrupts numbers minus 32. So GIC
interrupt 114 appears as number 114 - 32 = 82. A search in the DTS file for this number
leads us to the matching device.

emac: ethernet@1c30000 {
...
reg = <0x01c30000 0x10000>;
...
interrupts = <0 82 4>;
...

};

This information is all we need to craft a corresponding <device> node for the
platform-driver configuration.

<device name="emac" type="allwinner,sun50i-a64-emac">
<io_mem address="0x1c30000" size="0x10000"/>;
<irq number="114"/>

</device>
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2.12.7 Linux caveats

In the past, we repeatedly encountered two kinds of trip-wires that one should always
keep in the back of the mind, namely Linux linker-script magic and global variables.

A few kernel mechanisms depend of special support at the linker-script level, most
notably various flavours of initcall mechanisms, sometimes disguised as a global table
(__clk_of_table, __irqchip_of_table) magically created by scattered table entries
assigned to a special linker section. In contrast to Linux, we cannot rely on linker-level
mechanisms if we want to keep using Genode’s regular linker script. The lx_emul en-
vironment takes care of the initcall flavors that we encountered so far using the pattern
described here1. But we know that there exist more categories of initcalls. In the event
that a certain initialization function is unexpectedly not called, it is worth skimming
the symbols of generated_dummies.o for variables with table in their name. Another
example for linker magic is the aliasing between the jiffies and jiffies64 variables.
Both variables must refer to the same memory location (on little-endian architectures).
This concrete issue is covered by the lib/import/import-a64_lx_emul.mk file.

The second trip wire is the presence of global variables that are specially initialized by
compilation units not featured in sources.list. In this case, the generated_dummies.c cre-
ates default-initialized variable instances, which can break innocent library functions
in subtle ways. For example, lib/hexdump.c contains the following global variable:

const char hex_asc_upper[] = "0123456789ABCDEF";
EXPORT_SYMBOL(hex_asc_upper);

This variable is implicitly used by lib/vsprintf.c when printing "%d” format strings. If
default-initialized, a digit is wrongly rendered as null (terminating the string) instead
of the corresponding ASCII value, producing all kinds of funny effects down the road.
The global variable defined in lib/ctypes.c is equally important. If default-initialized,
toupper and strcasecmp won’t work as expected, breaking the program logic when
used as condition.

As a rule of thumb, when encountering erratic behavior, one should look out for
global variables in generated_dummies.c and investigate their purpose.

2.12.8 Enabling Linux debug messages

Several parts of the Linux kernel are garnished with debug messages that reveal valu-
able insights of the kernel’s behavior beyond the regular log messages. The easiest way
to obtain those messages for a given compilation unit is adding the following line right
at the beginning of the source file, above the first #include directive:

1https://genodians.org/skalk/2021-04-08-dde-linux-experiments-1#Initcalls
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#define DEBUG

When booting Linux, one has to supply “debug” as kernel-command line argument.
When running the driver as Genode component, no further precaution is needed.

With respect to debug instrumentation, the following compilation units are particu-
larly fruitful:

drivers/of/fdt.c

On ARM platforms, the kernel initialization is driven by the information of the
supplied device tree. By enabling DEBUG in this compilation unit, one becomes
able to observe the processing of the device nodes found in the device-tree and
how they are matched with the available drivers.

drivers/base/dd.c

By enabling DEBUG in this compilation unit, the probing of devices by the vari-
ous drivers becomes visible. This is particular important for devices that depend
on each other. Whenever a driver finds a precondition - such as the presence
of another driver - not met, it backs out of the probing via Linux’ defer mecha-
nism (EPROBE_DEFER). Whenever the deferral of probing diverges between native
Linux and the ported driver, one should investigate the root cause of the condition
that led (or did not led) to an EPROBE_DEFER.

2.12.9 Logging the execution of initcalls

To unveil the execution sequence of initcalls and for relating messages and backtraces
printed in the log with the corresponding Linux code, two little instrumentations are of
great help.

repos/dde_linux/src/lib/lx_emul/init.cc

By adding a message like the following to the lx_emul_register_initcall
function, we become able to relate the names of initcall functions with their
corresponding addresses.

Genode::log("lx_emul_register_initcall ", name, " call=", (void *)initcall);

Since lx_emul_register_initcall is called immediately at component con-
struction time using the global ctors mechanism, this instrumentation gives us
a complete list of initcalls. The names of those calls can easily be grep’ed in the
Linux code to determine a suitable starting points for manual instrumentations.
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src/lib/lx_kit/init.cc

By changing the implementation of Lx_kit::Initcalls::execute_in_order to
print a log message in addition to entry→call(), we can know exactly when
each initcall is executed.

log("exec init call ", (void *)entry->call);

The printed addresses correspond to those obtained in the first instrumentation.
So when the kernel initialization gets stuck somewhere, one can look at the se-
quence of initcalls - and in particular the last initcall executed - that led to the
situation.

2.12.10 Obtaining backtraces of blocked Linux tasks

The Linux kernel code is not executed in a straight linear fashion but in the form of
many kernel threads that interact with each other using a variety of mechanisms such
as work queues. The lx_emul runtime implements a cooperative task-execution model
that folds all Linux kernel threads into a single flow of control. To see what the Linux
kernel threads are doing and in particular the situation when they enter a blocking
state, the following instrumentation in dde_linux/src/lib/lx_kit/task.cc is invaluable.

#include <os/backtrace.h>

void Task::block()
{
log("Task::block: ", _name);
backtrace();
...

The Task::block method is called whenever a Linux kernel thread blocks. By
adding the two lines at the beginning of the method, we get hold of the situation at
each single task switch. It prints the name of the blocked kernel thread along with the
backtrace of the thread.

Another suitable point for an instrumentation is the Task::run method. By print-
ing the _name after the _setjmp branch, one can obtain the sequence of resumed (as
opposed to blocked) kernel threads.
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void Task::run()
{
if (_setjmp(_saved_env))
return;

log("Task::run: ", _name);
...

2.12.11 De-referenced null pointers

The Linux kernel is anything but short of function pointers and callbacks. Hence,
sooner or later during the development, one may be faced with a de-referenced null
pointer like this:

no RM attachment (READ pf_addr=0x18c pf_ip=0x1008fa0 from pager_object:
pd=’init -> emac_nic_drv’ thread=’ep’)

Warning: page fault, pager_object: pd=’init -> emac_nic_drv’ thread=’ep’
ip=0x1008fa0 fault-addr=0x18c type=no-page

The very small page-fault address (pf_addr) hints at a de-referenced null pointer.
The first impulse is looking up the instruction pointer pf_ip in the driver’s binary
using objdump.

build/arm_v8a$ /usr/local/genode/tool/current/bin/genode-aarch64-objdump \
-lSd drivers/nic/emac/emac_nic_drv | less

In less, when searching for the instruction pointer value (1008fa0), one can see the
surroundings of the offending code.

1008f9c: aa0003f3 mov x19, x0
.../src/linux/drivers/base/regmap/regmap.c:2720

if (!IS_ALIGNED(reg, map->reg_stride))
1008fa0: b9418c00 ldr w0, [x0, #396]

Could map be a null pointer? If so, why? When looking into the code at the displayed
coordinates regmap.c at line 2720, we encounter the function regmap_read as a suitable
point for instrumentation.
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#include <lx_emul.h>
...
int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
{
int ret;
printk("regmap_read map=%p\n", map);
if (!map)
lx_emul_trace_and_stop(__func__);

if (!IS_ALIGNED(reg, map->reg_stride))
return -EINVAL;

The printk should validate our hypothesis that map is indeed a null pointer - just
to double-check. The lx_emul_trace_and_stop call gives us the backtrace in this in-
teresting situation. When running the code with these instrumentations in place, the
following output appears.

[init -> emac_nic_drv] regmap_read map=0
[init -> emac_nic_drv] Error: Function regmap_read not implemented yet!
[init -> emac_nic_drv] Backtrace follows:
[init -> emac_nic_drv] 0x1008fc0
[init -> emac_nic_drv] 0x1009044
[init -> emac_nic_drv] 0x100a9b8
[init -> emac_nic_drv] 0x10076c0
[init -> emac_nic_drv] 0x10060f8
[init -> emac_nic_drv] 0x1006938
[init -> emac_nic_drv] 0x10069a4
[init -> emac_nic_drv] 0x1001320
[init -> emac_nic_drv] 0x1001ac4
[init -> emac_nic_drv] 0x10074a0
[init -> emac_nic_drv] 0x1056f28
[init -> emac_nic_drv] 0x10481e8
[init -> emac_nic_drv] 0x10580f8

Thanks to the backtrace, we can track where the map pointer comes from, ultimately
ending up at the call of syscon_regmap_lookup_by_phandle. In our case, this function
was (wrongly) stubbed with a dummy function returning NULL. As a way to double-
check that the return value of this function indeed corresponds to the de-referenced
null pointer, one can tweak the return value a little, returning a smallish magic number.
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struct regmap * syscon_regmap_lookup_by_phandle(struct device_node * np,
const char * property)

{
return (struct regmap *)0x550;

}

In the next run, we can observe that the page-fault address indeed changed from
0x18c to 0x6dc.

no RM attachment (READ pf_addr=0x6dc pf_ip=0x1008fc0 from pager_object:
pd=’init -> emac_nic_drv’ thread=’ep’)

Warning: page fault, pager_object: pd=’init -> emac_nic_drv’ thread=’ep’
ip=0x1008fc0 fault-addr=0x6dc type=no-page

Apparently, we cannot simply shortcut the syscon_regmap_lookup_by_phandle
function.

2.12.12 Ruling out potential cache-coherency issues

Once the driver starts to interact with the device hardware, additional uncertainties en-
ter the picture. The most uncertain uncertainty is certainly cache coherency. Nowadays,
Linux drivers preferably use cached page mappings for DMA buffers and manage the
coherency between the device’s perspective and the CPU’s perspective on those buffers
via explicit cache-management (flush, invalidate) operations. This cache management
happens behind the surface of functions like dma_map_page_attrs.

To rule out the presence of cache coherency issues, we can force the driver to use
uncached mappings only by tweaking the allocators at dde_linux/src/include/lx_kit/env.h.
By changing the CACHED argument of the memory member to UNCACHED, all memory
dynamically allocated by Linux kernel code will be backed by uncached memory.

Should the driver work with this tweak, one can be pretty sure to have hit a cache-
coherency issue, likely missing the correct implementation of a dma_map / dma_unmap
operation. Should the driver still does not work, the problem lies somewhere else. Now
would be the time to suspect cosmic rays.

2.12.13 Using Linux’ built-in DHCP support as networking test

Before equipping the driver with a Genode session interface, it is recommended to first
execute its core functionality as a standalone program. For a network driver, the core
functionality is the transmission and reception of network packets.

The Linux kernel features builtin support for obtaining an IPv4 network configura-
tion at boot time via DHCP. The network-configuration protocol involves the successful
transmission and reception of multiple network packets, and its completion is indicated
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by the IP address printed in the kernel log. In other words, DHCP is the ideal first test
workload for the driver. It requires the following kernel configuration options:

INET
IP_PNP
IP_PNP_DHCP

The implementation resides in net/ipv4/ipconfig.c, which must be added to the sources.list
file of the driver. When being part of a regular Linux kernel, this code evaluates the
kernel command line, namely the option “ip=dhcp”. Since the lx_emul environment
has no notion of a kernel command line, we can manually force the code to issue the
DHCP request by modifying the implementation of the ip_auto_config function by
adding calls to skb_init and ip_auto_config_setup at the beginning of the function
(right after the local variable declarations).

static int ip_auto_config_setup(char *addrs);

static int __init ip_auto_config(void)
{
...
skb_init();
ip_auto_config_setup("dhcp");
...

2.12.14 Capturing network traffic

There exist many ways to capture network traffic for observing the interchange of
DHCP protocol messages at the DHCP-server side. The tshark tool is particularly nice.
For capturing the traffic related to the MAC address of my board, the following com-
mand line does an excellent job:

tshark -i eno1 -t ad -Y ’eth.addr == 02:ba:fe:7b:59:38’

2.12.15 Using flood ping as a rudimentary stability check

Once the driver has reached a seemingly operational state, having successfully com-
pleted DHCP, it is a good time to put some stress on the driver. As a litmus test, its
interesting to see if a flood ping brings the driver to its knees:

sudo ping -f -c 1000 -s 1000 <ip-address>
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2.12.16 Cross-correlation against the Linux kernel behavior

Sharing one Linux kernel configuration among both our bare-bones Linux kernel and
the ported driver code allows for the detailed cross-correlation of the driver behavior.
This consistency is fostered by the src/a64_linux/target.inc1 file that is used by both
the a64_linux target (configuring and building a Linux kernel) and each driver compo-
nent (via the a64_linux_generated library). This way, any instrumentation of the Linux
kernel code can be quickly tested in both execution environments.

2.12.17 Connecting the driver with a Genode session interface

Once we have validated that the driver is able to send and receive network packets via
the DHCP test, the time is ripe for integrating it into the Genode environment. This
integration comes down to two aspects. First, the test scenario must be changed to
move the network application into a component separate from the driver, and second,
the driver must interact with Genode’s uplink session interface.

The first part, the network application, can be accommodated by the NIC router
component. For reference, the following <start> node creates an instance of the NIC
router that issues a DHCP request once an uplink appears, and prints the obtained IP
address in the log.

<start name="nic_router" caps="200">
<resource name="RAM" quantum="10M"/>
<provides>
<service name="Nic"/>
<service name="Uplink"/>

</provides>
<route>
<service name="Timer"> <child name="timer"/> </service>
<any-service> <parent/> </any-service>

</route>
<config verbose_domain_state="yes" dhcp_discover_timeout_sec="1">
<policy label_prefix="emac_nic_drv" domain="uplink"/>
<domain name="uplink"/>

</config>
</start>

Of course, the driver must be able to reach the NIC router, which can be achieved
adding the following session route to the driver’s <start> node.

1https://github.com/genodelabs/genode-allwinner/blob/master/src/a64_linux/target.inc
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<start name="emac_nic_drv" caps="2000">
...
<route>
...
<service name="Uplink"> <child name="nic_router"/> </service>
...

</route>
</start>

The second part - bridging the gap between the Linux kernel code and Genode’s
session interface - can best be addressed by the genode_c_api/uplink.h1 API and an
implementation of the driver’s lx_user.c2, which connects the genode_c_api with the
Linux netdevice interface.

2.12.18 Packaging the driver

The final step is the packaging of the driver to make it available to a broad range of
Genode scenarios, in particular the run scripts based on the drivers_nic subsystem
such as libports/run/fetchurl_lwip.run.

The packaging is assisted by the dde_linux/list_dependencies tool. It determines the
list of header dependencies for our driver by examining dependency (.d) files. For
reference, the nic/emac/dep.list file is generated via following command (the paths are
abbreviated).

build/arm_v8a$ ../../tool/dde_linux/list_dependencies \
TARGET_DIR=drivers/nic/emac \
LINUX_KERNEL_DIR=/path/to/linux/source/ \
SOURCE_LIST_FILE=.../allwinner/src/drivers/nic/emac/source.list \
DEP_LIST_FILE=.../allwinner/src/drivers/nic/emac/dep.list \
generate

As reference for the recipe files needed, the depot recipes at allwinner/recipes/3 are
helpful. Their roles are as follows:

recipes/api/a64_linux/ This API recipe contains the parts of the Linux source tree that
are relevant to build the drivers. It also features the parts of the Linux build
system that are invoked to generate header files (for the a64_linux_generated li-
brary). Each DDE-Linux-based driver depends on this API archive. This recipe
notably uses the information of the dep.list and source.list files.

1https://github.com/genodelabs/genode/blob/master/repos/os/include/genode_c_api/uplink.h
2https://github.com/genodelabs/genode-allwinner/blob/master/src/drivers/nic/emac/lx_user.c
3https://github.com/genodelabs/genode-allwinner/tree/master/recipes
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src/a64_emac_nic_drv/ This source archive contains the Genode parts of the network
drivers. The Linux sources are taken from the api/a64_linux archive.

recipes/pkg/drivers_nic-pine_a64lts/ This package aggregates all ingredients needed
for a network-driver subsystem as expected by scenarios based on the convention
of drivers_nic packages, that is, run scripts using

import_from_depot ... \
[depot_user]/pkg/[drivers_nic_pkg]

recipes/raw/drivers_nic-pine_a64lts

The raw archive contains the init configuration of the driver subsystem.

While crafting those recipes, it is best to use a dummy depot user “x” so that the in-
termediate results can easily be removed from the depot afterwards. For reference, the
following command extracts the archives from the source tree and builds the binaries
for the arm_v8a architecture. The process of developing the recipes comes down to re-
peatedly issuing this command and extending the recipes until the binary archives are
successfully built.

genode$ ./tool/depot/create x/pkg/arm_v8a/drivers_nic-pine_a64lts \
-j8 \
FORCE=1 \
UPDATE_VERSIONS=1
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2.13 Display

Until now, the exploration of the Allwinner A64 SoC was mainly concerned with the
Pine-A64-LTS board, which offers developer conveniences like booting over the net-
work, or easily accessible reset and GPIO pins. The upcoming topics require us to
switch out development workflow from the Pine-A64-LTS board to the real deal - the
PinePhone. This adjustment is covered by a dedicated article1. With those precautions
taken, it is time to turn our attention to the arguably most challenging parts of the
hardware, namely the display subsystem.

Why do I regard this part as the most challenging? The display subsystem of a mo-
bile device is not solely one peripheral but a conglomerate of several devices that are
(more or less) under software control and need to work together. The complexity of the
interplay and domain-specific terminology can be quite staggering. MIPI, DSI, PLL,
PHY, panel, plane, channel, connector, encoder, regulator, mixer, CRTC, RSB, TCON,
LVDS, PWM. Are you still with me?

2.13.1 Driving the display with a bare-bones Linux kernel

Not knowing much about the internal structure of the display hardware, it is good to
take Linux as a working starting point. When booting Armbian Linux, the display
works after all. Observing the Linux boot, the following messages seem obviously be
related to the display.

[ 5.936404] Console: switching to colour frame buffer device 170x48
[ 5.955920] simple-framebuffer be000000.framebuffer: fb0: simplefb registered!
[ 5.959687] mmc1: new SDHC card at address 0001
[ 5.967848] sun4i-drm display-engine: bound 1100000.mixer (ops 0xffff800010e340c0)
[ 5.979490] sun4i-drm display-engine: bound 1200000.mixer (ops 0xffff800010e340c0)
[ 5.990232] sun4i-drm display-engine: No panel or bridge found... RGB output disabled
[ 6.000377] sun4i-drm display-engine: bound 1c0c000.lcd-controller (ops 0xffff800010e2f8d0)
[ 6.012100] sun4i-drm display-engine: bound 1c0d000.lcd-controller (ops 0xffff800010e2f8d0)
[ 6.026726] sun8i-dw-hdmi 1ee0000.hdmi: Detected HDMI TX controller v1.32a with HDCP (sun8i_dw_hdmi_phy)
[ 6.117391] sun8i-dw-hdmi 1ee0000.hdmi: registered DesignWare HDMI I2C bus driver
[ 6.130875] sun4i-drm display-engine: bound 1ee0000.hdmi (ops 0xffff800010e333f8)
[ 6.200146] fb0: switching to sun4i-drm-fb from simple
[ 6.210896] Console: switching to colour dummy device 80x25
[ 6.216994] [drm] Initialized sun4i-drm 1.0.0 20150629 for display-engine on minor 0
[ 6.603061] Console: switching to colour frame buffer device 170x48
[ 6.641668] sun4i-drm display-engine: [drm] fb0: sun4i-drmdrmfb frame buffer device

Correlating those words with the device tree brings us to the device node of the so-
called display engine.

1https://genodians.org/nfeske/2021-09-20-pine-fun-pinephone-boot
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de: display-engine {
compatible = "allwinner,sun50i-a64-display-engine";
allwinner,pipelines = <&mixer0>, <&mixer1>;
status = "disabled";
};

The device node’s compatible string, in turn, draws the connection to the part of the
Linux kernel that is of interest to us.

linux$ grep -r "allwinner,sun50i-a64-display-engine"
drivers/gpu/drm/sun4i/sun4i_drv.c: { .compatible = "allwinner,sun50i-a64-display-engine" },

So drivers/gpu/drm/sun4i/ seems to be good starting point for exploration.
Having identified the driver code that want to execute for sure, we have to answer

two questions:

1. What are the in-kernel dependencies of this driver code? All those dependencies
are of interest to us because they are prerequisites.

2. Which parts of the Linux kernel are unrelated to the driver functionality? We
would like to drop those parts to narrow our view on the interesting driver code
as much as possible.

The investigation of those two questions is an iterative process that follows the pattern
discussed in Section 2.10. In our present case, the success criterion of our custom-built
bare-bones Linux kernel is the display of the little Tux at the top of the screen. Our
kernel won’t need anything else, Tux is enough.

To find the smallest possible selection of kernel configuration parameters, the bisect-
ing approach that we previously used for isolating the network driver becomes handy
again. Without further ado, here comes the solution as supplement for our target.inc1.

# framebuffer driver
LX_ENABLE += DRM DRM_SUN4I DRM_SUN8I_MIXER DRM_SUN8I_DW_HDMI

# determined by bisecting kernel configuration options (needed by fb driver)
LX_ENABLE += CMA DMA_CMA MFD_AXP20X_RSB REGULATOR REGULATOR_AXP20X
LX_ENABLE += PROC_FS SYSFS

# to automatically set up screen mode at boot time
LX_ENABLE += FRAMEBUFFER_CONSOLE

# show Tux
LX_ENABLE += LOGO

1https://github.com/genodelabs/genode-allwinner/blob/master/src/a64_linux/target.inc
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Don’t ask how often I operated the reset button to find this global minimum of kernel
configuration parameters.

With the bare-bones Linux kernel running, we can use Busybox to interactively poke
around with the driver. It is nice to see some response, like the display going dark.

/ # mkdir proc
/ # mkdir sys
/ # mount -tproc proc
/ # mount -tsysfs sys
/ # cd /sys/devices/platform/display-engine/graphics
/sys/devices/platform/display-engine/graphics # cd fb0/
/sys/devices/platform/display-engine/graphics/fb0 # echo 1 > blank
/sys/devices/platform/display-engine/graphics/fb0 # echo 0 > blank

To further tighten our focus, the next step is the pruning of the device tree using the
DTS-extract tool discussed in Section 2.11. For reference, the device tree extracted with
following arguments suffices to allow Linux to drive the display. The central element
is the Allwinner Display Engine1 (DE).

genode$ ./tool/dts/extract --select /backlight --select de --select dsi \
flat_pinephone.dts

The resulting device-tree nodes at a glance:

1https://linux-sunxi.org/images/7/7b/Allwinner_DE2.0_Spec_V1.0.pdf
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Figure 9: Device-tree nodes related to the display engine and the DSI output.

Let’s not get scared. A glossary of the terminology seen the picture should lift the
clouds a bit.

• The PIO device controls general-purpose I/O pins. We explored this device pre-
viously1. All pins are naturally related to the PIO controller but only a few of
them are actually relevant for the display. So we can consider the large number
of pin nodes as just noise for the most part.

• All nodes prefixed with r_ belong to a certain part of the SoC that is referred to as
“RTC” (real-time clock). Those parts are powered independently from the ARM
application processor and are meant to be driven by a small microcontroller called
AR1002 that ought to manage power.

1https://genodians.org/nfeske/2021-04-29-platform-driver
2https://linux-sunxi.org/AR100
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• The r_rsb controller is a two-wire bus similar to I2C that connects the A64 SoC
with a separate power management chip (PMIC, or AXP803). This chip is respon-
sible for generating various voltages on the board. For driving the display, this
chip is important because it provides the power for the LCD display part, which
is off by default. So in order to power the display, the driver needs to talk via the
RSB bus to the PMIC chip.

• TCON0 and TCON1 are two interfaces of the SoC where a display can be con-
nected. So the SoC supports dual-head scenarios like driving an HDMI display
and an LCD display at the same time.

• CCU stands for central clock unit. It controls the configuration and gating of all
kinds of internal clocks and reset lines. The R_CCU refers to the clocks and reset
lines associated with the RTC part of the chip.

• The backlight is a separate device. Its brightness is controlled via pulse-width-
modulated digital signal generated by the r_pwm device.

• The DPHY is responsible for the physical link of the digital connector. Electronics
stuff.

• All these mixer nodes are related to the display engines ability to blend multiple
images together.

When booting our bare-bones Linux kernel with the pruned device tree, Tux shows up,
and the last life signs of the kernel are the following messages.

sun4i-drm display-engine: No panel or bridge found... RGB output disabled
sun4i-drm display-engine: bound 1c0c000.lcd-controller (ops 0xffffffc010272138)
sun4i-drm display-engine: bound 1c0d000.lcd-controller (ops 0xffffffc010272138)
sun4i-drm display-engine: bound 1ca0000.dsi (ops 0xffffffc010275810)
[drm] Initialized sun4i-drm 1.0.0 20150629 for display-engine on minor 0
sun4i-drm display-engine: [drm] Cannot find any crtc or sizes
Console: switching to colour frame buffer device 90x90
sun4i-drm display-engine: [drm] fb0: sun4i-drmdrmfb frame buffer device
sun6i-mipi-dsi 1ca0000.dsi: Attached device xbd599
panel-sitronix-st7703 1ca0000.dsi.0: 720x1440@55 24bpp dsi 4dl - ready
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Figure 10: Hello my friends, nice to see you!

The logo. That’s all we want from the Linux kernel for now.

2.13.2 A monolithic display driver running on Genode

In Section 2.12, we covered the path from a down-stripped bare-bones Linux kernel
to a Genode driver component using Genode’s device-driver environment. The same
principle method works equally well for transplanting the display driver,

• Selecting the relevant driver sources,

• Generating dummy implementations using the tool/dde_linux/create_dummies tool,

• Taking cues from the existing DDE-Linux-based drivers for supplementing cus-
tom Linux emulation code,

• Using a custom run script (appropriately named framebuffer_pinephone.run) as a
dedicated test bed for the driver,

• Resolving the access to device resources like memory-mapped I/O ranges and
interrupts by enhancing the platform-driver configuration step by step.

For the test bed, the framebuffer test1 is a handy tool. When combined with a display
driver, it presents a sequence of colors and patterns, and it nicely highlights the border
of the screen to verify the entirety of the framebuffer is indeed visible.

1https://github.com/genodelabs/genode/tree/master/repos/os/src/test/framebuffer
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Figure 11: The framebuffer_pinephone.run scenario.

In the test scenario, the test-framebuffer component takes the place of the GUI server,
providing a capture service. The framebuffer driver plays the role of a mere capture
client that captures the synthetic pixel data generated by the test-framebuffer compo-
nent.

For interfacing the Linux kernel code with Genode’s capture session interface, the
driver uses the following kernel function declared in linux/fb.h as a hook to get hold of
the pixel data.

int register_framebuffer(struct fb_info *fb_info);

This is arguably quite primitive and does not allow the use of many driver features.
However, we have to start somewhere.

The framebuffer driver interacts with device hardware through the platform driver
as introduced in Section 2.9. The following picture shows all the devices the driver
interacts with.
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This octopus-resembling creature raises two tricky questions.

• Is it reasonable to entrust the driver with the access to all those devices? Given
the complexity of the ported driver code, this seems risky, doesn’t it?

• Some of the devices seem to be relevant to other drivers, too. If we grant the
framebuffer driver exclusive access to those devices, how can we combine the
framebuffer driver with other drivers running on the same system?
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We will come to solving those questions soon. For now, let’s enjoy the colorful display
for a bit.

For reference, the entire commit for the monolithic framebuffer driver can be found
here1.

1https://github.com/genodelabs/genode-allwinner/commit/c1d088ef5d9d4c82ffa761f672c33f70431dec31
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2.14 Touchscreen

In the previous Section, we went though the steps of transplanting the PinePhone’s
highly complex display driver from the Linux kernel into a Genode driver component.
Given the lessons learned, porting over the touch screen driver should be a walk in the
park, shouldn’t it? Let’s see.

Information gathering As a pattern established by now, we first will build a minimal
Linux kernel that features only our driver of interest. Not before that works, we will
transplant the relevant code into our custom Genode component as a second step. The
challenge of the first step is finding the right knobs in the Linux kernel configuration to
make the driver and device come alive.

Analogously to the network and display drivers covered earlier, our trail head is the
device tree (Section 2.12.2) shipped with the vendor Linux kernel. By searching for
“touch” in the device tree for the PinePhone, the following device node presents itself:

touchscreen@5d {
compatible = "goodix,gt917s";
reg = <0x5d>;
interrupt-parent = <&pio>;
interrupts = <7 4 4>;
irq-gpios = <&pio 7 4 0>;
reset-gpios = <&pio 7 11 0>;
AVDD28-supply = <&reg_ldo_io0>;
VDDIO-supply = <&reg_ldo_io0>;
touchscreen-size-x = <720>;
touchscreen-size-y = <1440>;
};

Given this anchor, we can use Genode’s dts/extract1 tool to figure out the inter-
device dependencies within the SoC. First, let’s determine the complete path of the
device node within the device tree.

genode$ ./tool/dts/extract --nodes flat_pinephone.dts | grep touch

/soc/i2c@1c2ac00/touchscreen@5d

This path can now be supplied as -select argument to another call of the extract tool
to create pruned device tree that contains only nodes that are related to the selected one.
For further inspection, we redirect the pruned device tree to the file touch.dts.

1https://github.com/genodelabs/genode/tree/master/tool/dts
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genode$ ./tool/dts/extract --select /soc/i2c@1c2ac00/touchscreen@5d \
flat_pinephone.dts > touch.dts

For us, the lines featuring a compatible string are of immediate interest because
those strings draw a direct relation to Linux source codes.

genode$ grep compatible touch.dts

compatible = "fixed-clock";
compatible = "fixed-clock";
compatible = "simple-bus";
compatible = "allwinner,sun50i-a64-ccu";
compatible = "allwinner,sun50i-a64-pinctrl";
compatible = "allwinner,sun6i-a31-i2c";
compatible = "arm,gic-400";
compatible = "allwinner,sun50i-a64-rtc",
compatible = "allwinner,sun50i-a64-r-intc",
compatible = "allwinner,sun50i-a64-r-ccu";
compatible = "allwinner,sun50i-a64-r-pinctrl";
compatible = "allwinner,sun8i-a23-rsb";
compatible = "goodix,gt917s";
compatible = "x-powers,axp803";
compatible = "pine64,pinephone-1.2", "pine64,pinephone", "allwinner,sun50i-a64";

The actual touchscreen device is the “goodix,gt917s”. A few other nodes are already
familiar from the work with the display driver. All devices prefixed with “r-" belong
to the so-called RTC-related part of SoC, which can be powered independently from
the application processor and are designated for always-on functionality. The “rsb”
(reduced serial bus) is the two-wire bus that interconnects the SoC with the power-
management IC “x-powers,axp803”. The “i2c” and “pinctrl” relation becomes appar-
ent when looking at the schematics of the PinePhone or the datasheet of the Goodix
touchscreen controller.
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Figure 12

“CTP” presumably stands for capacitive touch panel. It is powered by same “GPIO-
LDO” voltage that we encountered for the display driver before. As this signal comes
from the AXP803 power-management IC and is disabled by default, this explains the
need for talking over the RSB bus with the PMIC. The actual touch data travels via
the signals “TWIO-SDA” and “TWIO-SCK”, which are the data and clock lines of an
I2C connection. The separate “CTP-INT” signal allows the touch panel to notify the
application processor whenever something interesting happens - that is - when it would
be worthwhile to request new data via I2C. Finally, the “CTP-RST” signal is a reset line
driven by the application processor.

So long for getting an overview of how the touch panel is integrated. Now, let’s
figure out the Linux source code of interest. The procedure follows the same pattern as
employed for the display and network drivers.

First, we search the Linux source tree for the compatible strings as present in the
device nodes.

linux$ grep -r "goodix,gt917s"

drivers/input/touchscreen/goodix.c: { .compatible = "goodix,gt917s" },

Having found an interesting location, look sideways, in particular at drivers/input/-
touchscreen/Makefile in this case. The following line draws the connection to a kernel
configuration option.
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obj-$(CONFIG_TOUCHSCREEN_GOODIX) += goodix.o

This gives us a new clue what to grep for.

src/linux$ grep -r TOUCHSCREEN_GOODIX

drivers/input/touchscreen/Makefile:obj-$(CONFIG_TOUCHSCREEN_GOODIX) += goodix.o
drivers/input/touchscreen/Kconfig:config TOUCHSCREEN_GOODIX

The Kconfig file mentioning the kernel option gives us a few more hints.

config TOUCHSCREEN_GOODIX
tristate "Goodix I2C touchscreen"
depends on I2C
depends on GPIOLIB || COMPILE_TEST
help
Say Y here if you have the Goodix touchscreen (such as one
installed in Onda v975w tablets) connected to your
system. It also supports 5-finger chip models, which can be
found on ARM tablets, like Wexler TAB7200 and MSI Primo73.

If unsure, say N.

To compile this driver as a module, choose M here: the
module will be called goodix.

Observing the driver in a minimal Linux kernel At this point, it is time to expand
our bare-bones Linux configuration in a64_linux/target.inc.

LX_ENABLE += INPUT_TOUCHSCREEN
LX_ENABLE += TOUCHSCREEN_GOODIX

To see if and how those options come into effect, it’s best to build the kernel with the
changed configuration...

build/arm_v8a$ make a64_linux

and then manually inspect the a64_linux/.config file, in particular searching for
“TOUCHSCREEN_GOODIX” to see if all config dependencies are met. If not, we have
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to study the Kconfig files to see missing options. E.g., the “TOUCHSCREEN_GOODIX”
option is evaluated only if “INPUT_TOUCHSCREEN” is enabled.

This procedure needs to be repeated for all compatible strings we identified as in-
teresting above.

E.g., the “allwinner,sun6i-a31-i2c” compatible string leads us to drivers/i2c/busses/i2c-
mv64xxx.c. The accompanied Makefile speaks of “CONFIG_I2C_MV64XXX”. So we add
this one to our kernel configuration.

LX_ENABLE += I2C_MV64XXX

After a few iterations of enabling kernel options, building the kernel, and test-driving
it on the PinePhone, we are greeted by the driver:

Goodix-TS 0-005d: ID 917S, version: 0200
Goodix-TS 0-005d: Failed to invoke firmware loader: -22
Goodix-TS: probe of 0-005d failed with error -22

Looking into the code that prints the message “Failed to invoke firmware loader”
reveals that a call to request_firmware_nowait fails with the error code EINVAL. This
happens because the kernel falls back to the dummy function at include/linux/firmware.h
unless the kernel option FW_LOADER is enabled. I guess, you know what comes next:

LX_ENABLE += FW_LOADER

On the next iteration, the output looks different.

Goodix-TS 0-005d: ID 917S, version: 0200
Goodix-TS 0-005d: Direct firmware load for goodix_917S_cfg.bin failed with error -2
input: Goodix Capacitive TouchScreen as /devices/platform/soc/1c2ac00.i2c/i2c-0/0-005d/input/input0

In principle, we could add further kernel infrastructure to expose the driver as in-
put/event interface in order to access it from the Linux user land. One useful tool is the
evbug kernel module, which prints each occurring input event to the kernel log. It can
be activated by enabling the kernel-configuration option INPUT_EVBUG. Alternatively,
an easy way to see the immediate driver responding to touch input is to instrument the
driver code directly. In the particular case, the function goodix_process_events is a
suitable hook. Adding a printk as follows does the trick.
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static void goodix_process_events(struct goodix_ts_data *ts)
{
...
touch_num = goodix_ts_read_input_report(ts, point_data);
printk("goodix_process_events got %d touch_num events\n", touch_num);
...

Upon the next try, we can see that the driver indeed receives touch events!
To crosscheck the minimal set of Linux configuration options that are required for

the touchscreen driver to work, it is useful to comment out all LX_ENABLE lines in the
a64_linux/target.inc file that are seemingly unrelated to the touchscreen device and test
the resulting Linux kernel. This way, we end up reaching the following set of options.

LX_ENABLE += MFD_AXP20X_RSB REGULATOR REGULATOR_AXP20X
LX_ENABLE += INPUT_TOUCHSCREEN TOUCHSCREEN_GOODIX I2C I2C_MV64XXX FW_LOADER

Hosting the touchscreen driver code in a Genode component Equipped with the
display driver as blue print, we can mirror the basic structure of a DDE-Linux-based
driver component from the display driver to an appropriate location. In our case, this
would be the src/drivers/touch/goodix/ directory1 in the genode-allwinner2 repository.

The development procedure follows the same lines as described in Section 2.12.3. For
testing the input driver in isolation without any GUI infrastructure, the event_dump3

server is a handy tool.

Bridging Genode’s C++ world with the Linux world For bridging the gap between
the Linux kernel and Genode’s Event session interface, there are two pieces needed.
First, the genode_c_api/event.h4 API provides a simple C API for generating events.
As of now, the API is limited to the few event type we have actual drivers for (touch).
This free-standing API depends neither on Genode nor on Linux headers. The second
piece is a custom emulation code for Linux’ input subsystem contained in input.c5.
It responds to (Linux-internal) calls of the emulated input subsystem by invoking the
genode_c_api/event.h API.

1https://github.com/genodelabs/genode-allwinner/tree/master/src/drivers/touch/goodix
2https://github.com/genodelabs/genode-allwinner
3https://github.com/genodelabs/genode/tree/master/repos/os/src/server/event_dump
4https://github.com/genodelabs/genode/blob/master/repos/os/include/genode_c_api/event.h
5https://github.com/genodelabs/genode-allwinner/blob/master/src/drivers/touch/goodix/

input.c

184

https://github.com/genodelabs/genode-allwinner/tree/master/src/drivers/touch/goodix
https://github.com/genodelabs/genode-allwinner
https://github.com/genodelabs/genode/tree/master/repos/os/src/server/event_dump
https://github.com/genodelabs/genode/blob/master/repos/os/include/genode_c_api/event.h
https://github.com/genodelabs/genode-allwinner/blob/master/src/drivers/touch/goodix/input.c
https://github.com/genodelabs/genode-allwinner/tree/master/src/drivers/touch/goodix
https://github.com/genodelabs/genode-allwinner
https://github.com/genodelabs/genode/tree/master/repos/os/src/server/event_dump
https://github.com/genodelabs/genode/blob/master/repos/os/include/genode_c_api/event.h
https://github.com/genodelabs/genode-allwinner/blob/master/src/drivers/touch/goodix/input.c
https://github.com/genodelabs/genode-allwinner/blob/master/src/drivers/touch/goodix/input.c


2.14 Touchscreen

Caveats During the work on the driver, I learned a few unexpected lessons that are
worth sharing.

Apparently, time-multiplexing GPIO pins between input and output are a thing,
even outside I2C. In the concrete case of the Goodix touch panel, I struggled matching
the Linux driver code against the roles of the signals depicted in the Goodix documen-
tation1.

Figure 13

According to this diagram, the RESET signal is driven by the host whereas the INT
signal is driven by the Goodix device, which makes perfect sense. In the driver code,
however, the INT signal is driven by the host as well! It turns out that certain ver-
sions of the device scan the INT signal during reset to obtain one bit of configuration
information (choice between two possible I2C addresses).

To accommodate the time multiplexed use of a pin as input or output, Genode’s pin
driver (a64_pio for the PinePhone) switches an output pin to output mode not before
a pin-control client actually accesses the pin. This way, a driver is able to toggle the
direction by controlling the lifetime of its pin-control session while sensing the pin via
a separate pin-state session.

Device resources needed by the driver As described in Section 2.9, Genode’s plat-
form driver restricts access of drivers to devices. During the process of porting a Linux
driver as Genode component, one is repeatedly confronted with messages like:

Error: memory-mapped I/O resource ... unavailable

While addressing those messages by enhancing the platform driver’s configuration
step by step, the following picture emerges. Note the close correlation with the device-
tree information we gathered initially.

1https://files.pine64.org/doc/datasheet/pinephone/GT917S-Datasheet.pdf
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<device name="r_pio" type="allwinner,sun50i-a64-r-pinctrl">
<io_mem address="0x01f02c00" size="0x400"/>
<irq number="77"/>

</device>
<device name="r_ccu" type="allwinner,sun50i-a64-r-ccu">
<io_mem address="0x01f01400" size="0x100"/>

</device>
<device name="r_intc" type="allwinner,sun6i-a31-r-intc">
<io_mem address="0x01f00c00" size="0x400"/>
<irq number="64"/>

</device>
<device name="r_rsb" type="allwinner,sun8i-a23-rsb">
<io_mem address="0x01f03400" size="0x400"/>
<irq number="71"/>

</device>
<device name="ccu" type="allwinner,sun50i-a64-ccu">
<io_mem address="0x01c20000" size="0x400"/>

</device>
<device name="pio" type="allwinner,sun50i-a64-pinctrl">
<io_mem address="0x01c20800" size="0x400"/>
<irq number="43"/> <!-- Port B -->
<irq number="49"/> <!-- Port G -->
<irq number="53"/> <!-- Port H -->

</device>
<device name="i2c0" type="allwinner,sun6i-a31-i2c">
<io_mem address="0x01c2ac00" size="0x400"/>
<irq number="38"/>

</device>

This picture is concerning because there is apparently a significant overlap of re-
sources accessed by the display driver (Section 2.13) and those resources needed by the
touchscreen driver to operate. In Linux, both drivers are part of the same program, the
Linux kernel. But on Genode, we end up in the situation of having two independent
programs trying to drive the same parts of the hardware.
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The resolution of those conflicts is covered by the next Section.
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2.15 Cutting Linux-driver competencies

The previous sections covered the challenges of transplanting complex driver code
from the Linux kernel into Genode components. Once running happily in its new habi-
tat, however, the driver code needs a heavy dose of domestication. This section shows
how to curb the driver code from the overarching access of power, reset, pin, and clock
controls.

At the end of the previous section, we encountered conflicting hardware access as
a hard problem when integrating multiple driver components into one system. It nat-
urally arises on the attempt to combine the framebuffer driver with the touchscreen
driver.

Each of both drivers assumes the responsibility of managing the clocks, reset lines,
pins, and power domains related to the driven devices. As those low-level hardware re-
sources are controlled via system-global hardware-configuration registers, each driver
tries to manipulate those central registers. In the concrete scenario, we can observe the
following legitimate interplays.

• Each driver tries to enable an output at the power-management IC (PMIC) that
happens to power both the LCD display and the touchscreen controller. The
PMIC is accessed via a so-called reduced serial bus (RSB) two-wire bus. There-
fore, both components concurrently try to drive the same RSB bus controller.

• The touchscreen driver modifies the SoC’s pin configuration for the four pins con-
nected to the Goodix touchscreen controller, in particular defining one pin as in-
put signal for interrupt delivery, one pin as output signal for reset control, and
selecting I2C as pin function for the two I2C wires.

The framebuffer driver modifies the pin configuration to assign PWM as pin func-
tion for the brightness control, and defines two pins as outputs for controlling the
backlight and LCD reset.

In both cases, the pins are configured via the system-global PIO device.

• Both drivers interact with the clock and reset control unit (CCU). The touchscreen
driver de-asserts the reset signal of the SoC’s I2C controller and enables the corre-
sponding bus clock, whereas the framebuffer driver controls the clocks and reset
domains of the display engine, MIPI-DSI, DPHY, and the two TCON channels.

There are two principle approaches for the reconciliation of both drivers. One could
be tempted to co-locate both drivers into a single component. But this is bad for two
reasons. First, it would effectively turn this highly complex component into the central
authority over system-management controls, literally yielding power over the whole
system, including low-complexity security-sensitive Genode components unrelated to
the drivers. Second, with each driver added, this component would grow bigger. Down

188



2.15 Cutting Linux-driver competencies

the line, we would ultimately end up with an all-powerful monolithic driver subsys-
tem that stands in the way of a clean separation of concerns. E.g., in contrast to an
individual framebuffer driver that can be started, removed, and restarted on demand,
a monolithic driver component that includes drivers for persistent storage couldn’t be
restarted without risking data loss.

The right way to go is the consequent removal of low-level system-control access
from the drivers. In Genode, the natural place for clock and power management func-
tionality is the platform driver we introduced in Section 2.9, whereas the pin-MUX
configuration and GPIO access are covered by the dedicated PIO driver component.
The following illustration shows the aspired architecture.

Platform Driver
Platform

PIO Driver

Pin
control

IRQ Pin
state

Touchscreen
Driver

Framebuffer
Driver

CCU
R_R

SB

PMIC

R_C
CU

PIO
R_P

IO

The framebuffer and touchscreen drivers no longer access the low-level system-
control registers directly. Instead, the platform driver controls the reset, clock, and
power states depending on the presence of its clients. Analogously, the driver’s direct
GPIO access of the direct pin-MUX manipulation is replaced by the use of the services
provided by the PIO driver component.

2.15.1 SoC-aware platform driver

The picture above calls for the enhancement of the platform driver with SoC-specific
driver code for controlling clocks, power, and reset lines. Instead of laying those con-
trols into the hands of the driver, the platform driver implicitly drives them based on
the mere presence of a related platform client. For example, the following policy assigns
the “tcon0” device to the client labeled as the framebuffer driver.
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<policy label="fb_drv -> " info="yes">
...
<device name="tcon0"/>
...

</policy>

The “tcon0” device is declared as follows. Note the declaration of the <clock>,
<power-domain>, and <reset-domain> sub nodes. The names of listed resets, clocks,
and power outputs are defined by the implementation of the SoC-aware platform
driver.

<device name="tcon0" type="allwinner,sun8i-a83t-tcon-lcd">
<io_mem address="0x01c0c000" size="0x1000"/>
<irq number="118"/>
<reset-domain name="tcon0"/>
<reset-domain name="lvds"/>
<power-domain name="pmic-gpio0"/>
<clock name="bus-tcon0" driver_name="ahb"/>
<clock name="tcon0" driver_name="tcon-ch0"/>
<clock name="dummy" driver_name="tcon-pixel-clock"/>

</device>

Given this information, the platform driver knows that the framebuffer driver de-
pends on the reset lines “tcon0” and “lvds” being de-asserted. It also knows that the
driver requires the powering of the “pmic-gpio0” output of the PMIC chip. It also
knows that the clocks “ahb”, “tcon-ch0”, and “tcon-pixel-clock” must be set up. Once
the framebuffer driver connects to the platform driver, the platform driver can estab-
lish all those requirements implicitly while establishing the connection. This not only
relieves the actual driver from those low-level peculiarities. It also enforces the proper
reset of these settings whenever a driver disappears - with no active participation of the
driver needed. For reference, the implementation of the A64-specific platform driver
can be found at the following link.

SoC-aware platform driver for the Allwinner A64 SoC

https://github.com/genodelabs/genode-allwinner/tree/master/src/drivers/
platform/a64.

To simplify the implementation of the clock, reset, and power drivers within the SoC-
specific platform driver, the generic platform driver1 offers a few handy utilities in the

1https://github.com/genodelabs/genode/tree/master/repos/os/src/drivers/platform
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form of the clock.h1, reset.h2, and power.h3 headers. In practice, most system-control
operations come down so toggling a single bit for (de-)asserting a reset line, or for (un-
)gating a clock.

2.15.2 Curbing the Linux driver code

The SoC-specific platform driver looks fairly simple. However, at the client side - in the
Linux driver component - two hairy questions arise.

1. How to remove the direct access of the low-level system-control registers while
keeping the Linux code happy? Some the related Linux subsystems, in particular
those related to pin-MUX configuration, are quite central to the healthy operation
of the Linux kernel. They are mandatory and cannot be ripped out.

2. Which clocks, resets, power domains are actually expected by the driver? Can-
didates are plenty. The answer seems rather vague and is scattered over many
kernel modules.

2.15.3 Mimicking Linux subsystems

We encounter the first problem when trying to remove the drivers/pinctrl/sunxi/* driver
code, which interacts with the PIO device. The Linux code briefly complains and just
stops.

mv64xxx_i2c 1c2ac00.i2c: can’t get pinctrl, bus recovery not supported

To lift the clouds a bit, it helps to enable the debug messages in Linux drivers/base/dd.c
and drivers/base/core.c by placing the following line at the top of those files.

#define DEBUG

This results in a very plausible message.

i2c 0-005d: probe deferral - supplier 1c20800.pinctrl not ready
i2c 0-005d: Added to deferred list

1https://github.com/genodelabs/genode/blob/master/repos/os/src/drivers/platform/clock.h
2https://github.com/genodelabs/genode/blob/master/repos/os/src/drivers/platform/reset.h
3https://github.com/genodelabs/genode/blob/master/repos/os/src/drivers/platform/power.h
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The I2C subsystem depends on the pinctrl driver, which we just removed. To satisfy
this dependency without using the actual pinctrl driver, we have to create a custom
kernel module that looks like the original pinctrl but is just an almost empty hull. To
create such a stub driver, the easiest way is to start looking at the original driver code
and mirroring its basic structure. The original driver code can be found by inspecting
the device tree, which contains the following node.

pio: pinctrl@1c20800 {
compatible = "allwinner,sun50i-a64-pinctrl";

By searching for the compatible string inside the drivers/pinctrl/sunxi directory, we
find the right spot.

src/linux$ grep "allwinner,sun50i-a64-pinctrl" drivers/pinctrl/sunxi/*
drivers/pinctrl/sunxi/pinctrl-sun50i-a64.c: { .compatible = "allwinner,sun50i-a64-pinctrl", },

To mirror the driver’s structure, it is good to start looking at the “allwinner,sun50i-
a64-pinctrl” string and follow its tracks. It appears inside a table of of_device_id
entries.

static const struct of_device_id a64_pinctrl_match[] = {
{ .compatible = "allwinner,sun50i-a64-pinctrl", },
{}

};

The table a64_pinctrl_match is referenced by a struct called a64_pinctrl_driver.

static struct platform_driver a64_pinctrl_driver = {
.probe = a64_pinctrl_probe,
.driver = {
.name = "sun50i-a64-pinctrl",
.of_match_table = a64_pinctrl_match,

},
};
builtin_platform_driver(a64_pinctrl_driver);

The struct refers to a probe function a64_pinctrl_probe.
The implementation is merely a wrapper around sunxi_pinctrl_init.
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static int a64_pinctrl_probe(struct platform_device *pdev)
{
return sunxi_pinctrl_init(pdev,

&a64_pinctrl_data);
}

Piece by piece, we assemble a custom puzzle of (almost) empty functions and struc-
tures. By using the exact same symbol names as the original driver, our stub driver
nicely overtakes its position, in particular our initcall is called at the appropriate time.

Fast forward, the complete stub driver for replacing the pinctrl driver can be found
at src/lib/lx_emul/a64/pio.c1. It is arguably not trivial, which is due to the fact that
the touchscreen driver uses one GPIO pin as interrupt source. Hence, our stub needs
to mimick an interrupt controller as well. The interaction with Genode’s PIO driver is
done via calls to the lx_emul_pin_* API2.

The clue for sneaking our stub driver into Linux as GPIO driver is the function
gpiochip_add_data, which takes a gpio_chip struct as argument. This struct defines
a number callbacks that our stub driver provides for interacting with the pins. The
following two callbacks are especially interesting.

of_xlate is called with the coordinates of a GPIO pin as arguments and returns a pin
number. The organization of the namespace for such pin numbers is up to us. As
the PIO pins of the A64 SoC are organized in a number of banks with 32 pins per
bank, a suitable naming scheme is

number = bank*PINS_PER_BANK + pin_within_bank

set sets an output pin of a given number (according the result of of_xlate) to the
specified level. This function triggers the physical effect.

Compared to the removal of the pinctrl subsystem, replacing the reset (drivers/reset/*)
and clock (drivers/clk/*) controls is relatively simple. For stubbing the clock control,
there already exists a reusable stub driver within the repos/dde_linux repository at
lx_emul/shadow/drivers/clk/3.

1https://github.com/genodelabs/genode-allwinner/blob/master/src/lib/lx_emul/a64/pio.c
2https://github.com/genodelabs/genode/blob/master/repos/dde_linux/src/include/lx_emul/

pin.h
3https://github.com/genodelabs/genode/tree/master/repos/dde_linux/src/lib/lx_emul/

shadow/drivers/clk
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2.15.4 Gathering the required clock, reset, and power controls

The second tricky question is to find out the few needles in the haystack of clock, reset,
and power controls that are required by the individual driver. There may be more than
a dozen of such prerequisites. When missing merely one, the driver won’t work.

Of course, the device tree is always a nice reference to start with. Specifically the
clocks and reset properties of the device tree provide useful clues. For example, the
device node for the tcon1 contains the following declarations.

tcon1: lcd-controller@1c0d000 {
...
clocks = <&ccu 48>, <&ccu 101>;
clock-names = "ahb", "tcon-ch1";
resets = <&ccu 25>;
reset-names = "lcd";
...

The numbers can be correlated in definitions found at include/dt-bindings/clock/sun50i-
a64-ccu.h in the Linux source tree.

...
#define CLK_BUS_TCON1 48
...

Those definitions, in turn, show up in the driver’s source tree - in this particular
case drivers/clk/sunxi-ng/ccu-sun50i-a64.c - which draws the connection to the physical
coordinates of the clock.

...
static SUNXI_CCU_GATE(bus_tcon1_clk, "bus-tcon1", "ahb1",

0x064, BIT(4), 0);
...
static struct clk_hw_onecell_data sun50i_a64_hw_clks = {
.hws = {
...
[CLK_BUS_TCON1] = &bus_tcon1_clk.common.hw,
...

Now, a look into the CCU documentation for the 4th bit of the register 0x64 should
close the circle, prompting us to add an appropriately named clock definition Genode’s
platform driver.
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I/O register tracing That said, unfortunately it is all too easy to miss one piece of the
puzzle when merely looking from above (from the device tree). In this case, a look from
below may help to complete the picture: To find the right bits - and also to quickly rule
out the wrong ones - the low-level tracing of register accesses is sometimes inevitable.

Usually, Linux subsystems come with their own pieces of infrastructure, which
provide us with a convenient hook for instrumentation. For example, all parts of
the driver for the Allwinner clock and reset unit (CCU) happen to include the file
linux/drivers/clk/sunxi-ng/ccu_common.h. Hence, changes of this file affect only the driver
code we are interested in. So we can add the following hillbilly I/O tracing facility that
captures all writel and readl operations.

static inline void my_writel(u32 value, volatile void __iomem *addr)
{
printk("::: writel 0x%x addr=0x%p\n", value, addr);
writel(value, addr);

}
#undef writel
#define writel my_writel

static inline u32 my_readl(volatile void __iomem *addr)
{
u32 result = readl(addr);
printk("::: readl addr=0x%p -> 0x%x\n", addr, result);
return result;

}
#undef readl
#define readl my_readl

The ":::" prefix is just a band aid to easily distinguish the trace output from regular
log output. Note that the instrumentation print virtual addresses though. To correlate
those virtual addresses with physical addresses, we can add an instrumentation to the
lx_emul_io_mem_map function in lx_emul/io_mem.cc1.

log("mapped memory-mapped I/O resource ", Hex(phys_addr),
" (size=", Hex(size), ") to ", ret);

This I/O tracing approach is extremely simple, yet surprisingly powerful. Consider
the following ideas.

1https://github.com/genodelabs/genode/blob/master/repos/dde_linux/src/lib/lx_emul/io_
mem.cc
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• One can programmatically filter out superfluous noise by making the printk
statements conditional. For example, skipping the output for certain uninter-
esting accesses (like polling a certain bit), or keeping a counter and starting the
output not before the counter has reached a certain value.

• Even more interesting is the conditional skipping of write operations to confirm
that certain register accesses are really needed. One can even change the bits writ-
ten to the hardware registers to see, e. g., the effect of different clock settings.

• As a sledgehammer approach, one can replay a once gathered register trace at the
startup of Genode’s platform driver and skip as many writel operations in the
driver as possible.

By iteratively tweaking the filtering, thousands of register accesses during the initial-
ization of the touchscreen driver could be condensed to the following few interesting
accesses. With the focus drawn to such a few registers, the manual review of the bits
suddenly becomes practical.

writel 0x5514 addr=0x2008 PLL_AUDIO control register
writel 0x515 addr=0x2040 PLL_MIPI Control Register
writel 0x90001031 addr=0x2000 PLL_CPUX Control Register
writel 0x90002d00 addr=0x204c PLL_DDR1 Control Register
writel 0x90041811 addr=0x2028 PLL_PERIPH0 Control Register
writel 0x81000002 addr=0x215c MBUS Clock Register
writel 0x10001 addr=0x206c Bus Clock Gating Register 3

That said, keep in mind that we can never be sure to capture all I/O accesses this
way. Drivers may operate in a way that bypass the readl and writel functions. Also,
the place of the instrumentation is important. For example, if a driver accesses registers
indirectly using the drivers/base/regmap/ utilities, one needs to the place the instrumen-
tation inside the regmap implementation.

2.15.5 The drivers reconciled

The result of the described development step is best illustrated by the configuration1

of the drivers subsystem for Genode’s interactive system scenarios on the PinePhone.
It clearly documents the enforced relationship between the drivers and the related hard-
ware at an almost intuitive level of abstraction. For example, it becomes perfectly clear,
which driver has the authority over which GPIO pin. The access to low-level system-
management registers is exclusively guarded by the platform driver. Isn’t it beautiful?

1https://github.com/genodelabs/genode-allwinner/blob/master/recipes/raw/drivers_
interactive-pinephone/drivers.config
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2.16 Telephony

This section is based on Sebastian Sumpf’s Telephony article1 at https://genodians.org.
It describes the steps for enabling basic telephony support on the PinePhone.

LTE Modem The PinePhone ships with a stock Quectel EG-25-G2 LTE capable modem
designed for machine to machine communication. Inherently, the modem3 is a system
on a chip (SoC) in itself with its own CPU core (Qualcomm MDM9207), RAM (256MB),
and flash memory (256MB). It features next to LTE/UMTS/GSM, audio codecs, audio
playback, GPS, and Bluetooth support.

Firmware The firmware is essentially a custom Linux system that PinePhone’s All-
winner A64 SoC4 can interact with through UART, USB, and PCM interfaces. A spe-
ciality of the Quectel modem is the support to flash custom firmware into the mo-
dem. With this feature, it is possible to execute well-known trusted firmware instead of
opaque binary blobs on the modem. An example of such a firmware is the PinePhone
Modem SDK as provided by Biktorgj5. The firmware offers better power-management
support because it can scale the CPU frequency down to 100MHz (stock firmware is
400MHz) during sleep. Additionally it offers some features like non-persistent storage,
time synchronization from carrier to user space, as well as zero binary blobs unlike the
stock firmware. The non-persistent storage is especially interesting because the stock
firmware may corrupt the flash memory - and thereby the whole SoC - if not shutdown
correctly. This could happen on a crash or in case of battery failure. A downside of the
custom firmware is that it is not feature complete, might be unstable, and in the worst
case can even brick the modem. For these reasons, we decided to stay with the stock
firmware for our telephony experiments.

UART and USB interfaces Traditionally, modems are accessed through serial UART
interfaces using the AT command set6 This feature is still provided by all modern
modems. It can be used for placing and receiving calls, sending and receiving SMS,
managing the SIM card, phone book, selecting carriers, managing audio, or GPS. For
a complete list of the AT commands supported by the Quectel EG25-G, please refer to
the official manual7.

1https://genodians.org/ssumpf/2022-05-09-telephony
2https://wiki.pine64.org/images/8/82/Quectel_EG25-G_LTE_Standard_Specification_V1.3.pdf
3https://wiki.pine64.org/wiki/PineModems
4https://linux-sunxi.org/images/b/b4/Allwinner_A64_User_Manual_V1.1.pdf
5https://github.com/Biktorgj/pinephone_modem_sdk
6https://en.wikipedia.org/wiki/Hayes_command_seti
7https://wiki.pine64.org/images/1/1b/Quectel_EC2x&EG9x&EG2x-G&EM05_Series_AT_

Commands_Manual_V2.0.pdf
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The UART of the Quectel modem is connected to UART3 on the Allwinner SoC,
which is a standard 16550 UART1 as used by normal PCs since 1987. A driver for
this UART was already present in Genode but only for the output (TX) case, since it
was solely used for logging to the serial port. Because for each AT command sent via
the UART to the modem a response is generated, we had to extend Genode’s UART
driver with receive (RX) support. This way, any terminal emulator (e. g., minicom,
picocom, screen) can connect to the UART, send AT commands, and receive responses.
Unfortunately this will only work if the modem is powered on.

The USB interfaces are used for data connections (2G/3G/4G) because UARTs are not
fast enough (i. e., 115200 baud) to handle the data rates - up to 300 MBit/s - supported
by modern standards. In this case, the modem exposes a USB network interface in order
to send and receive data plus an additional control channel to configure the connection.
For a basic description on the workings of data connections, please refer to our LTE
modem support for Genode article2. Because we were primarily interested in telephony
at this point, we did not enable the USB part nor the Allwinner SoC connections of the
modem - which in turn conserves power - and handled telephony through the UART
interface using AT commands.

2.16.1 Modem startup

As with most SoCs, the modem is not powered during PinePhone’s boot process. This
requires manual power-on/off handling by Genode. Important to know is that the
modem is powered by the battery directly and cannot be started with just the USB
charger plugged in. The reason for this is that the power consumption of the modem
can be anywhere from a 2 mA (sleep) up to 700 mA (LTE data3) and may vary abruptly,
which does not go well with power supplies but can be handled by a battery.

The modem is connected through various input/output pins (GPIO) to the Allwinner
SoC through the Port controller4. Without going into too much detail, there is one pin
that enables the power supply from the battery to the modem. Once the power supply
is ready, the modem can be powered on through a PWRKEY pin. This pin must be
pulled down for at least 500 ms, which will initiate the modem’s boot process that can
take up to 30 seconds. In order to determine if the modem is powered on, another
pin (status) can be observed. When the pin goes low, the modem has finished booting.
For Genode, we have implemented this behavior in a small component called modem
manager5.

1https://en.wikipedia.org/wiki/16550_UART
2https://genodians.org/ssumpf/2020-12-04-mbim
3https://wiki.pine64.org/images/2/20/Quectel_EG25-G_Hardware_Design_V1.4.pdf
4https://linux-sunxi.org/images/b/b4/Allwinner_A64_User_Manual_V1.1.pdf
5https://github.com/genodelabs/genode-allwinner/blob/master/src/drivers/modem/

pinephone/main.cc
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Core / Init
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Platform Driver
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Modem Manager UART Driver UART Driver

Host console Modem control

Figure 14: Experimental modem setup on Genode’s PinePhone.

Basic telephony scenario With the modem powered, we can connect to the UART
of the modem using a terminal emulator and should see:

> RDY

This means we can now enter AT commands, the simplest would be:

AT
> OK

Enter the PIN for the SIM card:

AT+CPIN=1234
> OK

Check the connection status:

AT+CREG?
> CGREG: 0,1
> OK

This means the modem is connected to the home network. Issue a call:
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ATD03513231421424;
> OK

Hang up:

ATH
> OK

If one sees a

> RING

one can accept the call by

> ATA

The recommended way to shutdown the modem before the PinePhone is powered off
is

AT+QPOWD

With these simple commands, we achieved basic telephony support at an extremely
low complexity on the Genode side. The only noteworthy drawback is that no one can
hear you and you can hear no one because audio has not been setup yet. We will look
into this next.

2.16.2 Audio codec

The Allwinner SoC audio codec is split into two parts. First, an analog part for micro-
phones, speakers, and headsets. And second, a digital part where the SoC itself, the
modem, and the Bluetooth interfaces are connected to. As expected, analog-to-digital
converters (ADC) and digital-to-analog converters (DAC) bridge both the analog and
digital worlds for recording and playback.

Fortunately, we are not the first ones interested in the topology of all the components
involved. For example, https://xnux.eu gives valuable insights in the dedicated article
Audio on PinePhone1, in particular an annotated version2 of the audio diagram de-
picted in the Allwinner A64 manual. At the top, three different AIFs (audio interface)
are displayed. AIF1 leads to the APB bus, which in turn connects to the Allwinner SoC.

1https://xnux.eu/devices/feature/audio-pp.html
2https://xnux.eu/devices/feature/audio-controls.svg
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AIF2 connects to the BB (base band), which is the Quectel modem whereas AIF3 con-
nects to Bluetooth that is not of interest for this line of work. The green boxes ADCL/R
and DACL/R are the connection to the analog part of the codec, where the recording
and playback devices are connected to.

The whole scenario depicted in the diagram leads to the assumption that the micro-
phone of the PinePhone and the earpiece/speaker can be routed through simple con-
figuration to and from the modem without the actual involvement of the SoC (AIF1).
AIF1 exists for playback sounds/music, record audio, and handle data connections like
video conferencing where data packets need to be sent to the speaker while microphone
inputs need to be transferred to the modem. AIF1 would also require an actual sound
driver within Genode. Note that the modem implements this driver locally for itself
because it has its own operating system.

Following this idea, Figure 15 depicts the setup we want to achieve for telephony
for the left channel. The red arrow marks the path from the microphone to the modem
whereas the green arrow shows the path from the modem to the earpiece/speaker.

Figure 15: Telephony routes for the left channel

Low-level setup Without going into too much detail, the enablement of any device
on ARM platforms is what the BIOS usually does for x86. Meaning - everything is
turned off. This step required configuring and activating the Audio PLL, setting up
and (un)gateing necessary clocks, bringing the audio codec out of reset state, and con-
figuring the GPIO pins to take and send signals to/from the AIF2 (modem) bus.

Digital audio codec For the digital part, we want to route the ADC where the micro-
phone is connected to the modem (AIF2 mixer), and the playback from the modem to
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the DAC where the speaker and the earplugs are connected. For each stage, there exist
different mixers that must be configured as well as additional registers to set the data
rate, volume, bit width, and audio format. The essential step is to enable ADC (left and
right channel) as one source of the AIF2 mixer. There can be more than one source, for
example, the AIF2 mixer can also use AIF1 (the Allwinner SoC) as input. For the play-
back route, we set the source of the DAC mixer to the AIF2 DAC output of the modem.
Of course, all parts need to be enabled separately.

Analog audio The analog part of the codec is accessed through a single memory-
mapped I/O register called AC_PR (Figure 16). Through this register, 32 8-bit data
registers can be addressed through the Addr field. In and out data is read/placed by
the codec from/into the Data_in and Data_out fields.

Figure 16: Analog configuration register (Allwinner A64 Manual v1.1, page 362)

With the digital part ready, it was time to activate the actual microphone and the
earpiece speaker. In Figure 15 all gray boxes marked with an “m” - for mute - can be
configured through the ADC mixer. For the microphone, this means that we have to
set the microphone as a source of the ADC mixer. Additionally, every device has a
configurable amplifier that needs to be enabled. For the microphone, that is the boost
amplifier. Since microphones also require a voltage (bias voltage) this must also be
configured. And voila, the microphone was working on a test phone call.

For the earpiece, in turn, we needed to configure the DAC mixer as an input source,
enable the amp and unmute the device. This worked out of the box and we were able
to perform an actual phone call with the PinePhone running Genode.

As a final test, we enabled the speaker for hand-free communication that is connected
to the line out. This works analogously to the earpiece, with the exception that the
speaker amplifier is external on the PinePhone and needs to be enabled via a dedicated
GPIO pin.
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So with everything working it’s time for a test call using this run script1:
Roger Murdock: We have clearance, Clarence.
Captain Oveur: Roger, Roger. What’s our vector, Victor?
Tower voice: Tower’s radio clearance, over!
Captain Oveur: That’s Clarence Oveur. Over.

1https://github.com/genodelabs/genode-allwinner/blob/master/run/modem_pinephone.run
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