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ON THE LAW OF RECIPROCITY OF QUADRATIC
RESIDUES.

By Professor Paul Mansion.

THE simplest demonstration that has been given of the law
of reciprocity is due to Zeller (Berliner Monatshericht, 1872,
pp. 846-847), and depends, as also Gauss’s third and fifth
and Schaar’s third demonstrations (Bulletins de Bruaelles, 1%
skrie, t. XIV., No. 2), on a lemma of (Gauss, and a theorem
of Kuler which gives a criterion for distinguishing residues
from non-residues. This theorem of Euler is usually demon-
strated by means of the theory of primitive roots and indices
(Gauss, Disquisitiones, No. 106), which renders the investi-
gation of the law of reciprocity somewhat difficult.

I recently remarked that this theorem of Euler’s was an
immediate consequence of Fermat’s theorem, which is itself
an evident corollary from Gauss’s lemma; so that we thus
obtain a complete and entirely elementary demonstration of
the law of reciprocity in the following manner:

I. Gauss's Lemma. 1f ¢ is prime to the uneven prime p,
the smallest remainders in absolute value, positive or negative,
of the products

220,32 3 (P=1) g eviviiiiinnnn (1),
divided by p, will be the numbers
1,42, +3..., £ 3 (p—1)ieenenns SR )

and we shall have
¢V = (- 1)' (mod, p),

¢ being the number of negative remainders in the series (2).
Let, in fact, for the modulus p,

g=+7y 29=4700 A (P—1) g= 2740 10eeeee (3),
These remainders are all different, for if at the same time

ag=+r, by=+r,
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there would result

(a+0) g =0 (mod. p),

which is impossible, since ¢ is prime to p and e+b<p, if
ap and bq are chosen in the series (1).
Multiplying together all the congruencies (3),* and putting

P=12:30% (g = =T . i,
we have evidently Py V'=(-)F,
viz. g#r N =(-1).
Cor. Fermat's Theorem. Squaring this congruence, we
shall have
¢ = (ol p),
which is Fermat’s theorem, since ¢ is any number prime to p.

I1. Buler’s Criterion. The remainders resulting from the
division of 1% 2°, 8*...{4 (p—1)}* by p, give 4 (p—1) qua-
dratic residues of p, all different. For if s*=s" (mod. p), and
s<s <4p, then we should have (s'—s) (s +s) divisible by p,
which is impossible, since s' — s, s’ + s are each both less than p.
There are no residues of p less than p, except those which
have been mentioned, for (p—a)*, (mp+ )%, divided by p
give the same residues as ”.  Consequently, ot the numbers
1,2, 3...(p—1), there are 4 (p— 1) which are residues, and
4 (p— 1) which are non-residues. All the other residues or
non-residues are obtained by adding to them a multiple of p.

For every residue a, we have by definition

z*=a (mod. p),
and, raising this congraence to the power § (p —1),
mP—Iz a;_:r’—u_
But, by Fermat’s theorem, 2**™ =1. Whence
atrt —1=0,
Fermat’s theorem expresses that the congruence
2" = 1= (" — 1) (22" + 1) =0,
is satisfied by the p—1 values 1,2,3,...p—1. Among
these p— 1 solutions, the § (p—1) residues of p satisfy the

relation
2t?™ — 1 =0 (mod. p),

* Poinsot has probably deduced his new demonstration (Réflexions sur les
principes fondamentaus de la théorie des nombres, Ch. 11, No. 1) of Fermat's
theorem from .this process of Gauss's, in order to demonstrate the subsidiary
lemma,
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as we have seen. Therefore the § (p— 1) non-residues are
the solutions of
2™ 4 1 =0 (mod. p).
The residues and the non-residues not comprised between
0 and p satisfy these same relations, because

@7 = (z 4 mp)*™ (mod. p).

IIL. Law of Reciprocity (Zeller’s demonstration).
1. We have seen above that
¢ = (- 1)} (mod. p),
¢ being the number of the smallest remainders in absolute
value, and negative, of

gy 29, 8¢sy A p=T) giivisiiiiivaiciae (1),
when divided by . We shall also have, if ¢ is prime,

PHV= (1Y (mod. g),

J being the number of the smallest remainders in absolute
value, and negative, of

D 2Py 8Py 3(g—1)p crves Vervserine (4),
when divided by ¢. By Euler’s criterion, ¢f ¢+ s even,
» and q will be simultaneously residues or non-residues the one
of the other ; if <+ 7 is uneven, p will be a residue of ¢, and
g @ non-residue of p, or, inversely, according as i is even or
uneven.

2. The number ¢+; will only be uneven if p and ¢ are
both of the form 42 + 8. Suppose p <g¢. (1°) Every number »
smaller than § p presents itself as a remainder in the series (1)
with the sign , in the series (2) with the sign ¥. In fact, if
hg—lkp=r, also kp—hg=—r, and necessarily we have
k>4q, h<}g simultaneously. It follows that there are in
one or the other series of remainders } (p—1) remainders
less than §p, and negative viz. — 1, — 2, —3...— 4 (p—1).

(2°) The negative remainders comprised in absolute value
between §p and 4¢, and given consequently by the series (4),
are always associated together in pairs, unfess ( p+1),(g—1),
are divisible by 4. The product § (¢—1)p gives a positive
remainder, viz. § (- p). Let

kp—hg=—r, p<r<iq, k<}(g-1),
then Ep-kq=—-+, Ip<r <ig
if k4+k=%(qg-1), b+l =%(p+1), r+27'=%(p+9),
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whence there are always two remainders —», — 7' associated
and comprised in absolute value between {p, g, unless » =+,
which requires A=A'=1(p+1), k=k'=1(¢—1). Thus the
number m of the negative remainders comprised between § p,
17 is only uneven if p+1 or p—3 and ¢—1 are divisible

4.
4 3°. From the equality 7 +7=1 (p— 1) + m, we can deduce
the following consequences: If p—1 is divisible by 4, m is
even and also 7+5. If p— 3, ¢—1 are divisible by 4, m and
4 (p—1) are uneven, ¢+ is even. Finally, if p—3, ¢—38
are divisible by 4, 4 (p—1) is uneven, m is even, and 7+ is
uneven.

Combining these different results, we have the law of
reciprocity. If p and q are two prime numbers, uneven and
posttive, q is the residue or mon-residue of p, according as p
1s the residue or non-residue of q, unless p—3, q—38 are
divisible by 4. In this case, if p 1s the residue of q, q s a
non-residue of p, and if p is a non-residue of q, q s a residue

of p.

TRANSACTIONS OF SOCIETIES.

London Mathematical Society.

Thursday, December 9th.—Prof. H. J. 8. Smith, F.R.8,, President, in the Chair.
Major J. R. Campbell and Prof. G. M. Minchin were elected Members.

Prof. Clifford read a paper *On the Transformation of Elliptic Functions,” in
which he attempted to apply Jacobi’s geometrical representation of the addition~
theorem in elliptic functions to the theory of their transformation, Prof. Cayley
spoke on “ A system of Algebraical Equations connected with Malfatti's Pro-
blem.” The communication was an extension of a paper by the same gentleman
in the Cambridge and Dublin Mathematical Journal, tom. 1v., 1849, pp, 270-275.
The Chairman next communicated three short notes.

(i) On a Problem of Eisensteiw's, If p is an uneven prime, the function
4 :”:—_tii-: Z can always be expressed in the form ¥2— (—}5@*') pX? where X
and ¥ are rational and integral functions of = having integral coefficients. This is
a theorem of Gauss. Eisensteins problem (Crelle’s Journal, vol. XXVIL,, p. 83) is
% To determine the cases in which the equation Z= ¥2— (-)ir-0 p X2 admits
of a multiplicity of solutions, and to ascertain the law connecting the various
solutions, when there is more than one.” The solution of this problem is as
follows ; If [7, U | is any solution whatever in integral numbers of the equatiou
72— (-)“-VpU2=4, and [X, Y] is sny one given solution of Gauss’
equation, then all the solutions of Gauss' equation are comprised in the formula

[} {(TX + ()'»1 pUV}, § (UX+ TY)].

Thus, if p = 4n + 8, the equation admits of but one solution (the four solutions
[+ X, + Y] being regarded as but one) except in the case p = 8, when it admits
of three; if p=4n+ 1, the equation admits of an infinite number of solutions,
That the functions [} (TX+pUY), } (UX+ TY)| are all of them solutions
of Gauss's equation, 1s evident; the proof that this formula comprises all the
solutions of the equation is less elementary, because it depends on the irreduci-
bility of the function Z, There exists a general theory of the representation of
rational and integral functions of @ by quadratic forms; such representation
being, of course, only possible when the given function of x is capable of resolu-
tion into two factors by the adjunction of a quadratic suxd,
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(ii) On the joint invariants of two conics or two quadrics. Let P and Q be two
conics, and let 128 be any triangle self-conjugate with regard to P. Let also
P,, P, P; be the rectangles of the points 1, 2, 3 with regard to the conic P,
these rectangles being taken upen transversals measured in any fixed direction;
and let @, ¢, Q; have similar meanings with regard to the conic @, the direction

of the transversals beirig also fixed. Then the expression 5 +% + % has the

same Value for all self-conjugate triangles of P, and is, in 1fv.ct., “that, invariant
of P. @ which is linear with regard to @ and quadratic with regard to P, and
the evanescence of which expresses that @ harmonically circumscribes P. The
corresponding theorem in the geometry of the straight line is “If @,Q,, PP, are
two pairs of fixed points on a line, and if 4,4, is any pair of harmenic conjugates
AQ, . .
of PP, the value of the expression Litiocudy + 44 4,Q, i independent of
: : A, P, AP, "A4,P .A,P,

the particular pair 4,4, considered.” From this theorem the result given above
for two conics follows immediately ; from it the corresponding property for two
quadrics may be inferred, viz. 5!+ 5+ 5+ 7' = constant; and so on for
quadratic functions containing any :lmmbér of i’ndete‘rminabes.

(iii) On the equation P x D = constant, of the geodesic lines of an ellipsoid.
From this equation (in which P is the perpendicuﬁl.r from the centre upon the
tangent plane at any point of the geodesic, and D is the semi-diameter parallel
to the tangent line of the geodesic), it is convenient to be able to infer directly
the principal properties of the geodesic line, without having first to transform
the equation into M. Lionville’'s form u? cos?i + »? sin?4 = ¢2. In Dr. Salmon’s
Geometry of Three Dimensions, the theorem of the constancy of the sum or
difference of the geodesic radii vectores, drawn from any point of a line of
curvature to two umbilics, is thus demonstrated. And it is worth while to add
(though it is very improbable that the point has not been noticed before), that
a proof of the theorem, that two geodesic tangents of a line of curvature, which
intersect at right angles, intersect on a sphero-conic, may similarly be obtained
without transforming the equation. TLet 8 be the point where the two geodesic
tangents intersect at right angles, O the centre of the ellipsoid ; let ¢ = 0@Q, and
let @, b be the semi-axes of the central section parallel to the tangent plane at
Q. The two geodesics make angles of 456° with the lines of curvature at @;
2h2
hence, for either of these geodesic lines, 2 = Efr:_—bbz . Let @ be a second point
where two geodesic tangents to the same line of curvature intersect at right
2P 2P
angles; then FrE = I because P x D has the same value for all
geodesic lines touching the same line of curvature. Bub P?a®® = P"%a'*)"* because
parallelepipeds eircumseribing an ellipsoid with their faces parallel to conjugate
diametral planes are equal. Hence a® + 02 = 2 + §'2.  But also
A+ +t=a?+ b2+

therefore ¢ = ¢’ and @ and @' lie on the same sphero-conic.

M. Tucker (in the absence of the author) brought before the Society a paper
by Mr. H. W. Lloyd Tanner, “On the Solution of Certain Partial Differential
Equations of the Second Order, having more than two Independent Variables.”
‘The equations considered are included in the form

T=n j=n = a2z

2 BV

1 o daday

- § U ade o e safls
where Vij, 1, are functions of =...zs, 2, py (; E)...pn (—_- —); and it is
1 n.

proposed to investigate the conditions that (i) should be soluble in terms of
arbitrary functions, the arguments of which are definite functions of Z, ay, ...2n;
and when these conditions are satisfied, to determine the solution. Three cases
arise for discussion: (1) »—1 of the arguments independent; (2) » of them

independent; (8) = + 1 of them independent. The paper concludes with a note
on the application of a similar method to equations of an order higher than the

second.
R. Tucker, M.A., Hon. Sec.




