Théorème japonais de Carnot
Le théorème japonais de Carnot est un théorème de géométrie euclidienne dû à Lazare Nicolas Marguerite Carnot, portant sur une égalité algébrique de distances dans une construction faisant appel au cercle inscrit et au cercle circonscrit à un triangle[1],[2].
Histoire
modifierEn 1800, un samouraï anonyme accrochait au mur d'un temple une tablette de bois sur laquelle était gravé un sangaku, problème de géométrie dédié à une divinité (un kami) et proposé à la sagacité des fidèles. En 1803, Carnot publiait sa Géométrie de position. Hasard de l'Histoire, un théorème de cet ouvrage[3] permet de résoudre élégamment le sangaku précité.
Énoncé
modifierThéorème de Carnot[4],[5],[6]. — Soit un triangle ABC et son cercle circonscrit de centre D et de rayon R. La somme des distances « signées » du centre D aux côtés du triangle est donnée par :
où r est le rayon du cercle inscrit au triangle et F, G, H les projetés orthogonaux de D respectivement sur les côtés [AC], [AB] et [BC].
Triangle obtusangle | Triangle acutangle |
---|---|
|
|
Notes et références
modifier- Cet article est partiellement ou en totalité issu de l'article intitulé « Théorème de Carnot » (voir la liste des auteurs).
- Daniel Barthe, « Le « théorème japonais » de Lazare Carnot », dans Bibliothèque Tangente, Hors série. n° 24 : Les triangles. Trois points, c'est tout, Pôle Paris, 2005 : sommaire
- Jean-Pierre Boudine, L'appel des maths, t. 2, Cassini, p. 271-277
- L. N. M. Carnot, Géométrie de position, J. B. M. Duprat, (lire en ligne), p. 168
- (en) Eric W. Weisstein, « Carnot's Theorem », sur MathWorld
- (en) A. Bogomolny, Carnot's Theorem, sur cut-the-knot
- (en) Chris Boucher, "Carnot's Theorem", sur le Wolfram Demonstrations Project