En mathématiques et plus précisément en théorie de la mesure, étant donnés deux espaces mesurés et on définit une mesure produit μ1×μ2 sur l'espace mesurable .

La tribu produit est la tribu sur le produit cartésien engendrée par les parties de la forme , où appartient à et à  :

Une mesure produit μ1×μ2 est une mesure sur telle que :

D'après le théorème d'extension de Carathéodory, une telle mesure μ1×μ2 existe, et si μ1 et μ2 sont σ-finies alors elle est unique.

En fait, lorsque μ1 et μ2 sont σ-finies, pour chaque ensemble mesurable E,

avec Ex = {yΩ2|(x,y)∊E} et Ey = {xΩ1|(x,y)∊E}, qui sont tous deux des ensembles mesurables.

La mesure de Borel-Lebesgue sur l'espace euclidienn peut être obtenue comme le produit de n copies de celle sur la droite réelle ℝ.

Même lorsque μ1 et μ2 sont complètes, μ1×μ2 ne l'est pas nécessairement. Par exemple, pour obtenir la mesure de Lebesgue sur ℝ2, il faut compléter le produit des deux copies de la mesure de Lebesgue sur ℝ.

Références

modifier

Articles connexes

modifier