En théorie des probabilités et en statistiques, la loi gamma-normale (ou Gamma- Gaussienne) est une distribution bivariée continue à quatre paramètres. Elle est la prieure conjuguée de la loi normale de moyenne et variance inconnues[1].

Loi Gamma-Normale
Paramètres réel (position)
réel
réel
réel
Support
Densité de probabilité
Espérance
Mode
Variance

Définition

modifier

Soit une paire de variable aléatoires (X,T).

Si la distribution conditionnelle de X sachant T est normale de moyenne   et variance  

 

et si la distribution marginale de T est une loi gamma

 

alors (X,T) suit une loi gamma-normale, que l'on note

 

Fonction de densité

modifier

La fonction de densité conjointe de (X,T) a la forme

 

Distributions marginales

modifier

Par définition, la distribution marginale de   est une loi gamma.

La distribution marginale de   est une loi de Student non-standardisée de paramètres  .

Calibrage

modifier

Si  ,

alors pour tout b > 0,

 

Famille exponentielle

modifier

Les lois gamma-normales forment une famille exponentielle de paramètre naturel   et de statistique suffisante  .

Moments des statistiques suffisantes

modifier

Ces moments se calculent à l'aide de la fonction génératrice des moments de la statistique suffisante :

 ,

  est la fonction digamma,

 ,
 ,
 .

Distribution a posteriori des paramètres

modifier

Soit X distribuée selon une normale de moyenne   et variance   inconnues

 

Supposons que la distribution a priori de   suive une distribution gamma-normale  

 

Étant donné un échantillon   constitué de n variables aléatoires indépendantes et identiquement distribuées (i.i.d)  , la distribution a posteriori de   et   conditionnellement à cet échantillon se calcule par la formule de Bayes.

 ,

  est la vraisemblance des données observées pour ces paramètres.

Pour des données i.i.d, la vraisemblance conjointe de l'échantillon est égale au produit des vraisemblances individuelles :

 

Ainsi,

 

 , moyenne d'échantillon, et  , variance d'échantillon.

La distribution a posteriori des paramètres devient ainsi

 

Développant le terme de la deuxième exponentielle, on a :

 

ce qui donne :

 

Cette dernière expression est bien celle d'une distribution Gamma-Normale,

 

Interprétation bayesienne des paramètres

modifier
  • La nouvelle moyenne est la moyenne pondérée de l'ancienne pseudo-moyenne et de la moyenne d'échantillon observée, avec des poids relatifs proportionnels aux nombres de (pseudo-)observations.
  • Le nombre de pseudo-observations ( ) est adapté simplement en y additionnant le nombre correspondant de nouvelles observations ( ).
  • La concentration (l'inverse de la variance) a priori revient à estimer sur base de   pseudo-observations (c.à.d. un nombre éventuellement différent de pseudo-observations, afin de permettre de contrôler séparément la variance de la moyenne et de la concentration) de moyenne   et variance  .
  • Une nouvelle somme d'écarts quadratiques est constituée de l'addition des sommes d'écarts quadratiques respectives. Toutefois, un "terme d'interaction" doit être ajouté parce que les deux ensembles d'écarts étaient mesurés par rapport à des moyennes distinctes, ce qui sous-estime l'écart quadratique total réel.

Par conséquent, si on a une moyenne a priori   basée sur   observations et une concentration a priori   basée sur   observations, la distribution a priori de   est

 

et la distribution a posteriori après échantillon de   observations de moyenne   et variance   sera

 

Distributions associées

modifier
  1. Bernardo & Smith (1993, p. 434)

Sources

modifier
  • Bernardo, J.M.; Smith, A.F.M. (1993) Bayesian Theory, Wiley. (ISBN 0-471-49464-X)
  • Dearden et al. "Bayesian Q-learning", Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI-98), July 26–30, 1998, Madison, Wisconsin, USA.

Voir aussi

modifier