La notion d'hyperfonction, due à Mikio Satō[1],[2], généralise celle de distribution (au sens de Schwartz[3]). Les hyperfonctions sur la droite réelle se définissent comme différences des « valeurs au bord » sur l'axe réel de fonctions holomorphes; elles permettent de trouver des solutions non triviales à des équations différentielles linéaires dont la seule solution est nulle dans l'espace des distributions. L'espace des hyperfonctions est donc « plus gros » que celui des distributions; alors qu'une distribution est « localement d'ordre fini », une hyperfonction peut être « localement d'ordre infini » car elle est « localement » une fonctionnelle analytique (i.e., une forme linéaire continue sur un espace de fonctions analytiques[4]). Un autre avantage est que le faisceau des hyperfonctions est « flasque » (c'est-à-dire que le morphisme de restriction d'un ouvert à un ouvert plus petit est surjectif), propriété qui n'est pas partagée par le faisceau des distributions. Enfin, les hyperfonctions sont des classes de cohomologie à coefficients dans le faisceau des fonctions analytiques; une telle interprétation cohomologique est tout à fait étrangère à la théorie des distributions, et elle explique que les hyperfonctions se prêtent mieux que les distributions à un traitement algébrique des équations différentielles et des équations aux dérivées partielles (« analyse algébrique »[5],[6]). À la suite des travaux de Satō, la théorie des hyperfonctions a été développée par plusieurs mathématiciens, parmi lesquels on peut citer Komatsu[7],[5] ,[8],[9], Martineau[10], Harvey[11],[12] et Schapira[13]. Elle a donné lieu à plusieurs ouvrages didactiques développant des points de vue différents[14] ,[15],[16]. Le présent article reprend dans ses grandes lignes, avec quelques compléments, la présentation d'un ouvrage qui expose, entre autres, l'application des hyperfonctions à la théorie des systèmes linéaires (au sens de l'automatique)[17].

Hyperfonctions dans un ouvert de la droite réelle

modifier

Définition d'une hyperfonction

modifier

Soit   un ouvert de la droite réelle. Un voisinage complexe de   se définit comme étant un ouvert U du plan complexe qui est relativement fermé dans  , c'est-à-dire dont l'intersection avec l'axe réel est  . Le sous-ensemble   du plan complexe est ouvert.

On note   (resp.  ) la  -algèbre des fonctions à valeurs complexes, analytiques dans U (resp.  ). Puisque   (avec une notation évidente), on peut former le quotient

 

On montre grâce à un théorème dû à Mittag-Leffler que   ne dépend que de   et non du voisinage complexe U considéré, ce qui justifie la notation. On peut donc aussi écrire

 

  est le système inductif des voisinages complexes de   ordonnés par l'inclusion.

Définition —  L'espace des hyperfonctions dans   est  .

L'espace   est égal à  , i.e. au premier groupe de cohomologie de U modulo   et coefficients dans le faisceau   des fonctions holomorphes (il s'agit de cohomologie relative (en) pour des couples ouverts, développée par Satō[2] et indépendamment, dans un cadre plus général, Grothendieck[18]). Il en résulte que   est un faisceau[5].

Soit  . Puisque   , la fonction analytique   ci-dessus peut s'écrire de manière unique sous la forme   . Son image canonique dans l'espace quotient   (i.e. l'hyperfonction définie par cette fonction analytique) est notée  . En tirant parti de la seconde expression ci-dessus de  , en tant que limite inductive, on écrit pour tout  

 .

On appelle   une fonction de définition de  . On a (par définition)   si (et seulement si)  . Les valeurs au bord de la fonction holomorphe   sont

  et  

  et   (on notera que   et   appartiennent toutes deux à  ). On définit les deux opérateurs valeurs au bord  .

Opérations sur les hyperfonctions

modifier

Multiplication par une fonction analytique

modifier

Soit  . Il existe un voisinage complexe U de   tel que f se prolonge sur U[19]; soit   un tel prolongement. On définit alors le produit

 ,

ce qui confère à   une structure de  -module.

Plongement de l'espace des fonctions analytiques dans l'espace des hyperfonctions

modifier

Soit   et   son prolongement à un voisinage complexe de  . Considérons l'hyperfonction  . L'application   est bien définie et injective de   dans  , ce qui permet de plonger le premier espace dans le second.

Dérivation

modifier

La dérivée   (où  ) se définit par la relation

 .

Plus généralement, soit   un opérateur différentiel à coefficients analytiques. On définit, en posant  

 .

Ceci est encore possible si P est un opérateur d'ordre infini, c'est-à-dire si l'on remplace ci-dessus n par  , sous réserve que la série   converge dans l'espace de Fréchet   (muni de la topologie de la convergence uniforme sur tout compact). Un tel opérateur n'aurait bien entendu aucun sens appliqué à une distribution.

Restriction et support d'une hyperfonction

modifier

Soit   un ouvert de la droite réelle,  , et   un ouvert de la droite réelle inclus dans  . On définit la restriction   de   à   par la relation  . On a les deux résultats suivants[1]:

Théorème —  Le morphisme de restriction   est surjectif, autrement dit le faisceau   des hyperfonctions sur la droite réelle est flasque.

Théorème et définition — Il existe un plus grand ouvert   tel que  . Le sous-ensemble  , relativement fermé dans  , est déterminé de manière unique et est appelé le support de   (noté  ).

Exemples d'hyperfonctions

modifier

Soit   un intervalle ouvert de la droite réelle contenant 0 et considérons l'hyperfonction

 .

Soit   et U un voisinage complexe simplement connexe de  , suffisamment petit pour que   admette un prolongement à U, prolongement que nous noterons de nouveau   pour ne pas compliquer les écritures. Nous supposerons de plus que U a un bord   qui, orienté de manière canonique, est un lacet continûment dérivable (nous dirons alors que le bord   est régulier ; par extension, dans la suite, un bord régulier pourra être la réunion de bords réguliers au sens restreint qui vient d'être défini si ces bords sont deux à deux disjoints). L'hyperfonction   agit comme suit sur  :

 .

Le théorème intégral de Cauchy entraîne que  , ce qui correspond bien à la « fonction généralisée » de Dirac représentant la masse +1 au point 0.

La dérivée d'ordre n de   est donnée par

 

Soit une fonction analytique   définie comme ci-dessus. Le théorème intégral de Cauchy entraîne  , formule analogue à celle que l'on obtient avec la dérivée d'ordre n de la distribution de Dirac.

On notera que l'hyperfonction de Dirac et toutes ses dérivées ont pour support  .

L'hyperfonction de Heaviside est définie par

 

  est la détermination principale du logarithme, et on vérifie immédiatement que sa dérivée est égale à l'hyperfonction de Dirac  .

Une hyperfonction d'ordre infini

modifier

D'après ce qui précède, on a   si  , cette hyperfonction étant nulle pour  . On a d'autre part  , par conséquent

 

qui est une hyperfonction de support  . Cette hyperfonction étant d'ordre infini, elle ne peut pas être identifiée à une distribution (qui est toujours localement d'ordre fini), ce qui est dû au fait que 0 est un point singulier essentiel de la fonction de définition.

Hyperfonctions à support compact

modifier

Définition

modifier

Soit Ω un ouvert de la droite réelle et K un sous-ensemble compact de Ω. Soit   l'espace des germes de fonctions analytiques définies dans un voisinage (ouvert) complexe de K, à savoir la limite inductive

 

Soit également   l'espace des hyperfonctions sur Ω de support inclus dans K. L'espace   des formes linéaires continues sur   est un espace de Fréchet-Schwartz nucléaire, et il en va de même de  . Il résulte d'un théorème dû à Köthe[20] que les deux espaces   et   sont algébriquement et topologiquement isomorphes, et peuvent donc être identifiés.

Plus précisément, soit  ,   et U un voisinage complexe de K, inclus dans   et de bord régulier. Le crochet de dualité est défini par

 .

L'espace des hyperfonctions à support compact a donc une « bonne structure » d'espace vectoriel topologique, ce qui n'est pas le cas de l'espace des hyperfonctions à support quelconque, qu'on ne peut munir que de la topologie grossière (voir infra).

Convolution

modifier

Soit  ,  ,  , et

 .

U est un voisinage complexe suffisamment petit de  . Alors   et on peut donc définir l'hyperfonction

 

appelée le produit de convolution des deux hyperfonctions à support compact   et  . Ce produit de convolution peut encore être défini si seule   est à support compact.

Hyperfonction définie par une distribution à support compact

modifier

Soit Ω un ouvert de la droite réelle, K un sous-ensemble compact de Ω et T une distribution à support inclus dans K. Soit d'autre part   un voisinage complexe de K à bord régulier et pour  

 

(où, pour simplifier l'écriture, on a noté T comme une mesure). Alors   est l'hyperfonction définie par la distribution T. Le support de cette hyperfonction est identique à celui de T et l'application   est injective, ce qui permet de plonger l'espace des distributions à support compact dans l'espace des hyperfonctions à support compact. Par exemple, on vérifie immédiatement que   est bien l'hyperfonction de Dirac définie plus haut.

Plongement de l'espace des distributions dans l'espace des hyperfonctions

modifier

Principe général

modifier

Toute hyperfonction dans un ouvert   de la droite réelle peut s'écrire comme la somme d'une série localement finie d'hyperfonctions dans   à support compact[1]. Il en va de même pour une distribution[3]. Grâce à la construction précédente, on peut donc plonger l'espace   des distributions dans  , dans l'espace   des hyperfonctions dans  . Ce plongement conserve le support.

Exemple

modifier

Considérons le peigne de Dirac Ш   est la distribution de Dirac représentant la masse +1 au point n. Il s'agit d'une distribution tempérée, de support non compact. On lui associe canoniquement l'« hyperfonction peigne de Dirac »

Ш .

Support et spectre singuliers; multiplication des hyperfonctions

modifier

Support singulier

modifier

Le support singulier d'une distribution   (resp. d'une hyperfonction  ) est l'ensemble des points   de   pour lesquels il n'existe aucun voisinage ouvert   tel que la restriction   soit une fonction indéfiniment dérivable (resp. une fonction analytique réelle). Le support singulier d'une distribution ou d'une hyperfonction est un sous-ensemble fermé de son support.

Schwartz[3] a montré qu'on ne pouvait pas multiplier deux distributions quelconques. Mais on peut multiplier deux distributions dont les supports singuliers sont disjoints. Il en va de même des hyperfonctions, mais leur multiplication est possible dans des cas plus généraux. Pour expliciter la condition qui rend possible la multiplication des hyperfonctions, la notion de spectre singulier est nécessaire.

Spectre singulier

modifier
Définition
modifier

Considérons la réunion disjointe  , où  , et notons   le point de   dont la projection sur   est x. Soit   cette projection.

Soit   , U étant un voisinage complexe de  , et soit  . L'hyperfonction T est dite micro-analytique au point   (resp.  ) de   si   (resp.  ) peut être prolongée analytiquement dans un voisinage ouvert de  . Cela revient à dire qu'il existe un voisinage réel   de  , un voisinage complexe   de   et une fonction   tels que   (resp.  ).

On appelle spectre singulier de T, et on note  , l'ensemble des points de   auxquels T n'est pas micro-analytique. Il découle des définitions que  .

Exemples
modifier
  • Considérons l'hyperfonction de Dirac  . On a  ,  .
  • Considérons l'hyperfonction  . On a  ,  ,  .

Multiplication des hyperfonctions

modifier

Soit l'application antipolaire  .

Théorème — Si   sont deux hyperfonctions telles que  , on peut définir le produit  .

Exemples
modifier
  • On peut définir le produit  .
  • On peut définir le produit   si T est micro-analytique aux deux points   et  . On a alors  .
  • Plus généralement, on peut définir le produit   si T est micro-analytique aux points   et  . On a alors
 .

Cette expression a bien un sens puisqu'il existe un voisinage ouvert réel   de 0 tel que   est une fonction analytique.

Hyperfonctions de Laplace

modifier

L'espace des hyperfonctions de Laplace à support limité à gauche se définit par

 

où, lorsque   est un ouvert du plan complexe réunion de cônes fermés de la forme  ,   désigne les fonctions holomorphes de type exponentiel dans  [9],[21], c'est-à-dire les fonctions holomorphes qui satisfont à une relation telle que

 

pour chaque cône fermé  .

On peut définir la transformée de Laplace   d'une hyperfonction de Laplace à support limité à gauche  , et la transformation de Laplace   est injective. Considérons, pour simplifier, une hyperfonction T à support compact (ce qui implique qu'elle est une hyperfonction de Laplace); sa transformée de Laplace est alors la fonction entière définie par la relation

 

 . Par exemple,   et en posant  ,

 

(voir un autre exemple dans Transformées de Laplace des hyperfonctions).

Hyperfonctions et équations différentielles

modifier

Classification des opérateurs différentiels

modifier

Soit   un opérateur différentiel à coefficients analytiques dans un intervalle   de la droite réelle, où  . (Ici et dans toute la suite, x est une « variable muette »: en toute rigueur les coefficients devraient s'écrire   et l'opérateur devrait s'écrire P ou  , mais néanmoins cet abus d'écriture, très répandu dans la littérature, va s'avérer commode.)

Les points x qui sont des zéros de   sont appelés les points singuliers de l'opérateur  . Supposons que x soit un point singulier et notons   l'ordre de multiplicité de ce zéro. Considérons le polygone de Newton au point x, à savoir le plus haut polyèdre convexe situé au-dessous des   points  , et notons sa plus grande pente  . (De nombreux auteurs, se ramenant au cas où le point singulier est l'origine, prennent comme nouvelle dérivation   au lieu de   [22],[23], ce qui conduit bien entendu à modifier le polygone de Newton.) Le point singulier x est dit régulier-singulier si   et irrégulier-singulier si  .

Les théorèmes de Satō et de Komatsu

modifier

Théorème de Satō[1] —  L'opérateur   est surjectif de   dans  . (Pour être plus explicite, une hyperfonction   étant donnée, l'équation   admet toujours une solution dans  .)

Ce théorème montre que si   est un anneau d'opérateurs différentiels à coefficients analytiques dans  ,   est un  -module à gauche divisible. En particulier, si   est un anneau de Dedekind non commutatif, comme la première algèbre de Weyl  ,   est un  -module à gauche injectif. Ceci a d'importantes conséquences dans la théorie des systèmes linéaires[17].

Komatsu a montré ce qui suit :

Théorème de Komatsu[5],[8] — 

  1.  .
  2. Les conditions suivantes sont équivalentes :
    (a)   n'a pas de point singulier;
    (b)  ;
    (c)   implique  .
  3. Les conditions suivantes sont équivalentes :
(d) Tous les points singuliers de   sont réguliers-singuliers;
(e)  ;
(f)   implique  .

Exemples

modifier
  • Considérons l'équation différentielle
 .

Le seul point singulier est 0. En traçant le polygone de Newton, on obtient  , donc 0 est irrégulier-singulier. La partie (1) du théorème de Komatsu implique que  . La solution classique est la fonction indéfiniment dérivable   ( ) prolongée par continuité par la valeur 0 sur  . Deux autres solutions linéairement indépendantes sont par exemple les hyperfonctions   et  : la première est un prolongement de la solution   sur   (aucune distribution n'est un tel prolongement), la seconde est supportée par l'origine (aucune distribution supportée par l'origine n'est solution).

  • Soit l'équation différentielle
 .

Le seul point singulier est de nouveau 0. On a cette fois  , donc 0 est irrégulier-singulier. La seule distribution solution de cette équation est  [3]. Le théorème de Komatsu montre qu'il existe quatre solutions hyperfonctions linéairement indépendantes. Deux d'entre elles sont faciles à calculer: il s'agit de   et de  . Les deux autres, dont l'expression est moins simple, s'obtiennent par une méthode de variation des constantes.

Généralisations

modifier

Hyperfonctions à plusieurs variables

modifier

Point de vue cohomologique

modifier

Soit   un ouvert de   et U un voisinage complexe de  , c'est-à-dire un ouvert de   dans lequel   est relativement fermé. Satō[2] a défini l'espace des hyperfonctions dans   par la relation

 ,

n-ième groupe de cohomologie de U modulo   et coefficients dans le faisceau   des fonctions holomorphes;   ne dépend pas du voisinage complexe U (« théorème d'excision » de Komatsu[5]) et les groupes de cohomologie   sont nuls pour   (théorème de Satō-Martineau-Harvey[2],[10],[12]). On en déduit, en utilisant un résultat dû à Malgrange[24], que   est un faisceau flasque.

Hyperfonctions comme sommes de valeurs au bord de fonctions holomorphes

modifier

D'après un théorème dû à Grauert[25], il existe un voisinage complexe V de   qui est un ouvert de Stein, et  , où   est l'ensemble des ouverts de Stein de   qui contiennent   (un ouvert convexe est un exemple d'ouvert de Stein[26]). Soit

 ,
 .

Alors

 .

Soit   et   son image canonique dans  ;   est appelée la fonction de définition de l'hyperfonction  . On peut donner l'interprétation suivante de cette hyperfonction[2]:

 

 ,  ,  .

Par conséquent, l'hyperfonction   est une somme de   valeurs au bord de fonctions holomorphes (mais on peut montrer que   valeurs au bord suffisent à déterminer  [5]).

Hyperfonctions comme sommes localement finies de fonctionnelles analytiques

modifier

On définit le support d'une hyperfonction comme dans le cas d'une seule variable; Martineau[10] et indépendamment Harvey[11],[12] ont montré (généralisant le théorème de Köthe déjà mentionné) l'isomorphisme  , où   est l'espace des hyperfonctions dont le support est inclus dans le compact   et   est le dual de l'espace des germes de fonctions analytiques dans un voisinage complexe de K (  est un espace (DFS) nucléaire, tandis que   est un espace de Fréchet-Schwartz nucléaire). Ce théorème de dualité permet de définir une hyperfonction comme la somme d'une série localement finie de fonctionnelles analytiques (définition de Martineau[10]).

Exemple

modifier

Le crochet de dualité entre   et   a une expression simple lorsque   où chaque   est un ouvert de   ayant un bord régulier. On a alors, pour toute fonction  [11],

 .

Par exemple, soit le multi-indice  ; posons  ,  ,   et  . Enfin, soit

 .

On obtient d'après le théorème intégral de Cauchy[26],[14]  , par conséquent  .

Hyperfonctions comme classes d'équivalences de fonctionnelles analytiques

modifier

Soit   est un ouvert borné de  ,   son adhérence et   sa frontière (qui sont toutes deux compactes). Puisque le faisceau de hyperfonctions est flasque, les hyperfonctions sur   s'identifient aux hyperfonctions ayant leur support inclus dans   et qui s'annulent sur  . Ceci a conduit Schapira[13] à poser la définition (reprise par Hörmander[15])

 

Puisque   est dense dans  , la topologie quotient induite par la topologie de   sur   est la topologie grossière.

Hyperfonctions sur une variété analytique réelle

modifier

Ces approches s'étendent au cas où   est une variété analytique réelle paracompacte de dimension n, en considérant une « complexification »[27] U de   et en utilisant si nécessaire un atlas de cartes analytiques (la « définition cohomologique » de Satō ne nécessite pas l'emploi d'un tel atlas). Dans ce contexte général, l'espace des distributions   se plonge dans  , et ce plongement conserve le support.

Hyperfonctions et opérateurs linéaires aux dérivées partielles

modifier

Soit l'opérateur linéaire aux dérivées partielles

 

où l'on a posé  ,  ,   (voir l'article Opérateur différentiel) et où les   sont des coefficients analytiques dans un ouvert   de  . L'opérateur P agit sur une hyperfonction   par la relation

 

  est l'opérateur différentiel déduit de P en remplaçant x par z et   par  . Le symbole principal   de P est défini par

 

et l'opérateur P est dit elliptique dans   si   pour tout   et tout  [15]. Le résultat ci-dessous est dû à Harvey[12]:

Théorème —  Supposons   à coefficients constants.

(1) On a l'égalité

 ,

autrement dit   est un  -module divisible.

(2) Les conditions suivantes sont équivalentes:

(a)   est elliptique;
(b) Si   et  , alors  ;
(c) Si   et  , alors  .

Schapira[13] a montré que la propriété (1) reste vraie lorsque P est un opérateur elliptique à coefficients analytiques (elle est également vraie, dans ce cas, si l'on remplace   par l'espace de distributions  , ou par  , ou encore par  ). En revanche, elle est fausse si l'on remplace   par   sans faire d'hypothèse d'ellipticité sur P et de « P-convexité » sur l'ouvert  [28].

Lorsque   est un ouvert convexe de  , Kaneto et Komatsu[5],[7] ont montré que le  -module   vérifie le « Principe fondamental d'Ehrenpreis » ; par suite c'est un  -module cogénérateur injectif. Ce résultat montre que l'espace des hyperfonctions est très bien adapté à l'étude des systèmes différentiels (aux dérivées partielles) linéaires à coefficients constants.

Hyperfonctions à valeurs vectorielles

modifier

L'extension de la théorie au cas d'hyperfonctions à valeurs dans   est triviale, mais on peut également définir et étudier des hyperfonctions à valeurs dans un espace de Fréchet complexe[29].

Notes et références

modifier

Références

modifier
  • Nicolas Bourbaki, Éléments de mathématique. Variétés différentielles et analytiques - fascicule de résultats, Springer, , 200 p. (ISBN 3-540-34396-2, lire en ligne)
  • Henri Bourlès et Bogdan Marinescu, Linear Time-Varying Systems : Algebraic-Analytic Approach, Springer, , 638 p. (ISBN 978-3-642-19726-0 et 3-642-19726-4, lire en ligne)
  • (en) Paulo D. Cordaro et François Treves, Hyperfunctions on hypo-analytic manifolds, Princeton (N. J.), Princeton Univ. Press, , 377 p. (ISBN 0-691-02993-8, lire en ligne)
  • Jean Dieudonné, Éléments d'analyse, vol. 1, Gauthier-Villars, , 438 p. (ISBN 2-04-010410-0)
  • (en) Hans Grauert, « On Levi's Problem and the Imbedding of Real-Analytic Manifolds », Annals of Mathematics, vol. 68(2),‎ , p. 460-472 (lire en ligne)
  • (en) Robin Hartshorne, Local Cohomology : A Seminar Given by A. Grothendieck, Harvard University, Fall, 1961, Springer, (ISBN 978-3-540-03912-9, lire en ligne)
  • (en) Reese Harvey, Hyperfunctions and linear partial differential equations (Ph.D thesis), Dept. of Mathematics, Stanford University, 1966a (lire en ligne)
  • (en) Reese Harvey, « Hyperfunctions and Linear Partial Differential Equations », Proc. Nat. Acad. Sci. USA,‎ 1966b, p. 1042-1046 (lire en ligne)
  • (en) Lars Hörmander, The Analysis of Linear Partial Differential Operators I : Distribution Theory and Fourier Analysis, Springer, 1983a, 440 p. (ISBN 978-3-540-00662-6 et 3-540-00662-1, lire en ligne)
  • (en) Lars Hörmander, The Analysis of Linear Partial Differential Operators II, Berlin/Heidelberg/Paris etc., Springer, 1983b, 390 p. (ISBN 978-3-540-12139-8 et 3-540-12139-0, lire en ligne)
  • (en) Lars Hörmander, An Introduction to Complex Analysis in Several Variables (3rd ed. Revised), Amsterdam/New York/Oxford, North Holland, , 254 p. (ISBN 0-444-88446-7, lire en ligne)
  • (en) Patrick D. F. Ion et Takahiro Kawai, « Theory of Vector-Valued Hyperfunctions », Pub. RIMS, Kyoto Univ., vol. 11,‎ , p. 1-10 (lire en ligne)
  • (en) Masaki Kashiwara, Takahiro Kawai et Tatsuo Kimura, Fundations of Algebraic Analysis, Princeton, Princeton University Press, , 254 p. (ISBN 0-691-08413-0, lire en ligne)
  • (en) Hikosaburo Komatsu, « Resolution by hyperfunctions of sheaves of solutions of differential equations with constant coefficients », Math. Ann., vol. 176,‎ , p. 77-86 (lire en ligne)
  • (en) Hikosaburo Komatsu, « On the index of ordinary differential operators », J. Fac. Sci. Univ. Tokyo, Sect. IA, Math., vol. 18,‎ , p. 379-398
  • (en) Hikosaburo Komatsu (éditeur), Hyperfunctions and Pseudo-Differential Equations : Proceedings of a Conference at Katata, 1971, Springer Verlag, , 534 p. (ISBN 3-540-06218-1, lire en ligne)
  • (en) Hikosaburo Komatsu, « Laplace transforms of hyperfunctions -A new foundation of the Heaviside calculus- », J. Fac. Sci. Univ. Tokyo, Sect. IA, Math., vol. 34,‎ , p. 805-820
  • (de) Gottfried Köthe, « Dualität in der Funktionentheorie », J. Reine Angew. Math, vol. 191,‎ , p. 30-49 (lire en ligne)
  • Philippe Maisonobe et Claude Sabbah, D-modules cohérents et holomomes, Hermann, , 168 p. (ISBN 2-7056-6212-X)
  • Bernard Malgrange, « Faisceaux sur des variétés analytiques réelles », Bull. Soc. Math. de France, vol. 83,‎ , p. 231-237 (lire en ligne)
  • André Martineau, « Les hyperfonctions de M. Sato », Séminaire Bourbaki,‎ 1960-1961, p. 127-139 (lire en ligne)
  • André Martineau, « Fonctionnelles analytiques », Actes, Congrès int. Math., vol. 2,‎ , p. 635-642 (lire en ligne)
  • (en) Mitsuo Morimoto (trad. du japonais), An Introduction to Sato's Hyperfunctions, Providence, American Mathematical Society, , 273 p. (ISBN 0-8218-4571-3, lire en ligne)
  • (en) Marius Van der Put et Michael F. Singer, Galois Theory of Linear Differential Equations, Berlin/Heidelberg/New York, Springer, , 438 p. (ISBN 3-540-44228-6, lire en ligne)
  • (en) Mikio Satō, « Theory of Hyperfunctions, I », J. Fac. Sci. Tokyo, vol. 1(8),‎ 1959-1960a, p. 139-193 (lire en ligne)
  • (en) Mikio Satō, « Theory of Hyperfunctions, II », J. Fac. Sci. Tokyo, vol. 1(8),‎ 1959-1960b, p. 387-437 (lire en ligne)
  • Pierre Schapira, Théorie des hyperfonctions, Springer-Verlag, , 157 p. (ISBN 3-540-04915-0)
  • Laurent Schwartz, Théorie des distributions (3e éd.), Paris, Hermann, , 418 p. (ISBN 2-7056-5551-4)
  • (en) Bogoljub Stankovic, « Laplace transform of Laplace Hyperfunctions and Its Applications », Novi Sad J. Math, vol. 31(1),‎ , p. 9-17 (lire en ligne)

Voir aussi

modifier