Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Name:
Account
Compiler Version
v0.8.17+commit.8df45f5f
Optimization Enabled:
Yes with 200 runs
Other Settings:
london EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.17; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import "@openzeppelin/contracts/interfaces/IERC1271.sol"; import {SignatureChecker} from "../dependencies/openzeppelin/contracts/SignatureChecker.sol"; import "./base-account-abstraction/core/BaseAccount.sol"; import "./callback/TokenCallbackHandler.sol"; /** * Address Owned Account. * this is sample minimal account. * has execute, eth handling methods * has a single signer that can send requests through the entryPoint. */ contract Account is BaseAccount, TokenCallbackHandler, IERC1271, Initializable { using ECDSA for bytes32; address public owner; IEntryPoint private immutable _entryPoint; event AccountInitialized( IEntryPoint indexed entryPoint, address indexed owner ); modifier onlyOwner() { _onlyOwner(); _; } /// @inheritdoc BaseAccount function entryPoint() public view virtual override returns (IEntryPoint) { return _entryPoint; } // solhint-disable-next-line no-empty-blocks receive() external payable {} constructor(IEntryPoint anEntryPoint) { _entryPoint = anEntryPoint; _disableInitializers(); } function _onlyOwner() internal view { //directly from EOA owner, or through the account itself (which gets redirected through execute()) require( msg.sender == owner || msg.sender == address(this), "only owner" ); } /** * execute a transaction (called directly from owner, or by entryPoint) */ function execute( address dest, uint256 value, bytes calldata func ) external { _requireFromEntryPointOrOwner(); _call(dest, value, func); } /** * execute a sequence of transactions */ function executeBatch( address[] calldata dest, uint256[] calldata value, bytes[] calldata func ) external { _requireFromEntryPointOrOwner(); require( dest.length == func.length && (value.length == 0 || value.length == func.length), "wrong array lengths" ); if (value.length == 0) { for (uint256 i = 0; i < dest.length; i++) { _call(dest[i], 0, func[i]); } } else { for (uint256 i = 0; i < dest.length; i++) { _call(dest[i], value[i], func[i]); } } } /** * @dev The _entryPoint member is immutable, to reduce gas consumption. To upgrade EntryPoint, * a new implementation of SimpleAccount must be deployed with the new EntryPoint address, then upgrading * the implementation by calling `upgradeTo()` */ function initialize(address anOwner) public virtual initializer { _initialize(anOwner); } function _initialize(address anOwner) internal virtual { owner = anOwner; emit AccountInitialized(_entryPoint, owner); } // Require the function call went through EntryPoint or owner function _requireFromEntryPointOrOwner() internal view { require( msg.sender == address(entryPoint()) || msg.sender == owner, "account: not Owner or EntryPoint" ); } /// implement template method of BaseAccount function _validateSignature( UserOperation calldata userOp, bytes32 userOpHash ) internal virtual override returns (uint256 validationData) { bytes32 hash = userOpHash; address curOwner = owner; if (curOwner.code.length == 0) { hash = userOpHash.toEthSignedMessageHash(); } bool isValid = SignatureChecker.isValidSignatureNow( curOwner, hash, userOp.signature ); if (isValid) { return 0; } return SIG_VALIDATION_FAILED; } function isValidSignature( bytes32 hash, bytes memory signature ) external view returns (bytes4) { bool isValid = SignatureChecker.isValidSignatureNow( owner, hash, signature ); if (isValid) { return IERC1271.isValidSignature.selector; } return ""; } function _call(address target, uint256 value, bytes memory data) internal { (bool success, bytes memory result) = target.call{value: value}(data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } } /** * check current account deposit in the entryPoint */ function getDeposit() public view returns (uint256) { return entryPoint().balanceOf(address(this)); } /** * deposit more funds for this account in the entryPoint */ function addDeposit() public payable { entryPoint().depositTo{value: msg.value}(address(this)); } /** * withdraw value from the account's deposit * @param withdrawAddress target to send to * @param amount to withdraw */ function withdrawDepositTo( address payable withdrawAddress, uint256 amount ) public onlyOwner { entryPoint().withdrawTo(withdrawAddress, amount); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\x19\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x00", validator, data)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC1271 standard signature validation method for * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271]. * * _Available since v4.1._ */ interface IERC1271 { /** * @dev Should return whether the signature provided is valid for the provided data * @param hash Hash of the data to be signed * @param signature Signature byte array associated with _data */ function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/SignatureChecker.sol) pragma solidity ^0.8.0; import "./ECDSA.sol"; import "./IERC1271.sol"; /** * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like * Argent and Gnosis Safe. * * _Available since v4.1._ */ library SignatureChecker { /** * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`. * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) { (address recovered, ECDSA.RecoverError error) = ECDSA.tryRecover(hash, signature); return (error == ECDSA.RecoverError.NoError && recovered == signer) || isValidERC1271SignatureNow(signer, hash, signature); } /** * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated * against the signer smart contract using ERC1271. * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidERC1271SignatureNow( address signer, bytes32 hash, bytes memory signature ) internal view returns (bool) { (bool success, bytes memory result) = signer.staticcall( abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature) ); return (success && result.length >= 32 && abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector)); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.10; /* solhint-disable avoid-low-level-calls */ /* solhint-disable no-empty-blocks */ import "../interfaces/IAccount.sol"; import "../interfaces/IEntryPoint.sol"; /** * Basic account implementation. * this contract provides the basic logic for implementing the IAccount interface - validateUserOp * specific account implementation should inherit it and provide the account-specific logic */ abstract contract BaseAccount is IAccount { //return value in case of signature failure, with no time-range. // equivalent to _packValidationData(true,0,0); uint256 internal constant SIG_VALIDATION_FAILED = 1; /** * Return the account nonce. * This method returns the next sequential nonce. * For a nonce of a specific key, use `entrypoint.getNonce(account, key)` */ function getNonce() public view virtual returns (uint256) { return entryPoint().getNonce(address(this), 0); } /** * return the entryPoint used by this account. * subclass should return the current entryPoint used by this account. */ function entryPoint() public view virtual returns (IEntryPoint); /** * Validate user's signature and nonce. * subclass doesn't need to override this method. Instead, it should override the specific internal validation methods. */ function validateUserOp( UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds ) external virtual override returns (uint256 validationData) { _requireFromEntryPoint(); validationData = _validateSignature(userOp, userOpHash); _validateNonce(userOp.nonce); _payPrefund(missingAccountFunds); } /** * ensure the request comes from the known entrypoint. */ function _requireFromEntryPoint() internal view virtual { require( msg.sender == address(entryPoint()), "account: not from EntryPoint" ); } /** * validate the signature is valid for this message. * @param userOp validate the userOp.signature field * @param userOpHash convenient field: the hash of the request, to check the signature against * (also hashes the entrypoint and chain id) * @return validationData signature and time-range of this operation * <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure, * otherwise, an address of an "authorizer" contract. * <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite" * <6-byte> validAfter - first timestamp this operation is valid * If the account doesn't use time-range, it is enough to return SIG_VALIDATION_FAILED value (1) for signature failure. * Note that the validation code cannot use block.timestamp (or block.number) directly. */ function _validateSignature( UserOperation calldata userOp, bytes32 userOpHash ) internal virtual returns (uint256 validationData); /** * Validate the nonce of the UserOperation. * This method may validate the nonce requirement of this account. * e.g. * To limit the nonce to use sequenced UserOps only (no "out of order" UserOps): * `require(nonce < type(uint64).max)` * For a hypothetical account that *requires* the nonce to be out-of-order: * `require(nonce & type(uint64).max == 0)` * * The actual nonce uniqueness is managed by the EntryPoint, and thus no other * action is needed by the account itself. * * @param nonce to validate * * solhint-disable-next-line no-empty-blocks */ function _validateNonce(uint256 nonce) internal view virtual {} /** * sends to the entrypoint (msg.sender) the missing funds for this transaction. * subclass MAY override this method for better funds management * (e.g. send to the entryPoint more than the minimum required, so that in future transactions * it will not be required to send again) * @param missingAccountFunds the minimum value this method should send the entrypoint. * this value MAY be zero, in case there is enough deposit, or the userOp has a paymaster. */ function _payPrefund(uint256 missingAccountFunds) internal virtual { if (missingAccountFunds != 0) { (bool success, ) = payable(msg.sender).call{ value: missingAccountFunds, gas: type(uint256).max }(""); (success); //ignore failure (its EntryPoint's job to verify, not account.) } } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.8.17; /* solhint-disable no-empty-blocks */ import "@openzeppelin/contracts/utils/introspection/IERC165.sol"; import "@openzeppelin/contracts/token/ERC777/IERC777Recipient.sol"; import "@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol"; import "@openzeppelin/contracts/token/ERC1155/IERC1155Receiver.sol"; /** * Token callback handler. * Handles supported tokens' callbacks, allowing account receiving these tokens. */ contract TokenCallbackHandler is IERC777Recipient, IERC721Receiver, IERC1155Receiver { function tokensReceived( address, address, address, uint256, bytes calldata, bytes calldata ) external pure override {} function onERC721Received( address, address, uint256, bytes calldata ) external pure override returns (bytes4) { return IERC721Receiver.onERC721Received.selector; } function onERC1155Received( address, address, uint256, uint256, bytes calldata ) external pure override returns (bytes4) { return IERC1155Receiver.onERC1155Received.selector; } function onERC1155BatchReceived( address, address, uint256[] calldata, uint256[] calldata, bytes calldata ) external pure override returns (bytes4) { return IERC1155Receiver.onERC1155BatchReceived.selector; } function supportsInterface(bytes4 interfaceId) external view virtual override returns (bool) { return interfaceId == type(IERC721Receiver).interfaceId || interfaceId == type(IERC1155Receiver).interfaceId || interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "./Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } else if (error == RecoverError.InvalidSignatureV) { revert("ECDSA: invalid signature 'v' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { // Check the signature length // - case 65: r,s,v signature (standard) // - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098) _Available since v4.1._ if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else if (signature.length == 64) { bytes32 r; bytes32 vs; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) vs := mload(add(signature, 0x40)) } return tryRecover(hash, r, vs); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } if (v != 27 && v != 28) { return (address(0), RecoverError.InvalidSignatureV); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)); } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC1271 standard signature validation method for * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271]. * * _Available since v4.1._ */ interface IERC1271 { /** * @dev Should return whether the signature provided is valid for the provided data * @param hash Hash of the data to be signed * @param signature Signature byte array associated with _data */ function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.10; import {UserOperation} from "../utils/UserOperation.sol"; interface IAccount { /** * Validate user's signature and nonce * the entryPoint will make the call to the recipient only if this validation call returns successfully. * signature failure should be reported by returning SIG_VALIDATION_FAILED (1). * This allows making a "simulation call" without a valid signature * Other failures (e.g. nonce mismatch, or invalid signature format) should still revert to signal failure. * * @dev Must validate caller is the entryPoint. * Must validate the signature and nonce * @param userOp the operation that is about to be executed. * @param userOpHash hash of the user's request data. can be used as the basis for signature. * @param missingAccountFunds missing funds on the account's deposit in the entrypoint. * This is the minimum amount to transfer to the sender(entryPoint) to be able to make the call. * The excess is left as a deposit in the entrypoint, for future calls. * can be withdrawn anytime using "entryPoint.withdrawTo()" * In case there is a paymaster in the request (or the current deposit is high enough), this value will be zero. * @return validationData packaged ValidationData structure. use `_packValidationData` and `_unpackValidationData` to encode and decode * <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure, * otherwise, an address of an "authorizer" contract. * <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite" * <6-byte> validAfter - first timestamp this operation is valid * If an account doesn't use time-range, it is enough to return SIG_VALIDATION_FAILED value (1) for signature failure. * Note that the validation code cannot use block.timestamp (or block.number) directly. */ function validateUserOp( UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds ) external returns (uint256 validationData); }
/** ** Account-Abstraction (EIP-4337) singleton EntryPoint implementation. ** Only one instance required on each chain. **/ // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.10; /* solhint-disable avoid-low-level-calls */ /* solhint-disable no-inline-assembly */ /* solhint-disable reason-string */ import {UserOperation} from "../utils/UserOperation.sol"; import "./IStakeManager.sol"; import "./IAggregator.sol"; import "./INonceManager.sol"; interface IEntryPoint is IStakeManager, INonceManager { /*** * An event emitted after each successful request * @param userOpHash - unique identifier for the request (hash its entire content, except signature). * @param sender - the account that generates this request. * @param paymaster - if non-null, the paymaster that pays for this request. * @param nonce - the nonce value from the request. * @param success - true if the sender transaction succeeded, false if reverted. * @param actualGasCost - actual amount paid (by account or paymaster) for this UserOperation. * @param actualGasUsed - total gas used by this UserOperation (including preVerification, creation, validation and execution). */ event UserOperationEvent( bytes32 indexed userOpHash, address indexed sender, address indexed paymaster, uint256 nonce, bool success, uint256 actualGasCost, uint256 actualGasUsed ); /** * account "sender" was deployed. * @param userOpHash the userOp that deployed this account. UserOperationEvent will follow. * @param sender the account that is deployed * @param factory the factory used to deploy this account (in the initCode) * @param paymaster the paymaster used by this UserOp */ event AccountDeployed( bytes32 indexed userOpHash, address indexed sender, address factory, address paymaster ); /** * An event emitted if the UserOperation "callData" reverted with non-zero length * @param userOpHash the request unique identifier. * @param sender the sender of this request * @param nonce the nonce used in the request * @param revertReason - the return bytes from the (reverted) call to "callData". */ event UserOperationRevertReason( bytes32 indexed userOpHash, address indexed sender, uint256 nonce, bytes revertReason ); /** * an event emitted by handleOps(), before starting the execution loop. * any event emitted before this event, is part of the validation. */ event BeforeExecution(); /** * signature aggregator used by the following UserOperationEvents within this bundle. */ event SignatureAggregatorChanged(address indexed aggregator); /** * a custom revert error of handleOps, to identify the offending op. * NOTE: if simulateValidation passes successfully, there should be no reason for handleOps to fail on it. * @param opIndex - index into the array of ops to the failed one (in simulateValidation, this is always zero) * @param reason - revert reason * The string starts with a unique code "AAmn", where "m" is "1" for factory, "2" for account and "3" for paymaster issues, * so a failure can be attributed to the correct entity. * Should be caught in off-chain handleOps simulation and not happen on-chain. * Useful for mitigating DoS attempts against batchers or for troubleshooting of factory/account/paymaster reverts. */ error FailedOp(uint256 opIndex, string reason); /** * error case when a signature aggregator fails to verify the aggregated signature it had created. */ error SignatureValidationFailed(address aggregator); /** * Successful result from simulateValidation. * @param returnInfo gas and time-range returned values * @param senderInfo stake information about the sender * @param factoryInfo stake information about the factory (if any) * @param paymasterInfo stake information about the paymaster (if any) */ error ValidationResult( ReturnInfo returnInfo, StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo ); /** * Successful result from simulateValidation, if the account returns a signature aggregator * @param returnInfo gas and time-range returned values * @param senderInfo stake information about the sender * @param factoryInfo stake information about the factory (if any) * @param paymasterInfo stake information about the paymaster (if any) * @param aggregatorInfo signature aggregation info (if the account requires signature aggregator) * bundler MUST use it to verify the signature, or reject the UserOperation */ error ValidationResultWithAggregation( ReturnInfo returnInfo, StakeInfo senderInfo, StakeInfo factoryInfo, StakeInfo paymasterInfo, AggregatorStakeInfo aggregatorInfo ); /** * return value of getSenderAddress */ error SenderAddressResult(address sender); /** * return value of simulateHandleOp */ error ExecutionResult( uint256 preOpGas, uint256 paid, uint48 validAfter, uint48 validUntil, bool targetSuccess, bytes targetResult ); //UserOps handled, per aggregator struct UserOpsPerAggregator { UserOperation[] userOps; // aggregator address IAggregator aggregator; // aggregated signature bytes signature; } /** * Execute a batch of UserOperation. * no signature aggregator is used. * if any account requires an aggregator (that is, it returned an aggregator when * performing simulateValidation), then handleAggregatedOps() must be used instead. * @param ops the operations to execute * @param beneficiary the address to receive the fees */ function handleOps( UserOperation[] calldata ops, address payable beneficiary ) external; /** * Execute a batch of UserOperation with Aggregators * @param opsPerAggregator the operations to execute, grouped by aggregator (or address(0) for no-aggregator accounts) * @param beneficiary the address to receive the fees */ function handleAggregatedOps( UserOpsPerAggregator[] calldata opsPerAggregator, address payable beneficiary ) external; /** * generate a request Id - unique identifier for this request. * the request ID is a hash over the content of the userOp (except the signature), the entrypoint and the chainid. */ function getUserOpHash(UserOperation calldata userOp) external view returns (bytes32); /** * Simulate a call to account.validateUserOp and paymaster.validatePaymasterUserOp. * @dev this method always revert. Successful result is ValidationResult error. other errors are failures. * @dev The node must also verify it doesn't use banned opcodes, and that it doesn't reference storage outside the account's data. * @param userOp the user operation to validate. */ function simulateValidation(UserOperation calldata userOp) external; /** * gas and return values during simulation * @param preOpGas the gas used for validation (including preValidationGas) * @param prefund the required prefund for this operation * @param sigFailed validateUserOp's (or paymaster's) signature check failed * @param validAfter - first timestamp this UserOp is valid (merging account and paymaster time-range) * @param validUntil - last timestamp this UserOp is valid (merging account and paymaster time-range) * @param paymasterContext returned by validatePaymasterUserOp (to be passed into postOp) */ struct ReturnInfo { uint256 preOpGas; uint256 prefund; bool sigFailed; uint48 validAfter; uint48 validUntil; bytes paymasterContext; } /** * returned aggregated signature info. * the aggregator returned by the account, and its current stake. */ struct AggregatorStakeInfo { address aggregator; StakeInfo stakeInfo; } /** * Get counterfactual sender address. * Calculate the sender contract address that will be generated by the initCode and salt in the UserOperation. * this method always revert, and returns the address in SenderAddressResult error * @param initCode the constructor code to be passed into the UserOperation. */ function getSenderAddress(bytes memory initCode) external; /** * simulate full execution of a UserOperation (including both validation and target execution) * this method will always revert with "ExecutionResult". * it performs full validation of the UserOperation, but ignores signature error. * an optional target address is called after the userop succeeds, and its value is returned * (before the entire call is reverted) * Note that in order to collect the the success/failure of the target call, it must be executed * with trace enabled to track the emitted events. * @param op the UserOperation to simulate * @param target if nonzero, a target address to call after userop simulation. If called, the targetSuccess and targetResult * are set to the return from that call. * @param targetCallData callData to pass to target address */ function simulateHandleOp( UserOperation calldata op, address target, bytes calldata targetCallData ) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC777/IERC777Recipient.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC777TokensRecipient standard as defined in the EIP. * * Accounts can be notified of {IERC777} tokens being sent to them by having a * contract implement this interface (contract holders can be their own * implementer) and registering it on the * https://eips.ethereum.org/EIPS/eip-1820[ERC1820 global registry]. * * See {IERC1820Registry} and {ERC1820Implementer}. */ interface IERC777Recipient { /** * @dev Called by an {IERC777} token contract whenever tokens are being * moved or created into a registered account (`to`). The type of operation * is conveyed by `from` being the zero address or not. * * This call occurs _after_ the token contract's state is updated, so * {IERC777-balanceOf}, etc., can be used to query the post-operation state. * * This function may revert to prevent the operation from being executed. */ function tokensReceived( address operator, address from, address to, uint256 amount, bytes calldata userData, bytes calldata operatorData ) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.0; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/IERC1155Receiver.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev _Available since v3.1._ */ interface IERC1155Receiver is IERC165 { /** * @dev Handles the receipt of a single ERC1155 token type. This function is * called at the end of a `safeTransferFrom` after the balance has been updated. * * NOTE: To accept the transfer, this must return * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` * (i.e. 0xf23a6e61, or its own function selector). * * @param operator The address which initiated the transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param id The ID of the token being transferred * @param value The amount of tokens being transferred * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed */ function onERC1155Received( address operator, address from, uint256 id, uint256 value, bytes calldata data ) external returns (bytes4); /** * @dev Handles the receipt of a multiple ERC1155 token types. This function * is called at the end of a `safeBatchTransferFrom` after the balances have * been updated. * * NOTE: To accept the transfer(s), this must return * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` * (i.e. 0xbc197c81, or its own function selector). * * @param operator The address which initiated the batch transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param ids An array containing ids of each token being transferred (order and length must match values array) * @param values An array containing amounts of each token being transferred (order and length must match ids array) * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed */ function onERC1155BatchReceived( address operator, address from, uint256[] calldata ids, uint256[] calldata values, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev String operations. */ library Strings { bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef"; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { // Inspired by OraclizeAPI's implementation - MIT licence // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol if (value == 0) { return "0"; } uint256 temp = value; uint256 digits; while (temp != 0) { digits++; temp /= 10; } bytes memory buffer = new bytes(digits); while (value != 0) { digits -= 1; buffer[digits] = bytes1(uint8(48 + uint256(value % 10))); value /= 10; } return string(buffer); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { if (value == 0) { return "0x00"; } uint256 temp = value; uint256 length = 0; while (temp != 0) { length++; temp >>= 8; } return toHexString(value, length); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _HEX_SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.10; /** * User Operation struct * @param sender the sender account of this request. * @param nonce unique value the sender uses to verify it is not a replay. * @param initCode if set, the account contract will be created by this constructor/ * @param callData the method call to execute on this account. * @param callGasLimit the gas limit passed to the callData method call. * @param verificationGasLimit gas used for validateUserOp and validatePaymasterUserOp. * @param preVerificationGas gas not calculated by the handleOps method, but added to the gas paid. Covers batch overhead. * @param maxFeePerGas same as EIP-1559 gas parameter. * @param maxPriorityFeePerGas same as EIP-1559 gas parameter. * @param paymasterAndData if set, this field holds the paymaster address and paymaster-specific data. the paymaster will pay for the transaction instead of the sender. * @param signature sender-verified signature over the entire request, the EntryPoint address and the chain ID. */ struct UserOperation { address sender; uint256 nonce; bytes initCode; bytes callData; uint256 callGasLimit; uint256 verificationGasLimit; uint256 preVerificationGas; uint256 maxFeePerGas; uint256 maxPriorityFeePerGas; bytes paymasterAndData; bytes signature; }
// SPDX-License-Identifier: GPL-3.0-only pragma solidity ^0.8.10; /** * manage deposits and stakes. * deposit is just a balance used to pay for UserOperations (either by a paymaster or an account) * stake is value locked for at least "unstakeDelay" by the staked entity. */ interface IStakeManager { event Deposited(address indexed account, uint256 totalDeposit); event Withdrawn( address indexed account, address withdrawAddress, uint256 amount ); /// Emitted when stake or unstake delay are modified event StakeLocked( address indexed account, uint256 totalStaked, uint256 unstakeDelaySec ); /// Emitted once a stake is scheduled for withdrawal event StakeUnlocked(address indexed account, uint256 withdrawTime); event StakeWithdrawn( address indexed account, address withdrawAddress, uint256 amount ); /** * @param deposit the entity's deposit * @param staked true if this entity is staked. * @param stake actual amount of ether staked for this entity. * @param unstakeDelaySec minimum delay to withdraw the stake. * @param withdrawTime - first block timestamp where 'withdrawStake' will be callable, or zero if already locked * @dev sizes were chosen so that (deposit,staked, stake) fit into one cell (used during handleOps) * and the rest fit into a 2nd cell. * 112 bit allows for 10^15 eth * 48 bit for full timestamp * 32 bit allows 150 years for unstake delay */ struct DepositInfo { uint112 deposit; bool staked; uint112 stake; uint32 unstakeDelaySec; uint48 withdrawTime; } //API struct used by getStakeInfo and simulateValidation struct StakeInfo { uint256 stake; uint256 unstakeDelaySec; } /// @return info - full deposit information of given account function getDepositInfo(address account) external view returns (DepositInfo memory info); /// @return the deposit (for gas payment) of the account function balanceOf(address account) external view returns (uint256); /** * add to the deposit of the given account */ function depositTo(address account) external payable; /** * add to the account's stake - amount and delay * any pending unstake is first cancelled. * @param _unstakeDelaySec the new lock duration before the deposit can be withdrawn. */ function addStake(uint32 _unstakeDelaySec) external payable; /** * attempt to unlock the stake. * the value can be withdrawn (using withdrawStake) after the unstake delay. */ function unlockStake() external; /** * withdraw from the (unlocked) stake. * must first call unlockStake and wait for the unstakeDelay to pass * @param withdrawAddress the address to send withdrawn value. */ function withdrawStake(address payable withdrawAddress) external; /** * withdraw from the deposit. * @param withdrawAddress the address to send withdrawn value. * @param withdrawAmount the amount to withdraw. */ function withdrawTo(address payable withdrawAddress, uint256 withdrawAmount) external; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.10; import {UserOperation} from "../utils/UserOperation.sol"; /** * Aggregated Signatures validator. */ interface IAggregator { /** * validate aggregated signature. * revert if the aggregated signature does not match the given list of operations. */ function validateSignatures( UserOperation[] calldata userOps, bytes calldata signature ) external view; /** * validate signature of a single userOp * This method is should be called by bundler after EntryPoint.simulateValidation() returns (reverts) with ValidationResultWithAggregation * First it validates the signature over the userOp. Then it returns data to be used when creating the handleOps. * @param userOp the userOperation received from the user. * @return sigForUserOp the value to put into the signature field of the userOp when calling handleOps. * (usually empty, unless account and aggregator support some kind of "multisig" */ function validateUserOpSignature(UserOperation calldata userOp) external view returns (bytes memory sigForUserOp); /** * aggregate multiple signatures into a single value. * This method is called off-chain to calculate the signature to pass with handleOps() * bundler MAY use optimized custom code perform this aggregation * @param userOps array of UserOperations to collect the signatures from. * @return aggregatedSignature the aggregated signature */ function aggregateSignatures(UserOperation[] calldata userOps) external view returns (bytes memory aggregatedSignature); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.10; interface INonceManager { /** * Return the next nonce for this sender. * Within a given key, the nonce values are sequenced (starting with zero, and incremented by one on each userop) * But UserOp with different keys can come with arbitrary order. * * @param sender the account address * @param key the high 192 bit of the nonce * @return nonce a full nonce to pass for next UserOp with this sender. */ function getNonce(address sender, uint192 key) external view returns (uint256 nonce); /** * Manually increment the nonce of the sender. * This method is exposed just for completeness.. * Account does NOT need to call it, neither during validation, nor elsewhere, * as the EntryPoint will update the nonce regardless. * Possible use-case is call it with various keys to "initialize" their nonces to one, so that future * UserOperations will not pay extra for the first transaction with a given key. */ function incrementNonce(uint192 key) external; }
{ "remappings": [ "@ensdomains/=node_modules/@ensdomains/", "@matterlabs/=node_modules/@matterlabs/", "@openzeppelin/=node_modules/@openzeppelin/", "@prb/=node_modules/@prb/", "@uniswap/=node_modules/@uniswap/", "base64-sol/=node_modules/base64-sol/", "contracts/=contracts/", "ds-test/=lib/ds-test/src/", "eth-gas-reporter/=node_modules/eth-gas-reporter/", "forge-std/=lib/forge-std/src/", "hardhat-deploy/=node_modules/hardhat-deploy/", "hardhat/=node_modules/hardhat/", "pnm-contracts/=lib/pnm-contracts/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs" }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "london", "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"contract IEntryPoint","name":"anEntryPoint","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IEntryPoint","name":"entryPoint","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"}],"name":"AccountInitialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"inputs":[],"name":"addDeposit","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"entryPoint","outputs":[{"internalType":"contract IEntryPoint","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"dest","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"func","type":"bytes"}],"name":"execute","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"dest","type":"address[]"},{"internalType":"uint256[]","name":"value","type":"uint256[]"},{"internalType":"bytes[]","name":"func","type":"bytes[]"}],"name":"executeBatch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"anOwner","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"hash","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"isValidSignature","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC1155BatchReceived","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC1155Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC721Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"tokensReceived","outputs":[],"stateMutability":"pure","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"callGasLimit","type":"uint256"},{"internalType":"uint256","name":"verificationGasLimit","type":"uint256"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct UserOperation","name":"userOp","type":"tuple"},{"internalType":"bytes32","name":"userOpHash","type":"bytes32"},{"internalType":"uint256","name":"missingAccountFunds","type":"uint256"}],"name":"validateUserOp","outputs":[{"internalType":"uint256","name":"validationData","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"withdrawAddress","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawDepositTo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
60a060405234801561001057600080fd5b50604051620017ae380380620017ae8339810160408190526100319161010b565b6001600160a01b03811660805261004661004c565b5061013b565b600054610100900460ff16156100b85760405162461bcd60e51b815260206004820152602760248201527f496e697469616c697a61626c653a20636f6e747261637420697320696e697469604482015266616c697a696e6760c81b606482015260840160405180910390fd5b60005460ff90811614610109576000805460ff191660ff9081179091556040519081527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b565b60006020828403121561011d57600080fd5b81516001600160a01b038116811461013457600080fd5b9392505050565b6080516116266200018860003960008181610286015281816105c30152818161064b01528181610739015281816108e40152818161097f01528181610b070152610c8901526116266000f3fe6080604052600436106100f65760003560e01c80638da5cb5b1161008a578063c399ec8811610059578063c399ec88146102f9578063c4d66de81461030e578063d087d2881461032e578063f23a6e611461034357600080fd5b80638da5cb5b14610239578063b0d691fe14610277578063b61d27f6146102aa578063bc197c81146102ca57600080fd5b80633a871cdd116100c65780633a871cdd146101c357806347e1da2a146101f15780634a58db19146102115780634d44560d1461021957600080fd5b806223de291461010257806301ffc9a714610129578063150b7a021461015e5780631626ba7e146101a357600080fd5b366100fd57005b600080fd5b34801561010e57600080fd5b5061012761011d366004610fa9565b5050505050505050565b005b34801561013557600080fd5b5061014961014436600461105a565b610370565b60405190151581526020015b60405180910390f35b34801561016a57600080fd5b5061018a610179366004611084565b630a85bd0160e11b95945050505050565b6040516001600160e01b03199091168152602001610155565b3480156101af57600080fd5b5061018a6101be36600461110d565b6103c2565b3480156101cf57600080fd5b506101e36101de3660046111c8565b610404565b604051908152602001610155565b3480156101fd57600080fd5b5061012761020c366004611261565b61042a565b6101276105c1565b34801561022557600080fd5b506101276102343660046112fb565b610641565b34801561024557600080fd5b5060005461025f906201000090046001600160a01b031681565b6040516001600160a01b039091168152602001610155565b34801561028357600080fd5b507f000000000000000000000000000000000000000000000000000000000000000061025f565b3480156102b657600080fd5b506101276102c5366004611327565b6106ca565b3480156102d657600080fd5b5061018a6102e5366004611383565b63bc197c8160e01b98975050505050505050565b34801561030557600080fd5b506101e3610719565b34801561031a57600080fd5b50610127610329366004611421565b6107aa565b34801561033a57600080fd5b506101e36108bd565b34801561034f57600080fd5b5061018a61035e36600461143e565b63f23a6e6160e01b9695505050505050565b60006001600160e01b03198216630a85bd0160e11b14806103a157506001600160e01b03198216630271189760e51b145b806103bc57506001600160e01b031982166301ffc9a760e01b145b92915050565b6000805481906103e2906201000090046001600160a01b03168585610913565b905080156103fa5750630b135d3f60e11b90506103bc565b5060009392505050565b600061040e610974565b61041884846109ee565b905061042382610aaf565b9392505050565b610432610afc565b8481148015610448575082158061044857508281145b61048f5760405162461bcd60e51b815260206004820152601360248201527277726f6e67206172726179206c656e6774687360681b60448201526064015b60405180910390fd5b60008390036105455760005b8581101561053f5761052d8787838181106104b8576104b86114a8565b90506020020160208101906104cd9190611421565b60008585858181106104e1576104e16114a8565b90506020028101906104f391906114be565b8080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250610b8f92505050565b806105378161151b565b91505061049b565b506105b9565b60005b858110156105b7576105a5878783818110610565576105656114a8565b905060200201602081019061057a9190611421565b86868481811061058c5761058c6114a8565b905060200201358585858181106104e1576104e16114a8565b806105af8161151b565b915050610548565b505b505050505050565b7f000000000000000000000000000000000000000000000000000000000000000060405163b760faf960e01b81523060048201526001600160a01b03919091169063b760faf99034906024016000604051808303818588803b15801561062657600080fd5b505af115801561063a573d6000803e3d6000fd5b5050505050565b610649610bff565b7f000000000000000000000000000000000000000000000000000000000000000060405163040b850f60e31b81526001600160a01b03848116600483015260248201849052919091169063205c287890604401600060405180830381600087803b1580156106b657600080fd5b505af11580156105b9573d6000803e3d6000fd5b6106d2610afc565b610713848484848080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250610b8f92505050565b50505050565b6040516370a0823160e01b81523060048201526000906001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016906370a08231906024015b602060405180830381865afa158015610781573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107a59190611534565b905090565b600054610100900460ff16158080156107ca5750600054600160ff909116105b806107e45750303b1580156107e4575060005460ff166001145b6108475760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201526d191e481a5b9a5d1a585b1a5e995960921b6064820152608401610486565b6000805460ff19166001179055801561086a576000805461ff0019166101001790555b61087382610c56565b80156108b9576000805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b5050565b604051631aab3f0d60e11b8152306004820152600060248201819052906001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016906335567e1a90604401610764565b60008060006109228585610cd2565b9092509050600081600481111561093b5761093b61154d565b1480156109595750856001600160a01b0316826001600160a01b0316145b8061096a575061096a868686610d40565b9695505050505050565b336001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016146109ec5760405162461bcd60e51b815260206004820152601c60248201527f6163636f756e743a206e6f742066726f6d20456e747279506f696e74000000006044820152606401610486565b565b6000805482906201000090046001600160a01b0316803b8303610a3d577f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c859052603c902091505b6000610a8c8284610a526101408a018a6114be565b8080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061091392505050565b90508015610aa057600093505050506103bc565b50600195945050505050565b50565b8015610aac57604051600090339060001990849084818181858888f193505050503d806000811461063a576040519150601f19603f3d011682016040523d82523d6000602084013e61063a565b336001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000161480610b4357506000546201000090046001600160a01b031633145b6109ec5760405162461bcd60e51b815260206004820181905260248201527f6163636f756e743a206e6f74204f776e6572206f7220456e747279506f696e746044820152606401610486565b600080846001600160a01b03168484604051610bab9190611587565b60006040518083038185875af1925050503d8060008114610be8576040519150601f19603f3d011682016040523d82523d6000602084013e610bed565b606091505b50915091508161063a57805160208201fd5b6000546201000090046001600160a01b0316331480610c1d57503330145b6109ec5760405162461bcd60e51b815260206004820152600a60248201526937b7363c9037bbb732b960b11b6044820152606401610486565b6000805462010000600160b01b031916620100006001600160a01b038481168202929092178084556040519190048216927f0000000000000000000000000000000000000000000000000000000000000000909216917f526ffefac8167421b9048ae3377810715d834479565b0182ea4155f0efa4c38091a350565b6000808251604103610d085760208301516040840151606085015160001a610cfc87828585610e2c565b94509450505050610d39565b8251604003610d315760208301516040840151610d26868383610f19565b935093505050610d39565b506000905060025b9250929050565b6000806000856001600160a01b0316631626ba7e60e01b8686604051602401610d6a9291906115a3565b60408051601f198184030181529181526020820180516001600160e01b03166001600160e01b0319909416939093179092529051610da89190611587565b600060405180830381855afa9150503d8060008114610de3576040519150601f19603f3d011682016040523d82523d6000602084013e610de8565b606091505b5091509150818015610dfc57506020815110155b801561096a57508051630b135d3f60e11b90610e219083016020908101908401611534565b149695505050505050565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831115610e635750600090506003610f10565b8460ff16601b14158015610e7b57508460ff16601c14155b15610e8c5750600090506004610f10565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610ee0573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b038116610f0957600060019250925050610f10565b9150600090505b94509492505050565b6000806001600160ff1b03831681610f3660ff86901c601b6115dd565b9050610f4487828885610e2c565b935093505050935093915050565b6001600160a01b0381168114610aac57600080fd5b60008083601f840112610f7957600080fd5b50813567ffffffffffffffff811115610f9157600080fd5b602083019150836020828501011115610d3957600080fd5b60008060008060008060008060c0898b031215610fc557600080fd5b8835610fd081610f52565b97506020890135610fe081610f52565b96506040890135610ff081610f52565b955060608901359450608089013567ffffffffffffffff8082111561101457600080fd5b6110208c838d01610f67565b909650945060a08b013591508082111561103957600080fd5b506110468b828c01610f67565b999c989b5096995094979396929594505050565b60006020828403121561106c57600080fd5b81356001600160e01b03198116811461042357600080fd5b60008060008060006080868803121561109c57600080fd5b85356110a781610f52565b945060208601356110b781610f52565b935060408601359250606086013567ffffffffffffffff8111156110da57600080fd5b6110e688828901610f67565b969995985093965092949392505050565b634e487b7160e01b600052604160045260246000fd5b6000806040838503121561112057600080fd5b82359150602083013567ffffffffffffffff8082111561113f57600080fd5b818501915085601f83011261115357600080fd5b813581811115611165576111656110f7565b604051601f8201601f19908116603f0116810190838211818310171561118d5761118d6110f7565b816040528281528860208487010111156111a657600080fd5b8260208601602083013760006020848301015280955050505050509250929050565b6000806000606084860312156111dd57600080fd5b833567ffffffffffffffff8111156111f457600080fd5b8401610160818703121561120757600080fd5b95602085013595506040909401359392505050565b60008083601f84011261122e57600080fd5b50813567ffffffffffffffff81111561124657600080fd5b6020830191508360208260051b8501011115610d3957600080fd5b6000806000806000806060878903121561127a57600080fd5b863567ffffffffffffffff8082111561129257600080fd5b61129e8a838b0161121c565b909850965060208901359150808211156112b757600080fd5b6112c38a838b0161121c565b909650945060408901359150808211156112dc57600080fd5b506112e989828a0161121c565b979a9699509497509295939492505050565b6000806040838503121561130e57600080fd5b823561131981610f52565b946020939093013593505050565b6000806000806060858703121561133d57600080fd5b843561134881610f52565b935060208501359250604085013567ffffffffffffffff81111561136b57600080fd5b61137787828801610f67565b95989497509550505050565b60008060008060008060008060a0898b03121561139f57600080fd5b88356113aa81610f52565b975060208901356113ba81610f52565b9650604089013567ffffffffffffffff808211156113d757600080fd5b6113e38c838d0161121c565b909850965060608b01359150808211156113fc57600080fd5b6114088c838d0161121c565b909650945060808b013591508082111561103957600080fd5b60006020828403121561143357600080fd5b813561042381610f52565b60008060008060008060a0878903121561145757600080fd5b863561146281610f52565b9550602087013561147281610f52565b94506040870135935060608701359250608087013567ffffffffffffffff81111561149c57600080fd5b6112e989828a01610f67565b634e487b7160e01b600052603260045260246000fd5b6000808335601e198436030181126114d557600080fd5b83018035915067ffffffffffffffff8211156114f057600080fd5b602001915036819003821315610d3957600080fd5b634e487b7160e01b600052601160045260246000fd5b60006001820161152d5761152d611505565b5060010190565b60006020828403121561154657600080fd5b5051919050565b634e487b7160e01b600052602160045260246000fd5b60005b8381101561157e578181015183820152602001611566565b50506000910152565b60008251611599818460208701611563565b9190910192915050565b82815260406020820152600082518060408401526115c8816060850160208701611563565b601f01601f1916919091016060019392505050565b808201808211156103bc576103bc61150556fea26469706673582212201ad005ed0f1b73125b7edc647fe4f2db41fcefca154c7c67becc920fa0ba575f64736f6c634300081100330000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789
Deployed Bytecode
0x6080604052600436106100f65760003560e01c80638da5cb5b1161008a578063c399ec8811610059578063c399ec88146102f9578063c4d66de81461030e578063d087d2881461032e578063f23a6e611461034357600080fd5b80638da5cb5b14610239578063b0d691fe14610277578063b61d27f6146102aa578063bc197c81146102ca57600080fd5b80633a871cdd116100c65780633a871cdd146101c357806347e1da2a146101f15780634a58db19146102115780634d44560d1461021957600080fd5b806223de291461010257806301ffc9a714610129578063150b7a021461015e5780631626ba7e146101a357600080fd5b366100fd57005b600080fd5b34801561010e57600080fd5b5061012761011d366004610fa9565b5050505050505050565b005b34801561013557600080fd5b5061014961014436600461105a565b610370565b60405190151581526020015b60405180910390f35b34801561016a57600080fd5b5061018a610179366004611084565b630a85bd0160e11b95945050505050565b6040516001600160e01b03199091168152602001610155565b3480156101af57600080fd5b5061018a6101be36600461110d565b6103c2565b3480156101cf57600080fd5b506101e36101de3660046111c8565b610404565b604051908152602001610155565b3480156101fd57600080fd5b5061012761020c366004611261565b61042a565b6101276105c1565b34801561022557600080fd5b506101276102343660046112fb565b610641565b34801561024557600080fd5b5060005461025f906201000090046001600160a01b031681565b6040516001600160a01b039091168152602001610155565b34801561028357600080fd5b507f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d278961025f565b3480156102b657600080fd5b506101276102c5366004611327565b6106ca565b3480156102d657600080fd5b5061018a6102e5366004611383565b63bc197c8160e01b98975050505050505050565b34801561030557600080fd5b506101e3610719565b34801561031a57600080fd5b50610127610329366004611421565b6107aa565b34801561033a57600080fd5b506101e36108bd565b34801561034f57600080fd5b5061018a61035e36600461143e565b63f23a6e6160e01b9695505050505050565b60006001600160e01b03198216630a85bd0160e11b14806103a157506001600160e01b03198216630271189760e51b145b806103bc57506001600160e01b031982166301ffc9a760e01b145b92915050565b6000805481906103e2906201000090046001600160a01b03168585610913565b905080156103fa5750630b135d3f60e11b90506103bc565b5060009392505050565b600061040e610974565b61041884846109ee565b905061042382610aaf565b9392505050565b610432610afc565b8481148015610448575082158061044857508281145b61048f5760405162461bcd60e51b815260206004820152601360248201527277726f6e67206172726179206c656e6774687360681b60448201526064015b60405180910390fd5b60008390036105455760005b8581101561053f5761052d8787838181106104b8576104b86114a8565b90506020020160208101906104cd9190611421565b60008585858181106104e1576104e16114a8565b90506020028101906104f391906114be565b8080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250610b8f92505050565b806105378161151b565b91505061049b565b506105b9565b60005b858110156105b7576105a5878783818110610565576105656114a8565b905060200201602081019061057a9190611421565b86868481811061058c5761058c6114a8565b905060200201358585858181106104e1576104e16114a8565b806105af8161151b565b915050610548565b505b505050505050565b7f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d278960405163b760faf960e01b81523060048201526001600160a01b03919091169063b760faf99034906024016000604051808303818588803b15801561062657600080fd5b505af115801561063a573d6000803e3d6000fd5b5050505050565b610649610bff565b7f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d278960405163040b850f60e31b81526001600160a01b03848116600483015260248201849052919091169063205c287890604401600060405180830381600087803b1580156106b657600080fd5b505af11580156105b9573d6000803e3d6000fd5b6106d2610afc565b610713848484848080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250610b8f92505050565b50505050565b6040516370a0823160e01b81523060048201526000906001600160a01b037f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d278916906370a08231906024015b602060405180830381865afa158015610781573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107a59190611534565b905090565b600054610100900460ff16158080156107ca5750600054600160ff909116105b806107e45750303b1580156107e4575060005460ff166001145b6108475760405162461bcd60e51b815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201526d191e481a5b9a5d1a585b1a5e995960921b6064820152608401610486565b6000805460ff19166001179055801561086a576000805461ff0019166101001790555b61087382610c56565b80156108b9576000805461ff0019169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b5050565b604051631aab3f0d60e11b8152306004820152600060248201819052906001600160a01b037f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d278916906335567e1a90604401610764565b60008060006109228585610cd2565b9092509050600081600481111561093b5761093b61154d565b1480156109595750856001600160a01b0316826001600160a01b0316145b8061096a575061096a868686610d40565b9695505050505050565b336001600160a01b037f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d278916146109ec5760405162461bcd60e51b815260206004820152601c60248201527f6163636f756e743a206e6f742066726f6d20456e747279506f696e74000000006044820152606401610486565b565b6000805482906201000090046001600160a01b0316803b8303610a3d577f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c859052603c902091505b6000610a8c8284610a526101408a018a6114be565b8080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061091392505050565b90508015610aa057600093505050506103bc565b50600195945050505050565b50565b8015610aac57604051600090339060001990849084818181858888f193505050503d806000811461063a576040519150601f19603f3d011682016040523d82523d6000602084013e61063a565b336001600160a01b037f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789161480610b4357506000546201000090046001600160a01b031633145b6109ec5760405162461bcd60e51b815260206004820181905260248201527f6163636f756e743a206e6f74204f776e6572206f7220456e747279506f696e746044820152606401610486565b600080846001600160a01b03168484604051610bab9190611587565b60006040518083038185875af1925050503d8060008114610be8576040519150601f19603f3d011682016040523d82523d6000602084013e610bed565b606091505b50915091508161063a57805160208201fd5b6000546201000090046001600160a01b0316331480610c1d57503330145b6109ec5760405162461bcd60e51b815260206004820152600a60248201526937b7363c9037bbb732b960b11b6044820152606401610486565b6000805462010000600160b01b031916620100006001600160a01b038481168202929092178084556040519190048216927f0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789909216917f526ffefac8167421b9048ae3377810715d834479565b0182ea4155f0efa4c38091a350565b6000808251604103610d085760208301516040840151606085015160001a610cfc87828585610e2c565b94509450505050610d39565b8251604003610d315760208301516040840151610d26868383610f19565b935093505050610d39565b506000905060025b9250929050565b6000806000856001600160a01b0316631626ba7e60e01b8686604051602401610d6a9291906115a3565b60408051601f198184030181529181526020820180516001600160e01b03166001600160e01b0319909416939093179092529051610da89190611587565b600060405180830381855afa9150503d8060008114610de3576040519150601f19603f3d011682016040523d82523d6000602084013e610de8565b606091505b5091509150818015610dfc57506020815110155b801561096a57508051630b135d3f60e11b90610e219083016020908101908401611534565b149695505050505050565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831115610e635750600090506003610f10565b8460ff16601b14158015610e7b57508460ff16601c14155b15610e8c5750600090506004610f10565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610ee0573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b038116610f0957600060019250925050610f10565b9150600090505b94509492505050565b6000806001600160ff1b03831681610f3660ff86901c601b6115dd565b9050610f4487828885610e2c565b935093505050935093915050565b6001600160a01b0381168114610aac57600080fd5b60008083601f840112610f7957600080fd5b50813567ffffffffffffffff811115610f9157600080fd5b602083019150836020828501011115610d3957600080fd5b60008060008060008060008060c0898b031215610fc557600080fd5b8835610fd081610f52565b97506020890135610fe081610f52565b96506040890135610ff081610f52565b955060608901359450608089013567ffffffffffffffff8082111561101457600080fd5b6110208c838d01610f67565b909650945060a08b013591508082111561103957600080fd5b506110468b828c01610f67565b999c989b5096995094979396929594505050565b60006020828403121561106c57600080fd5b81356001600160e01b03198116811461042357600080fd5b60008060008060006080868803121561109c57600080fd5b85356110a781610f52565b945060208601356110b781610f52565b935060408601359250606086013567ffffffffffffffff8111156110da57600080fd5b6110e688828901610f67565b969995985093965092949392505050565b634e487b7160e01b600052604160045260246000fd5b6000806040838503121561112057600080fd5b82359150602083013567ffffffffffffffff8082111561113f57600080fd5b818501915085601f83011261115357600080fd5b813581811115611165576111656110f7565b604051601f8201601f19908116603f0116810190838211818310171561118d5761118d6110f7565b816040528281528860208487010111156111a657600080fd5b8260208601602083013760006020848301015280955050505050509250929050565b6000806000606084860312156111dd57600080fd5b833567ffffffffffffffff8111156111f457600080fd5b8401610160818703121561120757600080fd5b95602085013595506040909401359392505050565b60008083601f84011261122e57600080fd5b50813567ffffffffffffffff81111561124657600080fd5b6020830191508360208260051b8501011115610d3957600080fd5b6000806000806000806060878903121561127a57600080fd5b863567ffffffffffffffff8082111561129257600080fd5b61129e8a838b0161121c565b909850965060208901359150808211156112b757600080fd5b6112c38a838b0161121c565b909650945060408901359150808211156112dc57600080fd5b506112e989828a0161121c565b979a9699509497509295939492505050565b6000806040838503121561130e57600080fd5b823561131981610f52565b946020939093013593505050565b6000806000806060858703121561133d57600080fd5b843561134881610f52565b935060208501359250604085013567ffffffffffffffff81111561136b57600080fd5b61137787828801610f67565b95989497509550505050565b60008060008060008060008060a0898b03121561139f57600080fd5b88356113aa81610f52565b975060208901356113ba81610f52565b9650604089013567ffffffffffffffff808211156113d757600080fd5b6113e38c838d0161121c565b909850965060608b01359150808211156113fc57600080fd5b6114088c838d0161121c565b909650945060808b013591508082111561103957600080fd5b60006020828403121561143357600080fd5b813561042381610f52565b60008060008060008060a0878903121561145757600080fd5b863561146281610f52565b9550602087013561147281610f52565b94506040870135935060608701359250608087013567ffffffffffffffff81111561149c57600080fd5b6112e989828a01610f67565b634e487b7160e01b600052603260045260246000fd5b6000808335601e198436030181126114d557600080fd5b83018035915067ffffffffffffffff8211156114f057600080fd5b602001915036819003821315610d3957600080fd5b634e487b7160e01b600052601160045260246000fd5b60006001820161152d5761152d611505565b5060010190565b60006020828403121561154657600080fd5b5051919050565b634e487b7160e01b600052602160045260246000fd5b60005b8381101561157e578181015183820152602001611566565b50506000910152565b60008251611599818460208701611563565b9190910192915050565b82815260406020820152600082518060408401526115c8816060850160208701611563565b601f01601f1916919091016060019392505050565b808201808211156103bc576103bc61150556fea26469706673582212201ad005ed0f1b73125b7edc647fe4f2db41fcefca154c7c67becc920fa0ba575f64736f6c63430008110033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789
-----Decoded View---------------
Arg [0] : anEntryPoint (address): 0x5FF137D4b0FDCD49DcA30c7CF57E578a026d2789
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 0000000000000000000000005ff137d4b0fdcd49dca30c7cf57e578a026d2789
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.