Besseli võrrand
Besseli võrrandiks (ka Besseli diferentsiaalvõrrandiks) nimetatakse matemaatikas harilikku teist järku homogeenset diferentsiaalvõrrandit
kus α on kompleksarvuline parameeter.[1] Besseli võrrandini võib jõuda Laplace'i võrrandi esitamisel silindrilistes koordinaatides, mistõttu nimetatakse Besseli võrrandi lahendeid silindrilisteks funktsioonideks või ka silindrilisteks harmoonikuteks. Viimaste olulisemad erijuhud on Besseli funktsioonid, Neumanni funktsioonid ja Hankeli funktsioonid.
Besseli võrrand on nimetuse saanud saksa matemaatiku ja astronoomi Friedrich Besseli järgi.
Besseli funktsioon
[muuda | muuda lähteteksti]Besseli funktsiooniks nimetatakse Besseli diferentsiaalvõrrandi kanoonilisi lahendeid suvalise kompleksarvulise parameetri α korral. Rakendustes võtab α enamasti pool- või täisarvulisi väärtusi. Besseli funktsioone täisarvuliste α korral nimetatakse silindrilisteks funktsioonideks või ka silindrilisteks harmoonikuteks, kuna nendeni jõutakse Laplace'i võrrandi lahendamisel silindrilistes koordinaatides. Sfäärilised Besseli funktsioonid poolarvuliste α väärtuste korral saadakse Helmholtzi võrrandi lahendamisel sfäärilistes koordinaatides.
Bessel funktsioonide rakendusi
[muuda | muuda lähteteksti]Besseli võrrand kerkib esile, kui leitakse eraldatavaid lahendeid Laplace'i võrrandile ja Helmholtzi võrrandile silindrilistes või sfäärilistes koordinaatides. Besseli funktsioonid on eriti olulised paljudes lainelevi ja staatilisi potentsiaale käsitlevates küsimustes. Lahendades ülesandeid silindrilistes koordinaatides saadakse tulemuseks (α = n) täisarvulist järku Bessel funktsioonid ; sfääriliste probleemide korral saadakse (α = n + 1/2) pooltäisarvulist järku Besseli funktsioone. Näiteks:
- Elektromagnetlained silindrilises lainejuhis
- Rõhu amplituudid viskoossuseta pöörleval voolamisel
- Soojusjuhtivus silindrilises kehas
- Ringjate membraanide omavõnkevormide kuju (näitek trumm või mõni teine membranofon)
- Difusiooni kristallvõres
- Radiaalse vaba osakese Schrödingeri võrrandi lahendid (sfäärilistes ja silindrilistes koordinaatides)
- Akustilise kiirgamise mustrite leidmine
- Sagedusest sõltuv hõõre ümarates torudes
- Ujuvate kehade dünaamika
- Nurgaeristus
- Hajumine kruvijoonelistelt kehadelt, sealhulga DNA-lt
Besseli funktsioonide esinevad ka signaalitöötluse probleemides (näiteks Sagedusliku modulatsiooni süntees, Kaiseri aken või Besseli filter).
Viited
[muuda | muuda lähteteksti]- ↑ Kaasik, Ü. (2002). Matemaatikaleksikon. Tartu.