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Abstract. The security of several homomorphic encryption schemes depends on the hardness of the Approximate
Common Divisor (ACD) problem. In this paper we review and compare existing algorithms to solve the ACD prob-
lem using lattices. In particular we consider the simultaneous Diophantine approximation method, the orthogonal
lattice method, and a method based on multivariate polynomials and Coppersmith’s algorithm that was studied in
detail by Cohn and Heninger. One of our main goals is to compare the multivariate polynomial approach with other
methods. We find that the multivariate polynomial approach is not better than the orthogonal lattice algorithm for
practical cryptanalysis.
Another contribution is to consider a sample-amplificationtechnique for ACD samples, and to consider a pre-
processing algorithm similar to the Blum-Kalai-Wasserman(BKW) algorithm for learning parity with noise. We
explain why, unlike in other settings, the BKW algorithm does not give an improvement over the lattice algorithms.
This is the full version of a paper published at ANTS-XII in 2016.
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1 Introduction

The approximate common divisor problem (ACD) was first studied by Howgrave-Graham [HG01]. Further inter-
est in this problem was provided by the homomorphic encryption scheme of van Dijk, Gentry, Halevi and Vaikun-
tanathan [DGHV10] and its variants [CMNT11,CNT12,CS15]. The computational problem is to determine a secret
integerp when one is given many samples of the formxi = pqi + ri for small error termsri. More precisely,p is an
η bit odd prime, thexi areγ bits, and theri areρ bits, whereρ is significantly smaller thanη.

The original papers [HG01,DGHV10] sketched a large number of possible lattice attacks on this problem, includ-
ing using orthogonal lattices and Coppersmith’s method. (For background on lattices see Section 2.2.) Further cryptan-
alytic work was done by [CN12,CH13,CNT12,DT14]. Our paper surveys and compares the known lattice algorithms
for the ACD problem. We study several recently proposed variants of the ACD problem [CCK+13,Lep14,CS15], and
argue that they may offer greater security than the originalACD proposal. Our main finding is that the orthogonal
lattice approach is better than the multivariate polynomial approach for practical cryptanalysis.

We also propose a pre-processing idea, motivated by the Blum-Kalai-Wasserman algorithm for learning parity with
noise (LPN), and a sample-amplification idea motivated by work on LPN and learning with errors (LWE).

We do not consider in this paper the variants of “exhaustive search” over the errorsri, as proposed by Chen and
Nguyen [CN12], Coron, Naccache and Tibouchi [CNT12], and Lee and Seo [LS14]. Such algorithms are important
for the original version of the ACD problem, but are less relevant for the Cheon-Stehlé variant.

2 Background and Notation

We use standard notation throughout the paper. The symbols≪ and≫ do not have a precise technical meaning, but
are supposed to convey an informal assurance of “significantly less (greater) than”.



2.1 Statement of the approximate common divisor problems

There are at least four variants of the approximate common divisor problem in the literature. We now define these
problems precisely.

Fix γ, η, ρ ∈ N. Let p be anη-bit odd integer. By this we mean that

2η−1 < p < 2η.

Actually it is not necessary forp to be prime, and in some applications (e.g., Appendix D of [DGHV10]) it is definitely
not prime. Define the efficiently sampleable distributionDγ,ρ(p) as

Dγ,ρ(p) = {pq + r | q ← Z ∩ [0, 2γ/p), r← Z ∩ (−2ρ, 2ρ)}. (1)

In practice we haveρ significantly smaller thanη and so all samples fromDγ,ρ(p) will satisfy xi < 2γ with
overwhelming probability. Note also that ift is sufficiently large andx1, . . . , xt are sampled fromDγ,ρ(p) then we
expect there to be at least one indexi such that

2γ−1 < xi < 2γ .

Definition 1. Let notation be as above. Theapproximate common divisor problem (ACD) is: Given polynomially
many samplesxi fromDγ,ρ(p), to computep.

Thepartial approximate common divisor problem (PACD) is: Given polynomially many samplesxi fromDγ,ρ(p)
and also a samplex0 = pq0 for uniformly chosenq0 ∈ Z ∩ [0, 2γ/p), to computep.

In this paper we focus on the “computational” versions of theproblems. There are also “decisional” versions, but
it is known (see [DGHV10]) that the computational and decisional problems are equivalent. Furthermore, there are
no known lattice attacks that directly solve a decisional problem without first essentially solving the computational
problem.

Let λ be a security parameter. Van Dijk et al [DGHV10] setγ/η2 = ω(log(λ)) to thwart lattice attacks on the
approximate common divisor problem. Concretely, the parameters are set to(ρ, η, γ) = (λ, λ2, λ5), so one sees that
ρ is extremely small compared withη. The analysis in [DGHV10] is very conservative and seems to overestimate the
size ofγ required. For example, in [CNT12] one finds parameters(ρ, η, γ) = (71, 2698, 19350000) that are claimed
to have security level around 72-bits, and it is likely thatγ can be taken considerably smaller than this while still
achieving the claimed security level.

Cheon et al [CCK+13] have given a homomorphic encryption scheme that uses the Chinese remainder theorem to
pack more information into a ciphertext. This system featuresℓ η-bit primespi. Let π = p1 · · · pℓ andx0 = πq0. A
ciphertext is an elementc = πq + r wherer is congruent modulo each primepi to a small integerri, and information
can be encoded in each valueri (these are called CRT-components). The public key includesa number of ciphertexts
xi that are encryptions of0, as well as a number of ciphertexts that are encryptions of1 in a single CRT component.
We refer to [CCK+13] and Chapter 7 of Lepoint [Lep14] for moredetails about parameters. We call the problem of
computingp1, . . . , pℓ from the public key theCRT-ACD problem .

An important detail about CRT-ACD is that, sinceπ is very large compared with an individualpi, one can use
smaller values for theq. In terms of cryptanalysis, the problem can be reduced to a standard PACD instance of the
formx0 = p1q

′

0 andxi = p1q
′

i+ r′i, and it is these attacks that are used to specify the parameters. A reduction is given
in Lemma 1 of [CCK+13] that gives evidence that the CRT variant of the ACD problem is hard, but this reduction does
not preserve the sizes of parameters and so it is not very useful for setting concrete parameters. It is an open problem
to give an algorithm to solve the CRT-ACD problem that exploits the CRT structure.

Cheon and Stehlé [CS15] have given a scale-invariant homomorphic encryption scheme that permits a very differ-
ent flavour of parameters. Furthermore, they give an explicit hardness result for their parameters, by showing that if
one can solve the (decisional) approximate common divisor problem then one can solve the (decisional) learning with
errors problem. The parameters in [CS15] are set as

(ρ, η, γ) = (λ, λ + d log(λ), Ω(d2λ log(λ))),

2



whered is the depth of the circuit to be evaluated homomorphically.Note thatρ is no longer extremely small compared
with η. We will sometimes refer to these parameters as theCheon-Stehĺe approximate common divisor problem.
We draw the reader’s attention to a typo in [CS15]: regardingthe security of the parameters against the multivariate
polynomial attack the authors wroteγ < η2 but should have writtenγ > η2; in any case the conditionγ > η2 is not
required to have secure parameters.

We will see that the lattice algorithms for ACD potentially work less well for the CRT-ACD and Cheon-Stehlé-
ACD. Hence these two variants potentially offer a higher degree of security, at least according to our current knowl-
edge. In particular, the Cheon-Stehlé-ACD seems to offer ahigher degree of security, which is not surprising since that
problem enjoys some evidence for its hardness.

2.2 Lattice basis reduction

The algorithms considered in this paper make use of lattice basis reduction algorithms such as LLL [LLL82]. Recall
that a lattice of rankn is a discrete subgroup ofRm that has rankn as aZ-module. In this paper we write elements
of a lattice as row vectors. Denote by〈u,v〉 the Euclidean inner product onRm and‖v‖ = 〈v,v〉1/2 the Euclidean
norm. We sometimes use the norm‖(v1, . . . , vn)‖1 = max{|vi|}. A latticeL is described by givingn basis vectors
v1, . . . ,vn, such thatL = {∑n

i=1 aivi : ai ∈ Z}.
The volume of a latticeL, denoteddet(L), is the volume of the paralleliped formed by any basis of the lattice.

The successive minimaλi(L) are the smallest real numbers such thatL containsi linearly independent vectors all
of Euclidean norm less than or equal toλi(L). Soλ1(L) is the length of the shortest non-zero vector in the lattice
L. The Gaussian heuristic states that, for a “random lattice”, the shortest non-zero vector in the lattice has Euclidean
norm approximately

√

n/(2πe) det(L)1/n. For details of the Gaussian heuristic see Ajtai [Ajt06] (formalising what
is meant by a “random lattice” is non-trivial and is beyond the scope of this paper). A commonly used heuristic is that
if L is a lattice that contains a vectorv of Euclidean norm less thandet(L)1/n thenv is (a multiple of) the shortest
vector in the lattice. A further consequence of [Ajt06] is that, for a “random” lattice of rankn, there exists a lattice
basisb1, . . . ,bn of L such that‖bi‖ ≈

√

n/(2πe) det(L)1/n for all 1 ≤ i ≤ n.
Let 1/4 < δ < 1. A basisb1, . . . ,bn for a latticeL is δ-LLL-reduced if the Gram-Schmidt vectorsb∗

i satisfy
|µi,j | ≤ 1/2 for 1 ≤ j < i ≤ n and

‖b∗i ‖2 ≥
(

δ − µ2
i,i−1

)

‖b∗i−1‖2

for 2 ≤ i ≤ n, whereµi,j = 〈bi,b
∗

j 〉/〈b∗

j ,b
∗

j 〉. It is known that an LLL-reduced lattice basis satisfies

det(L) ≤
n
∏

i=1

‖bi‖ ≤ 2n(n−1)/4 det(L)

and‖b1‖ ≤ 2(n−1)/2λ1(L), whereλ1(L) is the length of the shortest non-zero vector ofL. Furthermore, it is known
that an LLL-reduced basis satisfies

‖bi‖ ≤
(

2n(n−1)/4 det(L)
)1/(n+1−i)

for 1 ≤ i ≤ n.
It is folklore that LLL performs better on average than theseworst-case bounds suggest. Nguyen and Stehlé [NgSt06]

have studied the behaviour of LLL on “random” lattices and have hypothesised that an LLL-reduced basis satisfies the
improved bound

‖b1‖ ≤ (1.02)n det(L)1/n.

By analogy with the relationship between the worst-case bounds‖b1‖ < 2n/4 det(L)1/n and‖b1‖ < 2n/2λ1(L) it is
natural to suppose that

‖b1‖ ≤ (1.04)nλ1(L). (2)

Figure 4 of [NgSt06] shows that‖b∗

i+1‖ ≤ ‖b∗

i ‖ almost always, and certainly‖b∗

i+1‖ ≤ 1.2‖b∗

i ‖ with overwhelming
probability. Hence, we make the heuristic assumption that,for “random” lattices,‖b∗

i ‖ ≤ ‖b∗

1‖ for all 2 ≤ i ≤ n.
From this it is easy to show that, for2 ≤ i ≤ n,

‖bi‖ ≤
√

1 + (i − 1)/4‖b1‖.
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In other words, on average LLL produces a basis that behaves close to the Gaussian heuristic. The analysis of lattice
attacks in [DGHV10,CS15] is under an assumption of this type. We formalise this with the below heuristic assumption.

Assumption 1 LetL be a “random” lattice of rankn and letb1, . . . ,bn be an LLL-reduced basis forL. Then

‖bi‖ ≤
√
i(1.02)n det(L)1/n.

for all 1 ≤ i ≤ n.

In practice one uses lattice reduction algorithms such as BKZ that give better approximation factors. But the above
heuristics are sufficient for our analysis.

3 Simultaneous Diophantine approximation approach (SDA)

In this and the following two sections we describe the three most successful lattice-based algorithms to solve the ACD
problem when the error term is too large for exhaustive search and when sufficiently many samples are available.

This section recalls the simplest, and still one of the most effective, lattice attacks on ACD. It was first described by
Howgrave-Graham (see Section 2 of [HG01]) and was further developed in Section 5.2 of [DGHV10]. For the benefit
of non-expert readers we present all the details.

The basic idea of this attack is to note that ifxi = pqi + ri for 1 ≤ i ≤ t, whereri is small, then

xi

x0
≈ qi

q0

for 1 ≤ i ≤ t. In other words, the fractionsqi/q0 are an instance of simultaneous Diophantine approximationtoxi/x0.
If one can determine such a fractionqi/q0 then one can solve the ACD problem by computingr0 ≡ x0 (mod q0)
and hence(x0 − r0)/q0 = p. We will see that this attack does not benefit significantly from having an exact sample
x0 = pq0, so we do not assume that such a sample is given.

Following [DGHV10] we build a latticeL of rankt+ 1 generated by the rows of the basis matrix

B =















2ρ+1 x1 x2 · · · xt

−x0

−x0

. . .
−x0















. (3)

Note thatL contains the vector

v = (q0, q1, · · · , qt)B
= (2ρ+1q0, q0x1 − q1x0, · · · , q0xt − qtx0)

= (q02
ρ+1, q0r1 − q1r0, · · · , q0rt − qtr0)

Sinceqi ≈ 2γ−η the Euclidean norm ofv is approximately
√
t+ 12γ−η+ρ+1. We give a more precise estimate in

Lemma 1. We call this vector thetarget vector.
Since the basis matrixB of the latticeL is given in upper triangular form, the determinant ofL is easily computed

asdet(L) = 2ρ+1xt
0. Hence, if

√
t+ 1 2γ−η+ρ+1 <

√

t+ 1

2πe
det(L)1/(t+1)

then we expect by the Gaussian heuristic that the target vectorv is the shortest non-zero vector in the lattice. The attack
is to run a lattice basis reduction algorithm to get a candidatew for the shortest non-zero vector. One then divides the
first entry ofw by 2ρ+1 to get a candidate value forq0 and then computesr0 = x0 (mod q0) andp = (x0 − r0)/q0.
One can then “test” this value forp by checking ifxi (mod p) are small for all1 ≤ i ≤ t. We call this theSDA
algorithm .
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3.1 Heuristic analysis of the SDA Algorithm

This method is analysed in Section 5.2 of [DGHV10], where it is argued that ift < γ/ρ then there are likely many
vectors of around the same size or smaller as the desired vector. Hence it is required thatt > γ/ρ to have any chance
for this method to succeed, even disregarding the difficulties of lattice reduction methods to find the shortest vector.

We make some specific remarks, that are relevant for comparing this attack with the other attacks. First, this attack
only requires a single short vector, not a large number of short vectors. Second, the attack is heuristic because we are
assuming thatv is the only vector in the lattice that is shorter than the length predicted by the Gaussian heuristic.
However, this seems to be a relatively mild heuristic in practice. Third, if we wish to use LLL to break the system
we requirev to be shorter by an exponential factor than the second successive minimum. In other words, we need
2t/2‖v‖ ≤ √n det(L)1/(t+1). The factor2t/2 can be reduced using heuristics on the average-case behaviour of LLL,
or by using more powerful basis reduction algorithms such asBKZ.

We now repeat the analysis of [DGHV10], with an eye to the Cheon-Stehlé-ACD parameters, and also using a
more precise estimate of the target vector than was given in previous work.

Lemma 1. The expected length of the target vectorv has a tight upper bound of

0.47

√
t+ 1

p
2ρ+γ .

Proof. Note that both theqi and theri are random variables onZ with distributions

qi ← Uni{0, . . . , ⌊p−12γ⌋} and ri ← Uni{−2ρ, . . . 2ρ},

where Uni denotes the uniform distribution and← represents sampling from a distribution. It follows thatE
(

q2i
)

≈
1
3p

−222γ , E(ri) = 0 andE
(

r2i
)

≈ 1
32

2ρ. Furthermore, all of these random variables are independent, so we have

E
(

(q0ri − qir0)
2
)

= E
(

q20r
2
i

)

+E
(

q2i r
2
0

)

− 2E (q0riqir0)
= E

(

q20
)

E
(

r2i
)

+E
(

q2i
)

E
(

r20
)

− 2E (q0qi)E (ri)E (r0)
≈ 2

9p
−222(ρ+γ).

It follows that the root mean squared length ofv is given by

E
(

|v|2
)

1
2 ≈

(

2
9

)
1
2 (t+ 1)

1
2 p−12(ρ+γ) ≈ 0.47 (t+ 1)

1
2 p−12(ρ+γ).

Jensen’s Inequality shows thatE(|v|) ≤ E(|v|2) 1
2 , and this bound is tight for large dimensiont. This completes the

proof.⊓⊔

The estimate for the length ofv given in [DGHV10] is(t + 1)
1
2 2(ρ+γ−η), that is to say about twice the above

approximation (takingp ≈ 2η).
The attacker hopes that the lattice is a “gap lattice” in the sense that the first minimumλ1(L) = ‖v‖ is much

shorter than the lengthλ2(L) of the next shortest vector inL independent ofv. We apply the Gaussian heuristic to
estimate

λ2(L) ≈
√

(t+ 1)/(2πe) det(L)1/(t+1) ≈
√

(t+ 1)/(2πe)2(ρ+1+γt)/(t+1).

We know LLL succeeds in findingv if λ2(L) > 2t/2λ1(L), but on average one has a smaller exponential factor (or
one can use BKZ or other algorithms to find short vectors). Hence, the target vector is the shortest vector in the lattice
and is found by LLL if

0.47
√
t+ 1(1.04)t+12γ+ρ−η <

√

(t+ 1)/(2πe)2(ρ+1+γt)/(t+1). (4)

Van Dijk et al [DGHV10] show that, in order thatv is heuristically the shortest vector in the lattice, one needs to
uset > γ/η samples and a lattice of dimensiont + 1. Their analysis assumes thatρ is small and is not helpful when
considering the Cheon-Stehlé variant of the problem. Hence, we re-consider their analysis. Ignoring constants and the
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(1.04)t+1 term in the above equation, we find that a necessary (not sufficient) condition for the algorithm to succeed
is

t+ 1 >
γ − ρ

η − ρ
. (5)

For the Cheon-Stehlé variant we may haveρ close toη, which means the required dimension can grow very fast even
with relatively small values forγ. More precisely, [CS15] suggests

(ρ, η, γ) = (λ, λ+ d log(λ), Ω(d2λ log(λ)))

whered is the circuit depth andλ is the security parameter. Takingλ = 80 andd = 10 and settingΩ(x) = x we have
(ρ, η, γ) = (80, 143, 50575), which is very modest compared with the parameters in [DGHV10]. However, for these
values,(γ−ρ)/(η−ρ) ≥ 800, should be large enough to prevent any practical lattice attack. These arguments therefore
confirm the analysis from [CS15] that their approach should provide more efficient parameters for homomorphic
encryption.

The above analysis ignored some terms, so as a final remark we justify why these approximations are reasonable.
Equation (4) states that we need

(0.47)
√
2πe(1.04)t+12ρ−η < 2(ρ+1−γ)/(t+1).

Taking logs and noting thatρ < η < γ gives

η − ρ− 1− (t+ 1) log2(1.04) > (γ − ρ− 1)/(t+ 1) > 0.

Writing A = log2(1.04), B = η − ρ− 1 andC = γ − ρ− 1 this is

A(t+ 1)2 −B(t+ 1) + C < 0.

We are interested in the range oft for which this occurs, so it is natural to seek the smallestx > 0 for which
Ax2 − Bx + C = 0. Note thatA ≈ 0.06, C ≈ γ andB2 ≈ η2. If we assume thatη > 4ρ andη2 > γ then
0 < 4AC/B2 ≪ 1. UsingB2 − 4AC = B2(1− 4AC/B2) and

√
1− 2ǫ ≈ 1− ǫ for smallǫ we compute

√

B2 − 4AC ≈ B(1− 2AC/B2).

The smallest choice fort that satisfies the inequality is therefore close to

B −
√
B2 − 4AC

2A
≈ B −B(1− 2AC/B2)

2A
= C/B =

γ − ρ− 1

η − ρ− 1
.

One sees that this agrees with the original estimate, and so within that range of parameters, the term(1.04)t+1 does
not have any significant effect on the performance of the algorithm.

3.2 Further comments

It is interesting to consider this attack in the context of the CRT-ACD. In this variant we havexi = pjqi,j + ri,j for
1 ≤ j ≤ ℓ where eachri,j is small. It follows that the lattice contains the vectors

(q0,j2
ρ+1, q0,jr1,j − q1,jr0,j , · · · , q0,jrt,j − qt,jr0,j)

for all 1 ≤ j ≤ ℓ and these all have similar length. It is important to note that any one of these vectors allows to compute
one of the prime factorspj , by computingq0,j from the first component of the vector and thenpj = ⌊x0/q0,j⌉. But
if (u12

ρ+1, u2, . . . , ut) is a short linear combination of several of these vectors then there is no reason to expectx0

(mod u1) to be a small integer, or that⌊x0/u1⌋ is one of the primes in the private key.
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4 Orthogonal based approach (OL)

Nguyen and Stern (see for example [NgSt01]) have demonstrated the usefulness of the orthogonal lattice in cryptanal-
ysis, and this has been used in several ways to attack the ACD problem. Appendix B.1 of [DGHV10] gives a method
based on vectors orthogonal to(x1, . . . , xt). Their idea is that the lattice of integer vectors orthogonal to (x1, . . . , xt)
contains the sublattice of integer vectors orthogonal to both (q1, . . . , qt) and (r1, . . . , rt). Later in Appendix B.1
of [DGHV10] a method is given based directly on vectors orthogonal to(1,−r1/R, . . . ,−rt/R), whereR = 2ρ.
Ding and Tao [DT14] have given a method based on vectors orthogonal to(q1, . . . , qt). Cheon and Stehlé [CS15] have
considered the second method from Appendix B.1 of [DGHV10].

Our analysis (as with that in [DGHV10]) and experiments suggest all these methods essentially have the same
performance in both theory and practice. Indeed, all three methods end up computing short vectors that are orthogonal
to the vector(q1, . . . , qt) and some vector related to the error termsri, for example see Lemma 3. Hence, in this paper
we follow [DGHV10,CS15] and study the use of vectors orthogonal to (1,−r1/R, . . . ,−rt/R). The attacks do not
benefit significantly from having an exact samplex0 = pq0 so we do not use it.

Let R = 2ρ be an upper bound on the absolute value of the errorsri in xi = pqi + ri. LetL be a lattice inZt+1

with basis matrix

B =















x1 R
x2 R
x3 R
...

. . .
xt R















. (6)

Clearly the rank ofB is t. The lattice volume was estimated in previous works, but we give an exact formula.

Lemma 2. The Gram matrixBB
T ofL is of the formR2

It +x
T
x wherex = (x1, . . . , xt) andIt is thet× t identity

matrix. The volume of the lattice isRt−1
√

R2 + x2
1 + · · ·+ x2

t .

Proof. The claim aboutBB
T is easily checked by induction. Writing this asBB

T = A+ x
T
x whereA = R2

It is
invertible, the matrix determinant lemma states thatdet(BB

T ) = det(A)(1 + xA
−1

x
T ). Sincedet(A) = R2t and

A
−1 = 1

R2 It we find

det(BB
T ) = R2t

(

1 +
x2
1 + · · ·+ x2

t

R2

)

= R2(t−1)(R2 + x2
1 + · · ·+ x2

t ).

The final claim comes from the fact that the lattice volume is
√

det(BBT ). ⊓⊔

Any vectorv = (v0, v1, · · · , vt) ∈ L is of the form

v = (u1, · · · , ut)B =

(

t
∑

i=1

uixi, u1R, u2R, · · · , utR

)

,

whereui ∈ Z. The main observation of Van Dijk et al. [DGHV10] is

v0 −
t
∑

i=1

vi
R
ri =

t
∑

i=1

uixi −
t
∑

i=1

uiR

R
ri =

t
∑

i=1

ui(xi − ri) = 0 (modp). (7)

Since we don’t knowp, we wish to have a linear equation overZ. The equation holds if|v0 −
∑t

i=1
vi
R ri| < p/2. The

following lemma gives a bound onv that implies we get an integer equation as desired.

Lemma 3. Letv = (u0, u1, u2, · · · , ut)B. Let ||v|| ≤ 2η−2−log2(t+1). Then

|v0 −
t
∑

i=1

uiri| < p/2 and
t
∑

i=1

uiqi = 0.
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Proof. Letv = (v0, v1, · · · , vt) =
(

∑t
i=1 uixi, u1R, u2R, · · · , utR

)

and letN = ||v||. Then|v0| ≤ N and|uiri| ≤
|uiR| ≤ N for 1 ≤ i ≤ t. Thus

∣

∣

∣

∣

∣

v0 −
t
∑

i=1

uiri

∣

∣

∣

∣

∣

≤ |v0|+
t
∑

i=1

|uiri| ≤ (t+ 1)N.

SinceN ≤ 2η−2−log2(t+1), we have(t+ 1)N < 2η−2 < p/2 sincep > 2η−1. Hence|v0 −
∑t

i=1 uiri| < p/2.

To prove
t
∑

i=1

uiqi = 0, suppose
t
∑

i=1

uiqi 6= 0 so thatp|
t
∑

i=1

uiqi| ≥ p > 2η−1. Sincexi = pqi + ri, we have

p

∣

∣

∣

∣

∣

t
∑

i=1

uiqi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

t
∑

i=1

ui(xi − ri)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

t
∑

i=1

uixi

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

t
∑

i=1

uiri

∣

∣

∣

∣

∣

.

But, by the previous argument, this is≤ (t+ 1)N < 2η−1, which is a contradiction.⊓⊔

In other words, every short enough vectorv in the lattice gives rise to an inhomogeneous equationv0 =
∑

uiri in
thet variablesri, and a homogeneous equation

∑

i uiqi = 0 in thet variablesqi. There are therefore two approaches
to solve the system. The papers [DGHV10,CS15,DT14] uset inhomogeneous equations and solve for theri, but we
believe it is simpler and faster to uset − 1 equations and then find the kernel of the matrix formed by themto solve
for (q1, . . . , qt). We call these methods theOL algorithm .

Hence, it suffices to havet − 1 linearly-independent vectors in the latticeL that satisfy the bound of Lemma 3.
Hence we run lattice reduction and take thet− 1 smallest vectors in the output basis (they are linearly independent as
required).

To analyse the method we use Assumption 1. This shows that onecan compute using LLLt − 1 linearly-
independent vectors of the correct size as long as

√
t(1.02)t det(L)1/t ≤ 2η−2−log2(t+1).

By Lemma 2 we approximatedet(L) by 2ρ(t−1)+γ . Hence, the condition for success is

4
√

t(t+ 1)(1.02)t2ρ+(γ−ρ)/t ≤ 2η.

Following the analysis in [DGHV10,CS15], ignoring constants and the exponential approximation factor(1.02)t from
the lattice reduction algorithm, then a necessary condition on the dimension ist ≥ (γ − ρ)/(η − ρ), which is the
same as equation (5) for the SDA method.3 Hence, we deduce that the OL method is not more powerful than the SDA
method. Our experimental results confirm this, though they suggest the OL method is slightly faster (due to the smaller
size of entries in the basis matrix defining the lattice).

We give one remark about the CRT-ACD problem. Recall that each ACD instancexi in this problem satisfies
xi ≡ ri,j (mod pj) for many primespi, whereri,j is small. Hence there are many variants of equation (7)

v0 −
t
∑

i=1

vi
R
ri,j =

t
∑

i=1

uixi −
t
∑

i=1

uiR

R
ri,j =

t
∑

i=1

ui(xi − ri,j) = 0 (modp)j .

In practice this may cause the lattice method to be much less effective, since different short vectors may correspond to
different choices of primepj and hence different values for theri,j . It remains an open problem to analyse the security
of this variant of the ACD problem.

3 There is no need to repeat the more careful analysis we already did for SDA, since we are lower-bounding the OL method by the
SDA method.
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5 Multivariate polynomial approach (MP)

Howgrave-Graham [HG01] was the first to consider reducing the approximate common divisor problem to the problem
of finding small roots of multivariate polynomial equations. The idea was further extended in Appendix B.2 of van
Dijk et al [DGHV10]. Finally, a detailed analysis was given by Cohn and Heninger [CH13] and a variant for the case
when the “errors” are not all the same size was given by Takayasu and Kunihiro [TK13,TK14]. This approach has
some advantages if the number of ACD samples is very small (the original context studied in [HG01]), but we focus
on the use of this method in practical cryptanalysis where the number of samples is large.

Our heuristic analysis and experimental results suggest that, assuming sufficiently many ACD samples are avail-
able, the best choice of parameters for the multivariate approach is to use linear polynomials, in which case the
algorithm is equivalent to the orthogonal lattice method. In other words, we find that the multivariate approach seems
to have no advantage over the orthogonal lattice method.

The multivariate approach can be applied to both the full andpartial ACD problems, but it is simpler to explain
and analyse the partial ACD problem. Hence, in this section we restrict to this case only.4

We change notation from the rest of the paper to follow more closely the notation used in [CH13]. Note that the
symbolsXi are variables, not ACD samples. Hence, letN = pq0 and letai = pqi + ri for 1 ≤ i ≤ m be our ACD
samples, where|ri| ≤ R for some given boundR. The idea is to construct a polynomialQ(X1, X2, . . . , Xm) in m
variables such thatQ(r1, · · · , rm) ≡ 0 (modpk) for somek. The parametersm andk are optimised later. In [CH13],
such a multivariate polynomial is constructed as integer linear combinations of the products

(X1 − a1)
i1 · · · (Xm − am)imN ℓ

whereℓ is chosen such thati1 + · · ·+ im + ℓ ≥ k.
An additional generality is to choose a degree boundt ≥ k (do not confuse this with the use of the symbolt

previously) and impose the conditioni1 + · · · + im ≤ t. The valuet will be optimised later. There is no benefit to
takingk > t, as it leads to the entire matrix for the caset = k being multiplied by the scalarNk−t.

The latticeL is defined by the coefficient row vectors of the polynomials

f[i1,...,im](X1, . . . , Xm) = (RX1 − a1)
i1 · · · (RXm − am)imN ℓ, (8)

such thati1 + · · · + im ≤ t andℓ = max(k −∑j ij , 0). For example, the values(t,m, k) = (3, 2, 1) lead to the
following basis matrix.

B =



























f[i1,i2] 1 X1 X2 X2
1 X1X2 X2

2 . . . X3
2

f[0,0] N 0 0 0 0 0 . . . 0
f[1,0] −a1 R 0 0 0 0 . . . 0
f[0,1] −a2 0 R 0 0 0 . . . 0
f[2,0] a21 −2a1R 0 R2 0 0 . . . 0
f[1,1] a1a2 −a2R −a1R 0 RR 0 . . . 0
f[0,2] a22 0 −2a2R 0 0 R2 . . . 0
...

...
...

...
...

...
...

. . .
...

f[0,3] −a32 0 3a22R 0 0 −3a2R2 . . . R3



























. (9)

It is shown in [CH13] thatL has dimensiond =
(

t+m
m

)

and determinant

det(L) = R(t+m
m ) mt

m+1N(k+m
m ) k

m+1 = 2d
ρmt
m+1+(

k+m
m ) γk

m+1

where we use the natural choiceR = 2ρ.
Let v be a vector inL. One can interpretv = (vi1,··· ,imRi1+···+im) as the coefficient vector of a polynomial

Q(X1, . . . , Xm) =
∑

i1,··· ,im

vi1,··· ,imX i1
1 · · ·X im

m .

4 Since the orthogonal lattice method performs equally well for both full and partial ACD, it suffices to compare the methods in
the case most favourable to the multivariate polynomial approach.
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If |Q(r1, · · · , rm)| < pk then we haveQ(r1, · · · , rm) = 0 over the integers, so we need to bound|Q(r1, · · · , rm)|.
Note that

|Q(r1, · · · , rm)| ≤
∑

i1,··· ,im

|vi1···im ||r1|i1 · · · |rm|im

≤
∑

i1,··· ,im

|vi1···im |Ri1 · · ·Rim

= ‖v‖1.

Hence, if‖v‖1 < pk then we have an integer polynomial with the desired root. We call a vectorv ∈ L such that
‖v‖1 < pk a target vector. We will need (at least)m algebraically independent target vectors to be able to perform
elimination (using resultants or Gröbner basis method) toreduce to a univariate polynomial equation and hence solve
for (r1, . . . , rm). One then computesp = gcd(N, a1 − r1). Note that solving multivariate polynomial equations of
degree greater than one in many variables is very time consuming and requires significant memory. In practice, the
elimination process using Gröbner basis methods is fasterif the system is overdetermined, so we generally use more
thanm polynomials. We call this process theMP algorithm .

We remark that the case(t, k) = (1, 1) gives essentially the same lattice as in equation (6) and so this case of the
MP algorithm is the same as the orthogonal lattice attack (this was already noted in [DGHV10] and is also mentioned
in Section 6 of [CH13] where such parameters are called “unoptimised”). Because of this, one can always say that
the MP attack is at least as good as the orthogonal lattice attack. Our concern is whether takingt > 1 gives rise to a
better attack. We will argue that, when the number of ACD samples is large, the best choices for the MP algorithm are
(t, k) = (1, 1), and so the MP method seems to have no advantage over the orthogonal lattice method.

5.1 The Cohn-Heninger Analysis

Cohn and Heninger [CH13] give a heuristic theoretical analysis of the MP algorithm and suggest optimal parameter
choices(t,m, k). Their paper does this very briefly and omits some details, sowe sketch their approach here.

The MP algorithm succeeds if it producesm vectors in the lattice such that‖v‖1 < pk. Using‖v‖1 ≤
√
d‖v‖

(where the latter is the Euclidean norm) and the bounds from Assumption 1 we have that an LLL-reduced basis satisfies

‖bi‖1 ≤ d(1.02)d det(L)1/d

whered is the dimension of the lattice. If this bound is less thanpk ≈ 2ηk then we will have enough target vectors.
Hence we need

dd(1.02)d
2

det(L) < 2ηkd

and so we need

d log2(d) + d2 log2(1.02) + dρ
mt

m+ 1
+ γ

(

k +m

m

)

k

m+ 1
< kηd. (10)

Cohn and Heninger [CH13] introduce a parameterβ = η/γ ≪ 1 so thatp ≈ Nβ. They work with the equation

mtρ

(m+ 1)k
+

γkm

(m+ 1)tm
< βγ = η (11)

which is a version of equation (10), with some terms deleted and approximating
(

k+m
m

)

≈ km andd =
(

t+m
m

)

≈ tm.
Their analysis assumesm is fixed and considers takingt large. They impose the asymptotic relationshipt ≈

β−1/mk, which means thatt≫ k. Their method allows errors up toR = 2ρ = Nβ(m+1)/m

. They requireβ2 log(N)≫
1 for the method to work5, which is equivalent toη2 ≫ γ. The lattice dimension in their method is

(

t+m
m

)

= O(tm) =
O(β−1km) > γ/η, and so yet again we encounter the same dimension bound as theprevious methods (at least, when
ρ is small). The main “heuristic theorem” of [CH13] can be stated as: for fixedm, if β = η/γ whereη2 ≫ γ and

5 It is mentioned in Section 2.1 of [CH13] that this can be relaxed toβ1+ǫ log(N) ≫ 1 if a lattice reduction algorithm with a
sub-exponential approximation factor is available.
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ρ = log2(R) < η(1 + o(1))β1/m then one can solve the ACD problem in polynomial time. The claim of polynomial-
time complexity is correct, but does not imply that the MP approach is better than the SDA or OL approaches: The
input size is proportional toγ and all the algorithms use lattices of dimension approximately γ/η whenρ is small, so
they are all polynomial timeif they return a correct solution to the problem.

The conditionη2 ≫ γ already means the MP attack can be avoided in practice relatively easily. We remark that
the orthogonal lattice method does not have any such hard limit on its theoretical feasibility. However, in practice the
restrictionη2 ≫ γ is not so different from the usual condition that the dimension must be at leastγ/η: if γ > η2

then the required dimension would be at leastη, which is infeasible for lattice reduction algorithms for the sort of
parameters used in practice.

It is also important to consider the parameters of interest in the Cheon-Stehlé scheme. Hence we now suppose
ρ ≈ η (e.g.,ρ/η = 0.9) andγ = η1+δ for someδ > 0 and ask if the MP method can be better than the OL method in
this setting. The conditiontρ < kη implies thatt ≈ k, (recall thatt ≥ k) in which case

(

k+m
m

)

≈ d =
(

t+m
m

)

and so
the bound from equation (13) suggests the MP approach has no advantage over other methods for parameters of this
type. Our experimental results confirm this (see Table 1).

5.2 Improved Heuristic Analysis

We now consider the parameters more generally, unlike in [CH13] where it was assumed that the optimal solution
would be to taket, k > 1.

Section 2.1 of [CH13] suggestsk ≈ (β1+ǫ log2(N))1/(2ǫm). Takingm → ∞ with these parameters results in
(t, k) = (1, 1), which is consistent with our claim that(t, k) = (1, 1) is optimal whenm may be chosen to be large.
However, one could speculate that a general analysis could lead to different asymptotics. So we give a more general
analysis.

We now derive some useful necessary conditions from equation (10) for the algorithm to succeed. Noting that, for
largem, mt

m+1 ≈ t we see that it is necessary to have

tρ < kη, (12)

and sot cannot grow too fast compared withk. Similarly, we see it is necessary thatγ
(

k+m
m

)

k
m+1 < kηd which is

equivalent to

d =

(

t+m

m

)

>
γ

η

(

k +m

m

)

1

m+ 1
. (13)

Whenk = 1 then the right hand side is equal toγ/η, but it gets steadily larger ask grows. This provides some
evidence thatk > 1 may not lead to an optimal attack. The bound also shows that the MP method does not overcome
the minimal degree boundγ/η we already saw for the SDA and OL methods, at least whenρ is small. (In the case
(t, k) = (1, 1) equation (10) essentially becomesd+1 > γ/(η− ρ) which we have already seen in Sections 4 and 3.)

More generally, equation (10) implies, whenm is large,

dρt + γ

(

k +m

m

)

k
m+1 < kηd.

Dividing by k and re-arranging gives

d >
γ

η − t
kρ

(

k +m

m

)

1

m+ 1
.

Since t
k ≥ 1 and

(

k+m
m

)

1
m+1 ≥ 1 we see that this is never better than the lattice dimension boundd > γ

η−ρ from
equation (5). Hence, there seems no theoretical reason why,whenm is large, the MP method should be better than the
SDA or OL methods. Our practical experiments confirm this (see below).
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Table 1. Comparison between different parameter choices(t, k) in the multivariate polynomial algorithm withη = 100. The
left hand table reports, forη = 100, the largest value forρ that can be solved with reasonable probability for the givenchoice
(γ, η, t, k,m). The right hand table compares running times for larger examples.dim(L), TLLL, and TGRB refer to the lattice
dimension, running time (seconds) of the LLL algorithm and running of the Gröbner basis algorithms to solve the resulting poly-
nomial systems respectively. The notation ‘**’ indicates that the computation was aborted before a result was found after the fixed
time period of a few minutes.

γ ρmax t k m dim(L) TLLL TGRB
150 95 1 1 30 31 0.020 0.020

90 3 2 8 165 0.350 0.070
85 4 3 4 70 0.220 0.040

300 90 1 1 30 31 0.030 0.130
60 3 2 5 56 0.310 0.770
60 4 3 4 70 4.150 15.150

600 80 1 1 30 31 0.070 0.020
35 3 2 4 35 1.020 0.170
10 4 3 3 35 2.930 4.640

γ ρ t k m dim(L) TLLL TGRB
300 10 1 1 4 5 0.020 0.000

3 2 4 35 0.300 0.050
50 1 1 6 7 0.010 0.010

3 2 4 35 0.110 0.030
600 10 1 1 7 8 0.020 0.000

3 2 4 35 1.070 6.100
30 1 1 9 10 0.030 0.010

3 2 4 35 1.020 5.330
1200 10 1 1 14 15 0.030 0.010

3 2 5 56 14.130 347.200
20 1 1 15 16 0.030 0.010

3 2 5 56 13.890 297.820
2400 10 1 1 27 28 0.190 0.010

3 2 5 56 32.710 **
20 1 1 30 31 0.260 0.020

3 2 5 56 32.480 **
5000 15 1 1 119 120 102.660 0.675

2 1 10 66 10.380 **
30 1 1 72 120 84.070 0.680

2 1 11 78 18.010 **
8000 10 1 1 119 120 136.530 0.670

2 1 14 120 219.140 **
3 1 6 84 74.490 **

15 1 1 119 120 145.770 0.670
2 1 14 120 226.370 **

20 1 1 1 120 164.750 0.670
2 1 14 120 300.100 **

5.3 Comments

A further major advantage of the SDA and OL methods compared with the MP approach witht > 1 is that the MP
method witht > 1 requires solving systems of multivariate polynomial equations, and the cost of this stage can dwarf
the cost of the lattice stage.

Note that the heuristics differ between the casest = 1 andt > 1. Whent > 1 the number of target vectors required
is much smaller than the dimensiond = dim(L) =

(

t+m
m

)

, however we require the corresponding polynomials to be
algebraically independent which is a much stronger assumption than linear independence of the corresponding vectors.
On the other hand, whent = 1 we requirem = d− 1 short vectors so need a stronger assumption on the shape of the
lattice basis.

Table 1 gives a comparison of different parameters for the MPmethod withη = 100 and varying values ofγ. The
left hand table shows, for different choices of(t, k), the maximalρ such that the MP algorithm with parameters(t, k)
can solve the problem with high probability. This table shows that(t, k) = (1, 1) allows to solve a wider range of
parameters than other choices, which confirms our argument that(t, k) = (1, 1) is better than other parameter choices.
The right hand side of Table 1 considers larger values forγ (still with η = 100) and the aim of this table is to emphasise
the considerable increase in the running time when usingt > 1.

It is also important to consider the parameters of interest in the Cheon-Stehlé scheme. Hence we now suppose
ρ ≈ η (e.g.,ρ/η = 0.9) and ask if the MP method can be better than the OL method in this setting. The condition
tρ < kη implies thatt ≈ k, (recall thatt ≥ k) in which case

(

k+m
m

)

≈ d =
(

t+m
m

)

. In the caset = k, dividing
equation (10) bydt impliesd ≥ m + 1 > γ/(η − ρ). Again, this suggests the MP approach has no advantage over
other methods for parameters of this type. Our experimentalresults confirm this (see Table 1).

Table 1 gives a comparison of different parameters for the MPmethod. The left hand table is forη = 100 and
varying values ofγ. For different choices of(t, k) we determine the maximalρ such that the MP algorithm with
parameters(t, k) can solve the problem with high probability. This table shows that(t, k) = (1, 1) allows to solve
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Table 2.Comparison of orthogonal lattice (OL) and simultaneous Diophantine approximation (SDA) algorithms (note that the MP
method with(t, k) = (1, 1) is the same as the OL method).

η γ ρ dim(L) OL time (seconds) SDA time (seconds)
86 480 75 120 1.700 2.380

70 40 0.110 0.200
50 24 0.030 0.050

92 1920 50 56 1.540 5.020
98 4320 50 200 1242.640 4375.120
104 7680 50 200 3047.500 14856.630
110 12000 20 200 5061.760 27578.560

10 200 3673.160 23428.410

a wider range of parameters than other choices, which confirms our argument that(t, k) = (1, 1) is better than
other parameter choices. The second table considers largervalues forγ and the aim of this table is to emphasise the
considerable increase in the running time when usingt > 1.

6 Experimental Observation

We have conducted extensive experiments with the SDA, OL andMP methods. For a small summary see Table 2. As
with all lattice attacks, the running time depends mostly onthe dimension of the lattice, and then on the size of the
integers in the basis for the lattice. In general our experiments confirm that the OL method is the fastest and most
effective algorithm for solving the ACD problem. For many more tables of experimental results we refer to Chapter 5
of [Geb16].

The parameters(ρ, η, γ) in Table 2 are selected according to the formula(λ, λ+d log(λ), d2λ log(λ)) from [CS15],
whereλ is a security parameter andd > 0 is the depth of a circuit to allow decryption of depthd. We tookλ = 80 and
varyd from 1 to 5. Of course, we did not expect to solve this system quickly for the choiceρ = λ (and our experiments
confirmed this). We only report timings for slightly smallervalues forρ.

7 Pre-processing of the ACD samples

The most important factor in the difficulty of the ACD problemis the ratioγ/η, which is the size of the integersxi

relative to the size ofp. If one can lowerγ for the samep and without changing the size of the errors then one gets an
easier instance of the ACD problem.

Hence, it is natural to consider a pre-processing step wherea large number of initial samplesxi = pqi + ri are
used to form new samplesx′

j = pq′j + r′j with q′j significantly smaller thanqi. The main idea we consider for doing
this is by taking differencesxk − xi for xk > xi andxk ≈ xi. The essential property is that ifxk ≈ xi thenqk ≈ qi
but rk andri are not necessarily related at all. Hencexk − xi = p(qk − qi) + (rk − ri) is an ACD sample for the
same unknownp but with a smaller value forq and a similar sized errorr. It is natural to hope6 that one can iterate
this process until the samples are of a size suitable to be attacked by the orthogonal lattice algorithm.

This idea is reminiscent of the Blum-Kalai-Wasserman (BKW)algorithm [BKW03] for learning parity with noise
(LPN). In that case we have samples(a, b) wherea ∈ Z

n
2 is a vector of lengthn andb = a · s+ e, wheres ∈ Z

n
2 is a

secret ande is a noise term which is usually zero. we wish to obtain samples such thata = (1, 0, 0, . . . , 0), or similar,
and we do this iteratively by adding samples(ak, bk)+ (ai, bi) where some coordinates ofak andai agree. The result
is an algorithm with subexponential complexity2n/ log(n), compared with the naive algorithm (guessing alls ∈ Z

n
2 )

which has complexity2n. In our context we do not have(qi, pqi + ri) but onlyxi = pqi + ri, however we can use the
high-order bits ofxi as a proxy for the high order bits ofqi and hence perform a similar algorithm. A natural question
is whether this leads to a faster algorithm for the ACD problem.

6 At first glance this approach may not seem to have any advantage over directly forming a lattice from the samples. But we stress
that this is not the case. Imagine that one hasτ > 106 ACD samples. One would not work with a lattice of dimension greater
than a million. Instead the idea is to construct a smaller list of “better quality” samples from the original ones, and then solve a
lattice problem corresponding to the smaller set of samples.
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There are several approaches one might attempt. Letx1, . . . , xτ be the initial list ofγ-bit ACD samples.

1. (Preserving the sample size) Fix a small boundB (e.g.,B = 16) and selectB samples (without loss of generality
call themx1, . . . , xB) such that the leading coefficients in baseB are all distinct. For each of the remainingτ −B
samples, generate a new sample by subtracting the one with the same leading coefficient. The result isτ − B
samples each of sizeγ − log2(B) bits.

2. (Aggressive shortening) Sort the samplesx1 ≤ x2 ≤ · · · ≤ xτ and, for some small thresholdT = 2γ−µ, generate
new samples by subtractingxi+1 − xi when this difference is less thanT . The new samples are of size at most
γ − µ bits, but there are far fewer of them.

7.1 Preserving the sample size

This first method is analysed briefly in [Geb16] and we give further informal discussion here. SupposeB = 2b. After
I iterations of the method we have generated approximatelyτ − IB samples, each ofγ − Ib bits. However, we must
consider the size of the errors. The original samplesxi = pqi + ri have errors|ri| ≤ 2ρ, and the samples at iteration
k are of the form

x =

2k
∑

i=1

cixi where ci = ±1

and so the error terms behave like a “random” sum of2k ρ-bit integers. Since theri are uniformly distributed in
[−2ρ, 2ρ], for largek the valuer =

∑

i ciri has mean0 and variance132
2ρ+k. So we expect|r| ≤ 2ρ+k/2. Once

ρ+ k/2 > η then the errors have grown so large that we have essentially lost all information aboutp, and the method
is no good. Hence, an absolute upper limit on the number of iterations is2(η − ρ). This means that after the final
iteration the samples are reduced to bitlength no fewer thanγ − 2b(η − ρ) bits.

In terms of lattice attacks, an attack on the original problem requires a lattice of dimension roughlyγ/η (assuming
ρ≪ η). After k iterations of pre-processing we would need a lattice of dimension

γ − bk

η − (ρ+ k/2)
.

Even in the best possible case when one can takek = 2(η − ρ) and keep the denominator constant at(η − ρ), we see
that the lattice dimension is lowered fromγ/η to (γ/η)− 2b. Since a typical value forb is 8 or 16, this approach can
make very little difference to the problem.

7.2 Sample amplification

First experiments may lead one to believe that the aggressive shortening approach is fruitless. It is natural to choose
parameters so that the lists are reduced at each iteration bysome constant factor, and so the number of samples
decreases exponentially in terms of the number of iterations. Eventually one has too few samples to run any of the
previously mentioned lattice algorithms.

However, it turns out that a very simple strategy can be used in practice to increase the number of samples again.
The idea is to generate new samples (that are still about the same bitlength) by taking sums/differences of the initial
list of samples. This is similar to ideas used to amplify the number of samples for solving LPN or LWE [Lyu05].

Let L = {x1, . . . , xτ} be a list of ACD samples, withxk = pqk + rk having mean and variance given by
µ = E(xk) = pE(qk) = 2γ−1 and variance given by

Var(xk) = p2Var(qk) + Var(rk) = 1
32

2(γ−1) + 1
122

2ρ

= 1
32

2(γ−1)
(

1 + 2−2(γ−ρ)
)

.

We generatem random sumsS1, . . . , Sm of l elements ofL, that is to say we consider values of the form

Sk =

l
∑

i=1

xki [k = 1, . . . ,m],
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which have mean and variance given by

E(Sk) = l2γ−1 and Var(Sk) =
1
3 l2

2(γ−1)
(

1 + 2−2(γ−ρ)
)

.

We note that (providedl is not too large) two such random variablesSk andSk′ are usually sums of different ACD
samples and so are usually independent. In any case, we can obtain many samples (withm potentially up to

(

τ
l

)

) of a
more peaked distribution, albeit with a slightly larger variance. Hence, not only have we created a much larger pool
of samples, the non-uniform distribution of these samples makes them even more attractive for an algorithm based on
computing neighbouring differences.

Recall that the next stage of the algorithm will be to sort thenew samplesS1, . . . , Sm to obtain the listS(1) ≤ · · · ≤
S(m). We call these theorder statistics. We then consider the neighbouring differences orspacingsTk = S(k+1)−S(k)

for k = 1, . . . ,m−1. In order to analyse the effectiveness of this approach we need to derive the statistical distribution
of the spacings.

The statistical distribution of spacings arising from a general distribution is considered by Pyke [Pyk65], where it
is shown that such generic spacings have Exponential distributions, and such an approach gives Lemma 4. We recall
that the distribution functionF for a random variableW onR is the monotonic functionF (w) = P(W ≤ w), which
gives the density functionf = F ′ of W as the derivative ofF (where this exists) and the inverse distribution function
F−1 of W as the inverse function toF . Furthermore, a positive random variableW ∼ Exp(λ) is an Exponential
random variable with (rate) parameterλ if its density functionfW (w) = λ exp(−λw) (w > 0), whenE(W ) = λ−1

and Var(W ) = λ−2, so an Exponential random variable has the same mean and standard deviation.

Lemma 4. SupposeZ1, . . . , Zm are independent and identically distributed random variables onR with common
distribution functionF , inverse distribution functionF−1 and density functionf = F ′. If Z(1) ≤ . . . ≤ Z(m)

denote the order statistics ofZ1, . . . , Zm, then thekth spacingZ(k+1) − Z(k) is well-approximated for largem as an
Exponential random variable with (rate) parameterm f

(

F−1
(

k
m

))

.

Proof. Equations (4.9) and (4.10) of Pyke [Pyk65] show that thekth spacing

Z(k+1) − Z(k) =
1

(m− k)

(1−Ak+1)

f (F−1 (Ak+1))
Yk,

whereYk ∼ Exp(1) is an Exponential random variable andAk+1 essentially lies between thekth and (k + 1)th

order statistics ofm random variables uniformly distributed on(0, 1). ThusAk+1 essentially lies between two random
variables with mean k

m+1 and k+1
m+1 , so to a good approximationAk+1 ≈ k

m for largem.

1

(m− k)

(1−Ak+1)

f (F−1 (Ak+1))
≈ 1− k

m

(m− k)

1

f
(

F−1
(

k
m

)) =
1

mf
(

F−1
(

k
m

)) .

As the multiple of an Exponential random variable is also an Exponential distribution with a suitably defined parameter,
we to a very close approximation

Z(k+1) − Z(k) ∼ Exp
(

m f
(

F−1
(

k
m

)) )

. ⊓⊔

We use Lemma 4 to give the distribution of the spacings in three situations of interest, namely when the underlying
distributions are Uniform, Exponential and Normal. The distribution of the original ACD samplesx1, . . . , xτ , and
hence random sumsS1, . . . , Sm whenl = 1, are well-approximated by a Uniform distribution on(0, 2γ), In such a
situation, the distribution of the consequent spacings hasan Exponential distribution. More generally, the sum ofl > 1
such distributions (Uniform or Exponential) is well-approximated by a Normal distribution even for moderatel, but
the distribution of such a sum could always be calculated exactly if required using Lemma 4.

– Uniform Distribution. SupposeZ1, . . . , Zm ∼ Uni(0, A) are uniformly distributed on(0, A), thenZ1, . . . , Zm

have inverse distribution functionF−1(u) = Au (0 ≤ u ≤ 1) and density functionf(z) = A−1 (0 ≤ z < A).
Thusf

(

F−1 (u)
)

= A−1, and the spacings have an Exponential distribution given by

Z(k+1) − Z(k) ∼ Exp
(

mA−1
)

with mean
A

m
.
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– Exponential Distribution. SupposeZ1, . . . , Zm ∼ Exp(λ) are exponentially distributed with (rate) parameterλ
(meanλ−1), thenZ1, . . . , Zm have inverse distribution functionF−1(u) = −λ−1 log(1 − u) (0 ≤ u < 1) and
density functionf(z) = λ exp(−λz) (z > 0). Thusf

(

F−1 (u)
)

= λ(1 − u) (0 ≤ u < 1), and the spacings have
an Exponential distribution given by

Z(k+1) − Z(k) ∼ Exp(λ(m− k)) with mean
1

λ(m− k)
.

– Normal Distribution. SupposeZ1, . . . , Zm ∼ N
(

µ, σ2
)

are normally distributed with meanµ and varianceσ2.
If we let F−1 andf respectively denote the inverse distribution function anddensity function of such a N(µ, σ2)
random variable, then

f
(

F−1 (u)
)

=
g
(

G−1 (u)
)

σ
,

whereG−1 andg are respectively the inverse distribution function and density function of a standard Normal
N(0, 1) random variable. We therefore letH(u) denote the functiong(G−1(u))−1, so

H(u) =
1

g(G−1(u))
= (2π)

1
2 exp

(

InverseErfc(2u)2)
)

[0 < u < 1],

whereInverseErfc denotes the inverse function to the complementary error function, and we illustrate this
functionH in Figure 1. It can be seen thatH is a moderately small value away from the extreme order statistics,
for exampleH(u) ≈ 4 for 0.2 < u < 0.8. Thus the spacings have an Exponential distribution (with parameter
depending onk) given by

Z(k+1) − Z(k) ∼ Exp

(

m

σ H
(

k
m

)

)

with mean
σ H

(

k
m

)

m
.

7.3 Aggressive shortening

Having shown that the sample amplification technique leads to relatively small spacings, we can now put everything
together. The idea is to start with a listL = {x1, . . . , xτ} of ACD samples of mean value2γ−1 and standard deviation
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σ0 ≈ 3−
1
2 2(γ−1). One first amplifies this to a list ofm samplesSk. One then sorts theSk to get the order statistics

S(k).7 Compute the spacingsTk = S(k+1) − S(k) for k = 1, . . . ,m− 1 and store theτ = m/2 “middle” spacings as
input to the next iteration of the algorithm. AfterI iterations one then applies the orthogonal lattice attack.

We now analyse the method. The complexity is proportional toIm log(m), since each iteration computes a sorted
list of sizem. The mean and the standard deviation of the spacings is inversely proportional tom, so we would wish
to takem to be very large. Suppose, at thej-th iteration, we have a list ofτj−1 valuesY (j−1)

1 , . . . , Y
(j−1)
τj−1 (soτ0 = τ )

with standard deviationσj−1. As noted above, a random sumSk is well-approximated as a Normal random variable
with variancelσ2

j−1 for l > 1. Lemma 4 shows that thekth spacing in this Normal approximation case essentially has
a distribution given by

S(k+1) − S(k) ∼ Exp

(

m

l
1
2σj−1 H

(

k
m

)

)

with mean
l
1
2H

(

k
m

)

m
σj−1.

Figure 1 shows thatH( k
m ) ≈ 4 when0.2m ≤ k ≤ 0.8m, so by considering the “middle” spacings ofT1, . . . , Tm−1,

we can obtainτj = 1
2m random variables with approximately the same distributionthat are in general independent.

Thus at the end of thejth iteration, we obtain random variables

Y j
1 , . . . , Y

j
τj with mean and standard deviationσj =

4l
1
2

m
σj−1.

The main question is how many times the method can be iterateduntil the errors grow so large thatp is not
determined anymore. Afterj iterations, the random variablesY j

1 , . . . , Y
j
τj are sums of(2l)j of the original ACD

samples, so the standard deviation of an error term in the output of thej-th has increased by a multiple of(2l)
j
2 .

Hence, the total number of iterations performed satisfiesI < η.
Our analysis shows that the average size of samples afteri iterations is(4

√
l/m)i2γ−1. To have samples of size

close toη-bits thus requires
η ≈ i log2(4

√
l/m) + γ − 1.

Hence, optimistically takingi = η, we need

log2(m) ≈ (γ − 1 + η(log(4
√
l)− 1)/η

In other words, the lists are of size close to2γ/η, which is prohibitively large in practice. Even for the toy parameters
(ρ, η, γ) = (71, 2698, 19350000) from [CNT12] we would havem ≈ 27000, which is absurd.

In summary, the detailed statistical analysis of this Section has essentially shown that a neighbouring difference
approach, whilst initially appearing promising, can only reduce the magnitude and variability of the samples produced
at each iteration by a factor that depends linearly on the number of sums considered at each iteration. For the parameter
sizes required for a cryptographic system, this means that the resulting errors grow too rapidly for this approach to be
useful.

It is natural to wonder why the BKW algorithm is a useful tool for LPN, and yet similar ideas are not useful
for ACD. One answer is that ACD is actually a much easier problem than LPN: The naive attack on LPN takes2n

operations, whereas one can solve ACD in vastly fewer than2γ steps.

8 Conclusions

We have surveyed known attacks on the ACD problem. Our main finding is that the multivariate polynomial attack is
not more powerful than the orthogonal lattice attack, thereby clarifying the contribution of Cohn and Heninger [CH13].
We have developed a sample amplification method for ACD whichmay have applications in cryptanalysis. We have
also investigated a pre-processing approach, similar to the BKW algorithm, and given a statistical analysis that explains
why this method does not lead to an attack on ACD.

7 In practice one can store theSk in a binary search tree, in which case an explicit sorting step is not required.
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