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Abstract. The security of several homomorphic encryption schemesripon the hardness of the Approximate
Common Divisor (ACD) problem. In this paper we review and pamne existing algorithms to solve the ACD prob-
lem using lattices. In particular we consider the simultargeDiophantine approximation method, the orthogonal
lattice method, and a method based on multivariate polyalsnaind Coppersmith’s algorithm that was studied in
detail by Cohn and Heninger. One of our main goals is to comtia multivariate polynomial approach with other
methods. We find that the multivariate polynomial approachat better than the orthogonal lattice algorithm for
practical cryptanalysis.

Another contribution is to consider a sample-amplificatieohnique for ACD samples, and to consider a pre-
processing algorithm similar to the Blum-Kalai-WassernKW) algorithm for learning parity with noise. We
explain why, unlike in other settings, the BKW algorithm domt give an improvement over the lattice algorithms.
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1 Introduction

The approximate common divisor problem (ACD) was first sddby Howgrave-Graham [HGO1]. Further inter-
est in this problem was provided by the homomorphic encoypsicheme of van Dijk, Gentry, Halevi and Vaikun-
tanathan [DGHV10] and its variants [CMNT11,CNT12,CS15jeTcomputational problem is to determine a secret
integerp when one is given many samples of the fatm= pq; + r; for small error terms:;. More preciselyp is an

7n bit odd prime, ther; are~ bits, and the-; arep bits, wherep is significantly smaller than.

The original papers [HG01,DGHV10] sketched a large numibpossible lattice attacks on this problem, includ-
ing using orthogonal lattices and Coppersmith’s methook eckground on lattices see Section 2.2.) Further cryptan
alytic work was done by [CN12,CH13,CNT12,DT14]. Our papawveys and compares the known lattice algorithms
for the ACD problem. We study several recently proposedavasi of the ACD problem [CCK+13,Lep14,CS15], and
argue that they may offer greater security than the origh@D proposal. Our main finding is that the orthogonal
lattice approach is better than the multivariate polyndmigroach for practical cryptanalysis.

We also propose a pre-processing idea, motivated by the-Blalai-Wasserman algorithm for learning parity with
noise (LPN), and a sample-amplification idea motivated bgkvem LPN and learning with errors (LWE).

We do not consider in this paper the variants of “exhaustagch” over the errors;, as proposed by Chen and
Nguyen [CN12], Coron, Naccache and Tibouchi [CNT12], and had Seo [LS14]. Such algorithms are important
for the original version of the ACD problem, but are lessvat# for the Cheon-Stehlé variant.

2 Background and Notation

We use standard notation throughout the paper. The syreba@lad > do not have a precise technical meaning, but
are supposed to convey an informal assurance of “significkss (greater) than”.



2.1 Statement of the approximate common divisor problems

There are at least four variants of the approximate commeigati problem in the literature. We now define these
problems precisely.
Fix v, n, p € N. Letp be anp-bit odd integer. By this we mean that

217 < p < 27,

Actually it is not necessary fgrto be prime, and in some applications (e.g., Appendix D of DG0]) it is definitely
not prime. Define the efficiently sampleable distribution ,(p) as

Dy p(p) ={pa+rlq<2Z0[0,27/p),r - ZN(=2,2")}. 1)

In practice we have significantly smaller tham and so all samples fror®., ,(p) will satisfy z; < 27 with
overwhelming probability. Note also thatifis sufficiently large and, ..., z; are sampled fromD, ,(p) then we
expect there to be at least one indesuch that

7l << 27,

Definition 1. Let notation be as above. Tlagproximate common divisor problem (ACD) is: Given polynomially
many samples; fromD,, ,(p), to compute.

Thepartial approximate common divisor problem (PACD) is: Given polynomially many samplesfromD,, ,(p)
and also a sample, = pqo for uniformly chosem, € Z N [0,27/p), to compute.

In this paper we focus on the “computational” versions ofgtheblems. There are also “decisional” versions, but
it is known (see [DGHV10]) that the computational and dexisi problems are equivalent. Furthermore, there are
no known lattice attacks that directly solve a decisionabpem without first essentially solving the computational
problem.

Let \ be a security parameter. Van Dijk et al [DGHV10] set)> = w(log()\)) to thwart lattice attacks on the
approximate common divisor problem. Concretely, the patans are set tp,7,7) = (A, A2, \?), so one sees that
p is extremely small compared with The analysis in [DGHV10] is very conservative and seem/ayestimate the
size of~ required. For example, in [CNT12] one finds parameters, v) = (71,2698, 19350000) that are claimed
to have security level around 72-bits, and it is likely thatan be taken considerably smaller than this while still
achieving the claimed security level.

Cheon et al [CCK+13] have given a homomorphic encryptiorsahthat uses the Chinese remainder theorem to
pack more information into a ciphertext. This system fezgdm-bit primesp;. Let® = py ---py andzy = wqp. A
ciphertextis an element= 7q + r wherer is congruent modulo each primgto a small integer;, and information
can be encoded in each valyg(these are called CRT-components). The public key incladasmber of ciphertexts
x,; that are encryptions df, as well as a number of ciphertexts that are encryptiorisiofa single CRT component.
We refer to [CCK+13] and Chapter 7 of Lepoint [Lep14] for maietails about parameters. We call the problem of
computingpy, . . . , p¢ from the public key th&€RT-ACD problem.

An important detail about CRT-ACD is that, singeis very large compared with an individua), one can use
smaller values for the. In terms of cryptanalysis, the problem can be reduced tardstrd PACD instance of the
formzy = p1¢{ andz; = p1¢; + 1}, and it is these attacks that are used to specify the paresnAtesduction is given
in Lemma 1 of [CCK+13] that gives evidence that the CRT varidithe ACD problem is hard, but this reduction does
not preserve the sizes of parameters and so it is not veryldfsesetting concrete parameters. It is an open problem
to give an algorithm to solve the CRT-ACD problem that exjsitiie CRT structure.

Cheon and Stehlé [CS15] have given a scale-invariant hammgimc encryption scheme that permits a very differ-
ent flavour of parameters. Furthermore, they give an expianidness result for their parameters, by showing that if
one can solve the (decisional) approximate common divisaslpm then one can solve the (decisional) learning with
errors problem. The parameters in [CS15] are set as

(p,m,7) = (A, A + dlog()), 22(d*Alog(N))),



whered is the depth of the circuit to be evaluated homomorphichlbte thatp is no longer extremely small compared
with 1. We will sometimes refer to these parameters astheon-Stehé approximate common divisor problem

We draw the reader’s attention to a typo in [CS15]: regardiegsecurity of the parameters against the multivariate
polynomial attack the authors wrote< n? but should have writteny > 7?; in any case the condition > n? is not
required to have secure parameters.

We will see that the lattice algorithms for ACD potentiallpmk less well for the CRT-ACD and Cheon-Stehlé-
ACD. Hence these two variants potentially offer a higherrdef security, at least according to our current knowl-
edge. In particular, the Cheon-Stehlé-ACD seems to offéglaer degree of security, which is not surprising sincé tha
problem enjoys some evidence for its hardness.

2.2 Lattice basis reduction

The algorithms considered in this paper make use of lattsgslreduction algorithms such as LLL [LLL82]. Recall
that a lattice of rank is a discrete subgroup ®™ that has rank as aZ-module. In this paper we write elements
of a lattice as row vectors. Denote Ky, v) the Euclidean inner product & and||v|| = (v, v)'/2 the Euclidean
norm. We sometimes use the nofitv1, . . ., v, )|l1 = max{|v;|}. A lattice L is described by giving basis vectors
Vi,...,Vp, suchthatl = {>°" , a;v; : a; € Z}.

The volume of a latticd., denoteddet(L), is the volume of the paralleliped formed by any basis of #itde.
The successive minim&; (L) are the smallest real numbers such thatontainsi linearly independent vectors all
of Euclidean norm less than or equalXg(L). So A1 (L) is the length of the shortest non-zero vector in the lattice
L. The Gaussian heuristic states that, for a “random lattitte?’ shortest non-zero vector in the lattice has Euclidean
norm approximately /n/(2me) det(L)'/™. For details of the Gaussian heuristic see Ajtai [AjtO6}(fialising what
is meant by a “random lattice” is non-trivial and is beyond sitope of this paper). A commonly used heuristic is that
if L is a lattice that contains a vecterof Euclidean norm less thaiet(L)'/™ thenv is (a multiple of) the shortest
vector in the lattice. A further consequence of [Ajt06] isthfor a “random” lattice of rank:, there exists a lattice
basisby, . .., b, of L such that|b;|| ~ \/n/(27e) det(L)!/" forall 1 < i < n.

Let1/4 < § < 1. A basisby,...,b, for alattice L is §-LLL-reduced if the Gram-Schmidt vectols' satisfy
lpi i) <1/2for1<j <i<mnand

16717 > (8 = i) 1071 |1

for2 <i <n, whereu; ; = (b;,b})/(b},b}). Itis known that an LLL-reduced lattice basis satisfies

det(L) < [T lIbs]l < 2""=1D/* det(L)

i=1

and|by|| < 2»=1/2)\; (L), where\; (L) is the length of the shortest non-zero vecto.oFurthermore, it is known
that an LLL-reduced basis satisfies

1/(n+1—14)
Ibi]) < (27174 et (L))

for1 <i<n.

Itis folklore that LLL performs better on average than thesest-case bounds suggest. Nguyen and Stehlé [NgSt06]
have studied the behaviour of LLL on “random” lattices andehlaypothesised that an LLL-reduced basis satisfies the
improved bound

by < (1.02)™ det(L)"/™.

By analogy with the relationship between the worst-casanldsilb; || < 2"*/*det(L)/™ and||by|| < 2*/2)\; (L) itis
natural to suppose that

(b < (1.04)"As(L). )
Figure 4 of [NgSt06] shows thdb;, || < ||b;|| almost always, and certainlyb;, || < 1.2||b;|| with overwhelming
probability. Hence, we make the heuristic assumption fleat;random” lattices,||b}|| < ||b|| forall 2 < i < n.
From this it is easy to show that, far< i < n,

[bil| < v/ 1+ (i —1)/4][bu]].



In other words, on average LLL produces a basis that behdwogs o the Gaussian heuristic. The analysis of lattice
attacks in [DGHV10,CS15] is under an assumption of this tygeformalise this with the below heuristic assumption.

Assumption 1 Let L be a “random” lattice of rankn and letby, ..., b, be an LLL-reduced basis fdr. Then
[bs]| < Vi(1.02)™ det(L)*/™.
forall1 <i<n.

In practice one uses lattice reduction algorithms such ag Bt give better approximation factors. But the above
heuristics are sufficient for our analysis.

3 Simultaneous Diophantine approximation approach (SDA)

In this and the following two sections we describe the threstrauccessful lattice-based algorithms to solve the ACD
problem when the error term is too large for exhaustive $eand when sufficiently many samples are available.
This section recalls the simplest, and still one of the mifistéve, lattice attacks on ACD. It was first described by
Howgrave-Graham (see Section 2 of [HG01]) and was furthegldeed in Section 5.2 of [DGHV10]. For the benefit
of non-expert readers we present all the details.
The basic idea of this attack is to note that.if= pg; + r; for 1 < i < ¢, wherer; is small, then

Ti i

To q0

for 1 < ¢ < t. In other words, the fractiong /g are an instance of simultaneous Diophantine approxim&tiory .
If one can determine such a fractigry ¢y then one can solve the ACD problem by computigg= z, (mod o)
and hencéxy — 19)/q0 = p. We will see that this attack does not benefit significaniyrfrhaving an exact sample
Ty = pqo, SO we do not assume that such a sample is given.

Following [DGHV10] we build a latticel, of rankt + 1 generated by the rows of the basis matrix

1
2P+ T To - Xt

2o
B = — . 3)

20
Note thatL contains the vector

vV = (q07Q17 e aqt)B
= (QPHQO, qor1 — q1%o, " ,qoTt — qtlro)

= (qo2""', qor1 — 170, "+ »qoTt — GeT0)

Sinceq; ~ 27" the Euclidean norm of is approximately/t + 127~7+#+1 We give a more precise estimate in
Lemma 1. We call this vector thtarget vector.

Since the basis matriB of the latticeL is given in upper triangular form, the determinantois easily computed
asdet(L) = 2°*1zf. Hence, if

Vi 120t <y ﬁ;—l det(L)Y/t+D
me

then we expect by the Gaussian heuristic that the targatveds the shortest non-zero vector in the lattice. The attack
is to run a lattice basis reduction algorithm to get a cartdidafor the shortest non-zero vector. One then divides the
first entry ofw by 2°*! to get a candidate value fg§ and then computes = z¢ (mod qo) andp = (zo — 70)/qo-
One can then “test” this value fgrby checking ifx; (mod p) are small for alll < i < ¢t. We call this theSDA
algorithm.



3.1 Heuristic analysis of the SDA Algorithm

This method is analysed in Section 5.2 of [DGHV10], whera iaigued that it < ~/p then there are likely many
vectors of around the same size or smaller as the desiredrveleince it is required that> ~/p to have any chance
for this method to succeed, even disregarding the diffiesiltif lattice reduction methods to find the shortest vector.
We make some specific remarks, that are relevant for congptris attack with the other attacks. First, this attack
only requires a single short vector, not a large number oftslaztors. Second, the attack is heuristic because we are
assuming that is the only vector in the lattice that is shorter than the tergredicted by the Gaussian heuristic.
However, this seems to be a relatively mild heuristic in pcac Third, if we wish to use LLL to break the system
we requirev to be shorter by an exponential factor than the second ssigeaminimum. In other words, we need
21/2||v|| < /ndet(L)Y/+1), The factor2/? can be reduced using heuristics on the average-case behaf/id_L,
or by using more powerful basis reduction algorithms sudBiez.
We now repeat the analysis of [DGHV10], with an eye to the @h8tehle-ACD parameters, and also using a
more precise estimate of the target vector than was giverewiqus work.

Lemma 1. The expected length of the target vectdnas a tight upper bound of

VEFT
047V L op+r,
P

Proof. Note that both the; and ther; are random variables dhwith distributions
¢ < Uni{0,...,|p727|} and r; < Uni{-27,...2°},

where Uni denotes the uniform distribution andrepresents sampling from a distribution. It follows tlﬂa(qf) ~
322", E(r;) = 0 andE (r}) ~ 322, Furthermore, all of these random variables are indepensiemwe have

E ((QOTz — qiTo) ) E( gr ) +E (%27"38 —2E (qoriqiro)
:E(g) ( )JFE ¢?) E (r}) — 2E (q04:) E (r;) E (o)
= %p 292

It follows that the root mean squared lengthvos given by
1 1
E([v2)? & (2)2 (t+1)2p~ 1205 047 (1 +1)3p~ 120+,

Jensen’s Inequality shows thEf|v|) < E(|v|2)z, and this bound is tight for large dimensiariThis completes the
proof.00

The estimate for the length of given in [DGHV10] is (¢ + 1)22(°t7=7) that is to say about twice the above
approximation (taking =~ 27).

The attacker hopes that the lattice is a “gap lattice” in thiess that the first minimumy, (L) = ||v]|| is much
shorter than the length; (L) of the next shortest vector ih independent of,. We apply the Gaussian heuristic to

estimate
Xa(L) ~ /(t +1)/(2me) det(L)Y D ~ /(£ + 1)/ (2me) 2T 170/ (+1),

We know LLL succeeds in finding if \2(L) > 2¢/2\;(L), but on average one has a smaller exponential factor (or
one can use BKZ or other algorithms to find short vectors).ddethe target vector is the shortest vector in the lattice
and is found by LLL if

0.47V1 + 1(1.04)+127F,70 <\ /(¢ + 1) /(2me) 2170/t (4)

Van Dijk et al [DGHV10] show that, in order thatis heuristically the shortest vector in the lattice, onedsete
uset > ~/n samples and a lattice of dimensior- 1. Their analysis assumes thats small and is not helpful when
considering the Cheon-Stehlé variant of the problem. ldewe re-consider their analysis. Ignoring constants aed th



(1.04)*! term in the above equation, we find that a necessary (notisuffjccondition for the algorithm to succeed

is
tr1> 1P (5)
n—p
For the Cheon-Stehlé variant we may havelose ton, which means the required dimension can grow very fast even
with relatively small values foty. More precisely, [CS15] suggests

(p:m,7) = (A, A + dlog(X), £2(d* Aog(X)))

whered is the circuit depth and is the security parameter. Taking= 80 andd = 10 and setting?(z) = = we have
(p,m,v) = (80,143,50575), which is very modest compared with the parameters in [DGB]VHowever, for these
values(y—p)/(n—p) > 800, should be large enough to prevent any practical lattiee&tThese arguments therefore
confirm the analysis from [CS15] that their approach shoutaiiple more efficient parameters for homomorphic
encryption.

The above analysis ignored some terms, so as a final rematkstiiy why these approximations are reasonable.
Equation (4) states that we need

(0.47)V2me(1.04) 2P~ < 2l L=/ (t+1)
Taking logs and noting that < n < ~ gives
n—p—1—(t+1)logy(1.04) > (y—p—1)/(t+1)>0.
Writing A = log,(1.04),B=n—p—1andC =~ — p — 1 thisis
Alt+1)?-Bt+1)+C<0.
We are interested in the range ofor which this occurs, so it is natural to seek the smallest 0 for which

Ax? — Bx + C = 0. Note thatA ~ 0.06, C ~ v and B2 ~ n2. If we assume that > 4p andn? > ~ then
0 <4AC/B? < 1. UsingB? — 4AC = B%(1 — 4AC/B?) andy/1 — 2¢ ~ 1 — ¢ for smalle we compute

VB2 — 4AC ~ B(1 — 2AC/B?).

The smallest choice fdrthat satisfies the inequality is therefore close to

B—-+B?-4AC _ B- B(1-2AC/B?) 70/377—,)—1
24 - 2A - T p—p—1

One sees that this agrees with the original estimate, andtbowhat range of parameters, the te(in04)'*! does
not have any significant effect on the performance of therélya.

3.2 Further comments

It is interesting to consider this attack in the context & @RT-ACD. In this variant we have; = p;q; ; + r; ; for
1 < j < ¢ where each; ; is small. It follows that the lattice contains the vectors

+1
(90,5277, 90,571, — q1,370,5>*** +40,4T¢,5 — Qt,570,5)

forall 1 < j < ¢andthese all have similar length. Itis importantto noté éimy one of these vectors allows to compute
one of the prime factorg;, by computingg, ; from the first component of the vector and then= [z /qo,;|. But

if (u12°%1 ua, ..., us) is a short linear combination of several of these vectors there is no reason to expegt
(mod 1) to be a small integer, or that, /v | is one of the primes in the private key.



4 Orthogonal based approach (OL)

Nguyen and Stern (see for example [NgSt01]) have demoadittiaé usefulness of the orthogonal lattice in cryptanal-
ysis, and this has been used in several ways to attack the AGlidgon. Appendix B.1 of [DGHV10] gives a method

based on vectors orthogonal(tey, . . ., ;). Their idea is that the lattice of integer vectors orthodtméz,, . . ., z;)
contains the sublattice of integer vectors orthogonal tthlg, ,...,q:) and (r1,...,r:). Later in Appendix B.1
of [DGHV10] a method is given based directly on vectors ogiweal to(1, —r1 /R, ...,—r:/R), whereR = 2°.

Ding and Tao [DT14] have given a method based on vectors gt to(q1, . . ., ¢:). Cheon and Stehlé [CS15] have
considered the second method from Appendix B.1 of [DGHV10].

Our analysis (as with that in [DGHV10]) and experiments fgja@ll these methods essentially have the same
performance in both theory and practice. Indeed, all threthods end up computing short vectors that are orthogonal
to the vector(qs, . . ., ¢:) and some vector related to the error termdor example see Lemma 3. Hence, in this paper
we follow [DGHV10,CS15] and study the use of vectors orthegdo (1, —r /R, ..., —r+/R). The attacks do not
benefit significantly from having an exact sample= pqo SO we do not use it.

Let R = 2° be an upper bound on the absolute value of the erarsz; = pq; + r;. Let L be a lattice izttt
with basis matrix

X1 R
X9 R

B= |3 R : (6)
Tt R
Clearly the rank ofB is t. The lattice volume was estimated in previous works, but ive gn exact formula.

Lemma 2. The Gram matriBB7 of L is of the formR?T, + x”x wherex = (21, ..., ;) andl, is thet x ¢ identity
matrix. The volume of the lattice B'~!\/R2 + z7 + - - - + 27.

Proof. The claim abouBB7 is easily checked by induction. Writing this BB” = A + x"x whereA = R?I, is
invertible, the matrix determinant lemma states tha{BB”) = det(A)(1 + xA~!'xT). Sincedet(A) = R?* and
A~ = LT, wefind

2 DY 2
det(BBT) = R (1 + %) = R2OD(R2 422 4+ 4 22).

The final claim comes from the fact that the lattice volume¢/idet(BBT). O

Any vectorv = (vg, v1,--- ,v) € L is of the form

t
V= (ula"' 7ut)B = (ZUiIi,UlR,UQR,"' ,UtR) )

i=1
whereu; € Z. The main observation of Van Dijk et al. [DGHV10] is

t t

t t
vy — Z %Ti = Zuiwi — Z U;%Rﬁ = Zui(mi — Ti) =0 (modp). (7
i=1 i=1

i=1 i=1

Since we don't knowp, we wish to have a linear equation ov&rThe equation holds ifvg — Z’;:l %ril <p/2.The
following lemma gives a bound onthat implies we get an integer equation as desired.

Lemma 3. Letv = (ug, u1,us, - - - ,u;)B. Let||v]| < 27-271eg2(t+1) Then

t t
|vg — Zuzn| < p/2 and Zuiqi =0.
i=1 i=1



Proof. Letv = (vg,v1,- - ,v) = (Zle uiZi, u1 R, ug R, - - - ,utR) and letN = ||v||. Then|vy| < N and|u,r;| <
|u;R| < Nforl<i<t Thus

t
< fvol + > [wiri] < (t+ 1)N.
=1

t
Vo — E U;T;

i=1

SinceN < 27-2-1og:(++1) we have(t + 1)N < 272 < p/2 sincep > 27~ 1. Hencelvg — S_'_, wiri| < p/2.
t t t
To prove_ u;q; = 0, SUppose> . u;q; # 0 so thatp| > wu;q;| > p > 2771, Sincex; = pg; + r;, we have
=1 =1 =1

= 3

p

t
E Uiqi
i=1

t
i=1

t t
i=1 i=1

But, by the previous argument, thisis(¢ + 1) N < 27—, which is a contradictiort

< +

In other words, every short enough vectoin the lattice gives rise to an inhomogeneous equatios » u;r; in
thet variablesr;, and a homogeneous equatipi) u;¢; = 0 in thet variablesy;. There are therefore two approaches
to solve the system. The papers [DGHV10,CS15,DT14]tuiebomogeneous equations and solve forithédut we
believe it is simpler and faster to use- 1 equations and then find the kernel of the matrix formed by thesolve
for (¢1,.-.,q:). We call these methods ti@L algorithm .

Hence, it suffices to have— 1 linearly-independent vectors in the latti€ethat satisfy the bound of Lemma 3.
Hence we run lattice reduction and take the 1 smallest vectors in the output basis (they are linearlypeaeent as
required).

To analyse the method we use Assumption 1. This shows thatamecompute using LLLt — 1 linearly-
independent vectors of the correct size as long as

V(1.02)" det (L)1t < 272 loga(t41)

By Lemma 2 we approximatéet(L) by 2°(!~1)+7, Hence, the condition for success is

4/t + 1)(1.02)t2rT =P/t < 9n,

Following the analysis in [DGHV10,CS15], ignoring congtaand the exponential approximation factpi02)® from
the lattice reduction algorithm, then a necessary cormiiio the dimension is > (v — p)/(n — p), which is the
same as equation (5) for the SDA methiddence, we deduce that the OL method is not more powerful thaSDA
method. Our experimental results confirm this, though thiggest the OL method is slightly faster (due to the smaller
size of entries in the basis matrix defining the lattice).

We give one remark about the CRT-ACD problem. Recall thahe®CD instancer; in this problem satisfies
x; =71;; (mod p;) for many primeg;, wherer; ; is small. Hence there are many variants of equation (7)

t

v t
i
Vo — T = E Ui Tq —
R -
i=1

=1

t t
u; R
- 1?7’1'_’]' :Zuz(zl—r”):() (mOdp)j.
i=1 =1
In practice this may cause the lattice method to be much fésstige, since different short vectors may correspond to
different choices of primg; and hence different values for the;. It remains an open problem to analyse the security
of this variant of the ACD problem.

3 There is no need to repeat the more careful analysis we gldiddor SDA, since we are lower-bounding the OL method by the
SDA method.



5 Multivariate polynomial approach (MP)

Howgrave-Graham [HG01] was the first to consider reduciegibproximate common divisor problem to the problem
of finding small roots of multivariate polynomial equatiofifie idea was further extended in Appendix B.2 of van
Dijk et al [DGHV10]. Finally, a detailed analysis was givey @ohn and Heninger [CH13] and a variant for the case
when the “errors” are not all the same size was given by Tadw@pad Kunihiro [TK13,TK14]. This approach has
some advantages if the number of ACD samples is very smallditiginal context studied in [HGO01]), but we focus
on the use of this method in practical cryptanalysis whesentimber of samples is large.

Our heuristic analysis and experimental results suggastalssuming sufficiently many ACD samples are avail-
able, the best choice of parameters for the multivariatecggh is to use linear polynomials, in which case the
algorithm is equivalent to the orthogonal lattice methadother words, we find that the multivariate approach seems
to have no advantage over the orthogonal lattice method.

The multivariate approach can be applied to both the full paial ACD problems, but it is simpler to explain
and analyse the partial ACD problem. Hence, in this sectiemastrict to this case onfy.

We change notation from the rest of the paper to follow mooselly the notation used in [CH13]. Note that the
symbolsX; are variables, not ACD samples. Hence,Net= pqo and leta; = pg; + r; for 1 < i < m be our ACD
samples, wheré;| < R for some given boundk. The idea is to construct a polynomidl X1, X, ..., X,,) inm
variables such tha®(ry, - - - ,7,) = 0 (modp*) for somek. The parameters. andk are optimised later. In [CH13],
such a multivariate polynomial is constructed as integeydr combinations of the products

(X1 —a1) - (X — @)™ N*

wheref is chosen such that +--- +14,, + ¢ > k.

An additional generality is to choose a degree botne & (do not confuse this with the use of the symbol
previously) and impose the condition+ - - - + i, < t. The valuet will be optimised later. There is no benefit to
takingk > t, as it leads to the entire matrix for the case k being multiplied by the scalav*—.

The latticeL is defined by the coefficient row vectors of the polynomials

fiivrin] (X140, X)) = (RXy — a1) -+ (RX,n — )™ N, (8)

such thatiy 4+ -+ + 4,,, < t and/ = max(k — Zj ij,0). For example, the valug$, m, k) = (3,2, 1) lead to the
following basis matrix.

i1 in) 1 X1 Xo  X? X1X, X2 X3
J10,0 N 0 0 0 0 0 0
f[l_’()] —ai R 0 0 0 0 0
Jlo,p | —a2 0 R 0 0 0 0
fi2,0 ai —2umR 0 R? 0 0 0
B= fiy | aa -aR -aR 0 RR 0 0 9)
f[()_]g] a% 0 —2a2R 0 0 R2 0
J10,3] —a3 0 3a3R 0 0 —3a2R? ... R3
Itis shown in [CH13] that_ has dimensiod = (*"") and determinant
det(L) = R N 7t = g+ () 7

where we use the natural choifle= 2°.
Letv be a vector inL. One can interpret = (v;, ... ;, R+ +im) as the coefficient vector of a polynomial

QX1, s Xm) = > ip i Xit e X0
’il,"' 7im

4 Since the orthogonal lattice method performs equally welbioth full and partial ACD, it suffices to compare the methau
the case most favourable to the multivariate polynomiataggh.



If |Q(r1,--+ ,7m)| < p* then we have)(ry,--- ,r,) = 0 over the integers, so we need to bou@dry, - - - ,7,,)|.
Note that

Q1+ ) <30 Wi I [
11

37 tm

< > [viig R R
it im

= [[vl-

Hence, if||v||; < p* then we have an integer polynomial with the desired root. Weavectorv € L such that
|v|1 < p* atarget vector. We will need (at least) algebraically independent target vectors to be able tcoperf
elimination (using resultants or Grobner basis methodgtluce to a univariate polynomial equation and hence solve
for (r1,...,mm). One then computes = ged(N,a; — 7). Note that solving multivariate polynomial equations of
degree greater than one in many variables is very time coinguamd requires significant memory. In practice, the
elimination process using Grobner basis methods is fé#dtee system is overdetermined, so we generally use more
thanm polynomials. We call this process tMP algorithm .

We remark that the cage, k) = (1, 1) gives essentially the same lattice as in equation (6) anbis@ase of the
MP algorithm is the same as the orthogonal lattice attadk (hs already noted in [DGHV10] and is also mentioned
in Section 6 of [CH13] where such parameters are called “timiged”). Because of this, one can always say that
the MP attack is at least as good as the orthogonal lattiaelkatOur concern is whether taking> 1 gives rise to a
better attack. We will argue that, when the number of ACD damis large, the best choices for the MP algorithm are
(t, k) = (1,1), and so the MP method seems to have no advantage over thgamtiidattice method.

5.1 The Cohn-Heninger Analysis

Cohn and Heninger [CH13] give a heuristic theoretical asialpf the MP algorithm and suggest optimal parameter
choices(t, m, k). Their paper does this very briefly and omits some detailsyessketch their approach here.

The MP algorithm succeeds if it producesvectors in the lattice such thiy||; < p*. Using||v|; < Vd|v|
(where the latter is the Euclidean norm) and the bounds fresufaption 1 we have that an LLL-reduced basis satisfies

[bs][1 < d(1.02) det(L)/?

whered is the dimension of the lattice. If this bound is less th&r~ 27" then we will have enough target vectors.
Hence we need ,
d4(1.02)%" det(L) < 24

and so we need

t k+m k
1 2 log,(1.02 o . 1
dlogy(d) + d*log,( O)+dpm+1+7( m )m+1<knd (10)

Cohn and Heninger [CH13] introduce a parameétet n/v < 1 so thatp ~ N”. They work with the equation

m

mt k
Tt g <=0 (11)

(m+ 1)k (m+1

which is a version of equation (10), with some terms delemﬂzﬂ)proximatinqkj;lm) ~ k™ andd = (") ~ tm.
Their analysis assumes is fixed and considers takinglarge. They impose the asymptotic relationship:

B=1/m, which means that>> k. Their method allows errors up 0 = 2¢ = N8""""’™ They required? log(N) >

1 for the method to work which is equivalent tg? >> . The lattice dimension in their method(is ™) = O(t™) =

O(B~*k™) > ~/n, and so yet again we encounter the same dimension bound pethieus methods (at least, when

p is small). The main “heuristic theorem” of [CH13] can be sthas: for fixedn, if 3 = 1/~ wheren? > ~ and

® It is mentioned in Section 2.1 of [CH13] that this can be retito 5T log(N) > 1 if a lattice reduction algorithm with a
sub-exponential approximation factor is available.

10



p =log,y(R) < n(1+ 0(1))3*/™ then one can solve the ACD problem in polynomial time. Théwkf polynomial-
time complexity is correct, but does not imply that the MP raagh is better than the SDA or OL approaches: The
input size is proportional tg and all the algorithms use lattices of dimension approxétyat/n whenp is small, so
they are all polynomial timé they return a correct solution to the problem.

The conditiony? > ~ already means the MP attack can be avoided in practicevaliatasily. We remark that
the orthogonal lattice method does not have any such harddimits theoretical feasibility. However, in practice the
restrictionn? > ~ is not so different from the usual condition that the dimensinust be at least/n: if v > 7n?
then the required dimension would be at legstvhich is infeasible for lattice reduction algorithms ftwetsort of
parameters used in practice.

It is also important to consider the parameters of intemeshé Cheon-Stehlé scheme. Hence we now suppose
p~n(e.g..p/n=0.9)andy = ' for somes > 0 and ask if the MP method can be better than the OL method in
this setting. The conditiotp < kn implies thatt ~ k, (recall thatt > k) in which case(*/™) ~ d = (™) and so
the bound from equation (13) suggests the MP approach hadvamimge over other methods for parameters of this
type. Our experimental results confirm this (see Table 1).

5.2 Improved Heuristic Analysis

We now consider the parameters more generally, unlike inli8Hvhere it was assumed that the optimal solution
would be to take, k > 1.

Section 2.1 of [CH13] suggests ~ (3'*¢log,(N))'/ (2™, Takingm — oo with these parameters results in
(t,k) = (1,1), which is consistent with our claim thét, k) = (1, 1) is optimal whenn may be chosen to be large.
However, one could speculate that a general analysis ceattitb different asymptotics. So we give a more general
analysis.

We now derive some useful necessary conditions from equétio) for the algorithm to succeed. Noting that, for
largem, mlfl ~ t we see that it is necessary to have

tp < kn, (12)
and.sot cannot grow too fast compared wikth Similarly, we see it is necessary thﬁ(tk;m) mLH < knd which is
equivalent to

t k 1
d<+m)>1< +m>—. (13)
m n m m-+1

Whenk = 1 then the right hand side is equal 4g, but it gets steadily larger ds grows. This provides some

evidence thak > 1 may not lead to an optimal attack. The bound also shows ted¥th method does not overcome

the minimal degree boung/n we already saw for the SDA and OL methods, at least whensmall. (In the case

(t,k) = (1,1) equation (10) essentially becomes- 1 > ~/(n — p) which we have already seen in Sections 4 and 3.)
More generally, equation (10) implies, whenis large,

k -+
dpt + v( mm>mL+1 < knd.

Dividing by k£ and re-arranging gives

k 1
i oMM
n—xgp\ m Jm+l

Sincef > 1and (") 15 > 1 we see that this is never better than the lattice dimensiomdé > -2 from

equation (5). Hence, there seems no theoretical reasorwhieyym is large, the MP method should be better than the
SDA or OL methods. Our practical experiments confirm thig (selow).

11



Table 1. Comparison between different parameter choige) in the multivariate polynomial algorithm with = 100. The

left hand table reports, faf = 100, the largest value fop that can be solved with reasonable probability for the gielaice

(v,m,t, k,m). The right hand table compares running times for larger @tasndim (L), TLLL, and TGRB refer to the lattice
dimension, running time (seconds) of the LLL algorithm andning of the Grdbner basis algorithms to solve the resyipioly-

nomial systems respectively. The notation “** indicatéattthe computation was aborted before a result was fourdtat fixed

time period of a few minutes.

dim(L)[ TLLL [TGRB

5 | 0.020] 0.000
35 | 0.300] 0.050
7 [ 0010] 0.010
35 | 0.110] 0.030
8 | 0.020] 0.000
35 | 1.070] 6.100
10 | 0.030| 0.010
1,020 5.330

~
30010

60010

g N ol S ol 5] & o B~ s oo & &3
[N
a

v |pmax|t|k|m|dim(L)|[TLLL|TGRB| [120010] 15 0.030 | 0.010
150 95 |1{1{30] 31 0.020| 0.020 56 14.130[347.20
90 [3]2]8] 165 |0.350] 0.070 20 16 0.030 | 0.010
85 [4]3]4 70 0.220] 0.040 56 13.890(297.82(
3000 90 [1{1{30] 31 0.030] 0.130 240010 28 0.190 | 0.010
60 [3[2]5 56 0.310] 0.770 56 32.710] **
60 [4]3]4 70 4.150] 15.150 20 30| 31 0.260 | 0.020
600 80 |1|1|30] 31 0.070| 0.020 5 56 32.480] **
35 [3[2]4 35 1.020] 0.170 500015 119 120 |[102.66Q 0.675
10 [4[3]3 35 2.930] 4.640 10| 66 10.380] **

72| 120 |84.070] 0.680
11 78 18.010] **
119] 120 |136.530 0.670
14| 120 [219.14Q **

6 84 74.490 **
119 120 [145.77Q 0.670
14] 120 [226.37Q **
1 120 [164.750 0.670
14| 120 [300.10Q **

8000110

15

20|

H| R R | 2] R ] ] | R R N R N e N =] N N R N N ] N ]

NIERINEWNRPNRPNRFP WP WP WE WP W W W WP+

5.3 Comments

A further major advantage of the SDA and OL methods compai#dtive MP approach withh > 1 is that the MP
method witht > 1 requires solving systems of multivariate polynomial egpre, and the cost of this stage can dwarf
the cost of the lattice stage.

Note that the heuristics differ between the casesl and¢ > 1. Whent > 1 the number of target vectors required
is much smaller than the dimensidn= dim(L) = (t;’"), however we require the corresponding polynomials to be
algebraically independent which is a much stronger assomgtan linear independence of the corresponding vectors.
On the other hand, when= 1 we requirem = d — 1 short vectors so need a stronger assumption on the shape of th
lattice basis.

Table 1 gives a comparison of different parameters for thefhod withn = 100 and varying values of. The
left hand table shows, for different choices(ofk), the maximap such that the MP algorithm with parametétsk)
can solve the problem with high probability. This table skawat(¢, k) = (1,1) allows to solve a wider range of
parameters than other choices, which confirms our arguratitt k) = (1, 1) is better than other parameter choices.
The right hand side of Table 1 considers larger values{atill with » = 100) and the aim of this table is to emphasise
the considerable increase in the running time when using.

It is also important to consider the parameters of intemreshé Cheon-Stehlé scheme. Hence we now suppose
p = n (e.g.,p/n = 0.9) and ask if the MP method can be better than the OL method $nstttiing. The condition
tp < kn implies thatt ~ k, (recall thatt > k) in which case(*""™) ~ d = (*I™). In the case = k, dividing
equation (10) byt impliesd > m + 1 > ~/(n — p). Again, this suggests the MP approach has no advantage over
other methods for parameters of this type. Our experimeasailts confirm this (see Table 1).

Table 1 gives a comparison of different parameters for thenvthod. The left hand table is fgr = 100 and
varying values ofy. For different choices oft, k) we determine the maximal such that the MP algorithm with
parameterst, k) can solve the problem with high probability. This table skdhat(¢, k) = (1,1) allows to solve
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Table 2. Comparison of orthogonal lattice (OL) and simultaneousphantine approximation (SDA) algorithms (note that the MP
method with(¢, k) = (1, 1) is the same as the OL method).

n v D dim(L) | OL time (seconds) SDA time (seconds
86 | 480 [ 75 120 1.700 2.380

70 40 0.110 0.200

50 24 0.030 0.050
92 | 1920 50 56 1.540 5.020
98 | 4320 50 200 1242.640 4375.120
104] 7680 50 200 3047.500 14856.630
110[12000 20 200 5061.760 27578.560

10 200 3673.160 23428.410

a wider range of parameters than other choices, which canfoun argument thaft, k) = (1,1) is better than
other parameter choices. The second table considers halyess fory and the aim of this table is to emphasise the
considerable increase in the running time when usingl.

6 Experimental Observation

We have conducted extensive experiments with the SDA, OLMIRdnethods. For a small summary see Table 2. As
with all lattice attacks, the running time depends mosthttusdimension of the lattice, and then on the size of the
integers in the basis for the lattice. In general our expenits confirm that the OL method is the fastest and most
effective algorithm for solving the ACD problem. For many madables of experimental results we refer to Chapter 5
of [Geb186].

The parameter, n, v) in Table 2 are selected according to the forma\+d log()), d* X log()\)) from [CS15],
where) is a security parameter amd> 0 is the depth of a circuit to allow decryption of depthwe took\ = 80 and
varyd from 1 to 5. Of course, we did not expect to solve this systeiroldyfor the choicep = A (and our experiments
confirmed this). We only report timings for slightly smallexlues forp.

7 Pre-processing of the ACD samples

The most important factor in the difficulty of the ACD problesithe ratioy/n, which is the size of the integers
relative to the size gp. If one can lowery for the same and without changing the size of the errors then one gets an
easier instance of the ACD problem.

Hence, it is natural to consider a pre-processing step wdndagge number of initial samples = pq; + r; are
used to form new samples = pq + r’; with ¢; significantly smaller thag;. The main idea we consider for doing
this is by taking differences;, — x; for xx > z; andxz, ~ x;. The essential property is thatif, ~ z; theng, =~ ¢;
butr, andr; are not necessarily related at all. Henge— =; = p(qx — ¢;) + (rr — ;) is an ACD sample for the
same unknowmp but with a smaller value fog and a similar sized error. It is natural to hopthat one can iterate
this process until the samples are of a size suitable to hekattl by the orthogonal lattice algorithm.

This idea is reminiscent of the Blum-Kalai-Wasserman (BKalgorithm [BKWO03] for learning parity with noise
(LPN). In that case we have samplesb) wherea € Z7 is a vector of lengthh andb = a - s + e, wheres € Z3 is a
secret and is a noise term which is usually zero. we wish to obtain samgleh thah = (1,0,0,...,0), or similar,
and we do this iteratively by adding samples, bx) + (a;, b;) where some coordinates af anda, agree. The result
is an algorithm with subexponential complexity/ 1°s(") compared with the naive algorithm (guessingsa#t Z7)
which has complexit2™. In our context we do not havg;, pg; + ;) but onlyx; = pg; + r;, however we can use the
high-order bits of; as a proxy for the high order bits gf and hence perform a similar algorithm. A natural question
is whether this leads to a faster algorithm for the ACD proble

6 At first glance this approach may not seem to have any advauatzgy directly forming a lattice from the samples. But wessr
that this is not the case. Imagine that one has 10° ACD samples. One would not work with a lattice of dimensioaajer
than a million. Instead the idea is to construct a small¢iofisbetter quality” samples from the original ones, andrtiselve a
lattice problem corresponding to the smaller set of samples
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There are several approaches one might attempt:Let ., z, be the initial list ofy-bit ACD samples.

1. (Preserving the sample size) Fix a small boéh@.g.,B = 16) and selecB samples (without loss of generality
callthemzq, ..., xp) such that the leading coefficients in ba3are all distinct. For each of the remaining- B
samples, generate a new sample by subtracting the one witbathe leading coefficient. The resultris- B
samples each of size— log, (B) bits.

2. (Aggressive shortening) Sort the samples< zo < --- < 2, and, for some small threshdld = 27~#, generate
new samples by subtracting,, — z; when this difference is less th&h The new samples are of size at most
~ — w bits, but there are far fewer of them.

7.1 Preserving the sample size

This first method is analysed briefly in [Geb16] and we givétfar informal discussion here. Suppdsde= 2°. After
I iterations of the method we have generated approximatelyf B samples, each of — Ib bits. However, we must
consider the size of the errors. The original samples: pq; + r; have errorgr;| < 2°, and the samples at iteration
k are of the form .

2

T = Zcimi where c¢; = £1

=1
and so the error terms behave like a “random” sun2’of-bit integers. Since the; are uniformly distributed in
[—2¢,27], for largek the valuer = 3, ¢;7; has meard and variancel2?+*. So we expecfr| < 2°+*/2. Once
p+ k/2 > nthen the errors have grown so large that we have essentialiyll information aboup, and the method
is no good. Hence, an absolute upper limit on the number ddtitss is2(n — p). This means that after the final
iteration the samples are reduced to bitlength no fewerthar2b(n — p) bits.

In terms of lattice attacks, an attack on the original probtequires a lattice of dimension roughlyn (assuming

p < n). After k iterations of pre-processing we would need a lattice of disin

v — bk
n—(p+k/2)

Even in the best possible case when one cankake2(n — p) and keep the denominator constanfrat- p), we see
that the lattice dimension is lowered fropin to (v/n) — 2b. Since a typical value fdr is 8 or 16, this approach can
make very little difference to the problem.

7.2 Sample amplification

First experiments may lead one to believe that the aggeeshiertening approach is fruitless. It is natural to choose
parameters so that the lists are reduced at each iterati@ofimg constant factor, and so the number of samples
decreases exponentially in terms of the number of iterati&wentually one has too few samples to run any of the
previously mentioned lattice algorithms.

However, it turns out that a very simple strategy can be usgudéctice to increase the number of samples again.
The idea is to generate new samples (that are still abouttine itlength) by taking sums/differences of the initial
list of samples. This is similar to ideas used to amplify toenber of samples for solving LPN or LWE [Lyu05].

Let £L = {x1,...,2.} be a list of ACD samples, withyy, = pgr + r having mean and variance given by
u = E(x1) = pE(qx) = 27! and variance given by

Var(zy,) = p*Var(gy) + Var(ry,) = 1220-1 4 Lo
= %22(771) (1 + Q*Q(W*P)) )

We generaten random sumsy, ..., S, of [ elements ofZ, that is to say we consider values of the form
l
Skzzxki k=1,...,m],
=1
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which have mean and variance given by
E(Sk) = 127! and Var ;) = 3122071 (1 +2720-0))

We note that (providedis not too large) two such random variablgs and Sy, are usually sums of different ACD
samples and so are usually independent. In any case, we t&in otany samples (with: potentially up to(7)) of a
more peaked distribution, albeit with a slightly largerigace. Hence, not only have we created a much larger pool
of samples, the non-uniform distribution of these samplakes them even more attractive for an algorithm based on
computing neighbouring differences.

Recall that the next stage of the algorithm will be to sortrtee samples, . .., S, to obtain the listS;) < --- <
S(m)- We call these therder statisticsWe then consider the neighbouring differencespacingsly, = S(x+1) — S
fork =1,...,m—1.Inorderto analyse the effectiveness of this approach wd tederive the statistical distribution
of the spacings.

The statistical distribution of spacings arising from agmahdistribution is considered by Pyke [Pyk65], where it
is shown that such generic spacings have Exponentiallaliions, and such an approach gives Lemma 4. We recall
that the distribution functiod” for a random variabl&” onR is the monotonic functiod’(w) = P(W < w), which
gives the density functioli = F’ of W as the derivative of" (where this exists) and the inverse distribution function
F~1 of W as the inverse function t&'. Furthermore, a positive random variatié ~ Exp(\) is an Exponential
random variable with (rate) parameteif its density functionfy (w) = Aexp(—Aw) (w > 0), whenE(W) = A\~1
and ValW) = A~2, so an Exponential random variable has the same mean amthsiateviation.

Lemma 4. Suppos€Z, ..., Z,, are independent and identically distributed random valgsbonR with common
distribution functionF, inverse distribution functiod—! and density functiory = F’. If Zay < oo < Zmy
denote the order statistics df,, . . ., Z,,, then thek® spacingZ 41y — Zx) is well-approximated for largen as an
Exponential random variable with (rate) parameterf (F~! (£)).

Proof. Equations (4.9) and (4.10) of Pyke [Pyk65] show thatiHespacing

B 1 (1—Agt1)
Ziky1) — Zky = (m—k) f(F~1(Axs1))

whereY;, ~ Exp(1) is an Exponential random variable adg ,, essentially lies between thé" and (k + 1)t
order statistics ofn random variables uniformly distributed ¢, 1). ThusA; essentially lies between two random

i i k k+1 imati ~ k
variables with mearn.= and 5, so to a good approximatiof,.; ~ ;= for largem.

Yka

1 (1—App)  1-£ 1 B 1

(m—k) f(F 1 (Ak1)) — (m—k) f(F-1 (L)) mf (F-1 (L))

As the multiple of an Exponential random variable is also gpdaential distribution with a suitably defined parameter,
we to a very close approximation

Zerry = Zoy ~Exp(m f(F71(E))). O

We use Lemma 4 to give the distribution of the spacings iretkiiations of interest, namely when the underlying
distributions are Uniform, Exponential and Normal. Thetrilisition of the original ACD samples,,...,z., and
hence random sum;, . .., S, whenl = 1, are well-approximated by a Uniform distribution ¢& 27), In such a
situation, the distribution of the consequent spacingsahdsxponential distribution. More generally, the suni of 1
such distributions (Uniform or Exponential) is well-appimated by a Normal distribution even for modertbut
the distribution of such a sum could always be calculatedt®xd required using Lemma 4.

— Uniform Distribution. SupposeZs, ..., Z,, ~ Uni(0, A) are uniformly distributed o0, A), thenZz,, ..., Z,,
have inverse distribution functiof—!(u) = Au (0 < u < 1) and density functiorf(z) = A= (0 < z < A).
Thusf (F~!(u)) = A~!, and the spacings have an Exponential distribution given by

. A
Zer1y — Zy ~ Exp(mA™")  with mean—.
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Fig. 1. Graph of the Functiodf (u) = g (G~ (u)) ™.

— Exponential Distribution. SupposeZ, ..., Z,, ~ Exp()\) are exponentially distributed with (rate) parameter
(mean\~1), thenZ,, ..., Z,, have inverse distribution functioA—!(u) = —A"'log(1 — u) (0 < u < 1) and
density functionf(z) = Aexp(—Az) (z > 0). Thusf (F~! (u)) = A(1 —u) (0 < u < 1), and the spacings have
an Exponential distribution given by

1
Z — Ziy ~ Exp(A(m — k ith —_—
(k+1) (k) Xp(A(m —k))  wi mean)\(m )
— Normal Distribution. SupposéZ,...,Z, ~ N (u, 52) are normally distributed with megnand variancer2.

If we let ! and f respectively denote the inverse distribution function dadsity function of such a (y, o)
random variable, then

whereG~! and g are respectively the inverse distribution function andsitgrfunction of a standard Normal
N(0, 1) random variable. We therefore I8t(«) denote the functiop(G~!(u))~}, so

1
H(u) = ———— = (2m)2 exp (I nver seEr f ¢c(2u)? 0<u<1],
whereInverseErfc denotes the inverse function to the complementary erroctfom, and we illustrate this
function H in Figure 1. It can be seen that is a moderately small value away from the extreme orderssitzg]
for exampleH (u) =~ 4 for 0.2 < u < 0.8. Thus the spacings have an Exponential distribution (wéttameter
depending ork) given by
H ()

m . o
Zk+1) — Zky ~ EXp T() with mean -

k.
m

7.3 Aggressive shortening

Having shown that the sample amplification technique leadslatively small spacings, we can now put everything
together. The idea is to start with a lit= {z1, ..., z,} of ACD samples of mean val ~! and standard deviation
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oo ~ 3722001 One first amplifies this to a list of: samplesS;,. One then sorts th8y, to get the order statistics
Sk . Compute the spacingg, = Stk+1) — Sy fork =1,...,m — 1 and store the = m/2 “middle” spacings as
input to the next iteration of the algorithm. Aftéiiterations one then applies the orthogonal lattice attack.

We now analyse the method. The complexity is proportionéhtdog(m ), since each iteration computes a sorted
list of sizem. The mean and the standard deviation of the spacings isselygoroportional ton, so we would wish
to takem to be very large. Suppose, at tji¢h iteration, we have a list af;_; valuesYl(J_l), ceey YT(]{_ll) (sorg =171)
with standard deviation;_;. As noted above, a random susp is well-approximated as a Normal random variable
with variancelaf-_1 forl > 1. Lemma 4 shows that thig" spacing in this Normal approximation case essentially has
a distribution given by

) IzH
with mean——"~¢;_;.
m

_m
20,1 H (1)

Figure 1 shows thaﬂ(%) ~ 4 when0.2m < k < 0.8m, so by considering the “middle” spacingsBf, ..., Tyn_1,

we can obtairr; = %m random variables with approximately the same distributiat are in general independent.

Thus at the end of thg" iteration, we obtain random variables

Stka1) — Sry ~ EXP(

1

; , . . 41z
Y/....,Y?  with mean and standard deviation = —20-,1.
1 T m J

The main question is how many times the method can be itetatédthe errors grow so large thatis not
determined anymore. Aftef iterations, the random variabléd, . . .,Y% are sums of2!)’ of the original ACD

samples, so the standard deviation of an error term in theubwtf the j-th has increased by a multiple (1) .
Hence, the total number of iterations performed satidfiess.
Our analysis shows that the average size of samplesiattmations is(4v/1/m)?27~!. To have samples of size
close ton-bits thus requires
n =~ ilogy(4V1/m) 4+~ — 1.

Hence, optimistically taking = n, we need
logy(m) & (v — 1+ n(log(4v1) = 1)/n

In other words, the lists are of size close2td”, which is prohibitively large in practice. Even for the togrameters
(p,m,7) = (71,2698, 19350000) from [CNT12] we would haven ~ 27°°°, which is absurd.

In summary, the detailed statistical analysis of this $ectias essentially shown that a neighbouring difference
approach, whilst initially appearing promising, can ordguce the magnitude and variability of the samples produced
at each iteration by a factor that depends linearly on thelrasmof sums considered at each iteration. For the parameter
sizes required for a cryptographic system, this meanslileatetsulting errors grow too rapidly for this approach to be
useful.

It is natural to wonder why the BKW algorithm is a useful toot LLPN, and yet similar ideas are not useful
for ACD. One answer is that ACD is actually a much easier pwbthan LPN: The naive attack on LPN tak¥s
operations, whereas one can solve ACD in vastly fewer #iasteps.

8 Conclusions

We have surveyed known attacks on the ACD problem. Our madtiniinis that the multivariate polynomial attack is
not more powerful than the orthogonal lattice attack, thedarifying the contribution of Cohn and Heninger [CH13].
We have developed a sample amplification method for ACD whiely have applications in cryptanalysis. We have
also investigated a pre-processing approach, similaetB KW algorithm, and given a statistical analysis that exyga
why this method does not lead to an attack on ACD.

" In practice one can store ti$& in a binary search tree, in which case an explicit sorting &eot required.
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