Jump to content

Tesseractic honeycomb honeycomb

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
Tesseractic honeycomb honeycomb
(No image)
Type Hyperbolic regular honeycomb
Schläfli symbol {4,3,3,4,3}
{4,3,31,1,1}
Coxeter diagram

5-faces {4,3,3,4}
4-faces {4,3,3}
Cells {4,3}
Faces {4}
Cell figure {3}
Face figure {4,3}
Edge figure {3,4,3}
Vertex figure {3,3,4,3}
Dual Order-4 24-cell honeycomb honeycomb
Coxeter group R5, [3,4,3,3,4]
Properties Regular

In the geometry of hyperbolic 5-space, the tesseractic honeycomb honeycomb is one of five paracompact regular space-filling tessellations (or honeycombs). It is called paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. With Schläfli symbol {4,3,3,4,3}, it has three tesseractic honeycombs around each cell. It is dual to the order-4 24-cell honeycomb honeycomb.

It is related to the regular Euclidean 4-space tesseractic honeycomb, {4,3,3,4}.

It is analogous to the paracompact cubic honeycomb honeycomb, {4,3,4,3}, in 4-dimensional hyperbolic space, square tiling honeycomb, {4,4,3}, in 3-dimensional hyperbolic space, and the order-3 apeirogonal tiling, {∞,3} of 2-dimensional hyperbolic space, each with hypercube honeycomb facets.

See also

References

  • Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. ISBN 0-486-61480-8. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999 ISBN 0-486-40919-8 (Chapter 10: Regular honeycombs in hyperbolic space, Summary tables II, III, IV, V, p212-213)