Moscow Institute of Physics and Technology

(Redirected from Phystech)

Moscow Institute of Physics and Technology (MIPT; Russian: Московский Физико-Технический институт, also known as PhysTech), is a public research university located in Moscow Oblast, Russia. It prepares specialists in theoretical and applied physics, applied mathematics and related disciplines.

Moscow Institute of Physics and Technology
Московский Физико-Технический институт
MottoSapere aude
Motto in English
Dare to know
TypePublic research university
Established1946
Parent institution
Ministry of Science and Higher Education (Russia)
AffiliationRussian Academy of Sciences
PresidentNikolay Kudryavtsev
RectorDmitry Livanov
Academic staff
1,110
Students6,040
Undergraduates4,288
Postgraduates1,751
Location,
Russia

55°55′46″N 37°31′17″E / 55.92944°N 37.52139°E / 55.92944; 37.52139
CampusUrban
LanguageRussian
Colours     Blue & white
Websitemipt.ru/english
University rankings
Global – Overall
USNWR Global[citation needed]475
Regional – Overall
QS Emerging Europe and Central Asia[1]10 (2022)

The main MIPT campus is located in Dolgoprudny,[2] a northern suburb of Moscow. However the Aeromechanics Department is based in Zhukovsky, a suburb south-east of Moscow.

In international rankings, the university was ranked 44th by The Three University Missions Ranking in 2022, In 2020 and 2021, Times Higher Education ranked MIPT #201 in the world, in 2022 QS World University Ratings ranked it #290 in the world, in 2022 U.S. News & World Report ranked it #475 in the world, and in 2022 Academic Ranking of World Universities ranked it #501 in the world.[3][4][5][6] As Phystech's founder, Pyotr Kapitsa, designed the institute inspired by and in accordance with the Massachusetts Institute of Technology model, Phystech is commonly hailed as the "MIT of Russia" and is considered to be the leading specialized technical institution of higher education in the former Soviet Union.[7]

Nikolay Kudryavtsev (Кудрявцев Николай Николаевич]), the president of the Moscow Institute of Physics and Technology has signed a letter of support for the Russian invasion of Ukraine. The rector Dmitry Livanov did not sign it.[8]

History

edit
 
A view of the MIPT campus and the city of Dolgoprudny from the Applied Mathematics Building

In late 1945 and early 1946, a group of Soviet scientists, including the future Nobel Prize winner Pyotr Kapitsa, lobbied the government for the creation of a higher educational institution radically different from the type established in the Soviet system of higher education. Applicants, selected by challenging examinations and personal interviews, would be taught by and work together with, prominent scientists. Each student would follow a personalized curriculum created to match his or her particular areas of interest and specialization. This system would later become known as the Phystech System.[9]

In a letter to Stalin in February 1946, Kapitsa argued for the need for such a school, which he tentatively called the Moscow Institute of Physics and Technology, to better maintain and develop the country's defense potential. The institute would follow the principles outlined above and was supposed to be governed by a board of directors of the leading research institutes of the USSR Academy of Sciences. On March 10, 1946, the government issued a decree mandating the establishment of a "College of Physics and Technology" (Russian: Высшая физико-техническая школа).[10]

 
MIPT campus before renovation

For unknown reasons, the initial plan came to a halt in the summer of 1946. The exact circumstances are not documented, but the common assumption is that Kapitsa's refusal to participate in the Soviet atomic bomb project and his disfavor with the government and communist party that followed, cast a shadow over an independent school based largely on his ideas. Instead, a new government decree was issued on November 25, 1946, establishing the new school as a Department of Physics and Technology within Moscow State University. November 25 is celebrated as the date of MIPT's founding.[11]

Kapitsa foresaw that within a traditional educational institution, the new school would encounter bureaucratic obstacles, but even though Kapitsa's original plan to create the new school as an independent organization did not come to fruition exactly as envisioned, its most important principles survived intact. The new department enjoyed considerable autonomy within Moscow State University. Its facilities were in Dolgoprudny (the two buildings it occupied are still part of the present day campus), away from the MSU campus. It had its own independent admissions and education system, different from the one centrally mandated for all other universities. It was headed by the MSU "vice rector for special issues"—a position created specifically to shield the department from the university management.[12]

As Kapitsa expected, the special status of the new school with its different "rules of engagement" caused much consternation and resistance within the university. The immediate cult status that Phystech gained among talented young people, drawn by the challenge and romanticism of working on the forefront of science and technology and on projects of "government importance," many of them classified, made it an untouchable rival of every other school in the country, including MSU's own Department of Physics. At the same time, the increasing disfavor of Kapitsa with the government (in 1950 he was essentially under house arrest) and anti-semitic repressions of the late 1940s made Phystech an easy target of intrigues and accusations of "elitism" and "rootless cosmopolitanism." In the summer of 1951, the Phystech department at MSU was shut down.[13]

A group of academicians, backed by Air Force general Ivan Fedorovich Petrov, who was a Phystech supporter influential enough to secure Stalin's personal approval on the issue, succeeded in re-establishing Phystech as an independent institute. On September 17, 1951, a government decree re-established Phystech as the Moscow Institute of Physics and Technology.[14]

Apart from Kapitsa, other prominent scientists who taught at MIPT in the years that followed included Nobel prize winners Nikolay Semyonov, Lev Landau, Alexandr Prokhorov, Vitaly Ginzburg; and Academy of Sciences members Sergey Khristianovich, Mikhail Lavrentiev, Mstislav Keldysh, Sergey Korolyov and Boris Rauschenbach. MIPT alumni include Andre Geim and Konstantin Novoselov, the 2010 winners of the Nobel Prize in Physics.[15]

 
The four oldest residence halls are across the street from the academic buildings.

The Phystech System

edit

The key principles of the Phystech System, as outlined by Kapitsa in his 1946 letter arguing for the founding of MIPT:

  • Rigorous selection of gifted and creative young individuals.
  • Involving leading scientists in student education, in close contact with them in their creative environment.
  • An individualized approach to encourage the cultivation of students' creative drive and to avoid overloading them with unnecessary subjects and rote learning common in other schools and necessitated by mass education.
  • Conducting their education in an atmosphere of research and creative engineering, using the best existing laboratories in the country.[16]

Departments

edit

In 2016, a large-scale reform took place, and MIPT has since been divided into Phystech schools, created from the ex-faculties:

  • Phystech School of Radio Engineering and Computer Technology (PRCT or FRKT; Russian: Физтех-школа Радиотехники и Компьютерных Технологий, ФРКТ)
  • Landau Phystech School of Physics and Research (LPR or LFI; Russian: Физтех-школа Физики и Исследований им. Ландау, ЛФИ)
  • Phystech School of Aerospace Technology (PAST or FAСT; Russian: Физтех-школа аэрокосмических технологий, ФАКТ)
  • Phystech School of Electronics, Photonics and Molecular Physics (PEPM or FEFM; Russian: Физтех-школа электроники, фотоники и молекулярной физики, ФЭФМ)
  • Phystech School of Applied Mathematics and Computer Science (PAMCS or FPMI; Russian: Физтех-школа прикладной математики и информатики, ФПМИ)
  • Phystech School of Biological and Medical Physics (PBMP or FBMF; Russian: Физтех-школа биологической и медицинской физики, ФБМФ)
  • I.V. Kurchatov Phystech School of Nature-like, Plasma and Nuclear Technologies (KST or KNT; Russian: Физтех-школа природоподобных, плазменных и ядерных технологий им. И.В. Курчатова, КНТ)
  • Phystech School of High-Tech Business (PHTB or FBVT; Russian: Физтех-школа бизнеса высоких технологий, ФБВТ)
  • Higher School of Software Engineering (HSSE or VShPI; Russian: Высшая школа программной инженерии, ВШПИ)

Despite the formation of new departments, students and teachers of the Institute often continue to use the old names of faculties. For example, LPR students are usually called "fopfs" (Russian: фопфы) in honor of the former Department of General and Applied Physics (DGAP, Russian: Факультет общей и прикладной физики, ФОПФ).

Admissions

edit

Most students apply to MIPT immediately after graduating from high school at the age of 18. Traditionally, applicants were required to take written and oral exams in both mathematics and physics, write an essay and have an interview with the faculty. In recent years, oral exams have been eliminated, but the interview remains an important part of the selection process. The strongest performers in national physics and mathematics competitions and IMO/IPhO participants are granted admission without exams, subject only to the interview.[citation needed]

In accordance with the traditions of the Soviet education system, education at MIPT is free for most students. Further, students receive small scholarships (as of 2020, $70–105 for bachelor's and $110–140 for master's degree per month,[17] depending on the student's performance) and rather cheap (as of 2020, $13–20[18] per month, depending on location and comfort) housing on campus.[citation needed]

Education

edit
 
A student studying the class schedule
 
Hybrid convertiplane "Irbis-538" during the "Armiya 2021" exhibition

It normally takes six years for a student to graduate from MIPT. The curriculum of the first three years consists exclusively of compulsory courses, with emphasis on mathematics, physics and English. There are no significant curriculum differences between the departments in the first three years. A typical course load during the first and second years can be over 48 hours a week, not including homework. Classes are taught five days a week, beginning at 9:00 am or 10:30 am and continuing until 5:00 pm, 6:30 pm, or 8:00 pm. Most subjects include a combination of lectures and seminars (problem-solving study sessions in smaller groups) or laboratory experiments. Lecture attendance is optional, while seminar and lab attendance affects grades. Andre Geim, a graduate and Nobel prize winner stated "The pressure to work and to study was so intense that it was not a rare thing for people to break and leave and some of them ended up with everything from schizophrenia to depression to suicide."[19]

MIPT follows a semester system. Each semester includes 15 weeks of instruction, two weeks of finals and then three weeks of oral and written exams on the most important subjects covered in the preceding semester.[citation needed] Starting with the third year, the curriculum matches each student's area of specialization and also includes more elective courses. Most importantly, starting with the third year, students begin work at base institutes (or "base organizations," usually simply called bases). The bases are the core of the Phystech system. Most of them are research institutes, usually belonging to the Russian Academy of Sciences. At the time of enrollment, each student is assigned to a base that matches his or her interests. Starting with the third year, a student begins to commute to their base regularly, becoming essentially a part-time employee. During the last two years, a student spends 4–5 days a week at their base institute and only one day at MIPT.[20]

The base organization idea is somewhat similar to an internship in that students participate in "real work." However, the similarity ends there. All base organizations also have a curriculum for visiting students and besides their work, the students are required to take those classes and pass exams. In other words, a base organization is an extension of MIPT, specializing in each particular student's area of interests.[citation needed] While working at the base organization, a student prepares a thesis based on his or her research work and presents ("defends") it before the Qualification Committee consisting of both MIPT faculty and the base organization staff. Defending the thesis is a requirement for graduation.[citation needed]

Base organizations

edit

As of 2005, MIPT had 103 base organizations. The following list of institutes is currently far from being complete:

In addition, a number of Russian and Western companies act as base organizations of MIPT. These include:

Degrees

edit

Before 1998, students could graduate only after completing the full six-year curriculum and defending their thesis. Upon graduation, they were awarded a specialist degree in Applied Mathematics and Physics and, beginning in the early 1990s, a Master's degree in Physics. Since 1998, students have been awarded a Bachelor's degree diploma after four years of study and the defense of a Bachelor's "qualification work" (effectively a smaller and less involved version of the Master's thesis).[22]

The full course of education at MIPT takes six years to complete, just like an American bachelor's degree followed by a master's degree. The MIPT curriculum is more extensive compared to an average American college according to the school.[23] There is an opinion at the school that an MIPT specialist/Master's diploma may be roughly equivalent to an American PhD in physics.[24][citation needed]

Rankings

edit

In 2020 and 2021, Times Higher Education ranked MIPT #201 in the world, in 2022 QS World University Ratings ranked it #290 in the world, in 2026 U.S. News & World Report ranked it #475 in the world, and in 2022 Academic Ranking of World Universities ranked it #501 in the world.[4][5][6][3]

Traditional university rankings are often based in part on the universities' research output and prizes won by faculty.[25]

People

edit

Demographics

edit

About 15% of all students are residents of Moscow and nearly the same are from Moscow region; the rest come from all over the former Soviet Union. The student population is almost exclusively male, with the female/male ratio in a department rarely exceeding 15% (seeing 2–3 women in a class of 80 is not uncommon). In 2009 more than 20% of first year students were females.[26]

There are no reliable statistics on the careers of MIPT graduates.[citation needed]

Notable faculty and alumni

edit

Scientists

edit

Nobel Prize winners

 
Pyotr Kapitza
 
Lev Landau
 
Nikolay Semyonov
 
Alexandr Prokhorov
 
Alexei Abrikosov
 
Vitaly Ginzburg
 
Igor Tamm

Other notable scientists

edit
 
Alexey Fridman

Cosmonauts

edit

Political and business persons

edit

References

edit
  1. ^ "QS World University Rankings-Emerging Europe & Central Asia". Retrieved 15 January 2023.
  2. ^ "Google Maps". Google Maps. Retrieved 31 October 2017.
  3. ^ a b Moscow Institute of Physics & Technology
  4. ^ a b "Best Universities in the world". Mastersportal. Retrieved 20 Dec 2022.
  5. ^ a b "Best Universities". USNews. Retrieved 20 Dec 2022.
  6. ^ a b "Moscow Institute of Physics and Technology (MIPT / Moscow Phystech)". Top Universities.
  7. ^ "ShanghaiRanking-Univiersities".
  8. ^ "Обращение Российского Союза ректоров 04.03.2022". Российский Союз Ректоров. March 4, 2022. Archived from the original on 7 March 2022.
  9. ^ Simões, Ana; Paula Diogo, Maria; Gavroglu, Kostas, eds. (2015). Sciences in the Universities of Europe, Nineteenth and Twentieth Centuries. Academic Landscapes. pp. 182–183. ISBN 9789401796361.
  10. ^ "Повесть древних времён или предыстория Физтеха", Ch 3 Archived 2006-10-11 at the Wayback Machine by N. V. Karlov.
  11. ^ "Повесть древних времён или предыстория Физтеха", Ch 4 by N.V. Karlov.
  12. ^ Я — ФИЗТЕХ (книга очерков) (PDF). Москва: Издательство ЦентрКом. 1996. Archived from the original (PDF) on 2017-10-24.
  13. ^ "Повесть древних времён или предыстория Физтеха", Ch 6 by N.V. Karlov.
  14. ^ "Повесть древних времён или предыстория Физтеха", Ch 7 by N.V. Karlov.
  15. ^ "The Nobel Prize in Physics 2010". nobelprize.org. Retrieved 31 October 2017.
  16. ^ Капица, Сергей Петрович. Мои воспоминания. ISBN 978-5-17-093139-2. Archived from the original on 2014-09-26.
  17. ^ "Государственная академическая стипендия — Студенческая жизнь". mipt.ru.
  18. ^ "Residence Prices".
  19. ^ "Renaissance scientist with fund of ideas". Scientific Computing World. 15 July 2006.
  20. ^ Gruntman, Mike (2022). My fifteen years at IKI, the Space Research Institute : position-sensitive detectors and energetic neutral atoms behind the Iron Curtain. Rolling Hill Estates, Calif.: Interstellar Trail Press. pp. 6–17. ISBN 9798985668704.
  21. ^ "Summer Symposiums History". International Summer Symposium on Science and World Affairs. Retrieved 11 November 2013.
  22. ^ "MIPT". mipt.ru (in Russian). Retrieved 2024-07-25.
  23. ^ "Phystech's Educational Approach". Archived from the original on 31 January 2011. Retrieved 31 October 2017.
  24. ^ "Academicians, Hierarchy and Titles in Russian Science, MIPT Web Site". Archived from the original on 2 May 2006. Retrieved 31 October 2017.
  25. ^ "Shanghai Jao Tong University ranking methodology". Archived from the original on 7 May 2006. Retrieved 31 October 2017.
  26. ^ "MIPT 2009 admittance statistics". Archived from the original on 13 December 2009. Retrieved 31 October 2017.
  27. ^ "Nobel Prize in Physics 1962 – Presentation Speech". nobelprize.org. Retrieved 31 October 2017.
  28. ^ Kapitza P (1938). "Viscosity of liquid helium below the λ-point". Nature. 141 (3558): 74. Bibcode:1938Natur.141...74K. doi:10.1038/141074a0.
  29. ^ "Press Release: The 1978 Nobel Prize in Physics". nobelprize.org. Retrieved 31 October 2017.
  30. ^ Ölander, A. "The Nobel Prize in Chemistry 1956: Award ceremony speech". nobelprize.org.
  31. ^ "Press Release: The 2003 Nobel Prize in Physics". nobelprize.org. Retrieved 31 October 2017.
  32. ^ "Nobel Prize in Physics 1964 – Presentation Speech". nobelprize.org. Retrieved 31 October 2017.
  33. ^ "Intel Fellow – Boris A. Babayan". www.intel.com. Retrieved 31 October 2017.
  34. ^ Bolibrukh AA (1995). 21st Hilbert Problem for Linear Fuchsian Systems. Amer Mathematical Society. ISBN 0-8218-0466-9.
  35. ^ Gross DJ, Migdal AA (1990). "Nonperturbative two-dimensional quantum gravity". Phys. Rev. Lett. 64 (2): 127–30. Bibcode:1990PhRvL..64..127G. doi:10.1103/PhysRevLett.64.127. PMID 10041657.
  36. ^ Gubser SS, Klebanov IR, Polyakov AM (1998). "Gauge theory correlators from non-critical string theory". Phys. Lett. B. 428 (1–2): 105–14. arXiv:hep-th/9802109. Bibcode:1998PhLB..428..105G. doi:10.1016/S0370-2693(98)00377-3. S2CID 15693064.
  37. ^ a b Belavin AA, Polyakov AM, Zamolodchikov AB (1984). "Infinite conformal symmetry in two-dimensional quantum field theory" (PDF). Nucl. Phys. B. 241 (2): 333–80. Bibcode:1984NuPhB.241..333B. doi:10.1016/0550-3213(84)90052-X.
  38. ^ Polyakov AM (1981). "Quantum geometry of bosonic strings". Phys. Lett. B. 103 (3): 207–10. Bibcode:1981PhLB..103..207P. doi:10.1016/0370-2693(81)90743-7.
  39. ^ a b Knizhnik VG, Polyakov AM, Zamolodchikov AB (1988). "Fractal structure of 2d—quantum gravity". Mod. Phys. Lett. A. 3 (8): 819–26. Bibcode:1988MPLA....3..819K. doi:10.1142/S0217732388000982.
  40. ^ Polyakov AM (1977). "Quark confinement and topology of gauge theories". Nucl. Phys. B. 120 (3): 429–58. Bibcode:1977NuPhB.120..429P. doi:10.1016/0550-3213(77)90086-4.
  41. ^ "Dirac Medallists 1986 — ICTP Portal". prizes.ictp.it. Retrieved 31 October 2017.
  42. ^ E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960)
  43. ^ Shifman MA, Vainshtein AI, Zakharov VI (1979). "QCD and resonance physics: The ρ-ω mixing". Nucl. Phys. B. 147 (5): 519–34. Bibcode:1979NuPhB.147..519S. doi:10.1016/0550-3213(79)90024-5.
  44. ^ Shifman MA, Vainshtein AI, Zakharov VI (1979). "QCD and resonance physics. Applications". Nucl. Phys. B. 147 (5): 448–518. Bibcode:1979NuPhB.147..448S. doi:10.1016/0550-3213(79)90023-3.
  45. ^ Shakura NI, Syunyaev RA; Sunyaev (1973). "Black holes in binary systems. Observational appearance". Astron. Astrophys. 24: 337–55. Bibcode:1973A&A....24..337S.
  46. ^ Veselago VG (1968). "The electrodynamics of substances with simultaneously negative values of ε and μ". Sov. Phys. Usp. 10 (4): 509–14. Bibcode:1968SvPhU..10..509V. doi:10.1070/PU1968v010n04ABEH003699.
  47. ^ Knizhnik VG, Zamolodchikov AB (1984). "Current algebra and Wess-Zumino model in two dimensions". Nucl. Phys. B. 247 (1): 83–103. Bibcode:1984NuPhB.247...83K. doi:10.1016/0550-3213(84)90374-2.
  48. ^ Parliament appoints Klimkin as Ukrainian foreign minister, Interfax-Ukraine (19 June 2014)
  49. ^ Bloomberg Profile: Dmitri Dolgov (20 July 2023)
  50. ^ Computer History Museum: Profile - Dmitri Dolgov (20 July 2023)
edit