Institute of Physics Michael Faraday Medal and Prize
(Redirected from Faraday Medal and Prize)
The Michael Faraday Medal and Prize is a gold medal awarded annually by the Institute of Physics in experimental physics.[1] The award is made "for outstanding and sustained contributions to experimental physics." The medal is accompanied by a prize of £1000 and a certificate.[2]
Institute of Physics Michael Faraday Medal & Prize | |
---|---|
Awarded for | Outstanding contributions to experimental physics |
Sponsored by | Institute of Physics |
Country | United Kingdom |
Presented by | Institute of Physics |
Formerly called | Guthrie Medal and Prize |
Reward(s) | Gold medal, £1000 |
First awarded | 1914 |
Website | Official website |
Historical development
edit- 1914-1965 Guthrie Lecture initiated to remember Frederick Guthrie,[3] founder of the Physical Society (which merged with the Institute of Physics in 1960).
- 1966-2007 Guthrie Medal and Prize (in response to changed conditions from when the lecture was first established). From 1992, it became one of the Institute's Premier Awards.
- 2008–present Michael Faraday Medal and Prize
Medalists and lecturers
editFaraday medalists
edit- 2024 Laura Herz, "For pioneering advances in the photophysics of next-generation semiconductors, accomplished through innovative spectroscopic experiments."
- 2023 Neil Alford, Mark Oxborrow, Chris Kay, Jonathan Breeze, Juna Sathian and Enrico Salvadori, "For their discovery of the world's first room-temperature solid-state organic maser and subsequent discovery of room-temperature continuous wave masing in diamond."
- 2022 Nikolay Zheludev, "For international leadership, discoveries and in-depth studies of new phenomena and functionalities in photonic nanostructures and nanostructured matter."
- 2021 Bucker Dangor, "For outstanding contributions to experimental plasma physics, and in particular for his role in the development of the field of laser-plasma acceleration."
- 2020 Richard Ellis, "For over 35 years of pioneering contributions in faint-object astronomy, often with instruments he funded and constructed, which have opened up the early universe to direct observations."
- 2019 Roy Taylor, "For his extensive, internationally leading contributions to the development of spectrally diverse, ultrafast-laser sources and pioneering fundamental studies of nonlinear fibre optics that have translated to scientific and commercial application."[4]
- 2018 Jennifer Thomas, "For her outstanding investigations into the physics of neutrino oscillations, in particular her leadership of the MINOS/MINOS+ long-baseline neutrino oscillation experiment."[5][6][7]
- 2017 Jeremy Baumberg, "For his investigations of many ingenious nanostructures supporting novel and precisely engineered plasmonic phenomena relevant to single molecule and atom dynamics, Raman spectroscopies and metamaterials applications."[8]
- 2016 Jenny Nelson," For her pioneering advances in the science of nanostructured and molecular semiconductor materials "
- 2015 Henning Sirringhaus, "For transforming our knowledge of charge transport phenomena in organic semiconductors as well as our ability to exploit them"[9]
- 2014 Alexander Giles Davies and Edmund Linfield, "For their outstanding and sustained contributions to the physics and technology of the far-infrared (terahertz) frequency region of the electromagnetic spectrum"[10][11][12]
- 2013 Edward Hinds, "For his innovative and seminal experimental investigations into ultra-cold atoms and molecules"
- 2012 Roy Sambles, "For his pioneering research in experimental condensed matter physics"
- 2011 Alan Andrew Watson, "For his outstanding leadership within the Pierre Auger Observatory, and the insights he has provided to the origin and nature of ultra high energy cosmic rays"[13]
- 2010 Athene Donald, "For her many highly original studies of the structures and behaviour of polymers both synthetic and natural"
- 2009 Donal Bradley, "For his pioneering work in the field of 'plastic electronics'"
- 2008 Roger Cowley, "For pioneering work in the development and application of neutron and X-ray scattering techniques to the physics of a wide range of important solid and liquid-state systems"
Guthrie medalists
edit- 2007 Gilbert Lonzarich, "for his experimental and theoretical contributions to condensed matter physics"
- 2006 Marshall Stoneham, "for his wide-ranging theoretical work on defects in solids"
- 2005 William Frank Vinen, "for his outstanding contributions to superfluids and superconductors"
- 2004 Henry Hall
- 2003 Michael Springford
- 2002 Penelope Jane Brown
- 2001 Laurence Eaves
- 2000 Lawrence Michael Brown
- 1999 George Bacon
- 1998 Derek Charles Robinson
- 1997 John Evan Baldwin
- 1996 Edward Roy Pike
- 1995 John Enderby
- 1994 Philip George Burke
- 1993 Tom Kibble
- 1992 Archibald Howie
- 1991 Dennis William Sciama
- 1990 Roger James Elliott
- 1989 Martin J. Rees
- 1988 Alan Lidiard
- 1987 Samuel Frederick Edwards
- 1986 Denys Haigh Wilkinson
- 1985 Michael Pepper
- 1984 Michael John Seaton
- 1983 Jeffrey Goldstone
- 1982 Frederick Charles Frank
- 1981 John Clive Ward
- 1980 Michael Ellis Fisher
- 1979 Donald Hill Perkins
- 1978 Philip Warren Anderson
- 1977 Alan Howard Cottrell
- 1976 Abdus Salam
- 1975 David Tabor
- 1974 Rudolf Ludwig Mössbauer
- 1973 Hermann Bondi
- 1972 Brian David Josephson
- 1971 John Ashworth Ratcliffe
- 1970 Alfred Brian Pippard
- 1969 Cecil Frank Powell
- 1968 Rudolf Ernst Peierls
- 1967 James Chadwick
- 1966 William Cochran
Guthrie lecturers
edit- 1965 John Bertram Adams
- 1964 Martin Ryle
- 1963 Leslie Fleetwood Bates
- 1962 Alfred Charles Bernard Lovell[14]
- 1961 David Shoenberg
- 1960 Fred Hoyle
- 1959 Harrie Stewart Wilson Massey
- 1958 Willis Eugene Lamb
- 1957 Harold C Urey
- 1956 Francis Simon
- 1955 Edmund Clifton Stoner
- 1954 Geoffrey Taylor
- 1953 Max Born
- 1952 W Lawrence Bragg
- 1951 Nevill Francis Mott
- 1950 George Ingle Finch
- 1949 Alexander Oliver Rankine
- 1948 George Paget Thomson
- 1947 John Desmond Bernal
- 1946 Max Jakob
- 1945 Arturo Duperier : "The Geophysical Aspect of Cosmic Rays"[15]
- 1944 Joel H Hildebrand
- 1943 Edward T. Whittaker: "Chance, freewill and necessity, in the scientific conception of the universe"[16]
- 1942 Edward V Appleton
- 1941 Edward Neville da Costa Andrade
- 1940 Patrick Maynard Stuart Blackett: "Cosmic Rays: Recent Developments"[17]
- 1939 (no lecture)
- 1938 Archibald Vivian Hill: "The transformations of energy and the mechanical work of muscles"[18]
- 1937 Clifford Copland Paterson
- 1936 Frederick A. Lindemann: "Physical Ultimates"[19]
- 1935 Arthur Holly Compton: "An attempt to analyse Cosmic Rays"
- 1934 Charles Vernon Boys: "My recent progress in Gas Calorimetry"
- 1933 Karl Manne Georg Siegbahn
- 1932 Max Planck
- 1931 Richard T Glazebrook
- 1930 Peter Debye
- 1929 Percy Williams Bridgman
- 1928 J. J. Thomson
- 1927 Sir Ernest Rutherford: "Atomic nuclei and their transformations"[20]
- 1926 Charles Fabry
- 1925 Wilhelm Wien
- 1924 Maurice le Duc de Broglie
- 1923 James Hopwood Jeans
- 1922 Niels Bohr: "The Effect of Electric and Magnetic Fields on Spectral Lines"[21]
- 1921 Albert Abraham Michelson: "Some Recent Applications of Interference Methods"[22]
- 1920 Charles Edouarde Guillaume: "The Anomaly of Nickel-Steels"[23]
- 1919 (no lecture)
- 1918 John Cunningham McLennan: "The Origin of Spectra"[24]
- 1917 Paul Langevin
- 1916 William Bate Hardy: "Some Problems of Living Matter"[25]
- 1915 (no lecture)
- 1914 Robert Williams Wood: "Radiation of Gas Molecules Excited by Light"[26]
External links
editSee also
editReferences
edit- ^ "Gold medals". Institute of Physics.
The Faraday medal: Awarded for outstanding and sustained contributions to experimental physics, to a physicist of international reputation
- ^ "Michael Faraday Medal and Prize". Institute of Physics. Retrieved 2018-04-04.
- ^ G. Carey-Foster (1913). "Introduction to the First Guthrie Lecture". Proceedings of the Physical Society of London. 26: 183–184. doi:10.1088/1478-7814/26/1/322.
- ^ "Comet chasing and Animal AI: News from the College". www.myscience.uk. 5 July 2019.
- ^ "Medals for SuperNEMO collaborators". SuperNEMO Collaboration. 21 November 2018.
- ^ "Three UCL academics recognised with prestigious physics prizes". UCL News. July 11, 2018.
- ^ "IOP award winners for 2018 announced" (PDF). CERN Courier. No. September 2018. p. 67.
- ^ "Jeremy Baumberg awarded the 2017 IOP Michael Faraday Medal and Prize — Department of Physics". University of Cambridge. 3 July 2017.
- ^ Quested, Tony (10 July 2015). "Transformational Sirringhaus wins Faraday Medal". Business Weekly.
- ^ Bunting, Christopher. "Terahertz researchers win Faraday Medal". www.leeds.ac.uk.
- ^ "The Faraday Medal-2014 has found its heroes in terahertz field". TeraSense Group. 21 August 2014.
- ^ "University of Leeds terahertz researchers win 2014 Faraday Award". Laser Focus World. 3 July 2014.
- ^ "Fellow wins IoP Faraday Medal". Astronomy & Geophysics. 52 (5): 5.39. October 1, 2011. doi:10.1111/j.1468-4004.2011.52539_3.x.
- ^ A. C. B. Lovell (1963). "1962 Guthrie Lecture: The Physical Basis of the Research Programmes at Jodrell Bank". Proceedings of the Physical Society of London. 81 (3): 385–411. Bibcode:1963PPS....81..385L. doi:10.1088/0370-1328/81/3/301.
- ^ A. Duperier (1945). "The Geophysical Aspect of Cosmic Rays". Proceedings of the Physical Society. 57 (6): 464–477. Bibcode:1945PPS....57..464D. doi:10.1088/0959-5309/57/6/302.
- ^ E.T. Whittaker (1943). "Chance, freewill and necessity, in the scientific conception of the universe". Proceedings of the Physical Society. 55 (6): 459–471. Bibcode:1943PPS....55..459W. doi:10.1088/0959-5309/55/6/303.
- ^ P.M.S. Blackett (1941). "Cosmic Rays: Recent Developments". Proceedings of the Physical Society. 53 (3): 203–213. Bibcode:1941PPS....53..203B. doi:10.1088/0959-5309/53/3/301.
- ^ A.V. Hill (1939). "The transformations of energy and the mechanical work of muscles". Proceedings of the Physical Society. 51 (1): 1–18. Bibcode:1939PPS....51....1H. doi:10.1088/0959-5309/51/1/302. ISSN 0959-5309.
- ^ "Guthrie Lecture: Prof. F. A. Lindemann, F.R.S". Nature. 137 (3472): 809. 1936. Bibcode:1936Natur.137S.809.. doi:10.1038/137809c0.
- ^ Ernest Rutherford (1926). "Atomic nuclei and their transformations". Proceedings of the Physical Society. 39 (1): 359–371. Bibcode:1926PPS....39..359R. doi:10.1088/0959-5309/39/1/332.
- ^ N. Bohr (1922). "The Effect of Electric and Magnetic Fields on Spectral Lines". Proceedings of the Physical Society of London. 35 (1): 275–302. Bibcode:1922PPSL...35..275B. doi:10.1088/1478-7814/35/1/342. hdl:2027/mdp.39015076062705.
- ^ A.A. Michelson (1920). "Some Recent Applications of Interference Methods". Proceedings of the Physical Society of London. 33 (1): 275–285. Bibcode:1920PPSL...33..275M. doi:10.1088/1478-7814/33/1/328.
- ^ Charles Edouard Guillaume (1919). "The Anomaly of the Nickel-Steels". Proceedings of the Physical Society of London. 32 (1): 374–404. Bibcode:1919PPSL...32..374E. doi:10.1088/1478-7814/32/1/337. ISSN 1478-7814.
- ^ J.C. McLennan (1918). "The Origin of Spectra". Proceedings of the Physical Society of London. 31 (1): 1–29. Bibcode:1918PPSL...31....1M. doi:10.1088/1478-7814/31/1/301.
- ^ W.B. Hardy (1915). "Some Problems of Living Matter". Proceedings of the Physical Society of London. 28 (1): 99–118. Bibcode:1915PPSL...28...99H. doi:10.1088/1478-7814/28/1/312.
- ^ R. W. Wood (1913). "Radiation of Gas Molecules Excited by Light". Proceedings of the Physical Society of London. 26 (1): 374–404. Bibcode:1913PPSL...26..185W. doi:10.1088/1478-7814/26/1/323. S2CID 33165912.