ECMA-262

12t Edition / June 2021

ECMAScript® 2021
Language Specification

Reference number
ECMA-123:2009

© Ecma International 2009


Jordan Harband



Ecma International

Rue du Rhone 114

CH-1204 Geneva

Tel: +41 22 849 6000

Fax: +41 22 849 6001

Web: https://www.ecma-international.org

COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2020


http://www.ecma-international.org/

COPYRIGHT NOTICE
© 2020 Ecma International

This document may be copied, published and distributed to others, and certain derivative works of it
may be prepared, copied, published, and distributed, in whole or in part, provided that the above
copyright notice and this Copyright License and Disclaimer are included on all such copies and
derivative works. The only derivative works that are permissible under this Copyright License and
Disclaimer are:

(i)  works which incorporate all or portion of this document for the purpose of providing commentary or
explanation (such as an annotated version of the document),

(i) works which incorporate all or portion of this document for the purpose of incorporating features
that provide accessibility,

(iii) translations of this document into languages other than English and into different formats and

(iv) works by making use of this specification in standard conformant products by implementing (e.g.
by copy and paste wholly or partly) the functionality therein.

However, the content of this document itself may not be modified in any way, including by removing the
copyright notice or references to Ecma International, except as required to translate it info languages
other than English or into a different format.

The official version of an Ecma International document is the English language version on the Ecma
International website. In the event of discrepancies between a translated version and the official
version, the official version shall govern.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE
ANY OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR
A PARTICULAR PURPOSE."

Software License

All Software contained in this document ("Software)" is protected by copyright and is being made available under the "BSD
License", included below. This Software may be subject to third party rights (rights from parties other than Ecma
International), including patent rights, and no licenses under such third party rights are granted under this license even if
the third party concerned is a member of Ecma International. SEE THE ECMA CODE OF CONDUCT IN
PATENT MATTERS AVAILABLE AT  https://www.ecma-international.org/memento/codeofconduct.htm  FOR
INFORMATION REGARDING THE LICENSING OF PATENT CLAIMS THAT ARE REQUIRED TO IMPLEMENT
ECMA INTERNATIONAL STANDARDS*.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following
conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the authors nor Ecma International may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE ECMA INTERNATIONAL "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ECMA INTERNATIONAL BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

© Ecma International 2020 i



http://www.ecma-international.org/memento/codeofconduct.htm

© Ecma International 2020



ECMAScript® 2021 Language Specification

About this Specification

The document at https:/ /tc39.es/ecma262/ is the most accurate and up-to-date ECMAScript specification. It
contains the content of the most recent yearly snapshot plus any finished proposals (those that have reached

Stage 4 in the proposal process and thus are implemented in several implementations and will be in the next

practical revision) since that snapshot was taken.

Contributing to this Specification

This specification is developed on GitHub with the help of the ECMAScript community. There are a number of
ways to contribute to the development of this specification:

GitHub Repository: https:/ / github.com/tc39/ecma262
Issues: All Issues, File a New Issue
Pull Requests: All Pull Requests, Create a New Pull Request
Test Suite: Test262
Editors:
o Jordan Harband (@ljharb)
Shu-yu Guo (@_shu)
Michael Ficarra (@smooshMap)
Kevin Gibbons (@bakkoting)

Community:

(o}

(o}

o

o Discourse: https:/ /es.discourse.group
o IRC: #tc39 on freenode
o Mailing List Archives: https:/ /esdiscuss.org/

Refer to the colophon for more information on how this document is created.



https://tc39.es/ecma262/
https://github.com/tc39/proposals/blob/master/finished-proposals.md
https://tc39.es/process-document/
https://github.com/tc39/ecma262
https://github.com/tc39/ecma262/issues
https://github.com/tc39/ecma262/issues/new
https://github.com/tc39/ecma262/pulls
https://github.com/tc39/ecma262/pulls/new
https://github.com/tc39/test262
mailto:ljharb%20at%20gmail%20dot%20com
https://twitter.com/ljharb
mailto:syg%20at%20google%20dot%20com
https://twitter.com/_shu
mailto:ecma262-editor-list%20at%20michael%20dot%20ficarra%20dot%20me
https://twitter.com/smooshMap
mailto:bakkot%20at%20gmail%20dot%20com
https://twitter.com/bakkoting
https://es.discourse.group/
ircs://irc.freenode.net:6667
https://freenode.net/kb/answer/chat
https://esdiscuss.org/

Table of Contents

Introduction
1 Scope
2 Conformance
2.1 Example Clause Heading
3 Normative References
4 Overview
4.1 Web Scripting
4.2 Hosts and Implementations
4.3 ECMAScript Overview
4.3.1 Objects
4.3.2 The Strict Variant of ECMAScript
4.4 Terms and Definitions
4.4.1 implementation-approximated
4.4.2 implementation-defined
4.4.3 host-defined
4.4.4 type
4.4.5 primitive value
4.4.6 object
4.4.7 constructor
4.4.8 prototype
4.4.9 ordinary object
4.4.10 exotic object
4.4.11 standard object
4.4.12 built-in object
4.4.13 undefined value
4.4.14 Undefined type
4.4.15 null value
4.4.16 Null type
4.4.17 Boolean value
4.4.18 Boolean type
4.4.19 Boolean object
4.4.20 String value
4.4.21 String type
4.4.22 String object
4.4.23 Number value
4.4.24 Number type
4.4.25 Number object
4.4.26 Infinity
4.4.27 NaN
4.4.28 BigInt value
4.4.29 BigInt type
4.4.30 BigInt object
4.4.31 Symbol value



4.4.32 Symbol type
4.4.33 Symbol object
4.4.34 function
4.4.35 built-in function
4.4.36 property
4.4.37 method
4.4.38 built-in method
4.4.39 attribute
4.4.40 own property
4.4.41 inherited property
4.5 Organization of This Specification
5 Notational Conventions
5.1 Syntactic and Lexical Grammars
5.1.1 Context-Free Grammars
5.1.2 The Lexical and RegExp Grammars
5.1.3 The Numeric String Grammar
5.1.4 The Syntactic Grammar
5.1.5 Grammar Notation
5.2 Algorithm Conventions
5.2.1 Abstract Operations
5.2.2 Syntax-Directed Operations
5.2.3 Runtime Semantics
5.2.3.1 Implicit Completion Values
5.2.3.2 Throw an Exception
5.2.3.3 ReturnIfAbrupt
5.2.3.4 ReturnIfAbrupt Shorthands
5.2.4 Static Semantics
5.2.5 Mathematical Operations
5.2.6 Value Notation
6 ECMAScript Data Types and Values
6.1 ECMAScript Language Types
6.1.1 The Undefined Type
6.1.2 The Null Type
6.1.3 The Boolean Type
6.1.4 The String Type
6.1.4.1 StringIndexOf ( string, searchValue, fromIndex )
6.1.5 The Symbol Type
6.1.5.1 Well-Known Symbols
6.1.6 Numeric Types
6.1.6.1 The Number Type
6.1.6.1.1 Number::unaryMinus ( x )
6.1.6.1.2 Number::bitwiseNOT ( x )
6.1.6.1.3 Number::exponentiate ( base, exponent )
6.1.6.1.4 Number:multiply (x, v )
6.1.6.1.5 Number::divide (x, y )
6.1.6.1.6 Number::remainder (1, d )
6.1.6.1.7 Number::add (x, y )
6.1.6.1.8 Number::subtract (x, y )



6.1.6.1.9 Number::leftShift (x, y )
6.1.6.1.10 Number::signedRightShift (x, y )
6.1.6.1.11 Number::unsignedRightShift ( x, y )
6.1.6.1.12 Number::lessThan ( x, y )
6.1.6.1.13 Number::equal (x, y )
6.1.6.1.14 Number::sameValue ( x, y )
6.1.6.1.15 Number::sameValueZero ( x, i )
6.1.6.1.16 NumberBitwiseOp (op, x, v )
6.1.6.1.17 Number::bitwise AND ( x, v )
6.1.6.1.18 Number::bitwiseXOR ( x, i )
6.1.6.1.19 Number::bitwiseOR ( x, v )
6.1.6.1.20 Number::toString ( x )
6.1.6.2 The BigInt Type
6.1.6.2.1 BigInt::unaryMinus ( x )
6.1.6.2.2 BigInt::bitwiseNOT ( x )
6.1.6.2.3 BigInt::exponentiate ( base, exponent )
6.1.6.2.4 BigInt::multiply (x, y )
6.1.6.2.5 BigInt::divide (x, y )
6.1.6.2.6 BigInt::remainder (n, d )
6.1.6.2.7 BigInt::add (x, v )
6.1.6.2.8 BigInt::subtract (x, v )
6.1.6.2.9 BigInt:leftShift (x, y )
6.1.6.2.10 BigInt::signedRightShift (x, y )
6.1.6.2.11 BigInt::unsignedRightShift ( x, y )
6.1.6.2.12 BigInt::lessThan (x, y )
6.1.6.2.13 BigInt::equal (x, y )
6.1.6.2.14 BigInt::sameValue ( x, y )
6.1.6.2.15 BigInt::sameValueZero ( x, y )
6.1.6.2.16 BinaryAnd (x, y )
6.1.6.2.17 BinaryOr ( x, y )
6.1.6.2.18 BinaryXor (x, y )
6.1.6.2.19 BigIntBitwiseOp (op, x, y )
6.1.6.2.20 BigInt::bitwise AND (x, y )
6.1.6.2.21 BigInt::bitwiseXOR ( x, y )
6.1.6.2.22 BigInt::bitwiseOR ( x, )
6.1.6.2.23 Biglnt:toString ( x )
6.1.7 The Object Type
6.1.7.1 Property Attributes
6.1.7.2 Object Internal Methods and Internal Slots
6.1.7.3 Invariants of the Essential Internal Methods
6.1.7.4 Well-Known Intrinsic Objects
6.2 ECMAScript Specification Types
6.2.1 The List and Record Specification Types
6.2.2 The Set and Relation Specification Types
6.2.3 The Completion Record Specification Type
6.2.3.1 Await
6.2.3.1.1 Await Fulfilled Functions
6.2.3.1.2 Await Rejected Functions



6.2.3.2 NormalCompletion
6.2.3.3 ThrowCompletion
6.2.3.4 UpdateEmpty ( completionRecord, value )
6.2.4 The Reference Record Specification Type
6.2.4.1 IsPropertyReference ( V')
6.2.4.2 IsUnresolvableReference ( V')
6.2.4.3 IsSuperReference ( V')
6.2.4.4 GetValue (V)
6.2.4.5 PutValue (V, W)
6.2.4.6 GetThisValue (V)
6.2.4.7 InitializeReferencedBinding ( V, W)
6.2.5 The Property Descriptor Specification Type
6.2.5.1 IsAccessorDescriptor ( Desc )
6.2.5.2 IsDataDescriptor ( Desc )
6.2.5.3 IsGenericDescriptor ( Desc )
6.2.5.4 FromPropertyDescriptor ( Desc )
6.2.5.5 ToPropertyDescriptor ( Obj )
6.2.5.6 CompletePropertyDescriptor ( Desc )
6.2.6 The Environment Record Specification Type
6.2.7 The Abstract Closure Specification Type
6.2.8 Data Blocks
6.2.8.1 CreateByteDataBlock ( size )
6.2.8.2 CreateSharedByteDataBlock ( size )
6.2.8.3 CopyDataBlockBytes ( toBlock, tolndex, fromBlock, fromIndex, count )
7 Abstract Operations
7.1 Type Conversion
7.1.1 ToPrimitive ( input [, preferredType | )
7.1.1.1 OrdinaryToPrimitive ( O, hint )
7.1.2 ToBoolean ( arqument )
7.1.3 ToNumeric ( value )
7.1.4 ToNumber ( argument )
7.1.4.1 ToNumber Applied to the String Type
7.1.4.1.1 RS: MV
7.1.5 TolntegerOrInfinity ( argument )
7.1.6 ToInt32 (arqument )
7.1.7 ToUint32 ( argument )
7.1.8 ToInt16 (arqument )
7.1.9 ToUint16 (argument )
7.1.10 ToInt8 (arqument )
7.1.11 ToUint8 ( argument )
7.1.12 ToUint8Clamp ( argument )
7.1.13 ToBigInt ( argument )
7.1.14 StringToBigInt ( argument )
7.1.15 ToBigInt64 ( argument )
7.1.16 ToBigUint64 ( argument )
7.1.17 ToString ( argument )
7.1.18 ToObject ( argument )
7.1.19 ToPropertyKey ( argument )



7.1.20 ToLength ( arqument )
7.1.21 CanonicalNumericIndexString ( argument )
7.1.22 ToIndex ( value )
7.2 Testing and Comparison Operations
7.2.1 RequireObjectCoercible ( argument )
7.2.2 IsArray ( arqument )
7.2.3 IsCallable (arqument )
7.2.4 IsConstructor ( arqument )
7.2.5 IsExtensible ( O )
7.2.6 IsIntegralNumber ( argument )
7.2.7 IsPropertyKey ( argument )
7.2.8 IsRegExp ( argument )
7.2.9 IsStringPrefix (p, q )
7.2.10 SameValue (x, y )
7.2.11 SameValueZero (x, y )
7.2.12 SameValueNonNumeric (x, i )
7.2.13 Abstract Relational Comparison
7.2.14 Abstract Equality Comparison
7.2.15 Strict Equality Comparison
7.3 Operations on Objects
7.3.1 MakeBasicObject ( internalSlotsList )
7.32Get(O,P)
733GetV(V,P)
734Set (O, P, V, Throw)
7.3.5 CreateDataProperty (O, P, V')
7.3.6 CreateMethodProperty (O, P, V')
7.3.7 CreateDataPropertyOrThrow (O, P, V')
7.3.8 DefinePropertyOrThrow ( O, P, desc )
7.3.9 DeletePropertyOrThrow ( O, P)
7.3.10 GetMethod (V, P)
7.3.11 HasProperty ( O, P )
7.3.12 HasOwnProperty (O, P )
7.313 Call (F, V[, arqumentsList ] )
7.3.14 Construct ( F [, argumentsList [ , newTarget ] ] )
7.3.15 SetIntegrityLevel ( O, level )
7.3.16 TestIntegrityLevel ( O, level )
7.3.17 CreateArrayFromList ( elements )
7.3.18 LengthOfArrayLike ( 0bj )
7.3.19 CreateListFromArrayLike (obj [, elementTypes | )
7.3.20 Invoke ( V, P [, argumentsList ] )
7.3.21 OrdinaryHasInstance (C, O )
7.3.22 SpeciesConstructor ( O, defaultConstructor )
7.3.23 EnumerableOwnPropertyNames ( O, kind )
7.3.24 GetFunctionRealm ( obj )
7.3.25 CopyDataProperties ( target, source, excludedItems )
7.4 Operations on Iterator Objects
7.4.1 Getlterator (obj [, hint [, method ] ])
7.4.2 TteratorNext ( iteratorRecord | , value | )



7.4.3 IteratorComplete ( iterResult )
7.4.4 TteratorValue ( iterResult )
7.4.5 IteratorStep ( iteratorRecord )
7.4.6 IteratorClose ( iteratorRecord, completion )
7.4.7 AsynclteratorClose ( iteratorRecord, completion )
7.4.8 CreatelterResultObject ( value, done )
7.4.9 CreateListIteratorRecord ( list )
7.4.10 IterableToList ( items [ , method | )
8 Syntax-Directed Operations
8.1 Scope Analysis
8.1.1 SS: BoundNames
8.1.2 SS: DeclarationPart
8.1.3 SS: IsConstantDeclaration
8.1.4 SS: LexicallyDeclaredNames
8.1.5 SS: LexicallyScopedDeclarations
8.1.6 SS: VarDeclaredNames
8.1.7 SS: VarScopedDeclarations
8.1.8 SS: TopLevelLexicallyDeclaredNames
8.1.9 SS: TopLevelLexicallyScopedDeclarations
8.1.10 SS: TopLevelVarDeclaredNames
8.1.11 SS: TopLevelVarScopedDeclarations
8.2 Labels
8.2.1 SS: ContainsDuplicateLabels
8.2.2 §S: ContainsUndefinedBreakTarget
8.2.3 SS: ContainsUndefinedContinueTarget
8.3 Function Name Inference
8.3.1 SS: HasName
8.3.2 SS: IsFunctionDefinition
8.3.3 SS: IsAnonymousFunctionDefinition ( expr )
8.3.4 SS: IsldentifierRef
8.3.5 RS: NamedEvaluation
8.4 Contains
8.4.1 SS: Contains
8.4.2 S5: ComputedPropertyContains
8.5 Miscellaneous
8.5.1 RS: InstantiateFunctionObject
8.5.2 RS: Bindinglnitialization
8.5.2.1 InitializeBoundName ( name, value, environment )
8.5.3 RS: IteratorBindinglInitialization
8.5.4 55: AssignmentTargetType
8.5.5 SS: PropName
9 Executable Code and Execution Contexts
9.1 Environment Records
9.1.1 The Environment Record Type Hierarchy
9.1.1.1 Declarative Environment Records
9.1.1.1.1 HasBinding (N )
9.1.1.1.2 CreateMutableBinding ( N, D )
9.1.1.1.3 CreatelImmutableBinding ( N, S )



9.1.1.1.4 InitializeBinding (N, V')
9.1.1.1.5 SetMutableBinding (N, V, S )
9.1.1.1.6 GetBindingValue (N, S )
9.1.1.1.7 DeleteBinding ( N)
9.1.1.1.8 HaSThiSBinding ()
9.1.1.1.9 HasSuperBinding ()
9.1.1.1.10 WithBaseObject ()
9.1.1.2 Object Environment Records
9.1.1.2.1 HasBinding (N )
9.1.1.2.2 CreateMutableBinding ( N, D )
9.1.1.2.3 CreateImmutableBinding ( N, S )
9.1.1.2.4 InitializeBinding (N, V')
9.1.1.2.5 SetMutableBinding (N, V, S )
9.1.1.2.6 GetBindingValue (N, S )
9.1.1.2.7 DeleteBinding ( N )
9.1.1.2.8 HasThisBinding ()
9.1.1.2.9 HasSuperBinding ()
9.1.1.2.10 WithBaseObject ( )
9.1.1.3 Function Environment Records
9.1.1.3.1 BindThisValue ( V')
9.1.1.3.2 HasThisBinding ( )
9.1.1.3.3 HasSuperBinding ()
9.1.1.3.4 GetThisBinding ()
9.1.1.3.5 GetSuperBase ( )
9.1.1.4 Global Environment Records
9.1.1.4.1 HasBinding (N )
9.1.1.4.2 CreateMutableBinding ( N, D )
9.1.1.4.3 CreateImmutableBinding ( N, S )
9.1.1.4.4 InitializeBinding (N, V')
9.1.1.4.5 SetMutableBinding (N, V, S )
9.1.1.4.6 GetBindingValue (N, S )
9.1.1.4.7 DeleteBinding ( N )
9.1.1.4.8 HasThisBinding ()
9.1.1.4.9 HasSuperBinding ()
9.1.1.4.10 WithBaseObject ()
9.1.1.4.11 GetThisBinding ()
9.1.1.4.12 HasVarDeclaration ( N )
9.1.1.4.13 HasLexicalDeclaration ( N )
9.1.1.4.14 HasRestrictedGlobalProperty ( N )
9.1.1.4.15 CanDeclareGlobalVar ( N )
9.1.1.4.16 CanDeclareGlobalFunction ( N )
9.1.1.4.17 CreateGlobalVarBinding ( N, D )
9.1.1.4.18 CreateGlobalFunctionBinding (N, V, D )
9.1.1.5 Module Environment Records
9.1.1.5.1 GetBindingValue (N, S )
9.1.1.5.2 DeleteBinding ( N )
9.1.1.5.3 HasThisBinding ()
9.1.1.5.4 GetThisBinding ()



9.1.1.5.5 CreateImportBinding ( N, M, N2 )
9.1.2 Environment Record Operations
9.1.2.1 GetldentifierReference ( env, name, strict )
9.1.2.2 NewDeclarativeEnvironment ( E )
9.1.2.3 NewObjectEnvironment ( O, E )
9.1.2.4 NewFunctionEnvironment ( F, newTarget )
9.1.2.5 NewGlobalEnvironment ( G, thisValue )
9.1.2.6 NewModuleEnvironment ( E )
9.2 Realms
9.2.1 CreateRealm ()
9.2.2 Createlntrinsics ( realmRec )
9.2.3 SetRealmGlobalObject ( realmRec, globalObj, thisValue )
9.2.4 SetDefaultGlobalBindings ( realmRec )
9.3 Execution Contexts
9.3.1 GetActiveScriptOrModule ()
9.3.2 ResolveBinding ( name [, env | )
9.3.3 GetThisEnvironment ( )
9.3.4 ResolveThisBinding ()
9.3.5 GetNewTarget ( )
9.3.6 GetGlobalObject ( )
9.4 Jobs and Host Operations to Enqueue Jobs
9.4.1 JobCallback Records
9.4.2 HostMakeJobCallback ( callback )
9.4.3 HostCallJobCallback ( jobCallback, V, argumentsList )
9.4.4 HostEnqueuePromise]Job ( job, realm )
9.5 InitializeHostDefinedRealm ()
9.6 Agents
9.6.1 AgentSignifier ()
9.6.2 AgentCanSuspend ()
9.7 Agent Clusters
9.8 Forward Progress
9.9 Processing Model of WeakRef and FinalizationRegistry Objects
9.9.1 Objectives
9.9.2 Liveness
9.9.3 Execution
9.9.4 Host Hooks
9.9.4.1 HostEnqueueFinalizationRegistryCleanup]ob ( finalizationRegistry )
9.10 ClearKeptObjects ()
9.11 AddToKeptObjects ( object )
9.12 CleanupFinalizationRegistry ( finalizationRegistry )
10 Ordinary and Exotic Objects Behaviours
10.1 Ordinary Object Internal Methods and Internal Slots
10.1.1 [[GetPrototypeOf]] ()
10.1.1.1 OrdinaryGetPrototypeOf ( O )
10.1.2 [[SetPrototypeOf]] (V')
10.1.2.1 OrdinarySetPrototypeOf ( O, V')
10.1.3 [[IsExtensible]] ()
10.1.3.1 OrdinarylIsExtensible ( O )



10.1.4 [[PreventExtensions]] ()
10.1.4.1 OrdinaryPreventExtensions ( O )
10.1.5 [[GetOwnProperty]] (P )
10.1.5.1 OrdinaryGetOwnProperty (O, P)
10.1.6 [[DefineOwnProperty]] ( P, Desc )
10.1.6.1 OrdinaryDefineOwnProperty ( O, P, Desc )
10.1.6.2 IsCompatiblePropertyDescriptor ( Extensible, Desc, Current )
10.1.6.3 ValidateAnd ApplyPropertyDescriptor ( O, P, extensible, Desc, current )
10.1.7 [[HasProperty]] (P )
10.1.7.1 OrdinaryHasProperty ( O, P )
10.1.8 [[Get]] ( P, Receiver )
10.1.8.1 OrdinaryGet ( O, P, Receiver )
10.1.9 [[Set]] ( P, V, Receiver )
10.1.9.1 OrdinarySet ( O, P, V, Receiver )
10.1.9.2 OrdinarySetWithOwnDescriptor ( O, P, V, Receiver, ownDesc )
10.1.10 [[Delete]] (P )
10.1.10.1 OrdinaryDelete ( O, P )
10.1.11 [[OwnPropertyKeys]] ()
10.1.11.1 OrdinaryOwnPropertyKeys ( O )
10.1.12 OrdinaryObjectCreate ( proto [ , additionallnternalSlotsList | )
10.1.13 OrdinaryCreateFromConstructor ( constructor, intrinsicDefaultProto [ , internalSlotsList | )
10.1.14 GetPrototypeFromConstructor ( constructor, intrinsicDefaultProto )
10.1.15 RequirelnternalSlot ( O, internalSlot )
10.2 ECMAScript Function Objects
10.2.1 [[Call]] ( thisArgument, arqumentsList )
10.2.1.1 PrepareForOrdinaryCall ( F, newTarget )
10.2.1.2 OrdinaryCallBindThis ( F, calleeContext, thisArqument )
10.2.1.3 RS: EvaluateBody
10.2.1.4 OrdinaryCallEvaluateBody ( F, argumentsList )
10.2.2 [[Construct]] ( arqumentsList, newTarget )
10.2.3 OrdinaryFunctionCreate ( functionPrototype, sourceText, ParameterList, Body, thisMode, Scope )
10.2.4 AddRestrictedFunctionProperties ( F, realm )
10.2.4.1 % ThrowTypeError% ()
10.2.5 MakeConstructor ( F [, writablePrototype [ , prototype ] ] )
10.2.6 MakeClassConstructor ( F )
10.2.7 MakeMethod ( F, homeObject )
10.2.8 SetFunctionName ( F, name [ , prefix ] )
10.2.9 SetFunctionLength ( F, length )
10.2.10 FunctionDeclarationInstantiation ( func, argumentsList )
10.3 Built-in Function Objects
10.3.1 [[Call]] ( thisArgument, argumentsList )
10.3.2 [[Construct]] ( arqumentsList, newTarget )
10.3.3 CreateBuiltinFunction ( steps, length, name, internalSlotsList [ , realm [ , prototype [, prefix ] 11)
10.4 Built-in Exotic Object Internal Methods and Slots
10.4.1 Bound Function Exotic Objects
10.4.1.1 [[Call]] ( thisArgument, arqumentsList )
10.4.1.2 [[Construct]] ( argumentsList, newTarget )
10.4.1.3 BoundFunctionCreate ( targetFunction, boundThis, boundArgs )

10



10.4.2 Array Exotic Objects
10.4.2.1 [[DefineOwnProperty]] ( P, Desc )
10.4.2.2 ArrayCreate ( length [, proto ])
10.4.2.3 ArraySpeciesCreate ( original Array, length )
10.4.2.4 ArraySetLength ( A, Desc )
10.4.3 String Exotic Objects
10.4.3.1 [[GetOwnProperty]] (P )
10.4.3.2 [[DefineOwnProperty]] ( P, Desc )
10.4.3.3 [[OwnPropertyKeys]] ()
10.4.3.4 StringCreate ( value, prototype )
10.4.3.5 StringGetOwnProperty ( S, P)
10.4.4 Arguments Exotic Objects
10.4.4.1 [[GetOwnProperty]] (P )
10.4.4.2 [[DefineOwnProperty]] ( P, Desc )
10.4.4.3 [[Get]] ( P, Receiver )
10.4.4.4 [[Set]] ( P, V, Receiver )
10.4.4.5 [[Delete]] (P)
10.4.4.6 CreateUnmapped ArgumentsObject ( argumentsList )
10.4.4.7 CreateMapped ArgumentsObject ( func, formals, argumentsList, env )
10.4.4.7.1 MakeArgGetter ( name, env )
10.4.4.7.2 MakeArgSetter ( name, env)
10.4.5 Integer-Indexed Exotic Objects
10.4.5.1 [[GetOwnProperty]] ( P )
10.4.5.2 [[HasProperty]] (P )
10.4.5.3 [[DefineOwnProperty]] ( P, Desc )
10.4.5.4 [[Get]] ( P, Receiver )
10.4.5.5 [[Set]] ( P, V, Receiver )
10.4.5.6 [[Delete]] (P )
10.4.5.7 [[OwnPropertyKeys]] ()
10.4.5.8 IntegerIndexedObjectCreate ( prototype )
10.4.5.9 IsValidIntegerIndex ( O, index )
10.4.5.10 IntegerIndexedElementGet ( O, index )
10.4.5.11 IntegerIndexedElementSet ( O, index, value )
10.4.6 Module Namespace Exotic Objects
10.4.6.1 [[SetPrototypeOf]] (V')
10.4.6.2 [[IsExtensible]] ()
10.4.6.3 [[PreventExtensions]] ()
10.4.6.4 [[GetOwnProperty]] (P )
10.4.6.5 [[DefineOwnProperty]] ( P, Desc )
10.4.6.6 [[HasProperty]] (P )
10.4.6.7 [[Get]] ( P, Receiver )
10.4.6.8 [[Set]] ( P, V, Receiver )
10.4.6.9 [[Delete]] (P)
10.4.6.10 [[OwnPropertyKeys]] ()
10.4.6.11 ModuleNamespaceCreate ( module, exports )
10.4.7 Immutable Prototype Exotic Objects
10.4.7.1 [[SetPrototypeOf]] (V')
10.4.7.2 SetlmmutablePrototype ( O, V')

11



10.5 Proxy Object Internal Methods and Internal Slots
10.5.1 [[GetPrototypeOf]] ()
10.5.2 [[SetPrototypeOf]] (V')
10.5.3 [[IsExtensible]] ()
10.5.4 [[PreventExtensions]] ()
10.5.5 [[GetOwnProperty]] (P )
10.5.6 [[DefineOwnProperty]] ( P, Desc )
10.5.7 [[HasProperty]] (P )
10.5.8 [[Get]] ( P, Receiver )
10.5.9 [[Set]] ( P, V, Receiver )
10.5.10 [[Delete]] (P )
10.5.11 [[OwnPropertyKeys]] ()
10.5.12 [[Call]] ( thisArgument, arqumentsList )
10.5.13 [[Construct]] ( arqumentsList, newTarget )
10.5.14 ProxyCreate ( target, handler )
11 ECMAScript Language: Source Code
11.1 Source Text
11.1.1 SS: UTF16EncodeCodePoint ( cp )
11.1.2 SS: CodePointsToString ( text )
11.1.3 SS: UTF16SurrogatePairToCodePoint ( lead, trail )
11.1.4 SS: CodePointAt ( string, position )
11.1.5 SS: StringToCodePoints ( string )
11.1.6 SS: ParseText ( sourceText, goalSymbol )
11.2 Types of Source Code
11.2.1 Directive Prologues and the Use Strict Directive
11.2.2 Strict Mode Code
11.2.3 Non-ECMAScript Functions
12 ECMAScript Language: Lexical Grammar
12.1 Unicode Format-Control Characters
12.2 White Space
12.3 Line Terminators
12.4 Comments
12.5 Tokens
12.6 Names and Keywords
12.6.1 Identifier Names
12.6.1.1 SS: Early Errors
12.6.2 Keywords and Reserved Words
12.7 Punctuators
12.8 Literals
12.8.1 Null Literals
12.8.2 Boolean Literals
12.8.3 Numeric Literals
12.8.3.1 SS: MV
12.8.3.2 SS: NumericValue
12.8.4 String Literals
12.8.4.1 SS: SV
12.8.4.2 S5: MV
12.8.5 Regular Expression Literals

12



12.8.5.1 SS: Early Errors
12.8.5.2 SS: BodyText
12.8.5.3 SS: FlagText
12.8.6 Template Literal Lexical Components
12.8.6.1 SS: TV and TRV
12.9 Automatic Semicolon Insertion
12.9.1 Rules of Automatic Semicolon Insertion
12.9.2 Examples of Automatic Semicolon Insertion
12.9.3 Interesting Cases of Automatic Semicolon Insertion
12.9.3.1 Interesting Cases of Automatic Semicolon Insertion in Statement Lists
12.9.3.2 Cases of Automatic Semicolon Insertion and “[no LineTerminator here]”
12.9.3.2.1 List of Grammar Productions with Optional Operands and “[no LineTerminator here]”
13 ECMAScript Language: Expressions
13.1 Identifiers
13.1.1 SS: Early Errors
13.1.2 SS: StringValue
13.1.3 RS: Evaluation
13.2 Primary Expression
13.2.1 Semantics
13.2.1.1 SS: CoveredParenthesizedExpression
13.2.2 The this Keyword
13.2.2.1 RS: Evaluation
13.2.3 Identifier Reference
13.2.4 Literals
13.2.4.1 RS: Evaluation
13.2.5 Array Initializer
13.2.5.1 RS: Array Accumulation
13.2.5.2 RS: Evaluation
13.2.6 Object Initializer
13.2.6.1 SS: Early Errors
13.2.6.2 SS: IsComputedPropertyKey
13.2.6.3 SS: PropertyNameList
13.2.6.4 RS: Evaluation
13.2.6.5 RS: PropertyDefinitionEvaluation
13.2.7 Function Defining Expressions
13.2.8 Regular Expression Literals
13.2.8.1 SS: Early Errors
13.2.8.2 SS: IsValidRegularExpressionLiteral ( literal )
13.2.8.3 RS: Evaluation
13.2.9 Template Literals
13.2.9.1 SS: Early Errors
13.2.9.2 SS: TemplateStrings
13.2.9.3 GetTemplateObject ( templateLiteral )
13.2.9.4 RS: SubstitutionEvaluation
13.2.9.5 RS: Evaluation
13.2.10 The Grouping Operator
13.2.10.1 SS: Early Errors
13.2.10.2 RS: Evaluation

13



13.3 Left-Hand-Side Expressions
13.3.1 Static Semantics
13.3.1.1 SS: Early Errors
13.3.1.2 SS: CoveredCallExpression
13.3.2 Property Accessors
13.3.2.1 RS: Evaluation
13.3.3 EvaluateProperty AccessWithExpressionKey ( baseValue, expression, strict )
13.3.4 EvaluateProperty AccessWithldentifierKey ( baseValue, identifierName, strict )
13.3.5 The new Operator
13.3.5.1 RS: Evaluation
13.3.5.1.1 EvaluateNew ( constructExpr, arquments )
13.3.6 Function Calls
13.3.6.1 RS: Evaluation
13.3.6.2 EvaluateCall ( func, ref, arquments, tailPosition )
13.3.7 The super Keyword
13.3.7.1 RS: Evaluation
13.3.7.2 GetSuperConstructor ( )
13.3.7.3 MakeSuperPropertyReference ( actualThis, propertyKey, strict )
13.3.8 Argument Lists
13.3.8.1 RS: ArgumentListEvaluation
13.3.9 Optional Chains
13.3.9.1 RS: Evaluation
13.3.9.2 RS: ChainEvaluation
13.3.10 Import Calls
13.3.10.1 RS: Evaluation
13.3.11 Tagged Templates
13.3.11.1 RS: Evaluation
13.3.12 Meta Properties
13.3.12.1 RS: Evaluation
13.3.12.1.1 HostGetImportMetaProperties ( moduleRecord )
13.3.12.1.2 HostFinalizelmportMeta ( importMeta, moduleRecord )
13.4 Update Expressions
13.4.1 SS: Early Errors
13.4.2 Postfix Increment Operator
13.4.2.1 RS: Evaluation
13.4.3 Postfix Decrement Operator
13.4.3.1 RS: Evaluation
13.4.4 Prefix Increment Operator
13.4.4.1 RS: Evaluation
13.4.5 Prefix Decrement Operator
13.4.5.1 RS: Evaluation
13.5 Unary Operators
13.5.1 The delete Operator
13.5.1.1 SS: Early Errors
13.5.1.2 RS: Evaluation
13.5.2 The void Operator
13.5.2.1 RS: Evaluation
13.5.3 The typeof Operator



13.5.3.1 RS: Evaluation
13.5.4 Unary + Operator
13.5.4.1 RS: Evaluation
13.5.5 Unary - Operator
13.5.5.1 RS: Evaluation
13.5.6 Bitwise NOT Operator ( ~ )
13.5.6.1 RS: Evaluation
13.5.7 Logical NOT Operator (! )
13.5.7.1 RS: Evaluation
13.6 Exponentiation Operator
13.6.1 RS: Evaluation
13.7 Multiplicative Operators
13.7.1 RS: Evaluation
13.8 Additive Operators
13.8.1 The Addition Operator ( + )
13.8.1.1 RS: Evaluation
13.8.2 The Subtraction Operator ( - )
13.8.2.1 RS: Evaluation
13.9 Bitwise Shift Operators
13.9.1 The Left Shift Operator ( << )
13.9.1.1 RS: Evaluation
13.9.2 The Signed Right Shift Operator ( >> )
13.9.2.1 RS: Evaluation
13.9.3 The Unsigned Right Shift Operator ( >>>)
13.9.3.1 RS: Evaluation
13.10 Relational Operators
13.10.1 RS: Evaluation
13.10.2 InstanceofOperator ( V, target )
13.11 Equality Operators
13.11.1 RS: Evaluation
13.12 Binary Bitwise Operators
13.12.1 RS: Evaluation
13.13 Binary Logical Operators
13.13.1 RS: Evaluation
13.14 Conditional Operator (? =)
13.14.1 RS: Evaluation
13.15 Assignment Operators
13.15.1 SS: Early Errors
13.15.2 RS: Evaluation
13.15.3 ApplyStringOrNumericBinaryOperator ( [val, opText, rval )
13.15.4 EvaluateStringOrNumericBinaryExpression ( leftOperand, opText, rightOperand )
13.15.5 Destructuring Assignment
13.15.5.1 SS: Early Errors
13.15.5.2 RS: DestructuringAssignmentEvaluation
13.15.5.3 RS: PropertyDestructuringAssignmentEvaluation
13.15.5.4 RS: RestDestructuringAssignmentEvaluation
13.15.5.5 RS: IteratorDestructuringAssignmentEvaluation

15



13.15.5.6 RS: KeyedDestructuring AssignmentEvaluation
13.16 Comma Operator ( , )
13.16.1 RS: Evaluation
14 ECMAScript Language: Statements and Declarations
14.1 Statement Semantics
14.1.1 RS: Evaluation
14.2 Block
14.2.1 SS: Early Errors
14.2.2 RS: Evaluation
14.2.3 BlockDeclarationInstantiation ( code, env )
14.3 Declarations and the Variable Statement
14.3.1 Let and Const Declarations
14.3.1.1 SS: Early Errors
14.3.1.2 RS: Evaluation
14.3.2 Variable Statement
14.3.2.1 RS: Evaluation
14.3.3 Destructuring Binding Patterns
14.3.3.1 RS: PropertyBindingInitialization
14.3.3.2 RS: RestBindinglnitialization
14.3.3.3 RS: KeyedBindinglnitialization
14.4 Empty Statement
14.4.1 RS: Evaluation
14.5 Expression Statement
14.5.1 RS: Evaluation
14.6 The 1 f Statement
14.6.1 SS: Early Errors
14.6.2 RS: Evaluation
14.7 Iteration Statements
14.7.1 Semantics
14.7.1.1 LoopContinues ( completion, labelSet )
14.7.1.2 RS: LoopEvaluation
14.7.2 The do-wh1ile Statement
14.7.2.1 SS: Early Errors
14.7.2.2 RS: DoWhileLoopEvaluation
14.7.3 The while Statement
14.7.3.1 SS: Early Errors
14.7.3.2 RS: WhileLoopEvaluation
14.7.4 The for Statement
14.7.4.1 SS: Early Errors
14.7.4.2 RS: ForLoopEvaluation
14.7.4.3 ForBodyEvaluation ( fest, increment, stmt, perlterationBindings, labelSet )
14.7.4.4 CreatePerIterationEnvironment ( perIterationBindings )
14.7.5 The for-in, for-of, and for-awai t-of Statements
14.7.5.1 SS: Early Errors
14.7.5.2 SS: IsDestructuring
14.7.5.3 RS: ForDeclarationBindingInitialization
14.7.5.4 RS: ForDeclarationBindingInstantiation



14.7.5.5 RS: ForInOfLoopEvaluation
14.7.5.6 ForIn/ OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind )
14.7.5.7 ForIn/ OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, lhsKind, labelSet [ , iteratorKind ] )
14.7.5.8 RS: Evaluation
14.7.5.9 EnumerateObjectProperties ( O )
14.7.5.10 For-In Iterator Objects
14.7.5.10.1 CreateForlInlterator ( object )
14.7.5.10.2 The %ForInlteratorPrototype% Object
14.7.5.10.2.1 %ForInlteratorPrototype%.next ()
14.7.5.10.3 Properties of For-In Iterator Instances
14.8 The continue Statement
14.8.1 SS: Early Errors
14.8.2 RS: Evaluation
14.9 The break Statement
14.9.1 SS: Early Errors
14.9.2 RS: Evaluation
14.10 The return Statement
14.10.1 RS: Evaluation
14.11 The with Statement
14.11.1 SS: Early Errors
14.11.2 RS: Evaluation
14.12 The switch Statement
14.12.1 SS: Early Errors
14.12.2 RS: CaseBlockEvaluation
14.12.3 CaseClauselsSelected ( C, input )
14.12.4 RS: Evaluation
14.13 Labelled Statements
14.13.1 SS: Early Errors
14.13.2 SS: IsLabelledFunction ( stmt )
14.13.3 RS: Evaluation
14.13.4 RS: LabelledEvaluation
14.14 The throw Statement
14.14.1 RS: Evaluation
14.15 The try Statement
14.15.1 SS: Early Errors
14.15.2 RS: CatchClauseEvaluation
14.15.3 RS: Evaluation
14.16 The debugger Statement
14.16.1 RS: Evaluation
15 ECMAScript Language: Functions and Classes
15.1 Parameter Lists
15.1.1 SS: Early Errors
15.1.2 SS: ContainsExpression
15.1.3 SS: IsSimpleParameterList
15.1.4 SS: Haslnitializer
15.1.5 SS: Expected ArgumentCount
15.2 Function Definitions

17



15.2.1 SS: Early Errors
15.2.2 SS: FunctionBodyContainsUseStrict
15.2.3 RS: EvaluateFunctionBody
15.2.4 RS: InstantiateOrdinaryFunctionObject
15.2.5 RS: InstantiateOrdinaryFunctionExpression
15.2.6 RS: Evaluation
15.3 Arrow Function Definitions
15.3.1 SS: Early Errors
15.3.2 SS: ConciseBodyContainsUseStrict
15.3.3 SS: CoveredFormalsList
15.3.4 RS: EvaluateConciseBody
15.3.5 RS: Instantiate ArrowFunctionExpression
15.3.6 RS: Evaluation
15.4 Method Definitions
15.4.1 SS: Early Errors
15.4.2 SS: HasDirectSuper
15.4.3 SS: SpecialMethod
15.4.4 RS: DefineMethod
15.4.5 RS: MethodDefinitionEvaluation
15.5 Generator Function Definitions
15.5.1 SS: Early Errors
15.5.2 RS: EvaluateGeneratorBody
15.5.3 RS: InstantiateGeneratorFunctionObject
15.5.4 RS: InstantiateGeneratorFunctionExpression
15.5.5 RS: Evaluation
15.6 Async Generator Function Definitions
15.6.1 SS: Early Errors
15.6.2 RS: EvaluateAsyncGeneratorBody
15.6.3 RS: Instantiate AsyncGeneratorFunctionObject
15.6.4 RS: InstantiateAsyncGeneratorFunctionExpression
15.6.5 RS: Evaluation
15.7 Class Definitions
15.7.1 SS: Early Errors
15.7.2 SS: ClassElementKind
15.7.3 SS: ConstructorMethod
15.7.4 SS: IsStatic
15.7.5 SS: NonConstructorMethodDefinitions
15.7.6 SS: PrototypePropertyNameList
15.7.7 RS: ClassDefinitionEvaluation
15.7.7.1 Default Constructor Functions
15.7.8 RS: BindingClassDeclarationEvaluation
15.7.9 RS: Evaluation
15.8 Async Function Definitions
15.8.1 SS: Early Errors
15.8.2 RS: Instantiate AsyncFunctionObject
15.8.3 RS: Instantiate AsyncFunctionExpression
15.8.4 RS: EvaluateAsyncFunctionBody
15.8.5 RS: Evaluation



15.9 Async Arrow Function Definitions
15.9.1 SS: Early Errors
15.9.2 SS: Covered AsyncArrowHead
15.9.3 SS: AsyncConciseBodyContainsUseStrict
15.9.4 RS: EvaluateAsyncConciseBody
15.9.5 RS: Instantiate AsyncArrowFunctionExpression
15.9.6 RS: Evaluation
15.10 Tail Position Calls
15.10.1 SS: IsInTailPosition ( call )
15.10.2 SS: HasCallInTailPosition
15.10.2.1 Statement Rules
15.10.2.2 Expression Rules
15.10.3 PrepareForTailCall ()
16 ECMAScript Language: Scripts and Modules
16.1 Scripts
16.1.1 SS: Early Errors
16.1.2 SS: IsStrict
16.1.3 RS: Evaluation
16.1.4 Script Records
16.1.5 ParseScript ( sourceText, realm, hostDefined )
16.1.6 ScriptEvaluation ( scriptRecord )
16.1.7 GlobalDeclarationInstantiation ( script, env )
16.2 Modules
16.2.1 Module Semantics
16.2.1.1 SS: Early Errors
16.2.1.2 SS: ImportedLocalNames ( importEntries )
16.2.1.3 SS: ModuleRequests
16.2.1.4 Abstract Module Records
16.2.1.5 Cyclic Module Records
16.2.1.5.1 Link () Concrete Method
16.2.1.5.1.1 InnerModuleLinking ( module, stack, index )
16.2.1.5.2 Evaluate ( ) Concrete Method
16.2.1.5.2.1 InnerModuleEvaluation ( module, stack, index )
16.2.1.5.3 Example Cyclic Module Record Graphs
16.2.1.6 Source Text Module Records
16.2.1.6.1 ParseModule ( sourceText, realm, hostDefined )
16.2.1.6.2 GetExportedNames ( [ exportStarSet ] ) Concrete Method
16.2.1.6.3 ResolveExport ( exportName [, resolveSet | ) Concrete Method
16.2.1.6.4 InitializeEnvironment ( ) Concrete Method
16.2.1.6.5 ExecuteModule ( ) Concrete Method
16.2.1.7 HostResolvelmportedModule ( referencingScriptOrModule, specifier )
16.2.1.8 HostImportModuleDynamically ( referencingScriptOrModule, specifier, promiseCapability )
16.2.1.9 FinishDynamicImport ( referencingScriptOrModule, specifier, promiseCapability, completion )
16.2.1.10 GetModuleNamespace ( module )
16.2.1.11 RS: Evaluation
16.2.2 Imports
16.2.2.1 SS: Early Errors
16.2.2.2 SS: ImportEntries

19



16.2.2.3 SS: ImportEntriesForModule
16.2.3 Exports
16.2.3.1 SS: Early Errors
16.2.3.2 SS: ExportedBindings
16.2.3.3 SS: ExportedNames
16.2.3.4 SS: ExportEntries
16.2.3.5 SS: ExportEntriesForModule
16.2.3.6 SS: ReferencedBindings
16.2.3.7 RS: Evaluation
17 Error Handling and Language Extensions
17.1 Forbidden Extensions
18 ECMAScript Standard Built-in Objects
19 The Global Object
19.1 Value Properties of the Global Object
19.1.1 globalThis
19.1.2 Infinity
19.1.3 NaN
19.1.4 undefined
19.2 Function Properties of the Global Object
19.2.1eval (x)
19.2.1.1 PerformEval ( x, callerRealm, strictCaller, direct )
19.2.1.2 HostEnsureCanCompileStrings ( callerRealm, calleeRealm )
19.2.1.3 EvalDeclarationInstantiation ( body, varEnv, lexEnv, strict )
19.2.2 isFinite ( number )
19.2.3 isNaN ( number )
19.2.4 parseFloat ( string )
19.2.5 parselnt ( string, radix )
19.2.6 URI Handling Functions
19.2.6.1 URI Syntax and Semantics
19.2.6.1.1 Encode ( string, unescapedSet )
19.2.6.1.2 Decode ( string, reservedSet )
19.2.6.2 decodeURI ( encodedURI )
19.2.6.3 decodeURIComponent ( encoded URIComponent )
19.2.6.4 encodeURI (uri )
19.2.6.5 encodeURIComponent ( uriComponent )
19.3 Constructor Properties of the Global Object
19.3.1 Array (...)
19.3.2 ArrayBuffer (.. .)
19.3.3 BigInt (... )
19.3.4 BigInt64Array (.. .)
19.3.5 BigUint64Array (. . .)
19.3.6 Boolean (. ..)
19.3.7 DataView (.. .)
19.3.8 Date (...)
19.3.9 Error (...)
19.3.10 EvalError (. ..)
19.3.11 FinalizationRegistry (. . .)
19.3.12 Float32Array (... )

20



19.3.13 Float64Array (. . . )

19.3.14 Function ( .. .)

19.3.15 Int8Array (...)

19.3.16 Int16Array (. . .)

19.3.17 Int32Array (.. .)

19.3.18 Map (.. .)

19.3.19 Number (. ..)

19.3.20 Object (.. .)

19.3.21 Promise (.. .)

19.3.22 Proxy (. ..)

19.3.23 RangeError (.. .)

19.3.24 ReferenceError (.. .)

19.3.25 RegExp (.. .)

19.3.26 Set (.. .)

19.3.27 Shared ArrayBuffer (. . .)

19.3.28 String (. . .)

19.3.29 Symbol (.. .)

19.3.30 SyntaxError (. . . )

19.3.31 TypeError (.. .)

19.3.32 Uint8Array (... )

19.3.33 Uint8ClampedArray (.. . )

19.3.34 Uintl6Array (. ..)

19.3.35 Uint32Array (... )

19.3.36 URIError (. ..)

19.3.37 WeakMap (.. .)

19.3.38 WeakRef (.. .)

19.3.39 WeakSet (.. .)

19.4 Other Properties of the Global Object

19.4.1 Atomics

19.4.2 JSON

19.4.3 Math

19.4.4 Reflect

20 Fundamental Objects
20.1 Object Objects

20.1.1 The Object Constructor
20.1.1.1 Object ( [ value ] )

20.1.2 Properties of the Object Constructor
20.1.2.1 Object.assign ( target, ...sources )
20.1.2.2 Object.create ( O, Properties )
20.1.2.3 Object.defineProperties ( O, Properties )

20.1.2.3.1 ObjectDefineProperties ( O, Properties )
20.1.2.4 Object.defineProperty ( O, P, Attributes )
20.1.2.5 Object.entries ( O )
20.1.2.6 Object.freeze (O )
20.1.2.7 Object.fromEntries ( iterable )
20.1.2.7.1 CreateDataPropertyOnObject Functions

20.1.2.8 Object.getOwnPropertyDescriptor ( O, P )
20.1.2.9 Object.getOwnPropertyDescriptors ( O )



20.1.2.10 Object.getOwnPropertyNames ( O )
20.1.2.11 Object.getOwnPropertySymbols ( O )
20.1.2.11.1 GetOwnPropertyKeys ( O, type )

20.1.2.12 Object.getPrototypeOf (O )
20.1.2.13 Object.is ( valuel, value2 )
20.1.2.14 Object.isExtensible ( O )
20.1.2.15 Object.isFrozen ( O )
20.1.2.16 Object.isSealed ( O )
20.1.2.17 Object.keys ( O )
20.1.2.18 Object.preventExtensions ( O )
20.1.2.19 Object.prototype
20.1.2.20 Object.seal (O )
20.1.2.21 Object.setPrototypeOf ( O, proto )
20.1.2.22 Object.values (O )

20.1.3 Properties of the Object Prototype Object
20.1.3.1 Object.prototype.constructor
20.1.3.2 Object.prototype.hasOwnProperty ( V')
20.1.3.3 Object.prototype.isPrototypeOf ( V')
20.1.3.4 Object.prototype.propertylsEnumerable ( V')
20.1.3.5 Object.prototype.toLocaleString ( [ reservedl [, reserved2 ] ])
20.1.3.6 Object.prototype.toString ()
20.1.3.7 Object.prototype.valueOf ( )

20.1.4 Properties of Object Instances

20.2 Function Objects

20.2.1 The Function Constructor

20.2.1.1 Function (p1, p2, ..., pn, body )
20.2.1.1.1 CreateDynamicFunction ( constructor, newTarget, kind, args )

20.2.2 Properties of the Function Constructor
20.2.2.1 Function.length
20.2.2.2 Function.prototype

20.2.3 Properties of the Function Prototype Object
20.2.3.1 Function.prototype.apply ( thisArg, argArray )
20.2.3.2 Function.prototype.bind ( thisArg, ...args )
20.2.3.3 Function.prototype.call ( thisArg, ...args )
20.2.3.4 Function.prototype.constructor
20.2.3.5 Function.prototype.toString ()
20.2.3.6 Function.prototype [ @@hasInstance ] (V')

20.2.4 Function Instances
20.2.4.1 length
20.2.4.2 name
20.2.4.3 prototype

20.2.5 HostHasSourceTextAvailable ( func )

20.3 Boolean Objects

20.3.1 The Boolean Constructor
20.3.1.1 Boolean ( value )

20.3.2 Properties of the Boolean Constructor
20.3.2.1 Boolean.prototype

20.3.3 Properties of the Boolean Prototype Object

22



20.3.3.1 Boolean.prototype.constructor
20.3.3.2 Boolean.prototype.toString ()
20.3.3.3 Boolean.prototype.valueOf ()

20.3.4 Properties of Boolean Instances

20.4 Symbol Objects

20.4.1 The Symbol Constructor
20.4.1.1 Symbol ( [ description | )

20.4.2 Properties of the Symbol Constructor
20.4.2.1 Symbol.asynclterator
20.4.2.2 Symbol.for (key )
20.4.2.3 Symbol.hasInstance
20.4.2.4 Symbol.isConcatSpreadable
20.4.2.5 Symbol.iterator
20.4.2.6 Symbol.keyFor ( sym )
20.4.2.7 Symbol.match
20.4.2.8 Symbol.matchAll
20.4.2.9 Symbol.prototype
20.4.2.10 Symbol.replace
20.4.2.11 Symbol.search
20.4.2.12 Symbol.species
20.4.2.13 Symbol.split
20.4.2.14 Symbol.toPrimitive
20.4.2.15 Symbol.toStringTag
20.4.2.16 Symbol.unscopables

20.4.3 Properties of the Symbol Prototype Object
20.4.3.1 Symbol.prototype.constructor
20.4.3.2 get Symbol.prototype.description
20.4.3.3 Symbol.prototype.toString ()

20.4.3.3.1 SymbolDescriptiveString ( sym )

20.4.3.4 Symbol.prototype.valueOf ()
20.4.3.5 Symbol.prototype [ @@toPrimitive ] ( hint )
20.4.3.6 Symbol.prototype [ @@toStringTag |

20.4.4 Properties of Symbol Instances

20.5 Error Objects

20.5.1 The Error Constructor
20.5.1.1 Error ( message )

20.5.2 Properties of the Error Constructor
20.5.2.1 Error.prototype

20.5.3 Properties of the Error Prototype Object
20.5.3.1 Error.prototype.constructor
20.5.3.2 Error.prototype.message
20.5.3.3 Error.prototype.name
20.5.3.4 Error.prototype.toString ()

20.5.4 Properties of Error Instances

20.5.5 Native Error Types Used in This Standard
20.5.5.1 EvalError
20.5.5.2 RangeError
20.5.5.3 ReferenceError



20.5.5.4 SyntaxError
20.5.5.5 TypeError
20.5.5.6 URIError
20.5.6 NativeError Object Structure
20.5.6.1 The NativeError Constructors
20.5.6.1.1 NativeError ( message )
20.5.6.2 Properties of the NativeError Constructors
20.5.6.2.1 NativeError.prototype
20.5.6.3 Properties of the NativeError Prototype Objects
20.5.6.3.1 NativeError.prototype.constructor
20.5.6.3.2 NativeError.prototype.message
20.5.6.3.3 NativeError.prototype.name
20.5.6.4 Properties of NativeError Instances
20.5.7 AggregateError Objects
20.5.7.1 The AggregateError Constructor
20.5.7.1.1 AggregateError ( errors, message )
20.5.7.2 Properties of the AggregateError Constructor
20.5.7.2.1 AggregateError.prototype
20.5.7.3 Properties of the AggregateError Prototype Object
20.5.7.3.1 AggregateError.prototype.constructor
20.5.7.3.2 AggregateError.prototype.message
20.5.7.3.3 AggregateError.prototype.name
20.5.7.4 Properties of AggregateError Instances
21 Numbers and Dates
21.1 Number Objects
21.1.1 The Number Constructor
21.1.1.1 Number ( value )
21.1.2 Properties of the Number Constructor
21.1.2.1 Number.EPSILON
21.1.2.2 Number.isFinite ( number )
21.1.2.3 Number.isInteger ( number)
21.1.2.4 Number.isNaN ( number )
21.1.2.5 Number.isSafelnteger ( number )
21.1.2.6 NumberMAX_SAFE_INTEGER
21.1.2.7 Number.MAX_VALUE
21.1.2.8 Number.MIN_SAFE_INTEGER
21.1.2.9 Number.MIN_VALUE
21.1.2.10 Number.NaN
21.1.2.11 Number.NEGATIVE_INFINITY
21.1.2.12 Number.parseFloat ( string )
21.1.2.13 Number.parselnt ( string, radix )
21.1.2.14 Number.POSITIVE_INFINITY
21.1.2.15 Number.prototype
21.1.3 Properties of the Number Prototype Object
21.1.3.1 Number.prototype.constructor
21.1.3.2 Number.prototype.toExponential ( fractionDigits )
21.1.3.3 Number.prototype.toFixed ( fractionDigits )
21.1.3.4 Number.prototype.toLocaleString ( [ reservedl [, reserved2 ] ] )

24



21.1.3.5 Number.prototype.toPrecision ( precision )
21.1.3.6 Number.prototype.toString ( [ radix | )
21.1.3.7 Number.prototype.valueOf ()
21.1.4 Properties of Number Instances
21.2 BigInt Objects
21.2.1 The BigInt Constructor
21.2.1.1 Bignt ( value )
21.2.1.1.1 NumberToBigInt ( number )
21.2.2 Properties of the BigInt Constructor
21.2.2.1 BigInt.asIntN ( bits, bigint )
21.2.2.2 BigInt.asUintN ( bits, bigint )
21.2.2.3 Bignt.prototype
21.2.3 Properties of the BigInt Prototype Object
21.2.3.1 BigInt.prototype.constructor
21.2.3.2 BigInt.prototype.toLocaleString ( [ reservedl [, reserved2 ] ])
21.2.3.3 Bignt.prototype.toString ([ radix | )
21.2.3.4 Bignt.prototype.valueOf ( )
21.2.3.5 Biglnt.prototype [ @@toStringTag |
21.3 The Math Object
21.3.1 Value Properties of the Math Object
21.3.1.1 Math.E
21.3.1.2 Math.LN10
21.3.1.3 Math.LN2
21.3.1.4 Math.LOG10E
21.3.1.5 Math.LOG2E
21.3.1.6 Math.PI
21.3.1.7 Math.SQRT1_2
21.3.1.8 Math.SQRT2
21.3.1.9 Math [ @@toStringTag ]
21.3.2 Function Properties of the Math Object
21.3.2.1 Math.abs ( x )
21.3.2.2 Math.acos (x)
21.3.2.3 Math.acosh ( x)
21.3.2.4 Math.asin ( x )
21.3.2.5 Math.asinh (x)
21.3.2.6 Math.atan (x)
21.3.2.7 Math.atanh (x )
21.3.2.8 Math.atan2 (y, x )
21.3.2.9 Math.cbrt (x )
21.3.2.10 Math.ceil (x)
21.3.2.11 Math.clz32 (x )
21.3.2.12 Math.cos ( x )
21.3.2.13 Math.cosh ( x )
21.3.2.14 Math.exp (x)
21.3.2.15 Math.expm1 ( x )
21.3.2.16 Math.floor ( x )
21.3.2.17 Math.fround ( x )
21.3.2.18 Math.hypot ( ...args )

25



21.3.2.19 Math.imul ( x, v )
21.3.2.20 Math.log ( x )
21.3.2.21 Math.loglp (x )
21.3.2.22 Math.log10 (x )
21.3.2.23 Math.log2 (x )
21.3.2.24 Math.max ( ...args )
21.3.2.25 Math.min ( ...args )
21.3.2.26 Math.pow ( base, exponent )
21.3.2.27 Math.random ()
21.3.2.28 Math.round ( x )
21.3.2.29 Math.sign (x )
21.3.2.30 Math.sin ( x )
21.3.2.31 Math.sinh (x)
21.3.2.32 Math.sqrt (x )
21.3.2.33 Math.tan (x )
21.3.2.34 Math.tanh ( x)
21.3.2.35 Math.trunc ( x )
21.4 Date Objects
21.4.1 Overview of Date Objects and Definitions of Abstract Operations
21.4.1.1 Time Values and Time Range
21.4.1.2 Day Number and Time within Day
21.4.1.3 Year Number
21.4.1.4 Month Number
21.4.1.5 Date Number
21.4.1.6 Week Day
21.4.1.7 LocalTZA ( t, isUTC)
21.4.1.8 LocalTime (t)
21.4.19UTC(t)
21.4.1.10 Hours, Minutes, Second, and Milliseconds
21.4.1.11 MakeTime ( hour, min, sec, ms )
21.4.1.12 MakeDay ( year, month, date )
21.4.1.13 MakeDate ( day, time)
21.4.1.14 TimeClip ( time )
21.4.1.15 Date Time String Format
21.4.1.15.1 Expanded Years
21.4.2 The Date Constructor
21.4.2.1 Date ( ...values )
21.4.3 Properties of the Date Constructor
21.4.3.1 Date.now ()
21.4.3.2 Date.parse ( string )
21.4.3.3 Date.prototype
21.4.3.4 Date.UTC (year [, month [, date [, hours [ , minutes [ , seconds [, ms ]]]1]1]])
21.4.4 Properties of the Date Prototype Object
21.4.4.1 Date.prototype.constructor
21.4.4.2 Date.prototype.getDate ( )
21.4.4.3 Date.prototype.getDay ()
21.4.4.4 Date.prototype.getFullYear ()
21.4.4.5 Date.prototype.getHours ()

26



21.4.4.6 Date.prototype.getMilliseconds ()
21.4.4.7 Date.prototype.getMinutes ( )
21.4.4.8 Date.prototype.getMonth ()
21.4.4.9 Date.prototype.getSeconds ( )
21.4.4.10 Date.prototype.getTime ()
21.4.4.11 Date.prototype.getTimezoneOffset ( )
21.4.4.12 Date.prototype.getUTCDate ( )
21.4.4.13 Date.prototype.getUTCDay ()
21.4.4.14 Date.prototype.getUTCFullYear ()
21.4.4.15 Date.prototype.getUTCHours ()
21.4.4.16 Date.prototype.getUTCMilliseconds ( )
21.4.4.17 Date.prototype.getUTCMinutes ()
21.4.4.18 Date.prototype.getUTCMonth ()
21.4.4.19 Date.prototype.getUTCSeconds ( )
21.4.4.20 Date.prototype.setDate ( date )
21.4.4.21 Date.prototype.setFullYear ( year [, month [, date ] ])
21.4.4.22 Date.prototype.setHours ( hour [, min [, sec[, ms]]])
21.4.4.23 Date.prototype.setMilliseconds ( ms )
21.4.4.24 Date.prototype.setMinutes ( min [, sec [, ms]])
21.4.4.25 Date.prototype.setMonth ( month [, date ] )
21.4.4.26 Date.prototype.setSeconds ( sec [, ms | )
21.4.4.27 Date.prototype.setTime ( time )
21.4.4.28 Date.prototype.setUTCDate ( date )
21.4.4.29 Date.prototype.setUTCFullYear ( year [ , month [, date ] ])
21.4.4.30 Date.prototype.setUTCHours ( hour [, min [, sec[, ms]]])
21.4.4.31 Date.prototype.setUTCMilliseconds ( ms )
21.4.4.32 Date.prototype.setUTCMinutes ( min [, sec [, ms]])
21.4.4.33 Date.prototype.setUTCMonth ( month [, date ] )
21.4.4.34 Date.prototype.setUTCSeconds (sec [, ms ])
21.4.4.35 Date.prototype.toDateString ()
21.4.4.36 Date.prototype.toISOString ( )
21.4.4.37 Date.prototype.toJSON (key )
21.4.4.38 Date.prototype.toLocaleDateString ( [ reservedl [, reserved2 ] ] )
21.4.4.39 Date.prototype.toLocaleString ( [ reservedl [, reserved2 ] ])
21.4.4.40 Date.prototype.toLocaleTimeString ( [ reservedl [ , reserved2 ] ])
21.4.4.41 Date.prototype.toString (')
21.4.4.41.1 TimeString ( fv )
21.4.4.41.2 DateString ( tv )
21.4.4.41.3 TimeZoneString ( tv )
21.4.4.41.4 ToDateString ( tv )
21.4.4.42 Date.prototype.toTimeString ( )
21.4.4.43 Date.prototype.toUTCString ( )
21.4.4.44 Date.prototype.valueOf ()
21.4.4.45 Date.prototype [ @@toPrimitive ] ( hint )
21.4.5 Properties of Date Instances
22 Text Processing
22.1 String Objects
22.1.1 The String Constructor

27



22.1.1.1 String ( value )
22.1.2 Properties of the String Constructor
22.1.2.1 String.fromCharCode ( ...codeUnits )
22.1.2.2 String.fromCodePoint ( ...codePoints )
22.1.2.3 String.prototype
22.1.2.4 String.raw ( template, ...substitutions )
22.1.3 Properties of the String Prototype Object
22.1.3.1 String.prototype.charAt ( pos )
22.1.3.2 String.prototype.charCodeAt ( pos )
22.1.3.3 String.prototype.codePointAt ( pos )
22.1.3.4 String.prototype.concat ( ...args )
22.1.3.5 String.prototype.constructor
22.1.3.6 String.prototype.endsWith ( searchString [ , endPosition | )
22.1.3.7 String.prototype.includes ( searchString [ , position ] )
22.1.3.8 String.prototype.indexOf ( searchString [ , position ] )
22.1.3.9 String.prototype.lastindexOf ( searchString [ , position | )
22.1.3.10 String.prototype.localeCompare ( that [, reservedl [, reserved2 ] ] )
22.1.3.11 String.prototype.match ( regexp )
22.1.3.12 String.prototype.matchAll ( regexp )
22.1.3.13 String.prototype.normalize ( [ form ] )
22.1.3.14 String.prototype.padEnd ( maxLength [ , fillString | )
22.1.3.15 String.prototype.padStart ( maxLength [, fillString | )
22.1.3.15.1 StringPad ( O, maxLength, fillString, placement )
22.1.3.16 String.prototype.repeat ( count )
22.1.3.17 String.prototype.replace ( searchValue, replaceValue )
22.1.3.17.1 GetSubstitution ( matched, str, position, captures, namedCaptures, replacement )
22.1.3.18 String.prototype.replaceAll ( searchValue, replaceValue )
22.1.3.19 String.prototype.search ( regexp )
22.1.3.20 String.prototype.slice ( start, end )
22.1.3.21 String.prototype.split ( separator, limit )
22.1.3.21.1 SplitMatch ( S, ¢, R)
22.1.3.22 String.prototype.startsWith ( searchString [, position | )
22.1.3.23 String.prototype.substring ( start, end )
22.1.3.24 String.prototype.toLocaleLowerCase ( [ reservedl [, reserved2 ]| )
22.1.3.25 String.prototype.toLocaleUpperCase ( [ reservedl [, reserved2 1] )
22.1.3.26 String.prototype.toLowerCase ()
22.1.3.27 String.prototype.toString ( )
22.1.3.28 String.prototype.toUpperCase ( )
22.1.3.29 String.prototype.trim ()
22.1.3.29.1 TrimString ( string, where )
22.1.3.30 String.prototype.trimEnd (')
22.1.3.31 String.prototype.trimStart ( )
22.1.3.32 String.prototype.valueOf ()
22.1.3.33 String.prototype [ @@iterator ] ( )
22.1.4 Properties of String Instances
22.1.4.1 length
22.1.5 String Iterator Objects
22.1.5.1 The %StringlteratorPrototype% Object

28



22.1.5.1.1 %StringlteratorPrototype%.next ()
22.1.5.1.2 %StringlteratorPrototype% [ @@toStringTag |
22.2 RegExp (Regular Expression) Objects
22.2.1 Patterns
22.2.1.1 SS: Early Errors
22.2.1.2 SS: CapturingGroupNumber
22.2.1.3 SS: IsCharacterClass
22.2.1.4 SS: CharacterValue
22.2.1.5 SS: SourceText
22.2.1.6 SS: CapturingGroupName
22.2.2 Pattern Semantics
22.2.2.1 Notation
22.2.2.2 Pattern
22.2.2.3 Disjunction
22.2.2.4 Alternative
22.2.2.5 Term
22.2.2.5.1 RepeatMatcher ( m, min, max, greedy, x, c, parenIndex, parenCount )
22.2.2.6 Assertion
22.2.2.6.1 IsWordChar (e)
22.2.2.7 Quantifier
22.2.2.8 Atom
22.2.2.8.1 CharacterSetMatcher ( A, invert, direction )
22.2.2.8.2 Canonicalize ( ch )
22.2.2.8.3 UnicodeMatchProperty (p )
22.2.2.8.4 UnicodeMatchPropertyValue (p, v )
22.2.2.9 AtomEscape
22.2.2.9.1 BackreferenceMatcher ( n, direction )
22.2.2.10 CharacterEscape
22.2.2.11 DecimalEscape
22.2.2.12 CharacterClassEscape
22.2.2.13 CharacterClass
22.2.2.14 ClassRanges
22.2.2.15 NonemptyClassRanges
22.2.2.15.1 CharacterRange ( A, B)
22.2.2.16 NonemptyClassRangesNoDash
22.2.2.17 ClassAtom
22.2.2.18 ClassAtomNoDash
22.2.2.19 ClassEscape
22.2.3 The RegExp Constructor
22.2.3.1 RegExp ( pattern, flags )
22.2.3.2 Abstract Operations for the RegExp Constructor
22.2.3.2.1 RegExpAlloc ( newTarget )
22.2.3.2.2 RegExplnitialize ( obj, pattern, flags )
22.2.3.2.3 SS: ParsePattern ( patternText, u )
22.2.3.2.4 RegExpCreate (P, F)
22.2.3.2.5 EscapeRegExpPattern (P, F )
22.2.4 Properties of the RegExp Constructor
22.2.4.1 RegExp.prototype

29



22.2.4.2 get RegExp [ @@species ]
22.2.5 Properties of the RegExp Prototype Object
22.2.5.1 RegExp.prototype.constructor
22.2.5.2 RegExp.prototype.exec ( string )
22.2.5.2.1 RegExpExec (R, S)
22.2.5.2.2 RegExpBuiltinExec (R, S)
22.2.5.2.3 AdvanceStringIndex ( S, index, unicode )
22.2.5.3 get RegExp.prototype.dotAll
22.2.5.4 get RegExp.prototype.flags
22.2.5.5 get RegExp.prototype.global
22.2.5.6 get RegExp.prototype.ignoreCase
22.2.5.7 RegExp.prototype [ @@match ] ( string )
22.2.5.8 RegExp.prototype [ @@matchAll | ( string )
22.2.5.9 get RegExp.prototype.multiline
22.2.5.10 RegExp.prototype [ @@replace | ( string, replaceValue )
22.2.5.11 RegExp.prototype [ @@search | ( string )
22.2.5.12 get RegExp.prototype.source
22.2.5.13 RegExp.prototype [ @@split | ( string, limit )
22.2.5.14 get RegExp.prototype.sticky
22.2.5.15 RegExp.prototype.test ( S )
22.2.5.16 RegExp.prototype.toString ()
22.2.5.17 get RegExp.prototype.unicode
22.2.6 Properties of RegExp Instances
22.2.6.1 lastIndex
22.2.7 RegExp String Iterator Objects
22.2.7.1 CreateRegExpStringlterator ( R, S, global, fullUnicode )
22.2.7.2 The %RegExpStringlteratorPrototype% Object
22.2.7.2.1 %RegExpStringlteratorPrototype%.next ()
22.2.7.2.2 %RegExpStringlteratorPrototype% [ @@toStringTag ]
23 Indexed Collections
23.1 Array Objects
23.1.1 The Array Constructor
23.1.1.1 Array ( ...values )
23.1.2 Properties of the Array Constructor
23.1.2.1 Array.from (items [, mapfn [, thisArg]1])
23.1.2.2 Array.isArray (arg )
23.1.2.3 Array.of ( ...items )
23.1.2.4 Array.prototype
23.1.2.5 get Array [ @@species |
23.1.3 Properties of the Array Prototype Object
23.1.3.1 Array.prototype.concat ( ...items )
23.1.3.1.1 IsConcatSpreadable ( O )
23.1.3.2 Array.prototype.constructor
23.1.3.3 Array.prototype.copyWithin ( target, start [, end ] )
23.1.3.4 Array.prototype.entries ()
23.1.3.5 Array.prototype.every ( callbackfn [ , thisArg ])
23.1.3.6 Array.prototype.fill (value [, start [, end ] ])
23.1.3.7 Array.prototype.filter ( callbackfn [, thisArg ] )



23.1.3.8 Array.prototype.find ( predicate [, thisArg | )
23.1.3.9 Array.prototype.findIndex ( predicate [ , thisArg ] )
23.1.3.10 Array.prototype.flat ( [ depth ] )
23.1.3.10.1 FlattenIntoArray ( target, source, sourceLen, start, depth [, mapperFunction, thisArg ] )
23.1.3.11 Array.prototype.flatMap ( mapperFunction [, thisArg ] )
23.1.3.12 Array.prototype.forEach ( callbackfn [ , thisArg ])
23.1.3.13 Array.prototype.includes ( searchElement [ , fromIndex | )
23.1.3.14 Array.prototype.indexOf ( searchElement [ , fromIndex | )
23.1.3.15 Array.prototype.join ( separator )
23.1.3.16 Array.prototype.keys ()
23.1.3.17 Array.prototype.lastindexOf ( searchElement [ , fromIndex | )
23.1.3.18 Array.prototype.map ( callbackfn [, thisArg ])
23.1.3.19 Array.prototype.pop ()
23.1.3.20 Array.prototype.push ( ...items )
23.1.3.21 Array.prototype.reduce ( callbackfn [, initial Value | )
23.1.3.22 Array.prototype.reduceRight ( callbackfn [ , initialValue ] )
23.1.3.23 Array.prototype.reverse ()
23.1.3.24 Array.prototype.shift ()
23.1.3.25 Array.prototype.slice ( start, end )
23.1.3.26 Array.prototype.some ( callbackfn [, thisArg | )
23.1.3.27 Array.prototype.sort ( comparefn )
23.1.3.27.1 SortCompare (x, y )
23.1.3.28 Array.prototype.splice ( start, deleteCount, ...items )
23.1.3.29 Array.prototype.toLocaleString ( [ reservedl [, reserved2 ] ])
23.1.3.30 Array.prototype.toString ( )
23.1.3.31 Array.prototype.unshift ( ...items )
23.1.3.32 Array.prototype.values ()
23.1.3.33 Array.prototype [ @@iterator ] ()
23.1.3.34 Array.prototype [ @@unscopables ]
23.1.4 Properties of Array Instances
23.1.4.1 length
23.1.5 Array Iterator Objects
23.1.5.1 CreateArraylterator ( array, kind )
23.1.5.2 The %ArraylteratorPrototype% Object
23.1.5.2.1 % ArraylteratorPrototype%.next ()
23.1.5.2.2 % ArraylteratorPrototype% [ @@toStringTag |
23.2 Typed Array Objects
23.2.1 The %TypedArray% Intrinsic Object
23.2.1.1 %TypedArray% ()
23.2.2 Properties of the %TypedArray% Intrinsic Object
23.2.2.1 %TypedArray%.from ( source [ , mapfn [, thisArg]])
23.2.2.2 %TypedArray%.of ( ...items )
23.2.2.3 %TypedArray%.prototype
23.2.2.4 get % TypedArray% [ @@species |
23.2.3 Properties of the % TypedArray% Prototype Object
23.2.3.1 get %TypedArray%.prototype.buffer
23.2.3.2 get % Typed Array%.prototype.byteLength
23.2.3.3 get % Typed Array%.prototype.byteOffset

31



23.2.3.4 %Typed ArrayY%.prototype.constructor
23.2.3.5 % TypedArray%.prototype.copyWithin ( target, start [, end ] )
23.2.3.6 %TypedArray%.prototype.entries ( )
23.2.3.7 %TypedArray%.prototype.every ( callbackfn [, thisArg ])
23.2.3.8 %TypedArray%.prototype.fill (value [, start [, end ]])
23.2.3.9 %TypedArray%.prototype.filter ( callbackfn [ , thisArg ])
23.2.3.10 % TypedArray%.prototype.find ( predicate [ , thisArg ] )
23.2.3.11 % TypedArray%.prototype.findIndex ( predicate [ , thisArg ] )
23.2.3.12 %Typed Array%.prototype.forEach ( callbackfn [ , thisArg ] )
23.2.3.13 %TypedArray%.prototype.includes ( searchElement [ , fromIndex | )
23.2.3.14 %TypedArray%.prototype.indexOf ( searchElement [, fromIndex ] )
23.2.3.15 %Typed Array%.prototype.join ( separator )
23.2.3.16 %TypedArray%.prototype.keys ()
23.2.3.17 %TypedArray%.prototype.lastindexOf ( searchElement [, fromIndex | )
23.2.3.18 get % TypedArray%.prototype.length
23.2.3.19 %TypedArray%.prototype.map ( callbackfn [, thisArg ] )
23.2.3.20 %TypedArray%.prototype.reduce ( callbackfn [ , initialValue | )
23.2.3.21 %TypedArray%.prototype.reduceRight ( callbackfn [, initialValue ] )
23.2.3.22 %Typed Array%.prototype.reverse ()
23.2.3.23 %TypedArray%.prototype.set ( source [, offset | )
23.2.3.23.1 SetTyped ArrayFromTypedArray ( target, targetOffset, source )
23.2.3.23.2 SetTyped ArrayFromArrayLike ( target, targetOffset, source )
23.2.3.24 %TypedArray%.prototype.slice ( start, end )
23.2.3.25 % Typed Array%.prototype.some ( callbackfn [ , thisArg ] )
23.2.3.26 %TypedArray%.prototype.sort ( comparefn )
23.2.3.27 %Typed Array%.prototype.subarray ( begin, end )
23.2.3.28 %Typed Array%.prototype.toLocaleString ( [ reservedl [, reserved2 ] ])
23.2.3.29 %TypedArray%.prototype.toString ()
23.2.3.30 %TypedArray%.prototype.values ()
23.2.3.31 %TypedArray%.prototype [ @@iterator ] ( )
23.2.3.32 get % Typed Array%.prototype [ @@toStringTag |
23.2.4 Abstract Operations for TypedArray Objects
23.2.4.1 Typed ArraySpeciesCreate ( exemplar, argumentList )
23.2.4.2 Typed ArrayCreate ( constructor, argumentList )
23.2.4.3 ValidateTypedArray ( O )
23.2.5 The Typed Array Constructors
23.2.5.1 TypedArray ( ...args )
23.2.5.1.1 AllocateTypedArray ( constructorName, newTarget, defaultProto [ , length | )
23.2.5.1.2 InitializeTyped ArrayFromTypedArray ( O, srcArray )
23.2.5.1.3 InitializeTyped ArrayFromArrayBuffer ( O, buffer, byteOffset, length )
23.2.5.1.4 InitializeTyped ArrayFromList ( O, values )
23.2.5.1.5 InitializeTyped ArrayFromArrayLike ( O, arrayLike )
23.2.5.1.6 AllocateTypedArrayBuffer ( O, length )
23.2.6 Properties of the Typed Array Constructors
23.2.6.1 Typed Array BYTES_PER_ELEMENT
23.2.6.2 Typed Array.prototype
23.2.7 Properties of the Typed Array Prototype Objects
23.2.7.1 Typed Array.prototype.BYTES_PER_ELEMENT



23.2.7.2 Typed Array.prototype.constructor
23.2.8 Properties of Typed Array Instances
24 Keyed Collections
24.1 Map Objects
24.1.1 The Map Constructor
24.1.1.1 Map ([ iterable | )
24.1.1.2 AddEntriesFromlterable ( target, iterable, adder )
24.1.2 Properties of the Map Constructor
24.1.2.1 Map.prototype
24.1.2.2 get Map [ @@species ]
24.1.3 Properties of the Map Prototype Object
24.1.3.1 Map.prototype.clear ()
24.1.3.2 Map.prototype.constructor
24.1.3.3 Map.prototype.delete ( key )
24.1.3.4 Map.prototype.entries ()
24.1.3.5 Map.prototype.forEach ( callbackfn [, thisArg ])
24.1.3.6 Map.prototype.get ( key )
24.1.3.7 Map.prototype.has ( key )
24.1.3.8 Map.prototype.keys ()
24.1.3.9 Map.prototype.set ( key, value )
24.1.3.10 get Map.prototype.size
24.1.3.11 Map.prototype.values ()
24.1.3.12 Map.prototype [ @@iterator | ()
24.1.3.13 Map.prototype [ @@toStringTag ]
24.1.4 Properties of Map Instances
24.1.5 Map Iterator Objects
24.1.5.1 CreateMaplterator ( map, kind )
24.1.5.2 The %MaplteratorPrototype% Object
24.1.5.2.1 %MaplteratorPrototype%.next ()
24.1.5.2.2 %MaplteratorPrototype% [ @@toStringTag ]
24.2 Set Objects
24.2.1 The Set Constructor
24.2.1.1 Set ([ iterable])
24.2.2 Properties of the Set Constructor
24.2.2.1 Set.prototype
24.2.2.2 get Set [ @@species ]
24.2.3 Properties of the Set Prototype Object
24.2.3.1 Set.prototype.add ( value )
24.2.3.2 Set.prototype.clear ()
24.2.3.3 Set.prototype.constructor
24.2.3.4 Set.prototype.delete ( value )
24.2.3.5 Set.prototype.entries ( )
24.2.3.6 Set.prototype.forEach ( callbackfn [, thisArg ] )
24.2.3.7 Set.prototype.has ( value )
24.2.3.8 Set.prototype.keys ()
24.2.3.9 get Set.prototype.size
24.2.3.10 Set.prototype.values ()
24.2.3.11 Set.prototype [ @@iterator ] ()



24.2.3.12 Set.prototype [ @@toStringTag |
24.2 4 Properties of Set Instances
24.2.5 Set Iterator Objects
24.2.5.1 CreateSetlterator ( set, kind )
24.2.5.2 The %SetlteratorPrototype% Object
24.2.5.2.1 %SetlteratorPrototype%.next ()
24.2.5.2.2 %SetlteratorPrototype% [ @@toStringTag |
24.3 WeakMap Objects
24.3.1 The WeakMap Constructor
24.3.1.1 WeakMap ( [ iterable | )
24.3.2 Properties of the WeakMap Constructor
24.3.2.1 WeakMap.prototype
24.3.3 Properties of the WeakMap Prototype Object
24.3.3.1 WeakMap.prototype.constructor
24.3.3.2 WeakMap.prototype.delete ( key )
24.3.3.3 WeakMap.prototype.get ( key )
24.3.3.4 WeakMap.prototype.has ( key )
24.3.3.5 WeakMap.prototype.set ( key, value )
24.3.3.6 WeakMap.prototype [ @@toStringTag |
24.3.4 Properties of WeakMap Instances
24.4 WeakSet Objects
24.4.1 The WeakSet Constructor
24.4.1.1 WeakSet ([ iterable | )
24.4.2 Properties of the WeakSet Constructor
24.4.2.1 WeakSet.prototype
24.4.3 Properties of the WeakSet Prototype Object
24.4.3.1 WeakSet.prototype.add ( value )
24.4.3.2 WeakSet.prototype.constructor
24.4.3.3 WeakSet.prototype.delete ( value )
24.4.3.4 WeakSet.prototype.has ( value )
24.4.3.5 WeakSet.prototype [ @@toStringTag |
24.4.4 Properties of WeakSet Instances
25 Structured Data
25.1 ArrayBuffer Objects
25.1.1 Notation
25.1.2 Abstract Operations For ArrayBuffer Objects
25.1.2.1 AllocateArrayBuffer ( constructor, byteLength )
25.1.2.2 IsDetachedBulffer ( arrayBuffer )
25.1.2.3 DetachArrayBuffer ( arrayBuffer [, key | )
25.1.2.4 CloneArrayBuffer ( srcBuffer, srcByteOffset, srcLength, cloneConstructor)
25.1.2.5 IsUnsignedElementType ( type )
25.1.2.6 IsUnclampedIntegerElementType ( type )
25.1.2.7 IsBigIntElementType ( type )
25.1.2.8 IsNoTearConfiguration ( type, order )
25.1.2.9 RawBytesToNumeric ( fype, rawBytes, isLittleEndian )
25.1.2.10 GetValueFromBulffer ( arrayBuffer, bytelndex, type, isTyped Array, order [ , isLittleEndian | )
25.1.2.11 NumericToRawBytes ( type, value, isLittleEndian )
25.1.2.12 SetValuelnBuffer ( arrayBuffer, bytelndex, type, value, isTyped Array, order [ , isLittleEndian | )



25.1.2.13 GetModifySetValuelnBuffer ( arrayBuffer, bytelndex, type, value, op [ , isLittleEndian | )

25.1.3 The ArrayBuffer Constructor
25.1.3.1 ArrayBuffer ( length )
25.1.4 Properties of the ArrayBuffer Constructor
25.1.4.1 ArrayBuffer.isView (arg )
25.1.4.2 ArrayBuffer.prototype
25.1.4.3 get ArrayBuffer [ @@species ]
25.1.5 Properties of the ArrayBuffer Prototype Object
25.1.5.1 get ArrayBuffer.prototype.byteLength
25.1.5.2 ArrayBuffer.prototype.constructor
25.1.5.3 ArrayBuffer.prototype.slice ( start, end )
25.1.5.4 ArrayBulffer.prototype [ @@toStringTag |
25.1.6 Properties of ArrayBuffer Instances
25.2 Shared ArrayBuffer Objects
25.2.1 Abstract Operations for Shared ArrayBuffer Objects
25.2.1.1 AllocateShared ArrayBuffer ( constructor, byteLength )
25.2.1.2 IsShared ArrayBuffer ( obj )
25.2.2 The Shared ArrayBuffer Constructor
25.2.2.1 Shared ArrayBulffer ( [ length])
25.2.3 Properties of the Shared ArrayBuffer Constructor
25.2.3.1 Shared ArrayBuffer.prototype
25.2.3.2 get Shared ArrayBuffer [ @@species ]
25.2.4 Properties of the Shared ArrayBuffer Prototype Object
25.2.4.1 get Shared ArrayBuffer.prototype.byteLength
25.2.4.2 Shared ArrayBuffer.prototype.constructor
25.2.4.3 Shared ArrayBuffer.prototype.slice ( start, end )
25.2.4.4 Shared ArrayBuffer.prototype [ @@toStringTag |
25.2.5 Properties of Shared ArrayBuffer Instances
25.3 DataView Objects
25.3.1 Abstract Operations For DataView Objects
25.3.1.1 GetView Value ( view, requestIndex, isLittleEndian, type )
25.3.1.2 SetView Value ( view, requestIndex, isLittleEndian, type, value )
25.3.2 The DataView Constructor
25.3.2.1 DataView ( buffer [, byteOffset [ , byteLength ] | )
25.3.3 Properties of the DataView Constructor
25.3.3.1 DataView.prototype
25.3.4 Properties of the DataView Prototype Object
25.3.4.1 get DataView.prototype.buffer
25.3.4.2 get DataView.prototype.byteLength
25.3.4.3 get DataView.prototype.byteOffset
25.3.4.4 DataView.prototype.constructor
25.3.4.5 DataView.prototype.getBigInt64 ( byteOffset [, littleEndian | )
25.3.4.6 DataView.prototype.getBigUint64 ( byteOffset [ , littleEndian | )
25.3.4.7 DataView.prototype.getFloat32 ( byteOffset [ , littleEndian | )
25.3.4.8 DataView.prototype.getFloat64 ( byteOffset [ , littleEndian | )
25.3.4.9 DataView.prototype.getInt8 ( byteOffset )
25.3.4.10 DataView.prototype.getInt16 ( byteOffset [, littleEndian | )
25.3.4.11 DataView.prototype.getInt32 ( byteOffset [ , littleEndian | )

35



25.3.4.12 DataView.prototype.getUint8 ( byteOffset )
25.3.4.13 DataView.prototype.getUint16 ( byteOffset [, littleEndian | )
25.3.4.14 DataView.prototype.getUint32 ( byteOffset [, littleEndian ] )
25.3.4.15 DataView.prototype.setBigInt64 ( byteOffset, value [ , littleEndian | )
25.3.4.16 DataView.prototype.setBigUint64 ( byteOffset, value [ , littleEndian | )
25.3.4.17 DataView.prototype.setFloat32 ( byteOffset, value [ , littleEndian | )
25.3.4.18 DataView.prototype.setFloat64 ( byteOffset, value [ , littleEndian | )
25.3.4.19 DataView.prototype.setInt8 ( byteOffset, value )
25.3.4.20 DataView.prototype.setInt16 ( byteOffset, value [, littleEndian | )
25.3.4.21 DataView.prototype.setInt32 ( byteOffset, value [ , littleEndian ] )
25.3.4.22 DataView.prototype.setUint8 ( byteOffset, value )
25.3.4.23 DataView.prototype.setUint16 ( byteOffset, value [, littleEndian | )
25.3.4.24 DataView.prototype.setUint32 ( byteOffset, value [, littleEndian | )
25.3.4.25 DataView.prototype [ @@toStringTag |

25.3.5 Properties of DataView Instances

25.4 The Atomics Object

25.4.1 Abstract Operations for Atomics
25.4.1.1 ValidateIntegerTypedArray ( typedArray [ , waitable ] )
25.4.1.2 ValidateAtomicAccess ( typed Array, requestIndex )
25.4.1.3 GetWaiterList ( block, i)
25.4.1.4 EnterCriticalSection ( WL )
25.4.1.5 LeaveCriticalSection ( WL )
25.4.1.6 AddWaiter (WL, W)
25.4.1.7 RemoveWaiter ( WL, W)
25.4.1.8 RemoveWaiters (WL, ¢ )
25.4.1.9 SuspendAgent ( WL, W, timeout )
25.4.1.10 NotifyWaiter ( WL, W)
25.4.1.11 AtomicReadModifyWrite ( typed Array, index, value, op )
25.4.1.12 ByteListBitwiseOp ( op, xBytes, yBytes )
25.4.1.13 ByteListEqual ( xBytes, yBytes )

25.4.2 Atomics.add ( typedArray, index, value )

25.4.3 Atomics.and ( typed Array, index, value )

25.4.4 Atomics.compareExchange ( typed Array, index, expectedValue, replacementValue )

25.4.5 Atomics.exchange ( typed Array, index, value )

25.4.6 Atomics.isLockFree ( size )

25.4.7 Atomics.load ( typedArray, index )

25.4.8 Atomics.or ( typedArray, index, value )

25.4.9 Atomics.store ( typedArray, index, value )

25.4.10 Atomics.sub ( typed Array, index, value )

25.4.11 Atomics.wait ( typed Array, index, value, timeout )

25.4.12 Atomics.notify ( typed Array, index, count )

25.4.13 Atomics.xor ( typedArray, index, value )

25.4.14 Atomics [ @@toStringTag |

25.5 The JSON Object

25.5.1 JSON.parse ( text [, reviver ] )
25.5.1.1 Internalize]SONProperty ( holder, name, reviver )

25.5.2 JSON.stringify (value [, replacer [, space]])
25.5.2.1 Serialize][SONProperty ( state, key, holder)

36



25.5.2.2 Quote]SONString ( value )
25.5.2.3 UnicodeEscape ( C)
25.5.2.4 Serialize]SONODbject ( state, value )
25.5.2.5 Serialize]SONArray ( state, value )
25.5.3 JSON [ @@toStringTag |
26 Managing Memory
26.1 WeakRef Objects
26.1.1 The WeakRef Constructor
26.1.1.1 WeakRef ( target )
26.1.2 Properties of the WeakRef Constructor
26.1.2.1 WeakRef.prototype
26.1.3 Properties of the WeakRef Prototype Object
26.1.3.1 WeakRef.prototype.constructor
26.1.3.2 WeakRef.prototype.deref ()
26.1.3.3 WeakRef.prototype [ @@toStringTag ]
26.1.4 WeakRef Abstract Operations
26.1.4.1 WeakRefDeref ( weakRef )
26.1.5 Properties of WeakRef Instances
26.2 FinalizationRegistry Objects
26.2.1 The FinalizationRegistry Constructor
26.2.1.1 FinalizationRegistry ( cleanupCallback )
26.2.2 Properties of the FinalizationRegistry Constructor
26.2.2.1 FinalizationRegistry.prototype
26.2.3 Properties of the FinalizationRegistry Prototype Object
26.2.3.1 FinalizationRegistry.prototype.constructor
26.2.3.2 FinalizationRegistry.prototype.register ( target, heldValue [ , unregisterToken | )
26.2.3.3 FinalizationRegistry.prototype.unregister ( unregisterToken )
26.2.3.4 FinalizationRegistry.prototype [ @@toStringTag |
26.2.4 Properties of FinalizationRegistry Instances
27 Control Abstraction Objects
27.1 Iteration
27.1.1 Common Iteration Interfaces
27.1.1.1 The Iterable Interface
27.1.1.2 The Iterator Interface
27.1.1.3 The Asynclterable Interface
27.1.1.4 The Asynclterator Interface
27.1.1.5 The IteratorResult Interface
27.1.2 The %IteratorPrototype% Object
27.1.2.1 %lteratorPrototype% [ @@iterator ] ()
27.1.3 The % AsynclteratorPrototype% Object
27.1.3.1 %AsynclteratorPrototype% [ @@asynclterator | ()
27.1.4 Async-from-Sync Iterator Objects
27.1.4.1 CreateAsyncFromSynclterator ( synclteratorRecord )
27.1.4.2 The %AsyncFromSynclteratorPrototype% Object
27.1.4.2.1 % AsyncFromSynclteratorPrototype%.next ( [ value ] )
27.1.4.2.2 % AsyncFromSynclteratorPrototype%.return ( [ value | )
27.1.4.2.3 % AsyncFromSynclteratorPrototype%.throw ( [ value ] )
27.1.4.2.4 Async-from-Sync Iterator Value Unwrap Functions

37



27.1.4.3 Properties of Async-from-Sync Iterator Instances
27.1.4.4 AsyncFromSynclteratorContinuation ( result, promiseCapability )

27.2 Promise Objects

27.2.1 Promise Abstract Operations
27.2.1.1 PromiseCapability Records

27.2.1.1.1 IfAbruptRejectPromise ( value, capability )
27.2.1.2 PromiseReaction Records
27.2.1.3 CreateResolvingFunctions ( promise )

27.2.1.3.1 Promise Reject Functions

27.2.1.3.2 Promise Resolve Functions
27.2.1.4 FulfillPromise ( promise, value )
27.2.1.5 NewPromiseCapability ( C)

27.2.1.5.1 GetCapabilitiesExecutor Functions
27.2.1.6 IsPromise ( x )
27.2.1.7 RejectPromise ( promise, reason )
27.2.1.8 TriggerPromiseReactions ( reactions, argument )
27.2.1.9 HostPromiseRejectionTracker ( promise, operation )
27.2.2 Promise Jobs
27.2.2.1 NewPromiseReactionJob ( reaction, argument )
27.2.2.2 NewPromiseResolveThenableJob ( promiseToResolve, thenable, then )

27.2.3 The Promise Constructor

27.2.3.1 Promise ( executor )
27.2.4 Properties of the Promise Constructor
27.2.4.1 Promise.all ( iterable )
27.2.4.1.1 GetPromiseResolve ( promiseConstructor )
27.2.4.1.2 PerformPromiseAll ( iteratorRecord, constructor, resultCapability, promiseResolve )
27.2.4.1.3 Promise.all Resolve Element Functions
27.2.4.2 Promise.allSettled ( iterable )
27.2.4.2.1 PerformPromiseAllSettled ( iteratorRecord, constructor, resultCapability, promiseResolve )
272422 Promise.allSettled Resolve Element Functions
272423 Promise.allSettled Reject Element Functions
27.2.4.3 Promise.any ( iterable )
27.2.4.3.1 PerformPromiseAny ( iteratorRecord, constructor, resultCapability, promiseResolve )
27.2.4.3.2 Promise.any Reject Element Functions
27.2.4.4 Promise.prototype
27.2.4.5 Promise.race ( iterable )
27.2.4.5.1 PerformPromiseRace ( iteratorRecord, constructor, resultCapability, promiseResolve )
27.2.4.6 Promise.reject (1)
27.2.4.7 Promise.resolve (x )
27.2.4.7.1 PromiseResolve ( C, x )
27.2.4.8 get Promise [ @@species |
27.2.5 Properties of the Promise Prototype Object
27.2.5.1 Promise.prototype.catch ( onRejected )
27.2.5.2 Promise.prototype.constructor
27.2.5.3 Promise.prototype.finally ( onFinally )
27.2.5.3.1 Then Finally Functions
27.2.5.3.2 Catch Finally Functions
27.2.5.4 Promise.prototype.then ( onFulfilled, onRejected )
38



27.2.5.4.1 PerformPromiseThen ( promise, onFulfilled, onRejected [ , resultCapability | )
27.2.5.5 Promise.prototype [ @@toStringTag |
27.2.6 Properties of Promise Instances
27.3 GeneratorFunction Objects
27.3.1 The GeneratorFunction Constructor
27.3.1.1 GeneratorFunction ( p1, p2, ..., pn, body )
27.3.2 Properties of the GeneratorFunction Constructor
27.3.2.1 GeneratorFunction.length
27.3.2.2 GeneratorFunction.prototype
27.3.3 Properties of the GeneratorFunction Prototype Object
27.3.3.1 GeneratorFunction.prototype.constructor
27.3.3.2 GeneratorFunction.prototype.prototype
27.3.3.3 GeneratorFunction.prototype [ @@toStringTag |
27.3.4 GeneratorFunction Instances
27.3.4.1 length
27.3.4.2 name
27.3.4.3 prototype
27.4 AsyncGeneratorFunction Objects
27.4.1 The AsyncGeneratorFunction Constructor
27.4.1.1 AsyncGeneratorFunction ( p1, p2, ..., pn, body )
27.4.2 Properties of the AsyncGeneratorFunction Constructor
27.4.2.1 AsyncGeneratorFunction.length
27.4.2.2 AsyncGeneratorFunction.prototype
27.4.3 Properties of the AsyncGeneratorFunction Prototype Object
27.4.3.1 AsyncGeneratorFunction.prototype.constructor
27.4.3.2 AsyncGeneratorFunction.prototype.prototype
27.4.3.3 AsyncGeneratorFunction.prototype [ @@toStringTag |
27.4.4 AsyncGeneratorFunction Instances
27.4.4.1 length
27.4.4.2 name
27.4.4.3 prototype
27.5 Generator Objects
27.5.1 Properties of the Generator Prototype Object
27.5.1.1 Generator.prototype.constructor
27.5.1.2 Generator.prototype.next ( value )
27.5.1.3 Generator.prototype.return ( value )
27.5.1.4 Generator.prototype.throw ( exception )
27.5.1.5 Generator.prototype [ @@toStringTag |
27.5.2 Properties of Generator Instances
27.5.3 Generator Abstract Operations
27.5.3.1 GeneratorStart ( generator, generatorBody )
27.5.3.2 GeneratorValidate ( generator, generatorBrand )
27.5.3.3 GeneratorResume ( generator, value, generatorBrand )
27.5.3.4 GeneratorResumeAbrupt ( generator, abruptCompletion, generatorBrand )
27.5.3.5 GetGeneratorKind ()
27.5.3.6 GeneratorYield ( iterNextObj )
27.5.3.7 Yield (value )
27.5.3.8 CreatelteratorFromClosure ( closure, generatorBrand, generatorPrototype )

39



27.6 AsyncGenerator Objects
27.6.1 Properties of the AsyncGenerator Prototype Object
27.6.1.1 AsyncGenerator.prototype.constructor
27.6.1.2 AsyncGenerator.prototype.next ( value )
27.6.1.3 AsyncGenerator.prototype.return ( value )
27.6.1.4 AsyncGenerator.prototype.throw ( exception )
27.6.1.5 AsyncGenerator.prototype [ @@toStringTag |
27.6.2 Properties of AsyncGenerator Instances
27.6.3 AsyncGenerator Abstract Operations
27.6.3.1 AsyncGeneratorRequest Records
27.6.3.2 AsyncGeneratorStart ( generator, generatorBody )
27.6.3.3 AsyncGeneratorValidate ( generator, generatorBrand )
27.6.3.4 AsyncGeneratorResolve ( generator, value, done )
27.6.3.5 AsyncGeneratorReject ( generator, exception )
27.6.3.6 AsyncGeneratorResumeNext ( generator )
27.6.3.6.1 AsyncGeneratorResumeNext Return Processor Fulfilled Functions
27.6.3.6.2 AsyncGeneratorResumeNext Return Processor Rejected Functions
27.6.3.7 AsyncGeneratorEnqueue ( generator, completion, generatorBrand )
27.6.3.8 AsyncGeneratorYield ( value )
27.6.3.9 CreateAsynclteratorFromClosure ( closure, generatorBrand, generatorPrototype )
27.7 AsyncFunction Objects
27.7.1 The AsyncFunction Constructor
27.7.1.1 AsyncFunction ( p1, p2, ..., pn, body )
27.7.2 Properties of the AsyncFunction Constructor
27.7.2.1 AsyncFunction.length
27.7.2.2 AsyncFunction.prototype
27.7.3 Properties of the AsyncFunction Prototype Object
27.7.3.1 AsyncFunction.prototype.constructor
27.7.3.2 AsyncFunction.prototype [ @@toStringTag |
27.7.4 AsyncFunction Instances
27.7.4.1 length
27.7.4.2 name
27.7.5 Async Functions Abstract Operations
27.7.5.1 AsyncFunctionStart ( promiseCapability, asyncFunctionBody )
28 Reflection
28.1 The Reflect Object
28.1.1 Reflect.apply ( target, thisArgument, arqumentsList )
28.1.2 Reflect.construct ( target, arqumentsList [ , newTarget | )
28.1.3 Reflect.defineProperty ( target, propertyKey, attributes )
28.1.4 Reflect.deleteProperty ( target, propertyKey )
28.1.5 Reflect.get ( target, propertyKey [ , receiver | )
28.1.6 Reflect.getOwnPropertyDescriptor ( target, propertyKey )
28.1.7 Reflect.getPrototypeOf ( target )
28.1.8 Reflect.has ( target, propertyKey )
28.1.9 Reflect.isExtensible ( target )
28.1.10 Reflect.ownKeys ( target )
28.1.11 Reflect.preventExtensions ( farget )
28.1.12 Reflect.set ( target, propertyKey, V [, receiver ] )

40



28.1.13 Reflect.setPrototypeOf ( target, proto )
28.1.14 Reflect [ @@toStringTag |
28.2 Proxy Objects
28.2.1 The Proxy Constructor
28.2.1.1 Proxy ( target, handler )
28.2.2 Properties of the Proxy Constructor
28.2.2.1 Proxy.revocable ( target, handler )
28.2.2.1.1 Proxy Revocation Functions
28.3 Module Namespace Objects
28.3.1 @@toStringTag
29 Memory Model
29.1 Memory Model Fundamentals
29.2 Agent Events Records
29.3 Chosen Value Records
29.4 Candidate Executions
29.5 Abstract Operations for the Memory Model
29.5.1 EventSet ( execution )
29.5.2 SharedDataBlockEventSet ( execution )
29.5.3 HostEventSet ( execution )
29.5.4 ComposeWriteEventBytes ( execution, bytelndex, Ws )
29.5.5 ValueOfReadEvent ( execution, R )
29.6 Relations of Candidate Executions
29.6.1 agent-order
29.6.2 reads-bytes-from
29.6.3 reads-from
29.6.4 host-synchronizes-with
29.6.5 synchronizes-with
29.6.6 happens-before
29.7 Properties of Valid Executions
29.7.1 Valid Chosen Reads
29.7.2 Coherent Reads
29.7.3 Tear Free Reads
29.7.4 Sequentially Consistent Atomics
29.7.5 Valid Executions
29.8 Races
29.9 Data Races
29.10 Data Race Freedom
29.11 Shared Memory Guidelines
A Grammar Summary
A.1 Lexical Grammar
A.2 Expressions
A.3 Statements
A.4 Functions and Classes
A.5 Scripts and Modules
A.6 Number Conversions
A.7 Universal Resource Identifier Character Classes
A.8 Regular Expressions
B Additional ECMAScript Features for Web Browsers

41



B.1 Additional Syntax
B.1.1 Numeric Literals
B.1.1.1 Static Semantics
B.1.2 String Literals
B.1.2.1 Static Semantics
B.1.3 HTML-like Comments
B.1.4 Regular Expressions Patterns
B.1.4.1 SS: Early Errors
B.1.4.2 SS: IsCharacterClass
B.1.4.3 SS: CharacterValue
B.1.4.4 Pattern Semantics
B.1.4.4.1 CharacterRangeOrUnion ( A, B)
B.2 Additional Built-in Properties
B.2.1 Additional Properties of the Global Object
B.2.1.1 escape ( string )
B.2.1.2 unescape ( string )
B.2.2 Additional Properties of the Object.prototype Object
B.2.2.1 Object.prototype.__proto__
B.2.2.1.1 get Object.prototype.__proto__
B.2.2.1.2 set Object.prototype.__proto__
B.2.2.2 Object.prototype.__defineGetter__ ( P, getter )
B.2.2.3 Object.prototype.__defineSetter__ ( P, setter )
B.2.2.4 Object.prototype.__lookupGetter__ (P )
B.2.2.5 Object.prototype.__lookupSetter__ (P )
B.2.3 Additional Properties of the String.prototype Object
B.2.3.1 String.prototype.substr ( start, length )
B.2.3.2 String.prototype.anchor ( name )
B.2.3.2.1 CreateHTML ( string, tag, attribute, value )
B.2.3.3 String.prototype.big ()
B.2.3.4 String.prototype.blink ( )
B.2.3.5 String.prototype.bold ()
B.2.3.6 String.prototype.fixed ()
B.2.3.7 String.prototype.fontcolor ( color )
B.2.3.8 String.prototype.fontsize ( size )
B.2.3.9 String.prototype.italics ()
B.2.3.10 String.prototype.link ( url )
B.2.3.11 String.prototype.small ()
B.2.3.12 String.prototype.strike ()
B.2.3.13 String.prototype.sub ()
B.2.3.14 String.prototype.sup ()
B.2.3.15 String.prototype.trimLeft ()
B.2.3.16 String.prototype.trimRight ()
B.2.4 Additional Properties of the Date.prototype Object
B.2.4.1 Date.prototype.getYear ()
B.2.4.2 Date.prototype.setYear ( year )
B.2.4.3 Date.prototype.toGMTString ( )
B.2.5 Additional Properties of the RegExp.prototype Object
B.2.5.1 RegExp.prototype.compile ( pattern, flags )



B.3 Other Additional Features
B.3.1 __proto__ Property Names in Object Initializers
B.3.2 Labelled Function Declarations
B.3.3 Block-Level Function Declarations Web Legacy Compatibility Semantics
B.3.3.1 Changes to FunctionDeclarationInstantiation
B.3.3.2 Changes to GlobalDeclarationInstantiation
B.3.3.3 Changes to EvalDeclarationInstantiation
B.3.3.4 Changes to Block SS: Early Errors
B.3.3.5 Changes to switch Statement SS: Early Errors
B.3.3.6 Changes to BlockDeclarationInstantiation
B.3.4 FunctionDeclarations in IfStatement Statement Clauses
B.3.5 VariableStatements in Catch Blocks
B.3.6 Initializers in ForIn Statement Heads
B.3.7 The [[IsHTMLDDA]] Internal Slot
B.3.7.1 Changes to ToBoolean
B.3.7.2 Changes to Abstract Equality Comparison
B.3.7.3 Changes to the typeof Operator
C The Strict Mode of ECMAScript
D Host Layering Points
D.1 Host Hooks
D.2 Host-defined Fields
D.3 Host-defined Objects
D.4 Running Jobs
D.5 Internal Methods of Exotic Objects
D.6 Built-in Objects and Methods
E Corrections and Clarifications in ECMAScript 2015 with Possible Compatibility Impact
F Additions and Changes That Introduce Incompatibilities with Prior Editions
G Colophon
H Bibliography
I Copyright & Software License

43



Introduction

This Ecma Standard defines the ECMAScript 2021 Language. It is the twelfth edition of the ECMAScript Language
Specification. Since publication of the first edition in 1997, ECMAScript has grown to be one of the world's most
widely used general-purpose programming languages. It is best known as the language embedded in web browsers
but has also been widely adopted for server and embedded applications.

ECMAScript is based on several originating technologies, the most well-known being JavaScript (Netscape) and
JScript (Microsoft). The language was invented by Brendan Eich at Netscape and first appeared in that company's
Navigator 2.0 browser. It has appeared in all subsequent browsers from Netscape and in all browsers from Microsoft
starting with Internet Explorer 3.0.

The development of the ECMAScript Language Specification started in November 1996. The first edition of this Ecma
Standard was adopted by the Ecma General Assembly of June 1997.

That Ecma Standard was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as
international standard ISO/IEC 16262, in April 1998. The Ecma General Assembly of June 1998 approved the second
edition of ECMA-262 to keep it fully aligned with ISO/IEC 16262. Changes between the first and the second edition

are editorial in nature.

The third edition of the Standard introduced powerful regular expressions, better string handling, new control
statements, try / catch exception handling, tighter definition of errors, formatting for numeric output and minor
changes in anticipation of future language growth. The third edition of the ECMAScript standard was adopted by the
Ecma General Assembly of December 1999 and published as ISO/IEC 16262:2002 in June 2002.

After publication of the third edition, ECMAScript achieved massive adoption in conjunction with the World Wide
Web where it has become the programming language that is supported by essentially all web browsers. Significant
work was done to develop a fourth edition of ECMAScript. However, that work was not completed and not published
as the fourth edition of ECMAScript but some of it was incorporated into the development of the sixth edition.

The fifth edition of ECMAScript (published as ECMA-262 5th edition) codified de facto interpretations of the language
specification that have become common among browser implementations and added support for new features that
had emerged since the publication of the third edition. Such features include accessor properties, reflective creation
and inspection of objects, program control of property attributes, additional array manipulation functions, support for
the JSON object encoding format, and a strict mode that provides enhanced error checking and program security. The
fifth edition was adopted by the Ecma General Assembly of December 2009.

The fifth edition was submitted to ISO/IEC JTC 1 for adoption under the fast-track procedure, and approved as
international standard ISO/IEC 16262:2011. Edition 5.1 of the ECMAScript Standard incorporated minor corrections
and is the same text as ISO/IEC 16262:2011. The 5.1 Edition was adopted by the Ecma General Assembly of June 2011.

Focused development of the sixth edition started in 2009, as the fifth edition was being prepared for publication.
However, this was preceded by significant experimentation and language enhancement design efforts dating to the
publication of the third edition in 1999. In a very real sense, the completion of the sixth edition is the culmination of a
fifteen year effort. The goals for this edition included providing better support for large applications, library creation,
and for use of ECMAScript as a compilation target for other languages. Some of its major enhancements included
modules, class declarations, lexical block scoping, iterators and generators, promises for asynchronous programming,
destructuring patterns, and proper tail calls. The ECMAScript library of built-ins was expanded to support additional
data abstractions including maps, sets, and arrays of binary numeric values as well as additional support for Unicode
supplemental characters in strings and regular expressions. The built-ins were also made extensible via subclassing.

44



The sixth edition provides the foundation for regular, incremental language and library enhancements. The sixth
edition was adopted by the General Assembly of June 2015.

ECMAScript 2016 was the first ECMAScript edition released under Ecma TC39's new yearly release cadence and open
development process. A plain-text source document was built from the ECMAScript 2015 source document to serve as
the base for further development entirely on GitHub. Over the year of this standard's development, hundreds of pull
requests and issues were filed representing thousands of bug fixes, editorial fixes and other improvements.
Additionally, numerous software tools were developed to aid in this effort including Ecmarkup, Ecmarkdown, and
Grammarkdown. ES2016 also included support for a new exponentiation operator and adds a new method to
Array.prototype called includes.

ECMAScript 2017 introduced Async Functions, Shared Memory, and Atomics along with smaller language and library
enhancements, bug fixes, and editorial updates. Async functions improve the asynchronous programming experience
by providing syntax for promise-returning functions. Shared Memory and Atomics introduce a new memory model
that allows multi-agent programs to communicate using atomic operations that ensure a well-defined execution order
even on parallel CPUs. It also included new static methods on Object: Object.values, Object.entries, and
Object.getOwnPropertyDescriptors.

ECMAScript 2018 introduced support for asynchronous iteration via the Asynclterator protocol and async generators.
It also included four new regular expression features: the dotAl1 flag, named capture groups, Unicode property
escapes, and look-behind assertions. Lastly it included object rest and spread properties.

ECMAScript 2019 introduced a few new built-in functions: flat and flatMap on Array.prototype for
flattening arrays, Object . fromEntries for directly turning the return value of Object.entries into a new
Object, and trimStart and trimEnd on String.prototype as better-named alternatives to the widely
implemented but non-standard String.prototype.trimLeft and trimRight built-ins. In addition, it
included a few minor updates to syntax and semantics. Updated syntax included optional catch binding parameters
and allowing U+2028 (LINE SEPARATOR) and U+2029 (PARAGRAPH SEPARATOR) in string literals to align with
JSON. Other updates included requiring that Array.prototype. sort be a stable sort, requiring that

JSON. stringi fy return well-formed UTE-8 regardless of input, and clarifying
Function.prototype.toString by requiring that it either return the corresponding original source text or a
standard placeholder.

ECMAScript 2020, the 11 edition, introduces the matchA11 method for Strings, to produce an iterator for all match
objects generated by a global regular expression; import(), a syntax to asynchronously import Modules with a
dynamic specifier; B1gInt, a new number primitive for working with arbitrary precision integers;
Promise.allSettled, a new Promise combinator that does not short-circuit; globalTh1is, a universal way to
access the global this value; dedicated export * as ns from "module’ syntax for use within modules;
increased standardization of for-1in enumeration order; import.meta, a host-populated object available in
Modules that may contain contextual information about the Module; as well as adding two new syntax features to
improve working with “nullish” values (nul1l or undefined): nullish coalescing, a value selection operator; and
optional chaining, a property access and function invocation operator that short-circuits if the value to access/invoke
is nullish.

This specification, the 12th edition, introduces the replaceAll method for Strings; Promise.any, a Promise
combinator that short-circuits when an input value is fulfilled; AggregateError, a new Error type to represent
multiple errors at once; logical assignment operators (??=, &&=, | | =); WeakRef, for referring to a target object

without preserving it from garbage collection, and FinalizationRegistry, to manage registration and

45



unregistration of cleanup operations performed when target objects are garbage collected; separators for numeric
literals (1_@00); and Array.prototype. sort was made stable.

Dozens of individuals representing many organizations have made very significant contributions within Ecma TC39
to the development of this edition and to the prior editions. In addition, a vibrant community has emerged supporting
TC39's ECMAScript efforts. This community has reviewed numerous drafts, filed thousands of bug reports,
performed implementation experiments, contributed test suites, and educated the world-wide developer community
about ECMAScript. Unfortunately, it is impossible to identify and acknowledge every person and organization who
has contributed to this effort.

Allen Wirfs-Brock
ECMA-262, Project Editor, 6th Edition

Brian Terlson
ECMA-262, Project Editor, 7 through 10" Editions

Jordan Harband
ECMA-262, Project Editor, 101 through 12 Editions

1 Scope

This Standard defines the ECMAScript 2021 general-purpose programming language.

2 Conformance

A conforming implementation of ECMAScript must provide and support all the types, values, objects, properties,
functions, and program syntax and semantics described in this specification.

A conforming implementation of ECMAScript must interpret source text input in conformance with the latest version
of the Unicode Standard and ISO/IEC 10646.

A conforming implementation of ECMAScript that provides an application programming interface (API) that
supports programs that need to adapt to the linguistic and cultural conventions used by different human languages
and countries must implement the interface defined by the most recent edition of ECMA-402 that is compatible with
this specification.

A conforming implementation of ECMAScript may provide additional types, values, objects, properties, and functions
beyond those described in this specification. In particular, a conforming implementation of ECMAScript may provide
properties not described in this specification, and values for those properties, for objects that are described in this
specification.

A conforming implementation of ECMAScript may support program and regular expression syntax not described in
this specification. In particular, a conforming implementation of ECMAScript may support program syntax that
makes use of any “future reserved words” noted in subclause 12.6.2 of this specification.

A conforming implementation of ECMAScript must not implement any extension that is listed as a Forbidden
Extension in subclause 17.1.

46



A conforming implementation of ECMAScript must not redefine any facilities that are not implementation-defined,

implementation-approximated, or host-defined.

A conforming implementation of ECMAScript may choose to implement or not implement Normative Optional
subclauses. If any Normative Optional behaviour is implemented, all of the behaviour in the containing Normative
Optional clause must be implemented. A Normative Optional clause is denoted in this specification with the words
"Normative Optional" in a coloured box, as shown below.

NORMATIVE OPTIONAL

2.1 Example Clause Heading

Example clause contents.

3 Normative References

The following referenced documents are indispensable for the application of this document. For dated references, only
the edition cited applies. For undated references, the latest edition of the referenced document (including any
amendments) applies.

ISO/IEC 10646 Information Technology — Universal Multiple-Octet Coded Character Set (UCS) plus Amendment 1:2005,
Amendment 2:2006, Amendment 3:2008, and Amendment 4:2008, plus additional amendments and corrigenda, or
successor

ECMA-402, ECMAScript 2015 Internationalization API Specification.
https:/ /ecma-international.org/ publications/standards /Ecma-402.htm

ECMA-404, The [SON Data Interchange Format.
https:/ /ecma-international.org/ publications/standards / Ecma-404.htm

4 Overview

This section contains a non-normative overview of the ECMAScript language.

ECMAScript is an object-oriented programming language for performing computations and manipulating
computational objects within a host environment. ECMAScript as defined here is not intended to be computationally
self-sufficient; indeed, there are no provisions in this specification for input of external data or output of computed
results. Instead, it is expected that the computational environment of an ECMAScript program will provide not only
the objects and other facilities described in this specification but also certain environment-specific objects, whose
description and behaviour are beyond the scope of this specification except to indicate that they may provide certain
properties that can be accessed and certain functions that can be called from an ECMAScript program.

ECMAScript was originally designed to be used as a scripting language, but has become widely used as a general-

purpose programming language. A scripting language is a programming language that is used to manipulate,

customize, and automate the facilities of an existing system. In such systems, useful functionality is already available
47


https://ecma-international.org/publications/standards/Ecma-402.htm
https://ecma-international.org/publications/standards/Ecma-404.htm

through a user interface, and the scripting language is a mechanism for exposing that functionality to program
control. In this way, the existing system is said to provide a host environment of objects and facilities, which completes
the capabilities of the scripting language. A scripting language is intended for use by both professional and non-

professional programmers.

ECMAScript was originally designed to be a Web scripting language, providing a mechanism to enliven Web pages in
browsers and to perform server computation as part of a Web-based client-server architecture. ECMAScript is now
used to provide core scripting capabilities for a variety of host environments. Therefore the core language is specified

in this document apart from any particular host environment.

ECMAScript usage has moved beyond simple scripting and it is now used for the full spectrum of programming tasks
in many different environments and scales. As the usage of ECMAScript has expanded, so have the features and
facilities it provides. ECMAScript is now a fully featured general-purpose programming language.

4.1 Web Scripting

A web browser provides an ECMAScript host environment for client-side computation including, for instance, objects
that represent windows, menus, pop-ups, dialog boxes, text areas, anchors, frames, history, cookies, and
input/output. Further, the host environment provides a means to attach scripting code to events such as change of
focus, page and image loading, unloading, error and abort, selection, form submission, and mouse actions. Scripting
code appears within the HTML and the displayed page is a combination of user interface elements and fixed and
computed text and images. The scripting code is reactive to user interaction, and there is no need for a main program.

A web server provides a different host environment for server-side computation including objects representing
requests, clients, and files; and mechanisms to lock and share data. By using browser-side and server-side scripting
together, it is possible to distribute computation between the client and server while providing a customized user
interface for a Web-based application.

Each Web browser and server that supports ECMAScript supplies its own host environment, completing the
ECMAScript execution environment.

4.2 Hosts and Implementations

To aid integrating ECMAScript into host environments, this specification defers the definition of certain facilities (e.g.,
abstract operations), either in whole or in part, to a source outside of this specification. Editorially, this specification
distinguishes the following kinds of deferrals.

An implementation is an external source that further defines facilities enumerated in Annex D or those that are marked
as implementation-defined or implementation-approximated. In informal use, an implementation refers to a concrete
artefact, such as a particular web browser.

An implementation-defined facility is one that defers its definition to an external source without further qualification.
This specification does not make any recommendations for particular behaviours, and conforming implementations
are free to choose any behaviour within the constraints put forth by this specification.

An implementation-approximated facility is one that defers its definition to an external source while recommending an
ideal behaviour. While conforming implementations are free to choose any behaviour within the constraints put forth
by this specification, they are encouraged to strive to approximate the ideal. Some mathematical operations, such as

48



Math. exp, are implementation-approximated.

A host is an external source that further defines facilities listed in Annex D but does not further define other
implementation-defined or implementation-approximated facilities. In informal use, a host refers to the set of all
implementations, such as the set of all web browsers, that interface with this specification in the same way via Annex
D. A host is often an external specification, such as WHATWG HTML (https:/ / html.spec.whatwg.org/). In other
words, facilities that are host-defined are often further defined in external specifications.

A host hook is an abstract operation that is defined in whole or in part by an external source. All host hooks must be
listed in Annex D.

A host-defined facility is one that defers its definition to an external source without further qualification and is listed in
Annex D. Implementations that are not hosts may also provide definitions for host-defined facilities.

A host environment is a particular choice of definition for all host-defined facilities. A host environment typically
includes objects or functions which allow obtaining input and providing output as host-defined properties of the
global object.

This specification follows the editorial convention of always using the most specific term. For example, if a facility is
host-defined, it should not be referred to as implementation-defined.

Both hosts and implementations may interface with this specification via the language types, specification types,

abstract operations, grammar productions, intrinsic objects, and intrinsic symbols defined herein.

4.3 ECMAScript Overview

The following is an informal overview of ECMAScript—not all parts of the language are described. This overview is
not part of the standard proper.

ECMAScript is object-based: basic language and host facilities are provided by objects, and an ECMAScript program
is a cluster of communicating objects. In ECMAScript, an object is a collection of zero or more properties each with
attributes that determine how each property can be used—for example, when the Writable attribute for a property is
set to false, any attempt by executed ECMAScript code to assign a different value to the property fails. Properties are
containers that hold other objects, primitive values, or functions. A primitive value is a member of one of the following
built-in types: Undefined, Null, Boolean, Number, BigInt, String, and Symbol; an object is a member of the built-in
type Object; and a function is a callable object. A function that is associated with an object via a property is called a
method.

ECMAScript defines a collection of built-in objects that round out the definition of ECMAScript entities. These built-in
objects include the global object; objects that are fundamental to the runtime semantics of the language including
Object, Function, Boolean, Symbol, and various Error objects; objects that represent and manipulate
numeric values including Math, Number, and Date; the text processing objects String and RegExp; objects that
are indexed collections of values including Array and nine different kinds of Typed Arrays whose elements all have
a specific numeric data representation; keyed collections including Map and Set objects; objects supporting
structured data including the JSON object, ArrayBuf fer, SharedArrayBuffer, and DataView; objects
supporting control abstractions including generator functions and Promise objects; and reflection objects including
Proxy and Reflect.

ECMAScript also defines a set of built-in operators. ECMAScript operators include various unary operations,
multiplicative operators, additive operators, bitwise shift operators, relational operators, equality operators, binary
49


https://html.spec.whatwg.org/

bitwise operators, binary logical operators, assignment operators, and the comma operator.

Large ECMAScript programs are supported by modules which allow a program to be divided into multiple sequences
of statements and declarations. Each module explicitly identifies declarations it uses that need to be provided by other
modules and which of its declarations are available for use by other modules.

ECMAScript syntax intentionally resembles Java syntax. ECMAScript syntax is relaxed to enable it to serve as an easy-
to-use scripting language. For example, a variable is not required to have its type declared nor are types associated
with properties, and defined functions are not required to have their declarations appear textually before calls to
them.

4.3.1 Objects

Even though ECMAScript includes syntax for class definitions, ECMAScript objects are not fundamentally class-based
such as those in C++, Smalltalk, or Java. Instead objects may be created in various ways including via a literal notation
or via constructors which create objects and then execute code that initializes all or part of them by assigning initial
values to their properties. Each constructor is a function that has a property named "prototype' that is used to
implement prototype-based inheritance and shared properties. Objects are created by using constructors in new
expressions; for example, new Date(2009, 11) creates a new Date object. Invoking a constructor without using
new has consequences that depend on the constructor. For example, Date() produces a string representation of the
current date and time rather than an object.

Every object created by a constructor has an implicit reference (called the object's prototype) to the value of its
constructor's "prototype' property. Furthermore, a prototype may have a non-null implicit reference to its prototype,
and so on; this is called the prototype chain. When a reference is made to a property in an object, that reference is to the
property of that name in the first object in the prototype chain that contains a property of that name. In other words,
first the object mentioned directly is examined for such a property; if that object contains the named property, that is
the property to which the reference refers; if that object does not contain the named property, the prototype for that
object is examined next; and so on.

50



Figure 1: Object/Prototype Relationships

A A ........................................ >
""""" CF implicit prototype link
prototype - CF, >
P1 -
o5 CFP1 explicit prototype property
r & 1
FETTTTITT cf1 cf2 cf3 cf4 ------ cfs T
gl gl ql gl gl
q2 q2 q2 q2 q2

In a class-based object-oriented language, in general, state is carried by instances, methods are carried by classes, and
inheritance is only of structure and behaviour. In ECMAScript, the state and methods are carried by objects, while
structure, behaviour, and state are all inherited.

All objects that do not directly contain a particular property that their prototype contains share that property and its
value. Figure 1 illustrates this:

CF is a constructor (and also an object). Five objects have been created by using new expressions: cfy, cfy, cf3, cfy, and
cfs. Each of these objects contains properties named "q1" and "q2". The dashed lines represent the implicit prototype
relationship; so, for example, cf3's prototype is CFp,. The constructor, CF, has two properties itself, named "P1" and
"P2", which are not visible to CFp, cfy, cfy, cf3, cfy, or cfs. The property named "CFP1" in CF,, is shared by cfy, cfy, cf3,
cfy, and cf5 (but not by CF), as are any properties found in CFp's implicit prototype chain that are not named "q1",

"

q2", or "CFP1". Notice that there is no implicit prototype link between CF and CF,.
Unlike most class-based object languages, properties can be added to objects dynamically by assigning values to them.
That is, constructors are not required to name or assign values to all or any of the constructed object's properties. In

the above diagram, one could add a new shared property for cfy, cfy, cf3, cfy, and cfs by assigning a new value to the

property in CFp,.

Although ECMAScript objects are not inherently class-based, it is often convenient to define class-like abstractions
based upon a common pattern of constructor functions, prototype objects, and methods. The ECMAScript built-in
objects themselves follow such a class-like pattern. Beginning with ECMAScript 2015, the ECMAScript language
includes syntactic class definitions that permit programmers to concisely define objects that conform to the same class-
like abstraction pattern used by the built-in objects.

4.3.2 The Strict Variant of ECMAScript

51



The ECMAScript Language recognizes the possibility that some users of the language may wish to restrict their usage
of some features available in the language. They might do so in the interests of security, to avoid what they consider to
be error-prone features, to get enhanced error checking, or for other reasons of their choosing. In support of this
possibility, ECMAScript defines a strict variant of the language. The strict variant of the language excludes some
specific syntactic and semantic features of the regular ECMAScript language and modifies the detailed semantics of
some features. The strict variant also specifies additional error conditions that must be reported by throwing error
exceptions in situations that are not specified as errors by the non-strict form of the language.

The strict variant of ECMAScript is commonly referred to as the strict mode of the language. Strict mode selection and
use of the strict mode syntax and semantics of ECMAScript is explicitly made at the level of individual ECMAScript
source text units as described in 11.2.2. Because strict mode is selected at the level of a syntactic source text unit, strict
mode only imposes restrictions that have local effect within such a source text unit. Strict mode does not restrict or
modify any aspect of the ECMAScript semantics that must operate consistently across multiple source text units. A
complete ECMAScript program may be composed of both strict mode and non-strict mode ECMAScript source text
units. In this case, strict mode only applies when actually executing code that is defined within a strict mode source
text unit.

In order to conform to this specification, an ECMAScript implementation must implement both the full unrestricted
ECMAScript language and the strict variant of the ECMAScript language as defined by this specification. In addition,
an implementation must support the combination of unrestricted and strict mode source text units into a single
composite program.

4.4 Terms and Definitions

For the purposes of this document, the following terms and definitions apply.

4.4.1 implementation-approximated

an implementation-approximated facility is defined in whole or in part by an external source but has a recommended,
ideal behaviour in this specification

4.4.2 implementation-defined

an implementation-defined facility is defined in whole or in part by an external source to this specification

4.4.3 host-defined

same as implementation-defined

NOTE Editorially, see clause 4.2.

4.4.4 type

set of data values as defined in clause 6

4.4.5 primitive value
52



member of one of the types Undefined, Null, Boolean, Number, BigInt, Symbol, or String as defined in clause 6

NOTE A primitive value is a datum that is represented directly at the lowest level of the language
implementation.

4.4.6 object

member of the type Object

NOTE An object is a collection of properties and has a single prototype object. The prototype may be the
null value.

4.4.7 constructor
function object that creates and initializes objects

NOTE The value of a constructor's ""prototype" property is a prototype object that is used to implement
inheritance and shared properties.

4.4.8 prototype
object that provides shared properties for other objects
NOTE When a constructor creates an object, that object implicitly references the constructor's
"prototype" property for the purpose of resolving property references. The constructor's
"prototype' property can be referenced by the program expression
constructor.prototype, and properties added to an object's prototype are shared,

through inheritance, by all objects sharing the prototype. Alternatively, a new object may be
created with an explicitly specified prototype by using the Object. create built-in function.

4.4.9 ordinary object

object that has the default behaviour for the essential internal methods that must be supported by all objects

4.4.10 exotic object

object that does not have the default behaviour for one or more of the essential internal methods

NOTE Any object that is not an ordinary object is an exotic object.

4.4.11 standard object

object whose semantics are defined by this specification

53



4.4.12 built-in object

object specified and supplied by an ECMAScript implementation

NOTE Standard built-in objects are defined in this specification. An ECMAScript implementation may
specify and supply additional kinds of built-in objects. A built-in constructor is a built-in object
that is also a constructor.

4.4.13 undefined value

primitive value used when a variable has not been assigned a value

4.4.14 Undefined type

type whose sole value is the undefined value

4.4.15 null value

primitive value that represents the intentional absence of any object value

4.4.16 Null type

type whose sole value is the null value

4.4.17 Boolean value

member of the Boolean type

NOTE There are only two Boolean values, true and false.

4.4.18 Boolean type

type consisting of the primitive values true and false

4.4.19 Boolean object

member of the Object type that is an instance of the standard built-in Boolean constructor

NOTE A Boolean object is created by using the Boolean constructor in a new expression, supplying a
Boolean value as an argument. The resulting object has an internal slot whose value is the
Boolean value. A Boolean object can be coerced to a Boolean value.

4.4.20 String value

54



primitive value that is a finite ordered sequence of zero or more 16-bit unsigned integer values

NOTE A String value is a member of the String type. Each integer value in the sequence usually
represents a single 16-bit unit of UTF-16 text. However, ECMAScript does not place any
restrictions or requirements on the values except that they must be 16-bit unsigned integers.

4.4.21 String type

set of all possible String values

4.4.22 String object

member of the Object type that is an instance of the standard built-in String constructor

NOTE A String object is created by using the String constructor in a new expression, supplying a String
value as an argument. The resulting object has an internal slot whose value is the String value. A
String object can be coerced to a String value by calling the String constructor as a function
(22.1.1.1).

4.4.23 Number value

primitive value corresponding to a double-precision 64-bit binary format IEEE 754-2019 value

NOTE A Number value is a member of the Number type and is a direct representation of a number.

4.4.24 Number type

set of all possible Number values including the special “Not-a-Number” (NaN) value, positive infinity, and negative
infinity

4.4.25 Number object

member of the Object type that is an instance of the standard built-in Number constructor

NOTE A Number object is created by using the Number constructor in a new expression, supplying a
Number value as an argument. The resulting object has an internal slot whose value is the
Number value. A Number object can be coerced to a Number value by calling the Number
constructor as a function (21.1.1.1).

4.4.26 Infinity

Number value that is the positive infinite Number value

55



4.4.27 NaN

Number value that is an IEEE 754-2019 “Not-a-Number” value

4.4.28 Biglnt value

primitive value corresponding to an arbitrary-precision integer value

4.4.29 Biglnt type

set of all possible BigInt values

4.4.30 Biglnt object

member of the Object type that is an instance of the standard built-in BigInt constructor

4.4.31 Symbol value

primitive value that represents a unique, non-String Object property key

4.4.32 Symbol type

set of all possible Symbol values

4.4.33 Symbol object

member of the Object type that is an instance of the standard built-in Symbol constructor

4.4.34 function

member of the Object type that may be invoked as a subroutine

NOTE In addition to its properties, a function contains executable code and state that determine how it
behaves when invoked. A function's code may or may not be written in ECMAScript.

4.4.35 built-in function

built-in object that is a function

NOTE Examples of built-in functions include parseInt and Math. exp. A host or implementation
may provide additional built-in functions that are not described in this specification.

4.4.36 property

part of an object that associates a key (either a String value or a Symbol value) and a value

56



NOTE Depending upon the form of the property the value may be represented either directly as a data
value (a primitive value, an object, or a function object) or indirectly by a pair of accessor
functions.

4.4.37 method

function that is the value of a property

NOTE When a function is called as a method of an object, the object is passed to the function as its this

value.

4.4.38 built-in method

method that is a built-in function

NOTE Standard built-in methods are defined in this specification. A host or implementation may
provide additional built-in methods that are not described in this specification.

4.4.39 attribute

internal value that defines some characteristic of a property

4.4.40 own property

property that is directly contained by its object

4.4.41 inherited property

property of an object that is not an own property but is a property (either own or inherited) of the object's prototype

4.5 Organization of This Specification

The remainder of this specification is organized as follows:

Clause 5 defines the notational conventions used throughout the specification.

Clauses 6 through 10 define the execution environment within which ECMAScript programs operate.

Clauses 11 through 17 define the actual ECMAScript programming language including its syntactic encoding and the
execution semantics of all language features.

Clauses 18 through 28 define the ECMAScript standard library. They include the definitions of all of the standard
objects that are available for use by ECMAScript programs as they execute.

Clause 29 describes the memory consistency model of accesses on Shared ArrayBuffer-backed memory and methods

57



of the Atomics object.

5 Notational Conventions

5.1 Syntactic and Lexical Grammars

5.1.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has an abstract symbol called a nonterminal
as its left-hand side, and a sequence of zero or more nonterminal and terminal symbols as its right-hand side. For each
grammar, the terminal symbols are drawn from a specified alphabet.

A chain production is a production that has exactly one nonterminal symbol on its right-hand side along with zero or

more terminal symbols.

Starting from a sentence consisting of a single distinguished nonterminal, called the goal symbol, a given context-free
grammar specifies a language, namely, the (perhaps infinite) set of possible sequences of terminal symbols that can
result from repeatedly replacing any nonterminal in the sequence with a right-hand side of a production for which the
nonterminal is the left-hand side.

5.1.2 The Lexical and RegExp Grammars

A lexical grammar for ECMAScript is given in clause 12. This grammar has as its terminal symbols Unicode code points
that conform to the rules for SourceCharacter defined in 11.1. It defines a set of productions, starting from the goal
symbol InputElementDiv, InputElementTemplateTnil, or InputElementRegExp, or InputElementRegExpOrTemplateTnil, that
describe how sequences of such code points are translated into a sequence of input elements.

Input elements other than white space and comments form the terminal symbols for the syntactic grammar for
ECMAScript and are called ECMAScript tokens. These tokens are the reserved words, identifiers, literals, and
punctuators of the ECMAScript language. Moreover, line terminators, although not considered to be tokens, also
become part of the stream of input elements and guide the process of automatic semicolon insertion (12.9). Simple
white space and single-line comments are discarded and do not appear in the stream of input elements for the
syntactic grammar. A MultiLineComment (that is, a comment of the form /*...*/ regardless of whether it spans more
than one line) is likewise simply discarded if it contains no line terminator; but if a MultiLineComment contains one or
more line terminators, then it is replaced by a single line terminator, which becomes part of the stream of input
elements for the syntactic grammar.

A RegExp grammar for ECMAScript is given in 22.2.1. This grammar also has as its terminal symbols the code points as
defined by SourceCharacter. It defines a set of productions, starting from the goal symbol Pattern, that describe how
sequences of code points are translated into regular expression patterns.

",y

Productions of the lexical and RegExp grammars are distinguished by having two colons “::” as separating
punctuation. The lexical and RegExp grammars share some productions.

5.1.3 The Numeric String Grammar

58



Another grammar is used for translating Strings into numeric values. This grammar is similar to the part of the lexical
grammar having to do with numeric literals and has as its terminal symbols SourceCharacter. This grammar appears in
7.1.4.1.

Productions of the numeric string grammar are distinguished by having three colons “:::” as punctuation.

5.1.4 The Syntactic Grammar

The syntactic grammar for ECMAScript is given in clauses 13 through 16. This grammar has ECMAScript tokens
defined by the lexical grammar as its terminal symbols (5.1.2). It defines a set of productions, starting from two
alternative goal symbols Script and Module, that describe how sequences of tokens form syntactically correct
independent components of ECMAScript programs.

When a stream of code points is to be parsed as an ECMAScript Script or Module, it is first converted to a stream of
input elements by repeated application of the lexical grammar; this stream of input elements is then parsed by a single
application of the syntactic grammar. The input stream is syntactically in error if the tokens in the stream of input
elements cannot be parsed as a single instance of the goal nonterminal (Script or Module), with no tokens left over.

When a parse is successful, it constructs a parse tree, a rooted tree structure in which each node is a Parse Node. Each
Parse Node is an instance of a symbol in the grammar; it represents a span of the source text that can be derived from
that symbol. The root node of the parse tree, representing the whole of the source text, is an instance of the parse's
goal symbol. When a Parse Node is an instance of a nonterminal, it is also an instance of some production that has
that nonterminal as its left-hand side. Moreover, it has zero or more children, one for each symbol on the production's
right-hand side: each child is a Parse Node that is an instance of the corresponding symbol.

New Parse Nodes are instantiated for each invocation of the parser and never reused between parses even of identical
source text. Parse Nodes are considered the same Parse Node if and only if they represent the same span of source text,
are instances of the same grammar symbol, and resulted from the same parser invocation.

NOTE 1 Parsing the same String multiple times will lead to different Parse Nodes. For example, consider:

eval
eval

Each call to eval converts the value of str into an ECMAScript source text and performs an
independent parse that creates its own separate tree of Parse Nodes. The trees are distinct even
though each parse operates upon a source text that was derived from the same String value.

NOTE 2 Parse Nodes are specification artefacts, and implementations are not required to use an
analogous data structure.

nz

Productions of the syntactic grammar are distinguished by having just one colon “:” as punctuation.

The syntactic grammar as presented in clauses 13 through 16 is not a complete account of which token sequences are
accepted as a correct ECMAScript Script or Module. Certain additional token sequences are also accepted, namely,
those that would be described by the grammar if only semicolons were added to the sequence in certain places (such
as before line terminator characters). Furthermore, certain token sequences that are described by the grammar are not
considered acceptable if a line terminator character appears in certain “awkward” places.

59



In certain cases, in order to avoid ambiguities, the syntactic grammar uses generalized productions that permit token
sequences that do not form a valid ECMAScript Script or Module. For example, this technique is used for object literals
and object destructuring patterns. In such cases a more restrictive supplemental grammar is provided that further
restricts the acceptable token sequences. Typically, an early error rule will then define an error condition if "P is not
covering an N", where P is a Parse Node (an instance of the generalized production) and N is a nonterminal from the
supplemental grammar. Here, the sequence of tokens originally matched by P is parsed again using N as the goal
symbol. (If N takes grammatical parameters, then they are set to the same values used when P was originally parsed.)
An error occurs if the sequence of tokens cannot be parsed as a single instance of N, with no tokens left over.
Subsequently, algorithms access the result of the parse using a phrase of the form "the N that is covered by P". This will
always be a Parse Node (an instance of N, unique for a given P), since any parsing failure would have been detected

by an early error rule.

5.1.5 Grammar Notation

Terminal symbols are shown in fixed width font, both in the productions of the grammars and throughout this
specification whenever the text directly refers to such a terminal symbol. These are to appear in a script exactly as

written. All terminal symbol code points specified in this way are to be understood as the appropriate Unicode code
points from the Basic Latin range, as opposed to any similar-looking code points from other Unicode ranges. A code

point in a terminal symbol cannot be expressed by a \ UnicodeEscapeSequence.

Nonterminal symbols are shown in italic type. The definition of a nonterminal (also called a “production”) is
introduced by the name of the nonterminal being defined followed by one or more colons. (The number of colons
indicates to which grammar the production belongs.) One or more alternative right-hand sides for the nonterminal
then follow on succeeding lines. For example, the syntactic definition:

WhileStatement :

while ( Expression ) Statement

states that the nonterminal WhileStatement represents the token while, followed by a left parenthesis token, followed
by an Expression, followed by a right parenthesis token, followed by a Statement. The occurrences of Expression and
Statement are themselves nonterminals. As another example, the syntactic definition:

ArgumentList :
AssignmentExpression

ArqumentList , AssignmentExpression

states that an ArqumentList may represent either a single AssignmentExpression or an ArgumentList, followed by a
comma, followed by an AssignmentExpression. This definition of ArqumentList is recursive, that is, it is defined in terms
of itself. The result is that an ArqumentList may contain any positive number of arguments, separated by commas,
where each argument expression is an AssignmentExpression. Such recursive definitions of nonterminals are common.

The subscripted suffix “opt’s which may appear after a terminal or nonterminal, indicates an optional symbol. The

alternative containing the optional symbol actually specifies two right-hand sides, one that omits the optional element
and one that includes it. This means that:

VariableDeclaration

Bindingldentifier Initializer
is a convenient abbreviation for:

60



VariableDeclaration :
Bindingldentifier
Bindingldentifier Initializer

and that:

ForStatement :

for ( LexicalDeclaration Expression ; Expression ) Statement

is a convenient abbreviation for:

ForStatement :

for ( LexicalDeclaration ; Expression ) Statement

for ( LexicalDeclaration Expression ; Expression ) Statement

which in turn is an abbreviation for:

ForStatement :
for ( LexicalDeclaration ; ) Statement
for ( LexicalDeclaration ; Expression ) Statement
for ( LexicalDeclaration Expression ; ) Statement

for ( LexicalDeclaration Expression ; Expression ) Statement
so, in this example, the nonterminal ForStatement actually has four alternative right-hand sides.

A production may be parameterized by a subscripted annotation of the form “|parameters] s which may appear as a
suffix to the nonterminal symbol defined by the production. “parameters” may be either a single name or a comma

separated list of names. A parameterized production is shorthand for a set of productions defining all combinations of
the parameter names, preceded by an underscore, appended to the parameterized nonterminal symbol. This means
that:

StatementList
ReturnStatement

ExpressionStatement
is a convenient abbreviation for:

StatementList :
ReturnStatement

ExpressionStatement

StatementList_Return :

ReturnStatement
ExpressionStatement
and that:
StatementList
ReturnStatement
ExpressionStatement

61



is an abbreviation for:

StatementList :
ReturnStatement

ExpressionStatement

StatementList_Return :
ReturnStatement

ExpressionStatement

StatementList_In :
ReturnStatement

ExpressionStatement

StatementList_Return_In :
ReturnStatement

ExpressionStatement

Multiple parameters produce a combinatory number of productions, not all of which are necessarily referenced in a
complete grammar.

References to nonterminals on the right-hand side of a production can also be parameterized. For example:

StatementList :
ReturnStatement
ExpressionStatement

is equivalent to saying;:

StatementList :
ReturnStatement

ExpressionStatement_In
and:

StatementList :
ReturnStatement

ExpressionStatement

is equivalent to:

StatementList :
ReturnStatement

ExpressionStatement
A nonterminal reference may have both a parameter list and an “opt” suffix. For example:

VariableDeclaration :

Bindingldentifier Initializer

is an abbreviation for:

62



VariableDeclaration :
Bindingldentifier
Bindingldentifier Initializer_In

Prefixing a parameter name with “»” on a right-hand side nonterminal reference makes that parameter value
dependent upon the occurrence of the parameter name on the reference to the current production's left-hand side

symbol. For example:

VariableDeclaration

Bindingldentifier Initializer

is an abbreviation for:

VariableDeclaration

Bindingldentifier Initializer

VariableDeclaration_In
Bindingldentifier Initializer_In

If a right-hand side alternative is prefixed with “[+parameter]” that alternative is only available if the named
parameter was used in referencing the production's nonterminal symbol. If a right-hand side alternative is prefixed
with “[~parameter]” that alternative is only available if the named parameter was not used in referencing the

production's nonterminal symbol. This means that:

StatementList
ReturnStatement

ExpressionStatement
is an abbreviation for:

StatementList :

ExpressionStatement

StatementList_Return :

ReturnStatement
ExpressionStatement
and that:
StatementList
ReturnStatement
ExpressionStatement

is an abbreviation for:

StatementList :
ReturnStatement

ExpressionStatement

StatementList_Return :
ExpressionStatement
63



When the words “one of” follow the colon(s) in a grammar definition, they signify that each of the terminal symbols
on the following line or lines is an alternative definition. For example, the lexical grammar for ECMAScript contains
the production:

NonZeroDigit :: one of
123456789

which is merely a convenient abbreviation for:

NonZeroDigit ::
1

2
3
4
5
6
7
8
9

If the phrase “[empty]” appears as the right-hand side of a production, it indicates that the production's right-hand
side contains no terminals or nonterminals.

If the phrase “[lookahead = seq]” appears in the right-hand side of a production, it indicates that the production may
only be used if the token sequence seq is a prefix of the immediately following input token sequence. Similarly,
“[lookahead € set]”, where set is a finite nonempty set of token sequences, indicates that the production may only be
used if some element of sef is a prefix of the immediately following token sequence. For convenience, the set can also
be written as a nonterminal, in which case it represents the set of all token sequences to which that nonterminal could
expand. It is considered an editorial error if the nonterminal could expand to infinitely many distinct token sequences.

These conditions may be negated. “[lookahead = seq]” indicates that the containing production may only be used if seg
is not a prefix of the immediately following input token sequence, and “[lookahead € set]” indicates that the
production may only be used if no element of set is a prefix of the immediately following token sequence.

As an example, given the definitions:

DecimalDigit :: one of
01234567829

DecimalDigits ::
DecimalDigit
DecimalDigits Decimal Digit

the definition:

LookaheadExample ::
n [lookahead & {1,3,5,7,9}] DecimalDigits
DecimalDigit [lookahead € DecimalDigit]

matches either the letter n followed by one or more decimal digits the first of which is even, or a decimal digit not

64



followed by another decimal digit.

Note that when these phrases are used in the syntactic grammar, it may not be possible to unambiguously identify the
immediately following token sequence because determining later tokens requires knowing which lexical goal symbol
to use at later positions. As such, when these are used in the syntactic grammar, it is considered an editorial error for a
token sequence seq to appear in a lookahead restriction (including as part of a set of sequences) if the choices of lexical
goal symbols to use could change whether or not seq would be a prefix of the resulting token sequence.

If the phrase “[no LineTerminator here]” appears in the right-hand side of a production of the syntactic grammar, it
indicates that the production is a restricted production: it may not be used if a LineTerminator occurs in the input stream
at the indicated position. For example, the production:

ThrowStatement :

throw [no LineTerminator here] Expression ;

indicates that the production may not be used if a LineTerminator occurs in the script between the throw token and
the Expression.

Unless the presence of a LineTerminator is forbidden by a restricted production, any number of occurrences of
LineTerminator may appear between any two consecutive tokens in the stream of input elements without affecting the
syntactic acceptability of the script.

When an alternative in a production of the lexical grammar or the numeric string grammar appears to be a multi-code
point token, it represents the sequence of code points that would make up such a token.

The right-hand side of a production may specify that certain expansions are not permitted by using the phrase “but
not” and then indicating the expansions to be excluded. For example, the production:

Identifier ::
IdentifierName but not ReservedWord

means that the nonterminal Identifier may be replaced by any sequence of code points that could replace IdentifierName
provided that the same sequence of code points could not replace ReservedWord.

Finally, a few nonterminal symbols are described by a descriptive phrase in sans-serif type in cases where it would be
impractical to list all the alternatives:

SourceCharacter ::

any Unicode code point

5.2 Algorithm Conventions

The specification often uses a numbered list to specify steps in an algorithm. These algorithms are used to precisely
specify the required semantics of ECMAScript language constructs. The algorithms are not intended to imply the use
of any specific implementation technique. In practice, there may be more efficient algorithms available to implement a
given feature.

Algorithms may be explicitly parameterized with an ordered, comma-separated sequence of alias names which may

be used within the algorithm steps to reference the argument passed in that position. Optional parameters are

denoted with surrounding brackets ([ , name ]) and are no different from required parameters within algorithm steps.

A rest parameter may appear at the end of a parameter list, denoted with leading ellipsis (, ...name). The rest parameter
65



captures all of the arguments provided following the required and optional parameters into a List. If there are no such
additional arguments, that List is empty.

Algorithm steps may be subdivided into sequential substeps. Substeps are indented and may themselves be further
divided into indented substeps. Outline numbering conventions are used to identify substeps with the first level of
substeps labelled with lower case alphabetic characters and the second level of substeps labelled with lower case
roman numerals. If more than three levels are required these rules repeat with the fourth level using numeric labels.
For example:

1. Top-level step
a. Substep.
b. Substep.
i. Subsubstep.
1. Subsubsubstep
a. Subsubsubsubstep
i. Subsubsubsubsubstep

A step or substep may be written as an “if” predicate that conditions its substeps. In this case, the substeps are only
applied if the predicate is true. If a step or substep begins with the word “else”, it is a predicate that is the negation of
the preceding “if” predicate step at the same level.

A step may specify the iterative application of its substeps.

A step that begins with “Assert:” asserts an invariant condition of its algorithm. Such assertions are used to make
explicit algorithmic invariants that would otherwise be implicit. Such assertions add no additional semantic
requirements and hence need not be checked by an implementation. They are used simply to clarify algorithms.

Algorithm steps may declare named aliases for any value using the form “Let x be someValue”. These aliases are
reference-like in that both x and someValue refer to the same underlying data and modifications to either are visible to
both. Algorithm steps that want to avoid this reference-like behaviour should explicitly make a copy of the right-hand
side: “Let x be a copy of someValue” creates a shallow copy of someValue.

Once declared, an alias may be referenced in any subsequent steps and must not be referenced from steps prior to the
alias's declaration. Aliases may be modified using the form “Set x to someOtherValue”.

5.2.1 Abstract Operations

In order to facilitate their use in multiple parts of this specification, some algorithms, called abstract operations, are
named and written in parameterized functional form so that they may be referenced by name from within other
algorithms. Abstract operations are typically referenced using a functional application style such as
OperationName(arg1, arg2). Some abstract operations are treated as polymorphically dispatched methods of class-like
specification abstractions. Such method-like abstract operations are typically referenced using a method application
style such as someValue.OperationName(arg1, arg?2).

5.2.2 Syntax-Directed Operations

A syntax-directed operation is a named operation whose definition consists of algorithms, each of which is associated
with one or more productions from one of the ECMAScript grammars. A production that has multiple alternative
definitions will typically have a distinct algorithm for each alternative. When an algorithm is associated with a
grammar production, it may reference the terminal and nonterminal symbols of the production alternative as if they

66



were parameters of the algorithm. When used in this manner, nonterminal symbols refer to the actual alternative
definition that is matched when parsing the source text. The source text matched by a grammar production is the
portion of the source text that starts at the beginning of the first terminal that participated in the match and ends at the
end of the last terminal that participated in the match.

When an algorithm is associated with a production alternative, the alternative is typically shown without any “[ ]”
grammar annotations. Such annotations should only affect the syntactic recognition of the alternative and have no
effect on the associated semantics for the alternative.

Syntax-directed operations are invoked with a parse node and, optionally, other parameters by using the conventions
on steps 1, 3, and 4 in the following algorithm:

1. Let status be SyntaxDirectedOperation of SomeNonTerminal.

2. Let someParseNode be the parse of some source text.

3. Perform SyntaxDirectedOperation of someParseNode.

4. Perform SyntaxDirectedOperation of sonmeParseNode passing 'value' as the argument.

Unless explicitly specified otherwise, all chain productions have an implicit definition for every operation that might
be applied to that production's left-hand side nonterminal. The implicit definition simply reapplies the same operation
with the same parameters, if any, to the chain production's sole right-hand side nonterminal and then returns the
result. For example, assume that some algorithm has a step of the form: “Return the result of evaluating Block” and
that there is a production:

Block :
{ StatementList }

but the Evaluation operation does not associate an algorithm with that production. In that case, the Evaluation
operation implicitly includes an association of the form:

Runtime Semantics: Evaluation
Block : { StatementList }

1. Return the result of evaluating StatementList.

5.2.3 Runtime Semantics
Algorithms which specify semantics that must be called at runtime are called runtime semantics. Runtime semantics are

defined by abstract operations or syntax-directed operations. Such algorithms always return a completion record.

5.2.3.1 Implicit Completion Values

The algorithms of this specification often implicitly return Completion Records whose [[Type]] is normal. Unless it is
otherwise obvious from the context, an algorithm statement that returns a value that is not a Completion Record, such
as:

1. Return "Infinity".
means the same thing as:

1. Return NormalCompletion("Infinity").

67



However, if the value expression of a “return” statement is a Completion Record construction literal, the resulting
Completion Record is returned. If the value expression is a call to an abstract operation, the “return” statement simply
returns the Completion Record produced by the abstract operation.

The abstract operation Completion(completionRecord) is used to emphasize that a previously computed Completion
Record is being returned. The Completion abstract operation takes a single argument, completionRecord, and performs
the following steps:

1. Assert: completionRecord is a Completion Record.
2. Return completionRecord as the Completion Record of this abstract operation.

A “return” statement without a value in an algorithm step means the same thing as:
1. Return NormalCompletion(undefined).

Any reference to a Completion Record value that is in a context that does not explicitly require a complete Completion
Record value is equivalent to an explicit reference to the [[Value]] field of the Completion Record value unless the
Completion Record is an abrupt completion.

5.2.3.2 Throw an Exception

Algorithms steps that say to throw an exception, such as
1. Throw a TypeError exception.
mean the same things as:

1. Return ThrowCompletion(a newly created TypeError object).

5.2.3.3 ReturnIfAbrupt

Algorithms steps that say or are otherwise equivalent to:
1. ReturnIfAbrupt(arqument).
mean the same thing as:

1. If argument is an abrupt completion, return argument.

2. Else if argument is a Completion Record, set argument to argument.[[Value]].
Algorithms steps that say or are otherwise equivalent to:

1. ReturnIfAbrupt(AbstractOperation()).
mean the same thing as:

1. Let hygienicTemp be AbstractOperation().
2. If hygienicTemp is an abrupt completion, return hygienicTemp.
3. Else if hygienicTemp is a Completion Record, set hygienicTemp to hygienicTemp.[[Value]].

Where hygienicTemp is ephemeral and visible only in the steps pertaining to ReturnIfAbrupt.

Algorithms steps that say or are otherwise equivalent to:

68



1. Let result be AbstractOperation(ReturnlfAbrupt(argument)).
mean the same thing as:

1. If argument is an abrupt completion, return argument.
2. If argument is a Completion Record, set argument to argument.[[Value]].
3. Let result be AbstractOperation(argument).

5.2.3.4 ReturnIfAbrupt Shorthands

Invocations of abstract operations and syntax-directed operations that are prefixed by ? indicate that ReturnIfAbrupt
should be applied to the resulting Completion Record. For example, the step:

1. ? OperationName().
is equivalent to the following step:

1. ReturnlfAbrupt(OperationName()).
Similarly, for method application style, the step:

1. ? someValue.OperationName().
is equivalent to:

1. ReturnIfAbrupt(someValue.OperationName()).

Similarly, prefix ! is used to indicate that the following invocation of an abstract or syntax-directed operation will
never return an abrupt completion and that the resulting Completion Record's [[Value]] field should be used in place
of the return value of the operation. For example, the step:

1. Let val be ! OperationName().
is equivalent to the following steps:

1. Let val be OperationName().
2. Assert: val is never an abrupt completion.
3. If val is a Completion Record, set val to val.[[Value]].

Syntax-directed operations for runtime semantics make use of this shorthand by placing ! or ? before the invocation
of the operation:

1. Perform ! SyntaxDirectedOperation of NonTerminal.

5.2.4 Static Semantics

Context-free grammars are not sufficiently powerful to express all the rules that define whether a stream of input
elements form a valid ECMAScript Script or Module that may be evaluated. In some situations additional rules are
needed that may be expressed using either ECMAScript algorithm conventions or prose requirements. Such rules are
always associated with a production of a grammar and are called the static semantics of the production.

Static Semantic Rules have names and typically are defined using an algorithm. Named Static Semantic Rules are
associated with grammar productions and a production that has multiple alternative definitions will typically have

69



for each alternative a distinct algorithm for each applicable named static semantic rule.

A special kind of static semantic rule is an Early Error Rule. Early error rules define early error conditions (see clause
17) that are associated with specific grammar productions. Evaluation of most early error rules are not explicitly
invoked within the algorithms of this specification. A conforming implementation must, prior to the first evaluation of
a Script or Module, validate all of the early error rules of the productions used to parse that Script or Module. If any of
the early error rules are violated the Script or Module is invalid and cannot be evaluated.

5.2.5 Mathematical Operations

This specification makes reference to these kinds of numeric values:

o Mathematical values: Arbitrary real numbers, used as the default numeric type.

o Extended mathematical values: Mathematical values together with +co and -co.

e Numbers: IEEE 754-2019 double-precision floating point values.

e BigInts: ECMAScript values representing arbitrary integers in a one-to-one correspondence.

In the language of this specification, numerical values are distinguished among different numeric kinds using
subscript suffixes. The subscript f refers to Numbers, and the subscript 7 refers to BigInts. Numeric values without a

subscript suffix refer to mathematical values.

Numeric operators such as +, x, =, and > refer to those operations as determined by the type of the operands. When
applied to mathematical values, the operators refer to the usual mathematical operations. When applied to Numbers,
the operators refer to the relevant operations within IEEE 754-2019. When applied to BigInts, the operators refer to the
usual mathematical operations applied to the mathematical value of the Biglnt.

In general, when this specification refers to a numerical value, such as in the phrase, "the length of " or "the integer
represented by the four hexadecimal digits ...", without explicitly specifying a numeric kind, the phrase refers to a
mathematical value. Phrases which refer to a Number or a BigInt value are explicitly annotated as such; for example,
"the Number value for the number of code points in ..." or "the BigInt value for ...".

Numeric operators applied to mixed-type operands (such as a Number and a mathematical value) are not defined and
should be considered an editorial error in this specification.

This specification denotes most numeric values in base 10; it also uses numeric values of the form 0x followed by
digits 0-9 or A-F as base-16 values.

When the term integer is used in this specification, it refers to a mathematical value which is in the set of integers,
unless otherwise stated. When the term integral Number is used in this specification, it refers to a Number value whose

mathematical value is in the set of integers.

Conversions between mathematical values and Numbers or Biglnts are always explicit in this document. A
conversion from a mathematical value or extended mathematical value x to a Number is denoted as "the Number
value for x" or Ax), and is defined in 6.1.6.1. A conversion from an integer x to a BigInt is denoted as "the BigInt value
for x" or Z(x). A conversion from a Number or BigInt x to a mathematical value is denoted as "the mathematical value of
x", or R(x). The mathematical value of +0f and -0 is the mathematical value 0. The mathematical value of non-finite
values is not defined. The extended mathematical value of x is the mathematical value of x for finite values, and is +c
and -oo for +eop and -cop respectively; it is not defined for NaN.

The mathematical function abs(x) produces the absolute value of x, which is -x if x < 0 and otherwise is x itself.

70



The mathematical function min(x1, x2, ..., xN) produces the mathematically smallest of x1 through xN. The
mathematical function max(x1, x2, ..., xN) produces the mathematically largest of x1 through xN. The domain and
range of these mathematical functions are the extended mathematical values.

The notation “x modulo y” (y must be finite and non-zero) computes a value k of the same sign as y (or zero) such that
abs(k) < abs(y) and x - k = g x y for some integer 4.

The phrase "the result of clamping x between lower and upper" (where x is an extended mathematical value and lower
and upper are mathematical values such that lower < upper) produces lower if x < lower, produces upper if x > upper, and
otherwise produces x.

The mathematical function floor(x) produces the largest integer (closest to +) that is not larger than x.

Mathematical functions min, max, abs, and floor are not defined for Numbers and Biglnts, and any usage of those
methods that have non-mathematical value arguments would be an editorial error in this specification.

NOTE floor(x) = x - (x modulo 1).

5.2.6 Value Notation

In this specification, ECMAScript language values are displayed in bold. Examples include null, true, or "hello".
These are distinguished from longer ECMAScript code sequences such as Function.prototype.apply or
let n = 42;.

Values which are internal to the specification and not directly observable from ECMAScript code are indicated with a
sans-serif typeface. For instance, a Completion Record's [[Type]] field takes on values like normal, return, or throw.

6 ECMAScript Data Types and Values

Algorithms within this specification manipulate values each of which has an associated type. The possible value types
are exactly those defined in this clause. Types are further subclassified into ECMAScript language types and
specification types.

Within this specification, the notation “Type(x)” is used as shorthand for “the type of x” where “type” refers to the
ECMAScript language and specification types defined in this clause. When the term “empty” is used as if it was

naming a value, it is equivalent to saying “no value of any type”.

6.1 ECMAScript Language Types

An ECMAScript language type corresponds to values that are directly manipulated by an ECMAScript programmer
using the ECMAScript language. The ECMAScript language types are Undefined, Null, Boolean, String, Symbol,
Number, BigInt, and Object. An ECMAScript language value is a value that is characterized by an ECMAScript
language type.

6.1.1 The Undefined Type

71



The Undefined type has exactly one value, called undefined. Any variable that has not been assigned a value has the
value undefined.

6.1.2 The Null Type

The Null type has exactly one value, called null.

6.1.3 The Boolean Type

The Boolean type represents a logical entity having two values, called true and false.

6.1.4 The String Type

The String type is the set of all ordered sequences of zero or more 16-bit unsigned integer values (“elements”) up to a

maximum length of 253 - 1 elements. The String type is generally used to represent textual data in a running
ECMAScript program, in which case each element in the String is treated as a UTF-16 code unit value. Each element is
regarded as occupying a position within the sequence. These positions are indexed with non-negative integers. The
first element (if any) is at index 0, the next element (if any) at index 1, and so on. The length of a String is the number
of elements (i.e., 16-bit values) within it. The empty String has length zero and therefore contains no elements.

ECMAScript operations that do not interpret String contents apply no further semantics. Operations that do interpret
String values treat each element as a single UTF-16 code unit. However, ECMAScript does not restrict the value of or
relationships between these code units, so operations that further interpret String contents as sequences of Unicode
code points encoded in UTF-16 must account for ill-formed subsequences. Such operations apply special treatment to
every code unit with a numeric value in the inclusive range 0xD800 to OXDBFF (defined by the Unicode Standard as a
leading surrogate, or more formally as a high-surrogate code unit) and every code unit with a numeric value in the
inclusive range 0xDC00 to OXDFFF (defined as a trailing surrogate, or more formally as a low-surrogate code unit) using
the following rules:

e A code unit that is not a leading surrogate and not a trailing surrogate is interpreted as a code point with the
same value.

e A sequence of two code units, where the first code unit c1 is a leading surrogate and the second code unit ¢2 a
trailing surrogate, is a surrogate pair and is interpreted as a code point with the value (cI - 0xD800) x 0x400 + (c2
- 0xDC00) + 0x10000. (See 11.1.3)

e A code unit that is a leading surrogate or trailing surrogate, but is not part of a surrogate pair, is interpreted as
a code point with the same value.

The function String.prototype.normalize (see 22.1.3.13) can be used to explicitly normalize a String value.
String.prototype.localeCompare (see 22.1.3.10) internally normalizes String values, but no other
operations implicitly normalize the strings upon which they operate. Only operations that are explicitly specified to
be language or locale sensitive produce language-sensitive results.

NOTE The rationale behind this design was to keep the implementation of Strings as simple and high-
performing as possible. If ECMAScript source text is in Normalized Form C, string literals are
guaranteed to also be normalized, as long as they do not contain any Unicode escape sequences.

In this specification, the phrase "the string-concatenation of A, B, ..." (where each argument is a String value, a code unit,

72



or a sequence of code units) denotes the String value whose sequence of code units is the concatenation of the code
units (in order) of each of the arguments (in order).

The phrase "the substring of S from inclusiveStart to exclusiveEnd" (where S is a String value or a sequence of code units
and inclusiveStart and exclusiveEnd are integers) denotes the String value consisting of the consecutive code units of S
beginning at index inclusiveStart and ending immediately before index exclusiveEnd (which is the empty String when
inclusiveStart = exclusiveEnd). If the "to" suffix is omitted, the length of S is used as the value of exclusiveEnd.

6.1.4.1 StringIndexOf ( string, searchValue, fromIndex)

The abstract operation StringIndexOf takes arguments string (a String), searchValue (a String), and fromIndex (a non-
negative integer). It performs the following steps when called:

Assert: Type(string) is String.

Assert: Type(searchValue) is String.

Assert: fromIndex is a non-negative integer.

Let len be the length of string.

If searchValue is the empty String and fromIndex < len, return fromIndex.
Let searchLen be the length of searchValue.

NSO N

For each integer i starting with fromIndex such that i < len - searchLen, in ascending order, do
a. Let candidate be the substring of string from i to i + searchLen.
b. If candidate is the same sequence of code units as searchValue, return i.

8. Return -1.

NOTE 1 If searchValue is the empty String and fromlIndex is less than or equal to the length of string, this
algorithm returns fromIndex. The empty String is effectively found at every position within a
string, including after the last code unit.

NOTE 2 This algorithm always returns -1 if fromIndex > the length of string.

6.1.5 The Symbol Type
The Symbol type is the set of all non-String values that may be used as the key of an Object property (6.1.7).
Each possible Symbol value is unique and immutable.

Each Symbol value immutably holds an associated value called [[Description]] that is either undefined or a String
value.

6.1.5.1 Well-Known Symbols

Well-known symbols are built-in Symbol values that are explicitly referenced by algorithms of this specification. They
are typically used as the keys of properties whose values serve as extension points of a specification algorithm. Unless
otherwise specified, well-known symbols values are shared by all realms (9.2).

Within this specification a well-known symbol is referred to by using a notation of the form @@name, where “name”
is one of the values listed in Table 1.

Table 1: Well-known Svmbols
73



Specification Name

[[Description]]

Value and Purpose

@@asynclterator

"Symbol.asynclterator"

A method that returns the default Asynclterator for an
object. Called by the semantics of the for-await-of
statement.

@@hasInstance

"Symbol.hasInstance"

A method that determines if a constructor object recognizes
an object as one of the constructor's instances. Called by the
semantics of the instanceof operator.

@@isConcatSpreadable

"Symbol.isConcatSpreadable"

A Boolean valued property that if true indicates that an
object should be flattened to its array elements by
Array.prototype.concat.

@@iterator

"Symbol.iterator"

A method that returns the default Iterator for an object.
Called by the semantics of the for-of statement.

@@match

"Symbol.match"

A regular expression method that matches the regular
expression against a string. Called by the
String.prototype.match method.

@@matchAll

"Symbol.matchAll"

A regular expression method that returns an iterator, that
yields matches of the regular expression against a string.
Called by the String.prototype.matchAll
method.

@@replace

"Symbol.replace"

A regular expression method that replaces matched
substrings of a string. Called by the
String.prototype.replace method.

@Q@search

"Symbol.search"

A regular expression method that returns the index within a
string that matches the regular expression. Called by the
String.prototype.search method.

@@species

"Symbol.species"

A function valued property that is the constructor function
that is used to create derived objects.

@@split

"Symbol.split"

A regular expression method that splits a string at the
indices that match the regular expression. Called by the
String.prototype.split method.

@@toPrimitive

"Symbol.toPrimitive"

A method that converts an object to a corresponding
primitive value. Called by the ToPrimitive abstract
operation.

@@toStringlag

"Symbol.toStringTag"

A String valued property that is used in the creation of the
default string description of an object. Accessed by the
built-in method Object.prototype.toString.

@@unscopables

"Symbol.unscopables"

An object valued property whose own and inherited
property names are property names that are excluded from
the with environment bindings of the associated object.

74




6.1.6 Numeric Types

ECMAScript has two built-in numeric types: Number and Biglnt. In this specification, every numeric type T contains a

multiplicative identity value denoted T::unit. The specification types also have the following abstract operations,

likewise denoted T::0p for a given operation with specification name op. All argument types are T. The "Result"

column shows the return type, along with an indication if it is possible for some invocations of the operation to return

an abrupt completion.

Table 2: Numeric Type Operations

Invocation Synopsis Example Invoked by the Evaluation semantics of ... Result
source
T::unaryMinus(x) -X Unary - Operator T
T::bitwiseNOT(x) ~X Bitwise NOT Operator ( ~ ) T
T::exponentiate(x, y) x ** y Exponentiation Operator and Math.pow ( base, T, may throw
exponent ) RangeError
T:multiply(x, y) x *y Multiplicative Operators T
T:divide(x, y) x/y Multiplicative Operators T, may throw
RangeError
T::remainder(x, y) x %y Multiplicative Operators T, may throw
RangeError
T::add(x, y) X ++ Postfix Increment Operator, Prefix Increment T
++ X Operator, and The Addition Operator ( + )
X +Yy
T::subtract(x, y) X —-- Postfix Decrement Operator, Prefix Decrement T
-- X Operator, and The Subtraction Operator ( - )
X -y
T::leftShift(x, y) X << Yy The Left Shift Operator ( <<) T
T::signedRightShift(x, y) X >y The Signed Right Shift Operator ( >> ) T

T::unsignedRightShift(x, y) [ X >>> y The Unsigned Right Shift Operator ( >>>)

T, may throw

TypeError

T:lessThan(x, y) X <Yy Relational Operators, via Abstract Relational Boolean or

X >y Comparison undefined (for

X <=y unordered

X >=y inputs)
T::equal(x, y) X ==Yy Equality Operators, via Strict Equality Comparison Boolean

X I=y

X ===
T::sameValue(x, y) Object internal methods, via SameValue (x, y ), to test | Boolean

75




exact value equality

T::sameValueZero(x, y) Array, Map, and Set methods, via SameValueZero (x, | Boolean
), to test value equality ignoring differences among
members of the zero cohort (i.e., -Of and +0p)

T::bitwiseAND(x, y) x &y Binary Bitwise Operators T
T::bitwiseXOR(X, y) X Ay Binary Bitwise Operators T
T::bitwiseOR(x, y) x|y Binary Bitwise Operators T
T::toString(x) String(x) | Many expressions and built-in functions, via ToString | String

(argument )

The T::unit value and T::0p operations are not a part of the ECMAScript language; they are defined here solely to aid
the specification of the semantics of the ECMAScript language. Other abstract operations are defined throughout this
specification.

Because the numeric types are in general not convertible without loss of precision or truncation, the ECMAScript
language provides no implicit conversion among these types. Programmers must explicitly call Number and

BigInt functions to convert among types when calling a function which requires another type.

NOTE The first and subsequent editions of ECMAScript have provided, for certain operators, implicit
numeric conversions that could lose precision or truncate. These legacy implicit conversions are
maintained for backward compatibility, but not provided for BigInt in order to minimize
opportunity for programmer error, and to leave open the option of generalized value types in a
future edition.

6.1.6.1 The Number Type

The Number type has exactly 18,437,736,874,454,810,627 (that is, 264253 4 3) values, representing the double-
precision 64-bit format IEEE 754-2019 values as specified in the IEEE Standard for Binary Floating-Point Arithmetic,
except that the 9,007,199,254,740,990 (that is, 253 _ 2) distinct “Not-a-Number” values of the IEEE Standard are
represented in ECMAScript as a single special NaN value. (Note that the NaN value is produced by the program
expression NaN.) In some implementations, external code might be able to detect a difference between various Not-a-
Number values, but such behaviour is implementation-defined; to ECMAScript code, all NaN values are
indistinguishable from each other.

NOTE The bit pattern that might be observed in an ArrayBuffer (see 25.1) or a Shared ArrayBuffer (see
25.2) after a Number value has been stored into it is not necessarily the same as the internal
representation of that Number value used by the ECMAScript implementation.

There are two other special values, called positive Infinity and negative Infinity. For brevity, these values are also
referred to for expository purposes by the symbols +cop and -cof, respectively. (Note that these two infinite Number

values are produced by the program expressions +Infinity (or simply Infinity)and -Infinity.)

76



The other 18,437,736,874,454,810,624 (that is, 264 - 253) values are called the finite numbers. Half of these are positive
numbers and half are negative numbers; for every finite positive Number value there is a corresponding negative
value having the same magnitude.

Note that there is both a positive zero and a negative zero. For brevity, these values are also referred to for expository
purposes by the symbols +0 and -0, respectively. (Note that these two different zero Number values are produced by

the program expressions +@ (or simply @) and -.)

The 18,437,736,874,454,810,622 (that is, 264 - 253 - 2) finite non-zero values are of two kinds:
18,428,729,675,200,069,632 (that is, 264 _ 254) of them are normalized, having the form

s x m x 2¢

where s is 1 or -1, m is an integer such that 252 < m < 2°3, and ¢ is an integer such that -1074 < ¢ < 971.
The remaining 9,007,199,254,740,990 (that is, 253 _2) values are denormalized, having the form

s xm x2°

where s is 1 or -1, m is an integer such that 0 < m < 252, and e is -1074.

Note that all the positive and negative integers whose magnitude is no greater than 2%3 are representable in the
Number type. The integer 0 has two representations in the Number type: +0p and -Op.

A finite number has an odd significand if it is non-zero and the integer m used to express it (in one of the two forms
shown above) is odd. Otherwise, it has an even significand.

In this specification, the phrase “the Number value for x” where x represents an exact real mathematical quantity
(which might even be an irrational number such as ) means a Number value chosen in the following manner.
Consider the set of all finite values of the Number type, with -0 removed and with two additional values added to it

that are not representable in the Number type, namely 21024 (which is +1 x 253 x 2971) and -21024 (which is -1 x 253 x
2971). Choose the member of this set that is closest in value to x. If two values of the set are equally close, then the one

21024 01024

with an even significand is chosen; for this purpose, the two extra values and are considered to have even

significands. Finally, if 21024 yyag chosen, replace it with +eo; if 21024 yqg chosen, replace it with -cof; if +0F was
chosen, replace it with -0 if and only if x < 0; any other chosen value is used unchanged. The result is the Number

value for x. (This procedure corresponds exactly to the behaviour of the IEEE 754-2019 roundTiesToEven mode.)
The Number value for +eo is +cof, and the Number value for -o is -cop.

Some ECMAScript operators deal only with integers in specific ranges such as -23! through 23! - 1, inclusive, or in the

range 0 through 21© - 1, inclusive. These operators accept any value of the Number type but first convert each such
value to an integer value in the expected range. See the descriptions of the numeric conversion operations in 7.1.

The Number::unit value is 1.

6.1.6.1.1 Number::unaryMinus ( x)

The abstract operation Number::unaryMinus takes argument x (a Number). It performs the following steps when
called:
7



1.
2.

If x is NaN, return NaN.
Return the result of negating x; that is, compute a Number with the same magnitude but opposite sign.

6.1.6.1.2 Number::bitwiseNOT ( x)

The abstract operation Number::bitwiseNOT takes argument x (a Number). It performs the following steps when

called:

1.
2.

Let oldValue be ! ToInt32(x).
Return the result of applying bitwise complement to oldValue. The mathematical value of the result is exactly
representable as a 32-bit two's complement bit string.

6.1.6.1.3 Number::exponentiate ( base, exponent)

The abstract operation Number::exponentiate takes arguments base (a Number) and exponent (a Number). It returns an

implementation-approximated value representing the result of raising base to the exponent power. It performs the

following steps when called:

=N =

If exponent is NaN, return NaN.
If exponent is +0f or exponent is -Of, return 1.

If base is NaN, return NaN.
If base is +oof, then
a. If exponent > +0f, return +cop. Otherwise, return +0p.
If base is -co, then
a. If exponent > +0, then
i. If exponent is an odd integral Number, return -cop. Otherwise, return +oop.

b. Else,
i. If exponent is an odd integral Number, return -0f. Otherwise, return +0p.

If base is +0f, then
a. If exponent > +0f, return +0p. Otherwise, return +co.
If base is -0f, then
a. If exponent > +0p, then
i. If exponent is an odd integral Number, return -Og. Otherwise, return +0p.

b. Else,
i. If exponent is an odd integral Number, return -cop. Otherwise, return +oop.

8. Assert: base is finite and is neither +0f nor -Of.

9. If exponent is +oof, then

10.

11.
12.
13.

a. If abs(R(base)) > 1, return +oo.

b. If abs(R(base)) is 1, return NaN.

c. If abs(R(base)) < 1, return +0p.
If exponent is -cof, then

a. If abs(R(base)) > 1, return +0f.

b. If abs(R(base)) is 1, return NaN.
c. If abs(R(base)) < 1, return +oof.

Assert: exponent is finite and is neither +0f nor -0f.
If base < +0F and exponent is not an integral Number, return NaN.

Return an implementation-approximated value representing the result of raising R(base) to the R(exponent)

78


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D

power.

NOTE The result of base ** exponent when base is 1f or -1 and exponent is +oof or -cof, or when base is 1

and exponent is NaN, differs from IEEE 754-2019. The first edition of ECMAScript specified a
result of NaN for this operation, whereas later versions of IEEE 754-2019 specified 1. The

historical ECMAScript behaviour is preserved for compatibility reasons.

6.1.6.1.4 Number:multiply (x, y)

The abstract operation Number::multiply takes arguments x (a Number) and y (a Number). It performs multiplication
according to the rules of IEEE 754-2019 binary double-precision arithmetic, producing the product of x and y. It
performs the following steps when called:

1. If x is NaN or y is NaN, return NaN.

2. If x is 4+oop Or X i8 -cof, then
a. If y is +Of or y is -0, return NaN.
b. If y > +0f, return x.
c. Return -x.

3. If y is +oop Or Y is -oof, then
a. If x is +Of or x is -0, return NaN.
b. If x > +0f, return y.

c. Return -v.
4. Return FHR(x) x R(y)).

NOTE Finite-precision multiplication is commutative, but not always associative.

6.1.6.1.5 Number::divide (x, i)

The abstract operation Number::divide takes arguments x (a Number) and y (a Number). It performs division
according to the rules of IEEE 754-2019 binary double-precision arithmetic, producing the quotient of x and y where x
is the dividend and y is the divisor. It performs the following steps when called:

1. If x is NaN or y is NaN, return NaN.
2. If x is +oop Or x is oo, then

a. If y is +oop or y is -co, return NaN.

b. If y is +Of or y > +0f, return x.

c. Return -x.
3. If y is +oop, then

a. If x is +Of or x > +0f, return +0. Otherwise, return -0
4. If y is -oo, then

a. If x is +0f or x > +0f, return -0f. Otherwise, return +0f.
5. If x is +0f or x is -0, then

a. If y is +Of or y is -0, return NaN.

b. If y > +0f, return x.

c. Return -x.

6. If y is +0f, then

79


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D

a. If x > +0f, return +cof. Otherwise, return -oof.
7. If y is -0, then

a. If x > +0f, return -cop. Otherwise, return +oo.
8. Return FR(x) / R(y)).

6.1.6.1.6 Number::remainder (7, d)

The abstract operation Number::remainder takes arguments 7 (a Number) and d (a Number). It yields the remainder
from an implied division of its operands where 1 is the dividend and d is the divisor. It performs the following steps
when called:

If n is NaN or 4 is NaN, return NaN.
If 1 is +oop or 11 is -oof, return NaN.

If d is +oop o1 d is -cof, return 7.

If d is +0 or d is -Of, return NaN.

If n is +0f or 1 is -0f, return 7.

Assert: n and d are finite and non-zero.

NS Gk »Dh

Let r be R(1) - (R(d) x q) where g is an integer that is negative if and only if 7 and 4 have opposite sign, and
whose magnitude is as large as possible without exceeding the magnitude of R(12) / R(d).
8. Return H(r).

NOTE 1 In C and C++, the remainder operator accepts only integral operands; in ECMAScript, it also
accepts floating-point operands.

NOTE 2 The result of a floating-point remainder operation as computed by the % operator is not the same
as the “remainder” operation defined by IEEE 754-2019. The IEEE 754-2019 “remainder”
operation computes the remainder from a rounding division, not a truncating division, and so its
behaviour is not analogous to that of the usual integer remainder operator. Instead the
ECMAScript language defines % on floating-point operations to behave in a manner analogous to
that of the Java integer remainder operator; this may be compared with the C library function
fmod.

6.1.6.1.7 Number:add (x, y)

The abstract operation Number::add takes arguments x (a Number) and i (a Number). It performs addition according
to the rules of IEEE 754-2019 binary double-precision arithmetic, producing the sum of its arguments. It performs the
following steps when called:

If x is NaN or y is NaN, return NaN.
If x is +eop and v is -cof, return NaN.
If x is -cop and y is +oof, return NaN.
If x is +ocop Or X is -cof, return x.

If y is +oop o1 Y is -cof, return v.
Assert: x and y are both finite.

If x is -Of and y is -0, return -Of.
Return FR(x) + R(y)).

® N G LD =

80


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D

NOTE Finite-precision addition is commutative, but not always associative.

6.1.6.1.8 Number:subtract (x, y)

The abstract operation Number::subtract takes arguments x (a Number) and i (a Number). It performs subtraction,

producing the difference of its operands; x is the minuend and y is the subtrahend. It performs the following steps

when called:

1.

Return Number::add(x, Number::unaryMinus(y)).

NOTE It is always the case that X - Yy produces the same resultas x + (-y).

6.1.6.1.9 Number:leftShift (x, i)

The abstract operation Number::leftShift takes arguments x (a Number) and y (a Number). It performs the following

steps when called:

LN

Let Inum be ! ToInt32(x).

Let rnum be ! ToUint32(y).

Let shiftCount be R(rnum) modulo 32.

Return the result of left shifting Inum by shiftCount bits. The mathematical value of the result is exactly
representable as a 32-bit two's complement bit string.

6.1.6.1.10 Number:signedRightShift (x, )

The abstract operation Number::signedRightShift takes arguments x (a Number) and y (a Number). It performs the

following steps when called:

LN

Let Inum be ! ToInt32(x).

Let rnum be ! ToUint32(y).

Let shiftCount be R(rnum) modulo 32.

Return the result of performing a sign-extending right shift of lnum by shiftCount bits. The most significant bit
is propagated. The mathematical value of the result is exactly representable as a 32-bit two's complement bit

string.

6.1.6.1.11 Number::unsignedRightShift (x, y)

The abstract operation Number::unsignedRightShift takes arguments x (a Number) and y (a Number). It performs the

following steps when called:

=L =

Let [num be ! ToUint32(x).

Let rnum be ! ToUint32(y).

Let shiftCount be R(rnum) modulo 32.

Return the result of performing a zero-filling right shift of /num by shiftCount bits. Vacated bits are filled with
zero. The mathematical value of the result is exactly representable as a 32-bit unsigned bit string.

6.1.6.1.12 Number::lessThan (x, i)

The abstract operation Number::lessThan takes arguments x (a Number) and y (a Number). It performs the following

81


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D

steps when called:

If x is NaN, return undefined.

If y is NaN, return undefined.

If x and y are the same Number value, return false.
If x is +Of and y is -0, return false.

If x is -0p and y is +0f, return false.
If x is +oof, return false.
If y is +oof, return true.

If y is -co, return false.

O 0 N o Uk W=

If x is -cof, return true.

—_
e

Assert: x and y are finite and non-zero.

—_
—

. If R(x) < R(y), return true. Otherwise, return false.

6.1.6.1.13 Number:equal (x, i)

The abstract operation Number::equal takes arguments x (a Number) and y (a Number). It performs the following
steps when called:

If x is NaN, return false.

If y is NaN, return false.

If x is the same Number value as y, return true.
If x is +0f and y is -Of, return true.

If x is -Op and vy is +0f, return true.

AN e

Return false.

6.1.6.1.14 Number::sameValue (x, y)

The abstract operation Number::sameValue takes arguments x (a Number) and y (a Number). It performs the
following steps when called:

. If x is NaN and y is NaN, return true.
. If xis +Op and y is -0, return false.

1

2

3. If x is -Opand y is +0f, return false.

4. If x is the same Number value as y, return true.
5

. Return false.

6.1.6.1.15 Number::sameValueZero (x, i)

The abstract operation Number::sameValueZero takes arguments x (a Number) and y (a Number). It performs the
following steps when called:

If x is NaN and y is NaN, return true.
If x is +O and y is -0, return true.
If x is -0p and y is +0f, return true.

If x is the same Number value as y, return true.

SR .

Return false.

6.1.6.1.16 NumberBitwiseOp (op, x, i)

82


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D

The abstract operation NumberBitwiseOp takes arguments op (a sequence of Unicode code points), x, and y. It
performs the following steps when called:

Assert: op is &, A, or |.

Let Inum be ! ToInt32(x).

Let rnum be ! ToInt32(y).

Let Ibits be the 32-bit two's complement bit string representing R(/nu1m1).

Let rbits be the 32-bit two's complement bit string representing R(rnum).

If op is &, let result be the result of applying the bitwise AND operation to [bits and rbits.

Else if op is A, let result be the result of applying the bitwise exclusive OR (XOR) operation to Ibits and rbits.
Else, op is |. Let result be the result of applying the bitwise inclusive OR operation to [bits and rbits.

O 0 NN

Return the Number value for the integer represented by the 32-bit two's complement bit string resut.

6.1.6.1.17 Number:bitwiseAND (x, i)

The abstract operation Number::bitwise AND takes arguments x (a Number) and y (a Number). It performs the
following steps when called:

1. Return NumberBitwiseOp(&, x, ).

6.1.6.1.18 Number::bitwiseXOR ( x, /)

The abstract operation Number::bitwiseXOR takes arguments x (a Number) and y (a Number). It performs the
following steps when called:

1. Return NumberBitwiseOp(A, x, y).

6.1.6.1.19 Number::bitwiseOR (x, i)

The abstract operation Number::bitwiseOR takes arguments x (a Number) and y (a Number). It performs the
following steps when called:

1. Return NumberBitwiseOp(l, x, y).

6.1.6.1.20 Number::toString ( x)

The abstract operation Number::toString takes argument x (a Number). It converts x to String format. It performs the
following steps when called:

If x is NaN, return the String '""NaN".
If x is +0f or -0, return the String "0".

If x < 40, return the string-concatenation of "-" and ! Number:toString(-x).

If x is +oof, return the String "Infinity".

SN N e

Otherwise, let 1, k, and s be integers such that k> 1, 1051 <5 <105 s x 10"~ *is R(x), and k is as small as
possible. Note that k is the number of digits in the decimal representation of s, that s is not divisible by 10, and
that the least significant digit of s is not necessarily uniquely determined by these criteria.
6. If k < n <21, return the string-concatenation of:

o the code units of the k digits of the decimal representation of s (in order, with no leading zeroes)

o 1 -k occurrences of the code unit 0x0030 (DIGIT ZERO)
7. If 0 < n < 21, return the string-concatenation of:

83


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D

o the code units of the most significant # digits of the decimal representation of s
o the code unit 0x002E (FULL STOP)
o the code units of the remaining k - n digits of the decimal representation of s
8. If -6 < 11 < 0, return the string-concatenation of:
o the code unit 0x0030 (DIGIT ZERO)
o the code unit 0x002E (FULL STOP)
o -1 occurrences of the code unit 0x0030 (DIGIT ZERO)
o the code units of the k digits of the decimal representation of s
9. Otherwise, if k = 1, return the string-concatenation of:
o the code unit of the single digit of s
o the code unit 0x0065 (LATIN SMALL LETTER E)
o the code unit 0x002B (PLUS SIGN) or the code unit 0x002D (HYPHEN-MINUS) according to whether 7 -
1 is positive or negative
o the code units of the decimal representation of the integer abs( - 1) (with no leading zeroes)
10. Return the string-concatenation of:
o the code units of the most significant digit of the decimal representation of s
o the code unit 0x002E (FULL STOP)
o the code units of the remaining k - 1 digits of the decimal representation of s
o the code unit 0x0065 (LATIN SMALL LETTER E)
o the code unit 0x002B (PLUS SIGN) or the code unit 0x002D (HYPHEN-MINUS) according to whether 7 -
1 is positive or negative

o the code units of the decimal representation of the integer abs(n - 1) (with no leading zeroes)

NOTE 1 The following observations may be useful as guidelines for implementations, but are not part of
the normative requirements of this Standard:

e If x is any Number value other than -0, then ToNumber(ToString(x)) is exactly the same
Number value as x.

e The least significant digit of s is not always uniquely determined by the requirements
listed in step 5.

NOTE 2 For implementations that provide more accurate conversions than required by the rules above, it
is recommended that the following alternative version of step 5 be used as a guideline:

5. Otherwise, let 11, k, and s be integers such that k > 1, 1051 <5 <105 s x 10" " FisR(x), and k
is as small as possible. If there are multiple possibilities for s, choose the value of s for

which s x 10" ~¥ is closest in value to R(x). If there are two such possible values of s, choose
the one that is even. Note that k is the number of digits in the decimal representation of s
and that s is not divisible by 10.

84


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D

NOTE 3 Implementers of ECMAScript may find useful the paper and code written by David M. Gay for

binary-to-decimal conversion of floating-point numbers:

Gay, David M. Correctly Rounded Binary-Decimal and Decimal-Binary Conversions. Numerical
Analysis, Manuscript 90-10. AT&T Bell Laboratories (Murray Hill, New Jersey). 30 November
1990. Available as

http:/ /ampl.com /REFS/ abstracts.html#rounding. Associated code available as

http:/ / netlib.sandia.gov/fp/dtoa.c and as

http:/ /netlib.sandia.gov/fp/g_fmt.c and may also be found at the various net11ib mirror sites.

6.1.6.2 The BigInt Type

The Biglnt type represents an integer value. The value may be any size and is not limited to a particular bit-width.
Generally, where not otherwise noted, operations are designed to return exact mathematically-based answers. For
binary operations, BigInts act as two's complement binary strings, with negative numbers treated as having bits set
infinitely to the left.

The BigInt::unit value is 17.

6.1.6.2.1 BigInt::unaryMinus (x)

The abstract operation BigInt::unaryMinus takes argument x (a BigInt). It performs the following steps when called:

1. If x is 0z, return 0.
2. Return the BigInt value that represents the negation of R(x).

6.1.6.2.2 Biglnt::bitwiseNOT (x)

The abstract operation BigInt::bitwiseNOT takes argument x (a BigInt). It returns the one's complement of x; that is, -x
-1z7.

6.1.6.2.3 BigInt::exponentiate ( base, exponent)

The abstract operation BigInt::exponentiate takes arguments base (a BigInt) and exponent (a Bigint). It performs the
following steps when called:

1. If exponent < 07, throw a RangeError exception.
2. If base is 07 and exponent is 0z, return 1z.
3. Return the BigInt value that represents R(base) raised to the power R(exponent).
6.1.6.2.4 BigInt:multiply (x, y)
The abstract operation BigInt::multiply takes arguments x (a BigInt) and y (a BigInt). It returns the BigInt value that

represents the result of multiplying x and .

NOTE Even if the result has a much larger bit width than the input, the exact mathematical answer is

given.

85


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
http://ampl.com/REFS/abstracts.html#rounding
http://netlib.sandia.gov/fp/dtoa.c
http://netlib.sandia.gov/fp/g_fmt.c

6.1.6.2.5 BiglInt::divide (x, 1)

The abstract operation BigInt::divide takes arguments x (a BigInt) and y (a BigInt). It performs the following steps
when called:

1. If y is 0z, throw a RangeError exception.
2. Let quotient be R(x) / R(y).
3. Return the BigInt value that represents guotient rounded towards 0 to the next integer value.

6.1.6.2.6 BigInt:remainder (1, d)

The abstract operation BigInt::remainder takes arguments 7 (a BigInt) and d (a BigInt). It performs the following steps
when called:

1. If d is 0z, throw a RangeError exception.

2. If n is 07, return 0.

3. Let r be the BigInt defined by the mathematical relation r = 7 - (d x q) where g is a BigInt that is negative only if
n/d is negative and positive only if 12/ d is positive, and whose magnitude is as large as possible without
exceeding the magnitude of the true mathematical quotient of 7 and 4.

4. Returnr.

NOTE The sign of the result equals the sign of the dividend.

6.1.6.2.7 BigInt::add (x, y)

The abstract operation BigInt::add takes arguments x (a BigInt) and y (a BigInt). It returns the BigInt value that
represents the sum of x and y.

6.1.6.2.8 BigInt::subtract (x,y)
The abstract operation BigInt::subtract takes arguments x (a BigInt) and y (a BigInt). It returns the BigInt value that
represents the difference x minus y.

6.1.6.2.9 Biglnt:leftShift (x, 1)

The abstract operation BigInt::leftShift takes arguments x (a BigInt) and y (a BigInt). It performs the following steps
when called:

1. If y < 07, then

a. Return the BigInt value that represents R(x) / 2, rounding down to the nearest integer, including for
negative numbers.

2. Return the BigInt value that represents R(x) x 2Y.

NOTE Semantics here should be equivalent to a bitwise shift, treating the BigInt as an infinite length
string of binary two's complement digits.

6.1.6.2.10 Biglnt:signedRightShift (x, v)
The abstract operation BigInt::signedRightShift takes arguments x (a BigInt) and y (a BigInt). It performs the following

86


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D

steps when called:

1. Return BigInt::leftShift(x, -y).

6.1.6.2.11 BigInt:unsignedRightShift (x, i)

The abstract operation BigInt::unsignedRightShift takes arguments x (a BigInt) and y (a BigInt). It performs the
following steps when called:

1. Throw a TypeError exception.

6.1.6.2.12 BigInt::lessThan (x, y)

The abstract operation BigInt::lessThan takes arguments x (a BigInt) and y (a BigInt). It returns true if R(x) <[R(y) and
false otherwise.

6.1.6.2.13 Biglnt::equal (x, y)

The abstract operation BigInt::equal takes arguments x (a BigInt) and y (a BigInt). It returns true if R(x) = R(y) and false
otherwise.

6.1.6.2.14 Biglnt::sameValue (x, y)

The abstract operation BigInt::sameValue takes arguments x (a BigInt) and y (a BigInt). It performs the following steps
when called:

1. Return BigInt::equal(x, y).

6.1.6.2.15 Biglnt::sameValueZero (x, 1)

The abstract operation BigInt::sameValueZero takes arguments x (a BigInt) and y (a BigInt). It performs the following
steps when called:

1. Return BigInt::equal(x, y).

6.1.6.2.16 BinaryAnd (x, )

The abstract operation BinaryAnd takes arguments x and y. It performs the following steps when called:

1. Assert: xis 0 or 1.

2. Assert: yisOor 1.

3. Ifxis1and yis 1, return 1.
4. Else, return 0.

6.1.6.2.17 BinaryOr (x, 1)

The abstract operation BinaryOr takes arguments x and y. It performs the following steps when called:

1. Assert: xis O or 1.

2. Assert: yisOor 1.

3. Ifxisloryis1, return 1.
4. Else, return 0.

87


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D

6.1.6.2.18 BinaryXor (x, )
The abstract operation BinaryXor takes arguments x and y. It performs the following steps when called:

Assert: xis 0 or 1.

Assert: yis 0 or 1.

If xis 1 and y is O, return 1.
Else if xis 0 and y is 1, return 1.

SRS -

Else, return 0.

6.1.6.2.19 BiglntBitwiseOp (op, x, 1)

The abstract operation BigIntBitwiseOp takes arguments op (a sequence of Unicode code points), x (a BigInt), and y (a
Biglnt). It performs the following steps when called:

Assert: opis &, A, or |.

Set x to R(x).

Set i to R(y).

Let result be 0.

Let shift be 0.

Repeat, until (x =0orx =-1)and (y =0 ory =-1),

SR S i

a. Let xDigit be x modulo 2.
b. Let yDigit be y modulo 2.
c. If op is &, set result to result + 25"t x Binary And(xDigit, yDigit).
d. Elseif opis |, set result to result + 27"t x BinaryOr(xDigit, yDigit).
e. Else,
i. Assert: opis A.
ii. Set result to result + 25"t x BinaryXor(xDigit, yDigit).
f. Set shift to shift + 1.
g. Setx to (x - xDigit) / 2.
h. Sety to (y - yDigit) / 2.
7. If op is &, let tmp be Binary And(x modulo 2, y modulo 2).
8. Elseif op is |, let tmp be BinaryOr(x modulo 2, y modulo 2).
9. Else,
a. Assert: op is A.
b. Let tmp be BinaryXor(x modulo 2, y modulo 2).
10. If tmp =0, then
a. Set result to result - 2",
b. NOTE: This extends the sign.
11. Return the Bignt value for result.

6.1.6.2.20 BigInt:bitwiseAND (x, y)

The abstract operation BigInt::bitwise AND takes arguments x (a BigInt) and y (a Bignt). It performs the following
steps when called:

1. Return BigIntBitwiseOp(&, x, v).

6.1.6.2.21 BigInt::bitwiseXOR (x, y)

88


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D

The abstract operation BigInt::bitwiseXOR takes arguments x (a BigInt) and y (a BigInt). It performs the following
steps when called:

1. Return BigIntBitwiseOp(A, x, y).

6.1.6.2.22 Biglnt:bitwiseOR (x, i)

The abstract operation BigInt::bitwiseOR takes arguments x (a BigInt) and y (a BigInt). It performs the following steps
when called:

1. Return BigIntBitwiseOp(l, x, y).

6.1.6.2.23 Biglnt::toString (x)

The abstract operation BigInt::toString takes argument x (a BigInt). It converts x to String format. It performs the
following steps when called:

"_n

1. If x < 0z, return the string-concatenation of the String "-" and ! BigInt::toString(-x).

2. Return the String value consisting of the code units of the digits of the decimal representation of x.

6.1.7 The Object Type

An Object is logically a collection of properties. Each property is either a data property, or an accessor property:

o A data property associates a key value with an ECMAScript language value and a set of Boolean attributes.
o An accessor property associates a key value with one or two accessor functions, and a set of Boolean attributes.
The accessor functions are used to store or retrieve an ECMAScript language value that is associated with the

property.
Properties are identified using key values. A property key value is either an ECMAScript String value or a Symbol

value. All String and Symbol values, including the empty String, are valid as property keys. A property name is a
property key that is a String value.

An integer index is a String-valued property key that is a canonical numeric String (see 7.1.21) and whose numeric

value is either +0f or a positive integral Number < F2%%-1). An array index is an integer index whose numeric value i

is in the range +0p<i < F(232 -1).

Property keys are used to access properties and their values. There are two kinds of access for properties: get and set,
corresponding to value retrieval and assignment, respectively. The properties accessible via get and set access includes
both own properties that are a direct part of an object and inherited properties which are provided by another associated
object via a property inheritance relationship. Inherited properties may be either own or inherited properties of the
associated object. Each own property of an object must each have a key value that is distinct from the key values of the
other own properties of that object.

All objects are logically collections of properties, but there are multiple forms of objects that differ in their semantics

for accessing and manipulating their properties. Please see 6.1.7.2 for definitions of the multiple forms of objects.

6.1.7.1 Property Attributes

Attributes are used in this specification to define and explain the state of Object properties. A data property associates

89


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD

a key value with the attributes listed in Table 3.

Table 3: Attributes of a Data Property

Attribute Value Description
Name Domain
[[Value]] Any The value retrieved by a get access of the property.
ECMAScript
language type
[[Writable]] Boolean If false, attempts by ECMAScript code to change the property's [[Value]] attribute
using [[Set]] will not succeed.
[[Enumerable]] | Boolean If true, the property will be enumerated by a for-in enumeration (see 14.7.5).
Otherwise, the property is said to be non-enumerable.
[[Configurable]] | Boolean If false, attempts to delete the property, change the property to be an accessor
property, or change its attributes (other than [[Value]], or changing [[Writable]] to
false) will fail.

An accessor property associates a key value with the attributes listed in Table 4.

Table 4: Attributes of an Accessor Property

Attribute Value Description
Name Domain
[[Get]] Object | If the value is an Object it must be a function object. The function's [[Call]] internal
Undefined | method (Table 7) is called with an empty arguments list to retrieve the property value
each time a get access of the property is performed.
[[Set]] Object | If the value is an Object it must be a function object. The function's [[Call]] internal
Undefined | method (Table 7) is called with an arguments list containing the assigned value as its
sole argument each time a set access of the property is performed. The effect of a
property's [[Set]] internal method may, but is not required to, have an effect on the
value returned by subsequent calls to the property's [[Get]] internal method.
[[Enumerable]] | Boolean | If true, the property is to be enumerated by a for-in enumeration (see 14.7.5).
Otherwise, the property is said to be non-enumerable.
[[Configurable]] | Boolean | If false, attempts to delete the property, change the property to be a data property, or
change its attributes will fail.

If the initial values of a property's attributes are not explicitly specified by this specification, the default value defined

in Table 5 is used.

90




Table 5: Default Attribute Values

Attribute Name | Default Value

[[Value]] undefined
[[Get]] undefined
[[Set]] undefined
[[Writable]] false

[[Enumerable]] | false

[[Configurable]] | false

6.1.7.2 Object Internal Methods and Internal Slots

The actual semantics of objects, in ECMAScript, are specified via algorithms called internal methods. Each object in an
ECMAScript engine is associated with a set of internal methods that defines its runtime behaviour. These internal
methods are not part of the ECMAScript language. They are defined by this specification purely for expository
purposes. However, each object within an implementation of ECMAScript must behave as specified by the internal
methods associated with it. The exact manner in which this is accomplished is determined by the implementation.

Internal method names are polymorphic. This means that different object values may perform different algorithms
when a common internal method name is invoked upon them. That actual object upon which an internal method is
invoked is the “target” of the invocation. If, at runtime, the implementation of an algorithm attempts to use an
internal method of an object that the object does not support, a TypeError exception is thrown.

Internal slots correspond to internal state that is associated with objects and used by various ECMAScript
specification algorithms. Internal slots are not object properties and they are not inherited. Depending upon the
specific internal slot specification, such state may consist of values of any ECMAScript language type or of specific
ECMAScript specification type values. Unless explicitly specified otherwise, internal slots are allocated as part of the
process of creating an object and may not be dynamically added to an object. Unless specified otherwise, the initial
value of an internal slot is the value undefined. Various algorithms within this specification create objects that have
internal slots. However, the ECMAScript language provides no direct way to associate internal slots with an object.

Internal methods and internal slots are identified within this specification using names enclosed in double square
brackets [[ ]].

Table 6 summarizes the essential internal methods used by this specification that are applicable to all objects created or
manipulated by ECMAScript code. Every object must have algorithms for all of the essential internal methods.
However, all objects do not necessarily use the same algorithms for those methods.

An ordinary object is an object that satisfies all of the following criteria:

e For the internal methods listed in Table 6, the object uses those defined in 10.1.
o If the object has a [[Call]] internal method, it uses the one defined in 10.2.1.
o If the object has a [[Construct]] internal method, it uses the one defined in 10.2.2.

An exotic object is an object that is not an ordinary object.

This specification recognizes different kinds of exotic objects by those objects' internal methods. An object that is

91



behaviourally equivalent to a particular kind of exotic object (such as an Array exotic object or a bound function exotic
object), but does not have the same collection of internal methods specified for that kind, is not recognized as that
kind of exotic object.

The “Signature” column of Table 6 and other similar tables describes the invocation pattern for each internal method.
The invocation pattern always includes a parenthesized list of descriptive parameter names. If a parameter name is
the same as an ECMAScript type name then the name describes the required type of the parameter value. If an
internal method explicitly returns a value, its parameter list is followed by the symbol “—" and the type name of the
returned value. The type names used in signatures refer to the types defined in clause 6 augmented by the following
additional names. “any” means the value may be any ECMAScript language type.

In addition to its parameters, an internal method always has access to the object that is the target of the method

invocation.

An internal method implicitly returns a Completion Record, either a normal completion that wraps a value of the
return type shown in its invocation pattern, or a throw completion.

92



Table 6: Essential Internal Methods

Internal Method Signature Description
[[GetPrototypeOf]] () — Object | Determine the object that provides inherited properties for this object.
Null A null value indicates that there are no inherited properties.
[[SetPrototypeOf]] (Object | Null) = | Associate this object with another object that provides inherited
Boolean properties. Passing null indicates that there are no inherited
properties. Returns true indicating that the operation was completed
successfully or false indicating that the operation was not successful.
[[IsExtensible]] () = Boolean Determine whether it is permitted to add additional properties to this

object.

[[PreventExtensions]]

() —= Boolean

Control whether new properties may be added to this object. Returns
true if the operation was successful or false if the operation was

unsuccessful.
[[GetOwnProperty]] (propertyKey) — Return a Property Descriptor for the own property of this object
Undefined | whose key is propertyKey, or undefined if no such property exists.
Property
Descriptor
[[DefineOwnProperty]] | (propertyKey, Create or alter the own property, whose key is propertyKey, to have the
PropertyDescriptor) | state described by PropertyDescriptor. Return true if that property was
— Boolean successfully created /updated or false if the property could not be
created or updated.
[[HasProperty]] (propertyKey) — Return a Boolean value indicating whether this object already has
Boolean either an own or inherited property whose key is propertyKey.
[[Get]] (propertyKey, Return the value of the property whose key is propertyKey from this
Receiver) — any object. If any ECMAScript code must be executed to retrieve the
property value, Receiver is used as the this value when evaluating the
code.
[[Set]] (propertyKey, Set the value of the property whose key is propertyKey to value. If any
value, Receiver) = | ECMAScript code must be executed to set the property value, Receiver
Boolean is used as the this value when evaluating the code. Returns true if the
property value was set or false if it could not be set.
[[Delete]] (propertyKey) — Remove the own property whose key is propertyKey from this object.
Boolean Return false if the property was not deleted and is still present.
Return true if the property was deleted or is not present.
[[OwnPropertyKeys]] | () — List of Return a List whose elements are all of the own property keys for the
propertyKey object.

Table 7 summarizes additional essential internal methods that are supported by objects that may be called as

functions. A function object is an object that supports the [[Call]] internal method. A constructor is an object that

supports the [[Construct]] internal method. Every object that supports [[Construct]] must support [[Call]]; that is,

93




every constructor must be a function object. Therefore, a constructor may also be referred to as a constructor function or
constructor function object.

Table 7: Additional Essential Internal Methods of Function Objects

Internal Signature Description
Method
[[Call]] (any, a Executes code associated with this object. Invoked via a function call expression. The
List of arguments to the internal method are a this value and a List whose elements are the
any) —> arguments passed to the function by a call expression. Objects that implement this
any internal method are callable.

[[Construct]] | (a List of | Creates an object. Invoked via the new operator or a super call. The first argument to
any, the internal method is a List whose elements are the arguments of the constructor
Object) invocation or the super call. The second argument is the object to which the new

— Object | operator was initially applied. Objects that implement this internal method are called

constructors. A function object is not necessarily a constructor and such non-constructor

function objects do not have a [[Construct]] internal method.

The semantics of the essential internal methods for ordinary objects and standard exotic objects are specified in clause
10. If any specified use of an internal method of an exotic object is not supported by an implementation, that usage
must throw a TypeError exception when attempted.

6.1.7.3 Invariants of the Essential Internal Methods

The Internal Methods of Objects of an ECMAScript engine must conform to the list of invariants specified below.
Ordinary ECMAScript Objects as well as all standard exotic objects in this specification maintain these invariants.
ECMAScript Proxy objects maintain these invariants by means of runtime checks on the result of traps invoked on the
[[ProxyHandler]] object.

Any implementation provided exotic objects must also maintain these invariants for those objects. Violation of these
invariants may cause ECMAScript code to have unpredictable behaviour and create security issues. However,
violation of these invariants must never compromise the memory safety of an implementation.

An implementation must not allow these invariants to be circumvented in any manner such as by providing
alternative interfaces that implement the functionality of the essential internal methods without enforcing their

invariants.
Definitions:

e The target of an internal method is the object upon which the internal method is called.

o A target is non-extensible if it has been observed to return false from its [[IsExtensible]] internal method, or true
from its [[PreventExtensions]] internal method.

o A non-existent property is a property that does not exist as an own property on a non-extensible target.

e All references to SameValue are according to the definition of the SameValue algorithm.

Return value:
The value returned by any internal method must be a Completion Record with either:

94



e [[Typel]] = normal, [[Target]] = empty, and [[Value]] = a value of the "normal return type" shown below for that
internal method, or

e [[Type]] = throw, [[Target]] = empty, and [[Value]] = any ECMAScript language value.

NOTE 1 An internal method must not return a completion with [[Type]] = continue, break, or return.

[[GetPrototypeOfl] ()

e The normal return type is either Object or Null.
e If target is non-extensible, and [[GetPrototypeOf]] returns a value V, then any future calls to [[GetPrototypeOf]]
should return the SameValue as V.

NOTE 2 An object's prototype chain should have finite length (that is, starting from any object, recursively
applying the [[GetPrototypeOf]] internal method to its result should eventually lead to the value
null). However, this requirement is not enforceable as an object level invariant if the prototype
chain includes any exotic objects that do not use the ordinary object definition of
[[GetPrototypeOf]]. Such a circular prototype chain may result in infinite loops when accessing
object properties.

[[SetPrototypeOfl] (V)

e The normal return type is Boolean.
o If target is non-extensible, [[SetPrototypeOf]] must return false, unless V is the SameValue as the target's
observed [[GetPrototypeOf]] value.

[[IsExtensible]] ()

e The normal return type is Boolean.
e If [[IsExtensible]] returns false, all future calls to [[IsExtensible]] on the target must return false.

[[PreventExtensions]] ()

e The normal return type is Boolean.
e If [[PreventExtensions]] returns true, all future calls to [[IsExtensible]] on the target must return false and the
target is now considered non-extensible.

[[GetOwnPropertyl] (P)

e The normal return type is either Property Descriptor or Undefined.

e If the Type of the return value is Property Descriptor, the return value must be a fully populated Property
Descriptor.

e If P is described as a non-configurable, non-writable own data property, all future calls to [[GetOwnProperty]]
( P) must return Property Descriptor whose [[Value]] is SameValue as P's [[Value]] attribute.

e If P's attributes other than [[Writable]] may change over time or if the property might be deleted, then P's
[[Configurable]] attribute must be true.

o If the [[Writable]] attribute may change from false to true, then the [[Configurable]] attribute must be true.

o If the target is non-extensible and P is non-existent, then all future calls to [[GetOwnProperty]] (P) on the target
must describe P as non-existent (i.e. [[GetOwnProperty]] (P) must return undefined).

95



NOTE 3 As a consequence of the third invariant, if a property is described as a data property and it may
return different values over time, then either or both of the [[Writable]] and [[Configurable]]
attributes must be true even if no mechanism to change the value is exposed via the other
essential internal methods.

[[DefineOwnPropertyl] ( P, Desc)

e The normal return type is Boolean.
o [[DefineOwnProperty]] must return false if P has previously been observed as a non-configurable own
property of the target, unless either:
1. P is a writable data property. A non-configurable writable data property can be changed into a non-
configurable non-writable data property.
2. All attributes of Desc are the SameValue as P's attributes.
o [[DefineOwnProperty]] (P, Desc) must return false if target is non-extensible and P is a non-existent own
property. That is, a non-extensible target object cannot be extended with new properties.

[[HasPropertyll (P)

e The normal return type is Boolean.
e If P was previously observed as a non-configurable own data or accessor property of the target,
[[HasProperty]] must return true.

[[Get]] ( P, Receiver)

o The normal return type is any ECMAScript language type.

e If P was previously observed as a non-configurable, non-writable own data property of the target with value V,
then [[Get]] must return the SameValue as V.

e If P was previously observed as a non-configurable own accessor property of the target whose [[Get]] attribute
is undefined, the [[Get]] operation must return undefined.

[[Setll (P, V, Receiver)

e The normal return type is Boolean.

e If P was previously observed as a non-configurable, non-writable own data property of the target, then [[Set]]
must return false unless V is the SameValue as P's [[Value]] attribute.

e If P was previously observed as a non-configurable own accessor property of the target whose [[Set]] attribute
is undefined, the [[Set]] operation must return false.

[[Delete]] (P)

e The normal return type is Boolean.
e If P was previously observed as a non-configurable own data or accessor property of the target, [[Delete]] must
return false.

[[OwnPropertyKeysl] ()

e The normal return type is List.

e The returned List must not contain any duplicate entries.

e The Type of each element of the returned List is either String or Symbol.

e The returned List must contain at least the keys of all non-configurable own properties that have previously
been observed.

96



e If the target is non-extensible, the returned List must contain only the keys of all own properties of the target

that are observable using [[GetOwnProperty]].

[[Callll ()

e The normal return type is any ECMAScript language type.

[[Construct]] ()

e The normal return type is Object.

o The target must also have a [[Call]] internal method.

6.1.7.4 Well-Known Intrinsic Objects

Well-known intrinsics are built-in objects that are explicitly referenced by the algorithms of this specification and

which usually have realm-specific identities. Unless otherwise specified each intrinsic object actually corresponds to a

set of similar objects, one per realm.

Within this specification a reference such as %name% means the intrinsic object, associated with the current realm,

n_mn

corresponding to the name. A reference such as %name.a.b% means, as if the "b" property of the "a" property of the

intrinsic object %name% was accessed prior to any ECMAScript code being evaluated. Determination of the current

realm and its intrinsics is described in 9.3. The well-known intrinsics are listed in Table 8.

Table 8: Well-Known Intrinsic Objects

Intrinsic Name Global Name ECMAScript Language Association

% AggregateError% AggregateError The AggregateError constructor
(20.5.7.1)

% Array % Array The Array constructor (23.1.1)

% ArrayBuffer% ArrayBuffer The ArrayBuffer constructor (25.1.3)

% ArraylteratorPrototype% The prototype of Array iterator objects
(23.1.5)

% AsyncFromSynclteratorPrototype% The prototype of async-from-sync iterator
objects (27.1.4)

% AsyncFunction% The constructor of async function objects
(27.7.1)

% AsyncGeneratorFunction% The constructor of async iterator objects
(27.4.1)

% AsynclteratorPrototype% An object that all standard built-in async
iterator objects indirectly inherit from

% Atomics% Atomics The Atom1ics object (25.4)

%BigInt% BigInt The Biglnt constructor (21.2.1)

%BigInt64Array% BigInt64Array The BigInt64Array constructor (23.2)

97




%BigUint64Array % BigUint64Array The BigUint64Array constructor (23.2)
%Boolean% Boolean The Boolean constructor (20.3.1)
%DataView% DataView The DataView constructor (25.3.2)
%Date% Date The Date constructor (21.4.2)
%decodeURI% decodeURI The decodeURTI function (19.2.6.2)
%decodeURIComponent% decodeURIComponent The decodeURIComponent function
(19.2.6.3)
%encodeURI% encodeURI The encodeURI function (19.2.6.4)

%encodeURIComponent%

encodeURIComponent

The encodeURIComponent function
(19.2.6.5)

%Error% Error The Error constructor (20.5.1)
%eval% eval The eval function (19.2.1)
%EvalError% EvalError The EvalError constructor (20.5.5.1)

JFinalizationRegistry%

FinalizationRegistry

The FinalizationRegistry constructor
(26.2.1)

%Float32Array% Float32Array The Float32Array constructor (23.2)
%Float64Array % Float64Array The Float64Array constructor (23.2)
JoForInlteratorPrototype% The prototype of For-In iterator objects
(14.7.5.10)
%Function% Function The Function constructor (20.2.1)
%GeneratorFunction% The constructor of generator objects (27.3.1)
%Int8 Array % Int8Array The Int8Array constructor (23.2)
%Int16Array % Intl6Array The Intl6Array constructor (23.2)
%Int32Array % Int32Array The Int32Array constructor (23.2)
%isFinite% isFinite The isFinite function (19.2.2)
%isNaN% isNaN The 1 sNaN function (19.2.3)
%lteratorPrototype% An object that all standard built-in iterator
objects indirectly inherit from
%JSON% JSON The JSON object (25.5)
J%Map%o Map The Map constructor (24.1.1)

%MaplteratorPrototype%

The prototype of Map iterator objects
(24.1.5)

98




%Math% Math The Math object (21.3)
%Number% Number The Number constructor (21.1.1)
%Object% Object The Object constructor (20.1.1)
%parseFloat% parseFloat The parseFloat function (19.2.4)
Y%oparselnt% parselnt The parseInt function (19.2.5)
%Promise% Promise The Promise constructor (27.2.3)
%Proxy% Proxy The Proxy constructor (28.2.1)
%RangeError% RangeError The RangeError constructor (20.5.5.2)
%ReferenceError% ReferenceError The ReferenceError constructor (20.5.5.3)
%Reflect% Reflect The Reflect object (28.1)
JoRegExpJo RegExp The RegExp constructor (22.2.3)
% RegExpStringlteratorPrototype% The prototype of RegExp String Iterator
objects (22.2.7)
%Set% Set The Set constructor (24.2.1)
%SetlteratorPrototype% The prototype of Set iterator objects (24.2.5)
%Shared ArrayBuffer% SharedArrayBuffer The Shared ArrayBuffer constructor (25.2.2)
%String% String The String constructor (22.1.1)
%StringlteratorPrototype% The prototype of String iterator objects
(22.1.5)
%Symbol% Symbol The Symbol constructor (20.4.1)
%SyntaxError% SyntaxError The SyntaxError constructor (20.5.5.4)
% ThrowTypeError% A function object that unconditionally
throws a new instance of % TypeError%
% TypedArray% The super class of all typed Array
constructors (23.2.1)
%TypeError% TypeError The TypeError constructor (20.5.5.5)
%Uint8 Array % Uint8Array The Uint8Array constructor (23.2)
%Uint8ClampedArray% Uint8ClampedArray The Uint8ClampedArray constructor (23.2)
%Uint16Array % Uintl6Array The Uint16Array constructor (23.2)
%Uint32Array % Uint32Array The Uint32Array constructor (23.2)
%URIError% URIError The URIError constructor (20.5.5.6)

99




%WeakMap % WeakMap The WeakMap constructor (24.3.1)

% WeakRef% WeakRef The WeakRef constructor (26.1.1)
%WeakSet% WeakSet The WeakSet constructor (24.4.1)
NOTE Additional entries in Table 82.

6.2 ECMAScript Specification Types

A specification type corresponds to meta-values that are used within algorithms to describe the semantics of
ECMAScript language constructs and ECMAScript language types. The specification types include Reference, List,
Completion, Property Descriptor, Environment Record, Abstract Closure, and Data Block. Specification type values
are specification artefacts that do not necessarily correspond to any specific entity within an ECMAScript
implementation. Specification type values may be used to describe intermediate results of ECMAScript expression
evaluation but such values cannot be stored as properties of objects or values of ECMAScript language variables.

6.2.1 The List and Record Specification Types

The List type is used to explain the evaluation of argument lists (see 13.3.8) in new expressions, in function calls, and
in other algorithms where a simple ordered list of values is needed. Values of the List type are simply ordered

sequences of list elements containing the individual values. These sequences may be of any length. The elements of a
list may be randomly accessed using 0-origin indices. For notational convenience an array-like syntax can be used to

access List elements. For example, arguments[2] is shorthand for saying the 3™ element of the List arguments.

When an algorithm iterates over the elements of a List without specifying an order, the order used is the order of the
elements in the List.

For notational convenience within this specification, a literal syntax can be used to express a new List value. For
example, « 1, 2 » defines a List value that has two elements each of which is initialized to a specific value. A new
empty List can be expressed as « ».

The Record type is used to describe data aggregations within the algorithms of this specification. A Record type value
consists of one or more named fields. The value of each field is either an ECMAScript value or an abstract value
represented by a name associated with the Record type. Field names are always enclosed in double brackets, for
example [[Value]].

For notational convenience within this specification, an object literal-like syntax can be used to express a Record value.
For example, { [[Field1]]: 42, [[Field2]]: false, [[Field3]]: empty } defines a Record value that has three fields, each of
which is initialized to a specific value. Field name order is not significant. Any fields that are not explicitly listed are
considered to be absent.

In specification text and algorithms, dot notation may be used to refer to a specific field of a Record value. For
example, if R is the record shown in the previous paragraph then R.[[Field2]] is shorthand for “the field of R named
[[Field2]]".

Schema for commonly used Record field combinations may be named, and that name may be used as a prefix to a

100



literal Record value to identify the specific kind of aggregations that is being described. For example:
PropertyDescriptor { [[Value]]: 42, [[Writable]]: false, [[Configurable]]: true }.

6.2.2 The Set and Relation Specification Types

The Set type is used to explain a collection of unordered elements for use in the memory model. Values of the Set type
are simple collections of elements, where no element appears more than once. Elements may be added to and
removed from Sets. Sets may be unioned, intersected, or subtracted from each other.

The Relation type is used to explain constraints on Sets. Values of the Relation type are Sets of ordered pairs of values
from its value domain. For example, a Relation on events is a set of ordered pairs of events. For a Relation R and two
values g and b in the value domain of R, 2 R b is shorthand for saying the ordered pair (4, b) is a member of R. A
Relation is least with respect to some conditions when it is the smallest Relation that satisfies those conditions.

A strict partial order is a Relation value R that satisfies the following.
e Foralla, b, and ¢ in R's domain:

o Itisnot the case thata R g, and
o IfaRbandb R, thenaRc.

NOTE 1 The two properties above are called irreflexivity and transitivity, respectively.

A strict total order is a Relation value R that satisfies the following.
e Foralla, b, and ¢ in R's domain:

o aisidenticaltoboraRborb R a, and
o Itisnot the case that s R 4, and
o IfaRbandb Rc, thenaRc.

NOTE 2 The three properties above are called totality, irreflexivity, and transitivity, respectively.

6.2.3 The Completion Record Specification Type

The Completion type is a Record used to explain the runtime propagation of values and control flow such as the
behaviour of statements (break, continue, return and throw) that perform nonlocal transfers of control.

Values of the Completion type are Record values whose fields are defined by Table 9. Such values are referred to as

Completion Records.

Table 9: Completion Record Fields

Field Name Value Meaning

[[Typell One of normal, break, continue, return, or throw | The type of completion that occurred.
[[Value]] any ECMAScript language value or empty The value that was produced.

[[Target]] any ECMAScript string or empty The target label for directed control transfers.

101



The term “abrupt completion” refers to any completion with a [[Type]] value other than normal.

6.2.3.1 Await

Algorithm steps that say

1.

Let completion be Await(value).

mean the same thing as:

Ll O

®» N oG

10.
11.
12.

13.

14.
15.

Let asyncContext be the running execution context.

Let promise be ? PromiseResolve(%Promise%, value).

Let stepsFulfilled be the algorithm steps defined in Await Fulfilled Functions.

Let lengthFulfilled be the number of non-optional parameters of the function definition in Await Fulfilled
Functions.

Let onFulfilled be ! CreateBuiltinFunction(stepsFulfilled, lengthFulfilled, "', « [[AsyncContext]] »).

Set onFulfilled.[[AsyncContext]] to asyncContext.

Let stepsRejected be the algorithm steps defined in Await Rejected Functions.

Let lengthRejected be the number of non-optional parameters of the function definition in Await Rejected
Functions.

Let onRejected be ! CreateBuiltinFunction(stepsRejected, lengthRejected, "™, « [[AsyncContext]] »).

Set onRejected.[[AsyncContext]] to asyncContext.

Perform ! PerformPromiseThen(promise, onFulfilled, onRejected).

Remove asyncContext from the execution context stack and restore the execution context that is at the top of the
execution context stack as the running execution context.

Set the code evaluation state of asyncContext such that when evaluation is resumed with a Completion
completion, the following steps of the algorithm that invoked Await will be performed, with completion
available.

Return.

NOTE: This returns to the evaluation of the operation that had most previously resumed evaluation of
asyncContext.

where all aliases in the above steps, with the exception of completion, are ephemeral and visible only in the steps

pertaining to Await.

NOTE Await can be combined with the ? and ! prefixes, so that for example

1. Let result be ? Await(value).
means the same thing as:

1. Let result be Await(value).
2. ReturnIfAbrupt(result).

6.2.3.1.1 Await Fulfilled Functions

An Await fulfilled function is an anonymous built-in function that is used as part of the Await specification device to

deliver the promise fulfillment value to the caller as a normal completion. Each Await fulfilled function has an

[[AsyncContext]] internal slot.

102



When an Await fulfilled function is called with argument value, the following steps are taken:

Let F be the active function object.

Let asyncContext be F.[[AsyncContext]].

Let prevContext be the running execution context.

Suspend prevContext.

Push asyncContext onto the execution context stack; asyncContext is now the running execution context.

SRS .

Resume the suspended evaluation of asyncContext using NormalCompletion(value) as the result of the

operation that suspended it.

7. Assert: When we reach this step, asyncContext has already been removed from the execution context stack and
prevContext is the currently running execution context.

8. Return undefined.

The "length" property of an Await fulfilled function is 1.

6.2.3.1.2 Await Rejected Functions

An Await rejected function is an anonymous built-in function that is used as part of the Await specification device to
deliver the promise rejection reason to the caller as an abrupt throw completion. Each Await rejected function has an
[[AsyncContext]] internal slot.

When an Await rejected function is called with argument reason, the following steps are taken:

Let F be the active function object.

Let asyncContext be F.[[AsyncContext]].

Let prevContext be the running execution context.

Suspend prevContext.

Push asyncContext onto the execution context stack; asyncContext is now the running execution context.

SR S i

Resume the suspended evaluation of asyncContext using ThrowCompletion(reason) as the result of the

operation that suspended it.

7. Assert: When we reach this step, asyncContext has already been removed from the execution context stack and
prevContext is the currently running execution context.

8. Return undefined.

The "length" property of an Await rejected function is 1f.

6.2.3.2 NormalCompletion

The abstract operation NormalCompletion with a single argument, such as:
1. Return NormalCompletion(argument).
Is a shorthand that is defined as follows:

1. Return Completion { [[Type]]: normal, [[Value]]: arqument, [[Target]]: empty }.

6.2.3.3 ThrowCompletion

The abstract operation ThrowCompletion with a single argument, such as:

1. Return ThrowCompletion(arqument).

103



Is a shorthand that is defined as follows:

1. Return Completion { [[Type]]: throw, [[Value]]: arqument, [[Target]]: empty }.

6.2.3.4 UpdateEmpty ( completionRecord, value)

The abstract operation UpdateEmpty takes arguments completionRecord and value. It performs the following steps
when called:

1. Assert: If completionRecord.[[Type]] is either return or throw, then completionRecord.[[Value]] is not empty.
2. If completionRecord.[[Value]] is not empty, return Completion(completionRecord).
3. Return Completion { [[Type]l: completionRecord.[[Typel]l, [[Value]]: value, [[Target]]: completionRecord.[[Target]] }.

6.2.4 The Reference Record Specification Type

The Reference Record type is used to explain the behaviour of such operators as delete, typeof, the assignment
operators, the super keyword and other language features. For example, the left-hand operand of an assignment is
expected to produce a Reference Record.

A Reference Record is a resolved name or property binding; its fields are defined by Table 10.

Table 10: Reference Record Fields

Field Name Value Meaning
[[Base]] One of: The value or Environment Record which holds the binding. A [[Base]]
of unresolvable indicates that the binding could not be resolved.
e any
ECMAScript
language

value except
undefined or
null,

e an
Environment
Record, or

e unresolvable.

[[ReferencedNamel]] | String or Symbol The name of the binding. Always a String if [[Base]] value is an

Environment Record.

[[Strict]] Boolean true if the Reference Record originated in strict mode code, false
otherwise.
[[ThisValue]] any ECMAScript If not empty, the Reference Record represents a property binding that

language value or | was expressed using the super keyword; it is called a Super Reference
empty Record and its [[Base]] value will never be an Environment Record. In
that case, the [[ThisValue]] field holds the this value at the time the
Reference Record was created.

104



The following abstract operations are used in this specification to operate upon References:

6.2.4.1 IsPropertyReference (V')

The abstract operation IsPropertyReference takes argument V. It performs the following steps when called:

1. Assert: Vis a Reference Record.
2. If V.[[Base]] is unresolvable, return false.
3. If Type(V.[[Base]]) is Boolean, String, Symbol, BigInt, Number, or Object, return true; otherwise return false.

6.2.4.2 IsUnresolvableReference (V)

The abstract operation IsUnresolvableReference takes argument V. It performs the following steps when called:

1. Assert: V is a Reference Record.
2. If V.[[Base]] is unresolvable, return true; otherwise return false.

6.2.4.3 IsSuperReference (V')

The abstract operation IsSuperReference takes argument V. It performs the following steps when called:

1. Assert: V is a Reference Record.
2. If V.[[ThisValue]] is not empty, return true; otherwise return false.

6.2.4.4 GetValue (V)

The abstract operation GetValue takes argument V. It performs the following steps when called:

ReturnIfAbrupt(V).
If V is not a Reference Record, return V.
If IsUnresolvableReference(V) is true, throw a ReferenceError exception.

L

If IsPropertyReference(V) is true, then
a. Let baseObj be ! ToObject(V.[[Base]]).
b. Return ? baseObj.[[Get]](V.[[ReferencedName]], GetThisValue(V)).
5. Else,
a. Let base be V.[[Base]].
b. Assert: base is an Environment Record.
c. Return ? base.GetBindingValue(V.[[ReferencedName]], V.[[Strict]]) (see 9.1).

NOTE The object that may be created in step 4.a is not accessible outside of the above abstract operation
and the ordinary object [[Get]] internal method. An implementation might choose to avoid the
actual creation of the object.

6.2.4.5 PutValue (V, W)

The abstract operation PutValue takes arguments V and W. It performs the following steps when called:

1. ReturnIfAbrupt(V).
2. ReturnIfAbrupt(W).

105



3. If Vis not a Reference Record, throw a ReferenceError exception.
4. If IsUnresolvableReference(V) is true, then
a. If V.[[Strict]] is true, throw a ReferenceError exception.
b. Let globalObj be GetGlobalObject().
c. Return ? Set(globalObj, V.[[ReferencedName]], W, false).
5. If IsPropertyReference(V) is true, then
a. Let baseObj be ! ToObject(V.[[Base]]).
b. Let succeeded be ? baseObj.[[Set]](V.[[ReferencedName]], W, GetThisValue(V)).
c. If succeeded is false and V.[[Strict]] is true, throw a TypeError exception.
d. Return.

a. Let base be V.[[Base]].
b. Assert: base is an Environment Record.
c. Return ? base.SetMutableBinding(V.[[ReferencedName]], W, V.[[Strict]]) (see 9.1).

NOTE The object that may be created in step 5.a is not accessible outside of the above abstract operation
and the ordinary object [[Set]] internal method. An implementation might choose to avoid the
actual creation of that object.

6.2.4.6 GetThisValue (V)

The abstract operation GetThisValue takes argument V. It performs the following steps when called:

1. Assert: IsPropertyReference(V) is true.
2. If IsSuperReference(V) is true, return V.[[ThisValue]]; otherwise return V.[[Base]].

6.2.4.7 InitializeReferencedBinding (V, W)

The abstract operation InitializeReferencedBinding takes arguments V and W. It performs the following steps when
called:

ReturnIfAbrupt(V).

ReturnIfAbrupt(W).

Assert: V is a Reference Record.

Assert: IsUnresolvableReference(V) is false.

Let base be V.[[Base]].

Assert: base is an Environment Record.

Return base.InitializeBinding(V.[[ReferencedName]], WV).

NSO e

6.2.5 The Property Descriptor Specification Type

The Property Descriptor type is used to explain the manipulation and reification of Object property attributes. Values of
the Property Descriptor type are Records. Each field's name is an attribute name and its value is a corresponding
attribute value as specified in 6.1.7.1. In addition, any field may be present or absent. The schema name used within
this specification to tag literal descriptions of Property Descriptor records is “PropertyDescriptor”.

Property Descriptor values may be further classified as data Property Descriptors and accessor Property Descriptors
based upon the existence or use of certain fields. A data Property Descriptor is one that includes any fields named

106



either [[Value]] or [[Writable]]. An accessor Property Descriptor is one that includes any fields named either [[Get]] or
[[Set]]. Any Property Descriptor may have fields named [[Enumerable]] and [[Configurable]]. A Property Descriptor
value may not be both a data Property Descriptor and an accessor Property Descriptor; however, it may be neither. A
generic Property Descriptor is a Property Descriptor value that is neither a data Property Descriptor nor an accessor
Property Descriptor. A fully populated Property Descriptor is one that is either an accessor Property Descriptor or a
data Property Descriptor and that has all of the fields that correspond to the property attributes defined in either Table
3 or Table 4.

The following abstract operations are used in this specification to operate upon Property Descriptor values:

6.2.5.1 IsAccessorDescriptor ( Desc)

The abstract operation IsAccessorDescriptor takes argument Desc (a Property Descriptor or undefined). It performs
the following steps when called:

1. If Desc is undefined, return false.
2. If both Desc.[[Get]] and Desc.[[Set]] are absent, return false.
3. Return true.

6.2.5.2 IsDataDescriptor ( Desc)

The abstract operation IsDataDescriptor takes argument Desc (a Property Descriptor or undefined). It performs the
following steps when called:

1. If Desc is undefined, return false.
2. If both Desc.[[Value]] and Desc.[[Writable]] are absent, return false.
3. Return true.

6.2.5.3 IsGenericDescriptor ( Desc)

The abstract operation IsGenericDescriptor takes argument Desc (a Property Descriptor or undefined). It performs the
following steps when called:

1. If Desc is undefined, return false.
2. If IsAccessorDescriptor(Desc) and IsDataDescriptor(Desc) are both false, return true.
3. Return false.

6.2.5.4 FromPropertyDescriptor ( Desc )

The abstract operation FromPropertyDescriptor takes argument Desc (a Property Descriptor or undefined). It
performs the following steps when called:

If Desc is undefined, return undefined.
Let obj be ! OrdinaryObjectCreate(%Obiject.prototype%).
Assert: obj is an extensible ordinary object with no own properties.
If Desc has a [[Value]] field, then

a. Perform ! CreateDataPropertyOrThrow(obj, ""value", Desc.[[Value]]).
5. If Desc has a [[Writable]] field, then

a. Perform ! CreateDataPropertyOrThrow(obj, "writable", Desc.[[Writable]]).

6. If Desc has a [[Get]] field, then

==

107



a. Perform ! CreateDataPropertyOrThrow(obj, ""get", Desc.[[Get]]).
7. If Desc has a [[Set]] field, then

a. Perform ! CreateDataPropertyOrThrow(obj, "'set", Desc.[[Set]]).
8. If Desc has an [[Enumerable]] field, then

a. Perform ! CreateDataPropertyOrThrow(obj, "enumerable", Desc.[[Enumerable]]).
9. If Desc has a [[Configurable]] field, then

a. Perform ! CreateDataPropertyOrThrow(obj, "configurable", Desc.[[Configurable]]).

10. Return obj.

6.2.5.5 ToPropertyDescriptor ( Obj)

The abstract operation ToPropertyDescriptor takes argument Obj. It performs the following steps when called:

If Type(Obj) is not Object, throw a TypeError exception.
Let desc be a new Property Descriptor that initially has no fields.
Let hasEnumerable be ? HasProperty(Obj, "enumerable").

WL N e

If hasEnumerable is true, then
a. Let enumerable be ! ToBoolean(? Get(OUj, ""enumerable")).
b. Set desc.[[Enumerable]] to enumerable.
5. Let hasConfigurable be ? HasProperty(Obj, ""configurable").
6. If hasConfigurable is true, then
a. Let configurable be ! ToBoolean(? Get(Obj, "configurable")).
b. Set desc.[[Configurable]] to configurable.
7. Let hasValue be ? HasProperty(Obj, "'value").
8. If hasValue is true, then
a. Let value be ? Get(Obj, "value").
b. Set desc.[[Valuel]] to value.
9. Let hasWritable be ? HasProperty(Obj, ""writable").
10. If hasWritable is true, then
a. Let writable be ! ToBoolean(? Get(Obj, "writable")).
b. Set desc.[[Writable]] to writable.
11. Let hasGet be ? HasProperty(Obj, "get'").
12. If hasGet is true, then
a. Let getter be ? Get(Obj, "get").
b. If IsCallable(getter) is false and getter is not undefined, throw a TypeError exception.
c. Set desc.[[Get]] to getter.
13. Let hasSet be ? HasProperty(Obj, "set").
14. If hasSet is true, then
a. Let setter be ? Get(Obj, "'set").
b. If IsCallable(setter) is false and setter is not undefined, throw a TypeError exception.
c. Set desc.[[Set]] to setter.
15. If desc.[[Get]] is present or desc.[[Set]] is present, then
a. If desc.[[Value]] is present or desc.[[Writable]] is present, throw a TypeError exception.
16. Return desc.

6.2.5.6 CompletePropertyDescriptor ( Desc)

The abstract operation CompletePropertyDescriptor takes argument Desc (a Property Descriptor). It performs the

108



following steps when called:

1. Assert: Desc is a Property Descriptor.
2. Let like be the Record { [[Value]]: undefined, [[Writable]]: false, [[Get]]: undefined, [[Set]]: undefined,
[[Enumerable]]: false, [[Configurable]]: false }.
3. If IsGenericDescriptor(Desc) is true or IsDataDescriptor(Desc) is true, then
a. If Desc does not have a [[Value]] field, set Desc.[[Value]] to like.[[Value]].
b. If Desc does not have a [[Writable]] field, set Desc.[[Writable]] to like.[[Writable]].
4. Else,
a. If Desc does not have a [[Get]] field, set Desc.[[Get]] to like.[[Get]].
b. If Desc does not have a [[Set]] field, set Desc.[[Set]] to like.[[Set]].
5. If Desc does not have an [[Enumerable]] field, set Desc.[[Enumerable]] to like.[[Enumerable]].
6. If Desc does not have a [[Configurable]] field, set Desc.[[Configurable]] to like.[[Configurable]].
7. Return Desc.

6.2.6 The Environment Record Specification Type

The Environment Record type is used to explain the behaviour of name resolution in nested functions and blocks.
This type and the operations upon it are defined in 9.1.

6.2.7 The Abstract Closure Specification Type

The Abstract Closure specification type is used to refer to algorithm steps together with a collection of values. Abstract
Closures are meta-values and are invoked using function application style such as closure(argl, arg2). Like abstract
operations, invocations perform the algorithm steps described by the Abstract Closure.

In algorithm steps that create an Abstract Closure, values are captured with the verb "capture" followed by a list of
aliases. When an Abstract Closure is created, it captures the value that is associated with each alias at that time. In
steps that specify the algorithm to be performed when an Abstract Closure is called, each captured value is referred to
by the alias that was used to capture the value.

If an Abstract Closure returns a Completion Record, that Completion Record's [[Type]] must be either normal or throw.
Abstract Closures are created inline as part of other algorithms, shown in the following example.

1. Let addend be 41.
2. Let closure be a new Abstract Closure with parameters (x) that captures addend and performs the following
steps when called:
a. Return x + addend.
3. Let val be closure(1).
4. Assert: val is 42.

6.2.8 Data Blocks

The Data Block specification type is used to describe a distinct and mutable sequence of byte-sized (8 bit) numeric
values. A byte value is an integer value in the range 0 through 255, inclusive. A Data Block value is created with a fixed
number of bytes that each have the initial value 0.

For notational convenience within this specification, an array-like syntax can be used to access the individual bytes of

109



a Data Block value. This notation presents a Data Block value as a 0-origined integer-indexed sequence of bytes. For

example, if db is a 5 byte Data Block value then db[2] can be used to access its 3" byte.

A data block that resides in memory that can be referenced from multiple agents concurrently is designated a Shared
Data Block. A Shared Data Block has an identity (for the purposes of equality testing Shared Data Block values) that is
address-free: it is tied not to the virtual addresses the block is mapped to in any process, but to the set of locations in
memory that the block represents. Two data blocks are equal only if the sets of the locations they contain are equal;
otherwise, they are not equal and the intersection of the sets of locations they contain is empty. Finally, Shared Data
Blocks can be distinguished from Data Blocks.

The semantics of Shared Data Blocks is defined using Shared Data Block events by the memory model. Abstract
operations below introduce Shared Data Block events and act as the interface between evaluation semantics and the
event semantics of the memory model. The events form a candidate execution, on which the memory model acts as a

filter. Please consult the memory model for full semantics.
Shared Data Block events are modeled by Records, defined in the memory model.

The following abstract operations are used in this specification to operate upon Data Block values:

6.2.8.1 CreateByteDataBlock ( size)

The abstract operation CreateByteDataBlock takes argument size (an integer). It performs the following steps when
called:

1. Assert: size = 0.

2. Let db be a new Data Block value consisting of size bytes. If it is impossible to create such a Data Block, throw a
RangeError exception.

3. Set all of the bytes of db to 0.

4. Return db.

6.2.8.2 CreateSharedByteDataBlock ( size)

The abstract operation CreateSharedByteDataBlock takes argument size (a non-negative integer). It performs the
following steps when called:

1. Assert: size = 0.

2. Let db be a new Shared Data Block value consisting of size bytes. If it is impossible to create such a Shared Data
Block, throw a RangeError exception.

3. Let execution be the [[CandidateExecution]] field of the surrounding agent's Agent Record.

4. Let eventList be the [[EventList]] field of the element in execution.[[EventsRecords]] whose [[AgentSignifier]] is
AgentSignifier().

5. Let zero be « 0 ».

6. For each index i of db, do

a. Append WriteSharedMemory { [[Order]]: Init, [[NoTear]]: true, [[Block]]: db, [[ByteIndex]]: i,
[[ElementSize]]: 1, [[Payload]]: zero } to eventList.
7. Return db.

6.2.8.3 CopyDataBlockBytes ( toBlock, tolndex, fromBlock, fromIndex, count )

The abstract operation CopyDataBlockBytes takes arguments toBlock, tolndex (a non-negative integer), fromBlock,

110



fromIndex (a non-negative integer), and count (a non-negative integer). It performs the following steps when called:

SRS .

Assert: fromBlock and toBlock are distinct Data Block or Shared Data Block values.
Let fromSize be the number of bytes in fromBlock.

Assert: fromIndex + count < fromSize.

Let toSize be the number of bytes in toBlock.

Assert: tolndex + count < toSize.

Repeat, while count >0,
a. If fromBlock is a Shared Data Block, then

1.

ii.

iii.

iv.

Vi.

Vii.

Viii.

iX.

b. Else,

1.

ii.

Let execution be the [[CandidateExecution]] field of the surrounding agent's Agent Record.
Let eventList be the [[EventList]] field of the element in execution.[[EventsRecords]] whose
[[AgentSignifier]] is AgentSignifier().
Let bytes be a List whose sole element is a nondeterministically chosen byte value.
NOTE: In implementations, bytes is the result of a non-atomic read instruction on the underlying
hardware. The nondeterminism is a semantic prescription of the memory model to describe
observable behaviour of hardware with weak consistency.
Let readEvent be ReadSharedMemory { [[Order]]: Unordered, [[NoTear]]: true, [[Block]]: fromBlock,
[[ByteIndex]]: fromIndex, [[ElementSize]]: 1 }.
Append readEvent to eventList.
Append Chosen Value Record { [[Event]]: readEvent, [[ChosenValue]]: bytes } to execution.
[[ChosenValues]].
If toBlock is a Shared Data Block, then

1. Append WriteSharedMemory { [[Order]]: Unordered, [[NoTear]]: true, [[Block]]: toBlock,

[[ByteIndex]]: tolndex, [[ElementSize]]: 1, [[Payload]]: bytes } to eventList.

Else,

1. Set toBlock[toIndex] to bytes[0].

Assert: toBlock is not a Shared Data Block.
Set toBlock[toIndex] to fromBlock|fromIndex].

c. Set tolndex to tolndex + 1.
d. Set fromIndex to fromIndex + 1.
e. Set count to count - 1.

7. Return NormalCompletion(empty).

7 Abstract Operations

These operations are not a part of the ECMAScript language; they are defined here solely to aid the specification of the

semantics of the ECMAScript language. Other, more specialized abstract operations are defined throughout this

specification.

7.1 Type Conversion

The ECMAScript language implicitly performs automatic type conversion as needed. To clarify the semantics of

certain constructs it is useful to define a set of conversion abstract operations. The conversion abstract operations are

polymorphic; they can accept a value of any ECMAScript language type. But no other specification types are used

111



with these operations.

The BigInt type has no implicit conversions in the ECMAScript language; programmers must call BigInt explicitly to
convert values from other types.

7.1.1 ToPrimitive (input [, preferredType])

The abstract operation ToPrimitive takes argument input and optional argument preferredType. It converts its input
argument to a non-Object type. If an object is capable of converting to more than one primitive type, it may use the
optional hint preferredType to favour that type. It performs the following steps when called:

1. Assert: input is an ECMAScript language value.
2. If Type(input) is Object, then
a. Let exoticToPrim be ? GetMethod(input, @@toPrimitive).
b. If exoticToPrim is not undefined, then
i. If preferredType is not present, let hint be "default'".

—

i. Else if preferredType is string, let hint be "string".
iii. Else,

1. Assert: preferredType is number.

2. Let hint be "number".

iv. Let result be ? Call(exoticToPrim, input, « hint »).

<

If Type(result) is not Object, return result.
vi. Throw a TypeError exception.
c. If preferredType is not present, let preferredType be number.
d. Return ? OrdinaryToPrimitive(input, preferredType).
3. Return input.

NOTE When ToPrimitive is called with no hint, then it generally behaves as if the hint were number.
However, objects may over-ride this behaviour by defining a @@toPrimitive method. Of the
objects defined in this specification only Date objects (see 21.4.4.45) and Symbol objects (see
20.4.3.5) over-ride the default ToPrimitive behaviour. Date objects treat no hint as if the hint were
string.

7.1.1.1 OrdinaryToPrimitive ( O, hint)

The abstract operation OrdinaryToPrimitive takes arguments O and hint. It performs the following steps when called:

—_

. Assert: Type(O) is Object.
. Assert: hint is either string or number.
3. If hint is string, then
a. Let methodNames be « "toString", ""valueOf'" ».
4. Else,
a. Let methodNames be « "valueOf", "toString' ».

N

5. For each element name of methodNames, do
a. Let method be ? Get(O, name).
b. If IsCallable(method) is true, then
i. Let result be ? Call(method, O).
ii. If Type(result) is not Object, return result.
112



6. Throw a TypeError exception.

7.1.2 ToBoolean ( argument)

The abstract operation ToBoolean takes argument argument. It converts argument to a value of type Boolean according

to Table 11:
Table 11: ToBoolean Conversions
Argument Result
Type
Undefined Return false.
Null Return false.
Boolean Return argument.
Number If argument is +0f, -0, or NaN, return false; otherwise return true.
String If argument is the empty String (its length is 0), return false; otherwise return true.
Symbol Return true.
BigInt If arqument is 0z, return false; otherwise return true.
Object Return true.

NOTE An alternate algorithm related to the [[ISHTMLDDA]] internal slot is mandated
in section B.3.7.1.

7.1.3 ToNumeric ( value)

The abstract operation ToNumeric takes argument value. It returns value converted to a Number or a BigInt. It

performs the following steps when called:

1. Let primValue be ? ToPrimitive(value, number).

2. If Type(primValue) is Biglnt, return primValue.

3. Return ? ToNumber(prim Value).

7.1.4 ToNumber ( argument)

The abstract operation ToONumber takes argument argument. It converts arqument to a value of type Number according

to Table 12:

113




Table 12: ToNumber Conversions

Argument Type Result

Undefined Return NaN.

Null Return +0f.

Boolean If arqument is true, return 1g. If arqument is false, return +0p.

Number Return arqument (no conversion).

String See grammar and conversion algorithm below.
Symbol Throw a TypeError exception.

BigInt Throw a TypeError exception.

Object Apply the following steps:

1. Let primValue be ? ToPrimitive(argument, number).
2. Return ? ToNumber(primValue).

7.1.4.1 ToNumber Applied to the String Type

ToNumber applied to Strings applies the following grammar to the input String interpreted as a sequence of UTF-16
encoded code points (6.1.4). If the grammar cannot interpret the String as an expansion of StringNumericLiteral, then

the result of ToNumber is NaN.

NOTE 1 The terminal symbols of this grammar are all composed of characters in the Unicode Basic

Multilingual Plane (BMP). Therefore, the result of ToNumber will be NaN if the string contains
any leading surrogate or trailing surrogate code units, whether paired or unpaired.

Syntax

StringNumericLiteral :::
StrWhiteSpace

StrWhiteSpace StrNu

StrWhiteSpace :::

mericLiteral StrWhiteSpace

StrWhiteSpaceChar StrWhiteSpace

StrWhiteSpaceChar :::
WhiteSpace

LineTerminator

StrNumericLiteral s
StrDecimalLiteral

NonDecimallntegerLiteral

114



StrDecimalLiteral ::
StrUnsignedDecimalLiteral
+ StrUnsignedDecimalLiteral
- StrUnsignedDecimalLiteral

StrUnsignedDecimalLiteral ::

Infinity

Decimal Digits . DecimalDigits ExponentPart
. DecimalDigits ExponentPart

DecimalDigits ExponentPart

All grammar symbols not explicitly defined above have the definitions used in the Lexical Grammar for numeric
literals (12.8.3)

NOTE 2 Some differences should be noted between the syntax of a StringNumericLiteral and a
NumericLiteral:

o A StringNumericLiteral may include leading and/or trailing white space and/or line
terminators.

o A StringNumericLiteral that is decimal may have any number of leading @ digits.

o A StringNumericLiteral that is decimal may include a + or - to indicate its sign.

o A StringNumericLiteral that is empty or contains only white space is converted to +0f.

e Infinityand -Infinity are recognized as a StringNumericLiteral but not as a
NumericLiteral.

e A StringNumericLiteral cannot include a BigIntLiteral Suffix.

7.1.4.1.1 Runtime Semantics: MV

The conversion of a String to a Number value is similar overall to the determination of the Number value for a

numeric literal (see 12.8.3), but some of the details are different, so the process for converting a String numeric literal

to a value of Number type is given here. This value is determined in two steps: first, a mathematical value (MV) is

derived from the String numeric literal; second, this mathematical value is rounded as described below. The MV on

any grammar symbol, not provided below, is the MV for that symbol defined in 12.8.3.1.

o The MV of StringNumericLiteral :: [empty] is 0.

e The MV of StringNumericLiteral ::: StrWhiteSpace is 0.

e The MV of StringNumericLiteral ::: StrWhiteSpace StrNumericLiteral StrWhiteSpace is the MV of
StrNumericLiteral, no matter whether white space is present or not.

o The MV of StrDecimalLiteral ::: - StrUnsignedDecimalLiteral is the negative of the MV of

StrUnsignedDecimalLiteral. (Note that if the MV of StrUnsignedDecimalLiteral is 0, the negative of this MV is also
0. The rounding rule described below handles the conversion of this signless mathematical zero to a floating-

point +0f or -Of as appropriate.)

e The MV of StrUnsignedDecimalLiteral ::: Infinity is 1010000 (5 value so large that it will round to +cof).

e The MV of StrUnsignedDecimalLiteral ::: DecimalDigits . DecimalDigits is the MV of the first Decimal Digits

plus (the MV of the second DecimalDigits times 107"), where 7 is the number of code points in the second
DecimalDigits.

115



o The MV of StrUnsignedDecimalLiteral :: DecimalDigits . ExponentPart is the MV of DecimalDigits times 10°,
where ¢ is the MV of ExponentPart.

e The MV of StrUnsignedDecimalLiteral ::: DecimalDigits . DecimalDigits ExponentPart is (the MV of the first
DecimalDigits plus (the MV of the second DecimalDigits times 107")) times 10°, where 7 is the number of code
points in the second DecimalDigits and e is the MV of ExponentPart.

e The MV of StrUnsignedDecimalLiteral :: . DecimalDigits is the MV of DecimalDigits times 107!, where 7 is the
number of code points in DecimalDigits.

o The MV of StrUnsignedDecimalLiteral ::: . DecimalDigits ExponentPart is the MV of DecimalDigits times 10°~",

where 7 is the number of code points in DecimalDigits and e is the MV of ExponentPart.

o The MV of StrUnsignedDecimalLiteral :: DecimalDigits ExponentPart is the MV of DecimalDigits times 10°,
where ¢ is the MV of ExponentPart.

Once the exact MV for a String numeric literal has been determined, it is then rounded to a value of the Number type.
If the MV is 0, then the rounded value is +0f unless the first non white space code point in the String numeric literal is
-, in which case the rounded value is -0. Otherwise, the rounded value must be the Number value for the MV (in the
sense defined in 6.1.6.1), unless the literal includes a StrUnsignedDecimalLiteral and the literal has more than 20
significant digits, in which case the Number value may be either the Number value for the MV of a literal produced
by replacing each significant digit after the 20th with a 0 digit or the Number value for the MV of a literal produced by
replacing each significant digit after the 20th with a 0 digit and then incrementing the literal at the 20th digit position.
A digit is significant if it is not part of an ExponentPart and

e itisnot @; or
e there is a non-zero digit to its left and there is a non-zero digit, not in the ExponentPart, to its right.

7.1.5 TolntegerOrInfinity ( argument)

The abstract operation TolntegerOrInfinity takes argument argument. It converts argument to an integer, +oo, or -co. It
performs the following steps when called:

Let number be ? ToNumber(arqument).
If number is NaN, +0f, or -0, return 0.
If number is +oof, return +eo.

If number is -cof, return -co.

Let integer be floor(abs(R(number))).
If number < +0, set integer to -integer.

NS a ok L=

Return integer.

7.1.6 Tolnt32 ( argument )

232

The abstract operation ToInt32 takes argument argument. It converts argument to one of 2°< integral Number values in

the range H(-231) through F(23! - 1), inclusive. It performs the following steps when called:

1. Let number be ? ToNumber(argument).
2. If number is NaN, +0p, -Of, +oof, or -cof, return +0f.

3. Let int be the mathematical value that is the same sign as number and whose magnitude is
floor(abs(R(number))).

4. Let int32bit be int modulo 232,
116


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D

5. If int32bit = 231 return Fint32bit - 232); otherwise return F(int32bit).

NOTE Given the above definition of ToInt32:

e The ToInt32 abstract operation is idempotent: if applied to a result that it produced, the
second application leaves that value unchanged.

e ToInt32(ToUint32(x)) is the same value as ToInt32(x) for all values of x. (It is to preserve
this latter property that +cop and -cop are mapped to +0f.)

e Tolnt32 maps -Of to +0f.

7.1.7 ToUint32 ( argument)

232

The abstract operation ToUint32 takes argument argument. It converts argument to one of 2° integral Number values

in the range +0p through F(23? - 1), inclusive. It performs the following steps when called:

1. Let number be ? ToNumber(argument).
2. If number is NaN, +0p, -Of, +oof, or -cof, return +0f.

3. Let int be the mathematical value that is the same sign as number and whose magnitude is
floor(abs(R(number))).

4. Let int32bit be int modulo 232,
5. Return Hint32bit).

NOTE Given the above definition of ToUint32:

e Step 5 is the only difference between ToUint32 and ToInt32.

e The ToUint32 abstract operation is idempotent: if applied to a result that it produced, the
second application leaves that value unchanged.

e ToUint32(ToInt32(x)) is the same value as ToUint32(x) for all values of x. (It is to preserve
this latter property that +cop and -cop are mapped to +0p.)

e ToUint32 maps -0f to +0f.

7.1.8 Tolntl6 ( argument )

The abstract operation ToInt16 takes argument argument. It converts argument to one of 216 integral Number values in

the range H-21%) through F(2'° - 1), inclusive. It performs the following steps when called:

1. Let number be ? ToNumber(argument).
2. If number is NaN, +0p, -Of, +cof, or -cof, return +0f.

3. Let int be the mathematical value that is the same sign as number and whose magnitude is
floor(abs(R(number))).

4. Let int16bit be int modulo 210,
5. If int16bit = 215, return F(int16bit - 210); otherwise return F(int16bit).

117


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD

7.1.9 ToUint16 ( argument)

ol6

The abstract operation ToUint16 takes argument argument. It converts argument to one of 2°° integral Number values

in the range +0p through F(21° - 1), inclusive. It performs the following steps when called:

1. Let number be ? ToNumber(argument).
2. If number is NaN, +0p, -Of, +oof, or -cof, return +0f.

3. Let int be the mathematical value that is the same sign as number and whose magnitude is
floor(abs(R(number))).

4. Let int16bit be int modulo 21°.
5. Return F(int16bit).

NOTE Given the above definition of ToUint16:

e The substitution of 21¢ for 232 in step 4 is the only difference between ToUint32 and
ToUint1é.
e ToUint16 maps -0f to +0f.

7.1.10 Tolnt8 ( argument )

The abstract operation ToInt8 takes argument arqument. It converts arqument to one of 28 integral Number values in
the range -128j through 127, inclusive. It performs the following steps when called:

1. Let number be ? ToNumber(argument).
2. If number is NaN, +0f, -Of, +oof, or -cof, return +0f.

3. Let int be the mathematical value that is the same sign as number and whose magnitude is
floor(abs(R(number))).

4. Let int8bit be int modulo 28.
5. If int8bit = 27, return Fint8bit - 28); otherwise return F(int8bit).

7.1.11 ToUint8 ( argument )

The abstract operation ToUint8 takes argument arqument. It converts arqument to one of 28 integral Number values in
the range +0 through 255, inclusive. It performs the following steps when called:

1. Let number be ? ToNumber(argument).
2. If number is NaN, +0f, -Of, +oof, or -cof, return +0f.

3. Let int be the mathematical value that is the same sign as number and whose magnitude is
floor(abs(R(number))).

4. Let int8bit be int modulo 28.
5. Return F(int8bit).

7.1.12 ToUint8Clamp ( argument)

The abstract operation ToUint8Clamp takes argument argument. It converts argument to one of 28 integral Number

118


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD

values in the range +0f through 255, inclusive. It performs the following steps when called:

Let number be ? ToNumber(arqument).
If number is NaN, return +0f.

If R(number) < 0, return +0f.

If R(number) = 255, return 255

Let f be floor(R(number)).

If f + 0.5 < R(number), return Ff + 1).
If R(number) < f + 0.5, return [(f).

If fis odd, return Hf + 1).

Return F(f).

O ® NSOk DD

NOTE Unlike the other ECMAScript integer conversion abstract operation, ToUint8Clamp rounds
rather than truncates non-integral values and does not convert +oof to +0r. ToUint8Clamp does

“round half to even” tie-breaking. This differs from Math . round which does “round half up”
tie-breaking.

7.1.13 ToBigInt (argument )

The abstract operation ToBigInt takes argument argument. It converts argument to a BigInt value, or throws if an
implicit conversion from Number would be required. It performs the following steps when called:

1. Let prim be ? ToPrimitive(argument, number).
2. Return the value that prim corresponds to in Table 13.

Table 13: BigInt Conversions

Argument Type Result

Undefined Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return 1n if prim is true and @n if prim is false.

BigInt Return prim.

Number Throw a TypeError exception.

String 1. Let n be ! StringToBigInt(prim).
2. If n is NaN, throw a SyntaxError exception.
3. Return 7.

Symbol Throw a TypeError exception.

7.1.14 StringToBiglnt ( argument)

Apply the algorithm in 7.1.4.1 with the following changes:

119


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD

e Replace the StrUnsignedDecimalLiteral production with DecimalDigits to not allow Infinity, decimal points, or
exponents.

e If the MV is NaN, return NaN, otherwise return the BigInt which exactly corresponds to the MV, rather than
rounding to a Number.

7.1.15 ToBigInt64 ( argument)

The abstract operation ToBigInt64 takes argument arqument. It converts arqument to one of 2064 BigInt values in the

range 7(-2%%) through 7(2%3-1), inclusive. It performs the following steps when called:

1. Let n be ? ToBigInt(arqument).
2. Let int64bit be R(1n) modulo 2%4.
3. If int64bit = 203, return Z(int64bit - 26%); otherwise return Z(int64bit).

7.1.16 ToBigUint64 ( argument )

The abstract operation ToBigUint64 takes argument argument. It converts argument to one of 264 Biglnt values in the

range 07 through the Biglnt value for Z(294-1), inclusive. It performs the following steps when called:

1. Let n be ? ToBigInt(arqument).

2. Let int64bit be R(1) modulo 2%4.
3. Return Z(int64bit).

7.1.17 ToString ( argument)

The abstract operation ToString takes argument arqument. It converts argument to a value of type String according to
Table 14:

120


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%A4
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%A4
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%A4
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%A4
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%A4
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%A4

Table 14: ToString Conversions

Argument Type Result
Undefined Return "undefined".

Null Return "null".

Boolean If arqument is true, return "true".

If argument is false, return "false".

Number Return ! Number::toString(arqument).
String Return argument.

Symbol Throw a TypeError exception.

BigInt Return ! BigInt::toString(argument).
Object Apply the following steps:

1. Let primValue be ? ToPrimitive(argument, string).
2. Return ? ToString(primValue).

7.1.18 ToObject ( argument )

The abstract operation ToObject takes argument argument. It converts argument to a value of type Object according to
Table 15:

121



Table 15: ToObject Conversions

Argument Result
Type

Undefined | Throw a TypeError exception.

Null Throw a TypeError exception.

Boolean Return a new Boolean object whose [[BooleanData]] internal slot is set to argument. See 20.3 for a
description of Boolean objects.

Number Return a new Number object whose [[NumberData]] internal slot is set to argument. See 21.1 for a
description of Number objects.

String Return a new String object whose [[StringData]] internal slot is set to argument. See 22.1 for a
description of String objects.

Symbol Return a new Symbol object whose [[SymbolData]] internal slot is set to argument. See 20.4 for a
description of Symbol objects.

BigInt Return a new BigInt object whose [[BigIntData]] internal slot is set to argument. See 21.2 for a
description of BigInt objects.

Object Return argument.

7.1.19 ToPropertyKey ( argument)

The abstract operation ToPropertyKey takes argument arqument. It converts argument to a value that can be used as a
property key. It performs the following steps when called:

1. Let key be ? ToPrimitive(arqument, string).
2. If Type(key) is Symbol, then

a. Return key.
3. Return ! ToString(key).

7.1.20 ToLength ( argument)

The abstract operation ToLength takes argument argument. It converts arqument to an integral Number suitable for use
as the length of an array-like object. It performs the following steps when called:

1. Let len be ? TolntegerOrInfinity(arqument).
2. If len <0, return +0f.

3. Return F(min(len, 253 - 1)).

7.1.21 CanonicalNumericIndexString ( argument)

The abstract operation CanonicalNumericIndexString takes argument argument. It returns arqument converted to a
Number value if it is a String representation of a Number that would be produced by ToString, or the string "-0".
Otherwise, it returns undefined. It performs the following steps when called:

122


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD

Assert: Type(argument) is String.

If argument is "-0", return -Of.

Let n be ! ToNumber(arqument).

If SameValue(! ToString(n), argument) is false, return undefined.

SR N

Return n.

A canonical numeric string is any String value for which the CanonicalNumericIndexString abstract operation does not
return undefined.

7.1.22 Tolndex (value)

The abstract operation ToIndex takes argument value. It returns value argument converted to a non-negative integer if
it is a valid integer index value. It performs the following steps when called:

1. If value is undefined, then
a. Return 0.

2. Else,
a. Let integerIndex be H? TolntegerOrInfinity(value)).
b. If integerIndex < +0f, throw a RangeError exception.

0

Let index be ! ToLength(integerIndex).

e

If ! SameValue(integerIndex, index) is false, throw a RangeError exception.
e. Return R(index).

7.2 Testing and Comparison Operations

7.2.1 RequireObjectCoercible ( argument)

The abstract operation RequireObjectCoercible takes argument argument. It throws an error if argument is a value that
cannot be converted to an Object using ToObject. It is defined by Table 16:

Table 16: RequireObjectCoercible Results

Argument Type Result

Undefined Throw a TypeError exception.
Null Throw a TypeError exception.
Boolean Return argument.

Number Return argument.

String Return argument.

Symbol Return argument.

BigInt Return argument.

Object Return argument.

123


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D

7.2.2 IsArray ( argument)
The abstract operation IsArray takes argument argument. It performs the following steps when called:

1. If Type(argument) is not Object, return false.

2. If argument is an Array exotic object, return true.

3. If arqument is a Proxy exotic object, then
a. If arqument.[[ProxyHandler]] is null, throw a TypeError exception.
b. Let target be argument.[[ProxyTarget]].
c. Return ? IsArray(target).

4. Return false.

7.2.3 IsCallable ( argument)

The abstract operation IsCallable takes argument arqument (an ECMAScript language value). It determines if arqument
is a callable function with a [[Call]] internal method. It performs the following steps when called:

1. If Type(argument) is not Object, return false.
2. If arqument has a [[Call]] internal method, return true.
3. Return false.

7.2.4 IsConstructor ( argument)

The abstract operation IsConstructor takes argument argument (an ECMAScript language value). It determines if
argument is a function object with a [[Construct]] internal method. It performs the following steps when called:

1. If Type(argument) is not Object, return false.
2. If arqument has a [[Construct]] internal method, return true.
3. Return false.

7.2.5 IsExtensible ( O)

The abstract operation IsExtensible takes argument O (an Object) and returns a completion record which, if its [[Typel]]
is normal, has a [[Value]] which is a Boolean. It is used to determine whether additional properties can be added to O.
It performs the following steps when called:

1. Assert: Type(O) is Object.
2. Return ? O.[[IsExtensible]]().

7.2.6 IsIntegralNumber ( argument)

The abstract operation IsIntegralNumber takes argument argument. It determines if argument is a finite integral
Number value. It performs the following steps when called:

1. If Type(argument) is not Number, return false.
2. If argument is NaN, +oof, or -cof, return false.

3. If floor(abs(R(argument))) = abs(R(arqument)), return false.
4. Return true.

124


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D

7.2.7 IsPropertyKey ( argument)

The abstract operation IsPropertyKey takes argument argument (an ECMAScript language value). It determines if
argument is a value that may be used as a property key. It performs the following steps when called:

1. If Type(argument) is String, return true.
2. If Type(argument) is Symbol, return true.
3. Return false.

7.2.8 IsRegExp (argument)
The abstract operation IsRegExp takes argument argument. It performs the following steps when called:

If Type(argument) is not Object, return false.

Let matcher be ? Get(argument, @@match).

If matcher is not undefined, return ! ToBoolean(matcher).

If arqument has a [[RegExpMatcher]] internal slot, return true.

SRS -

Return false.

7.2.9 IsStringPrefix (p, q)

The abstract operation IsStringPrefix takes arguments p (a String) and ¢ (a String). It determines if p is a prefix of 4. It
performs the following steps when called:

1. Assert: Type(p) is String.
2. Assert: Type(q) is String.
3. If g can be the string-concatenation of p and some other String , return true. Otherwise, return false.

NOTE Any String is a prefix of itself, because r may be the empty String.

7.2.10 SameValue (x, y)

The abstract operation SameValue takes arguments x (an ECMAScript language value) and y (an ECMAScript

language value) and returns a completion record whose [[Type]] is normal and whose [[Value]] is a Boolean. It
performs the following steps when called:

1. If Type(x) is different from Type(y), return false.
2. If Type(x) is Number or BigInt, then

a. Return ! Type(x)::sameValue(x, y).
3. Return ! SameValueNonNumeric(x, y).

NOTE This algorithm differs from the Strict Equality Comparison Algorithm in its treatment of signed
zeroes and NaNs.

7.2.11 SameValueZero (x, 1)

The abstract operation SameValueZero takes arguments x (an ECMAScript language value) and y (an ECMAScript

125



language value) and returns a completion record whose [[Type]] is normal and whose [[Value]] is a Boolean. It

performs the following steps when called:

1.
2.

3.

If Type(x) is different from Type(y), return false.
If Type(x) is Number or BigInt, then
a. Return ! Type(x):sameValueZero(x, y).

Return ! SameValueNonNumeric(x, y).

NOTE SameValueZero differs from SameValue only in its treatment of +0f and -0f.

7.2.12 SameValueNonNumeric ( x, )

The abstract operation SameValueNonNumeric takes arguments x (an ECMAScript language value) and y (an

ECMAScript language value) and returns a completion record whose [[Type]] is normal and whose [[Value]] is a

Boolean. It performs the following steps when called:

SRS

Assert: Type(x) is not Number or Biglnt.
Assert: Type(x) is the same as Type(y).
If Type(x) is Undefined, return true.
If Type(x) is Null, return true.
If Type(x) is String, then
a. If x and y are exactly the same sequence of code units (same length and same code units at
corresponding indices), return true; otherwise, return false.
If Type(x) is Boolean, then
a. If x and y are both true or both false, return true; otherwise, return false.
If Type(x) is Symbol, then
a. If x and y are both the same Symbol value, return true; otherwise, return false.
If x and y are the same Object value, return true. Otherwise, return false.

7.2.13 Abstract Relational Comparison

The comparison x < y, where x and y are values, produces true, false, or undefined (which indicates that at least one

operand is NaN). In addition to x and y the algorithm takes a Boolean flag named LeftFirst as a parameter. The flag is

used to control the order in which operations with potentially visible side-effects are performed upon x and y. It is

necessary because ECMAScript specifies left to right evaluation of expressions. The default value of LeftFirst is true

and indicates that the x parameter corresponds to an expression that occurs to the left of the y parameter's

corresponding expression. If LeftFirst is false, the reverse is the case and operations must be performed upon y before

x. Such a comparison is performed as follows:

1.

3.

If the LeftFirst flag is true, then
a. Let px be ? ToPrimitive(x, number).
b. Let py be ? ToPrimitive(y, number).

a. NOTE: The order of evaluation needs to be reversed to preserve left to right evaluation.
b. Let py be ? ToPrimitive(y, number).
c. Let px be ? ToPrimitive(x, number).

If Type(px) is String and Type(py) is String, then

126



4. FElse,

NOTE 1

NOTE 2

5 ® =~ 0 &0

—

~o

If IsStringPrefix(py, px) is true, return false.

If IsString Prefix(px, py) is true, return true.

Let k be the smallest non-negative integer such that the code unit at index k within px is different from
the code unit at index k within py. (There must be such a k, for neither String is a prefix of the other.)
Let 1 be the integer that is the numeric value of the code unit at index k within px.

Let n be the integer that is the numeric value of the code unit at index k within py.

. If m < n, return true. Otherwise, return false.

If Type(px) is BigInt and Type(py) is String, then
i. Let ny be ! StringToBigInt(py).
ii. If ny is NaN, return undefined.
iii. Return BigInt::lessThan(px, ny).
If Type(px) is String and Type(py) is BigInt, then
i. Let nx be ! StringToBigInt(px).
ii. If nx is NaN, return undefined.
iii. Return BigInt:lessThan(nx, py).
NOTE: Because px and py are primitive values, evaluation order is not important.
Let nx be ! ToNumeric(px).
Let ny be ! ToNumeric(py).
If Type(nx) is the same as Type(ny), return Type(nx):lessThan(nx, ny).
Assert: Type(nx) is BigInt and Type(rny) is Number, or Type(nx) is Number and Type(ny) is BigInt.
If nx or ny is NaN, return undefined.
If nx is -cop o1 11y is +oof, return true.
If nx is +oo or ny is -co, return false.

If R(nx) < R(ny), return true; otherwise return false.

Step 3 differs from step 2.c in the algorithm that handles the addition operator + (13.15.3) by
using the logical-and operation instead of the logical-or operation.

The comparison of Strings uses a simple lexicographic ordering on sequences of code unit values.
There is no attempt to use the more complex, semantically oriented definitions of character or
string equality and collating order defined in the Unicode specification. Therefore String values
that are canonically equal according to the Unicode standard could test as unequal. In effect this
algorithm assumes that both Strings are already in normalized form. Also, note that for strings
containing supplementary characters, lexicographic ordering on sequences of UTF-16 code unit
values differs from that on sequences of code point values.

7.2.14 Abstract Equality Comparison

The comparison x ==y, where x and y are values, produces true or false. Such a comparison is performed as follows:

1. If Type(x) is the same as Type(y), then

a.

Return the result of performing Strict Equality Comparison x === y.

2. If x is null and y is undefined, return true.

3. If x is undefined and y is null, return true.
4. NOTE: This step is replaced in section B.3.7.2.

127


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D

10.
11.

12.

13.

14

If Type(x) is Number and Type(y) is String, return the result of the comparison x == ! ToNumber(y).
If Type(x) is String and Type(y) is Number, return the result of the comparison ! ToNumber(x) == y.
If Type(x) is BigInt and Type(y) is String, then
a. Let n be ! StringToBigInt(y).
b. If n is NaN, return false.
c¢. Return the result of the comparison x == 7.
If Type(x) is String and Type(y) is BigInt, return the result of the comparison i == x.
If Type(x) is Boolean, return the result of the comparison ! ToNumber(x) == y.
If Type(y) is Boolean, return the result of the comparison x == ! ToNumber(y).
If Type(x) is either String, Number, BigInt, or Symbol and Type(y) is Object, return the result of the comparison
x == ? ToPrimitive(y).
If Type(x) is Object and Type(y) is either String, Number, BigInt, or Symbol, return the result of the comparison
? ToPrimitive(x) == y.
If Type(x) is BigInt and Type(y) is Number, or if Type(x) is Number and Type(y) is Bignt, then
a. If x or y are any of NaN, +oof, or -cof, return false.
b. If R(x) = R(y), return true; otherwise return false.
Return false.

7.2.15 Strict Equality Comparison

The comparison x ===y, where x and y are values, produces true or false. Such a comparison is performed as follows:

1.
2.

3.

If Type(x) is different from Type(y), return false.
If Type(x) is Number or BigInt, then

a. Return ! Type(x):equal(x, v).
Return ! SameValueNonNumeric(x, y).

NOTE This algorithm differs from the SameValue Algorithm in its treatment of signed zeroes and NaNs.

7.3 Operations on Objects

7.3.1 MakeBasicObject (internalSlotsList)

The abstract operation MakeBasicObject takes argument internalSlotsList. It is the source of all ECMAScript objects

that are created algorithmically, including both ordinary objects and exotic objects. It factors out common steps used

in creating all objects, and centralizes object creation. It performs the following steps when called:

Ll

Assert: internalSlotsList is a List of internal slot names.

Let obj be a newly created object with an internal slot for each name in internalSlotsList.

Set obj's essential internal methods to the default ordinary object definitions specified in 10.1.

Assert: If the caller will not be overriding both 0bj's [[GetPrototypeOf]] and [[SetPrototypeOf]] essential internal
methods, then internalSlotsList contains [[Prototype]].

Assert: If the caller will not be overriding all of 0bj's [[SetPrototypeOf]], [[IsExtensible]], and
[[PreventExtensions]] essential internal methods, then internalSlotsList contains [[Extensible]].

If internalSlotsList contains [[Extensible]], set obj.[[Extensible]] to true.

Return obj.

128


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D

NOTE Within this specification, exotic objects are created in abstract operations such as ArrayCreate and
BoundFunctionCreate by first calling MakeBasicObject to obtain a basic, foundational object, and
then overriding some or all of that object's internal methods. In order to encapsulate exotic object
creation, the object's essential internal methods are never modified outside those operations.

732 Get(O,P)

The abstract operation Get takes arguments O (an Object) and P (a property key). It is used to retrieve the value of a
specific property of an object. It performs the following steps when called:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Return ? O.[[Get]](P, O).

733 GetV(V,P)

The abstract operation GetV takes arguments V' (an ECMAScript language value) and P (a property key). It is used to
retrieve the value of a specific property of an ECMAScript language value. If the value is not an object, the property
lookup is performed using a wrapper object appropriate for the type of the value. It performs the following steps
when called:

1. Assert: IsPropertyKey(P) is true.
2. Let O be ? ToObject(V).
3. Return ? O.[[Get]](P, V).

7.3.4 Set (O, P,V, Throw)

The abstract operation Set takes arguments O (an Object), P (a property key), V (an ECMAScript language value), and
Throw (a Boolean). It is used to set the value of a specific property of an object. V is the new value for the property. It
performs the following steps when called:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Assert: Type(Throw) is Boolean.

Let success be ? O.[[Set]](P, V, O).

If success is false and Throw is true, throw a TypeError exception.

LRSS

Return success.

7.3.5 CreateDataProperty (O, P, V)

The abstract operation CreateDataProperty takes arguments O (an Object), P (a property key), and V (an ECMAScript
language value). It is used to create a new own property of an object. It performs the following steps when called:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]:
true }.

129



4. Return ? O.[[DefineOwnProperty]](P, newDesc).

NOTE This abstract operation creates a property whose attributes are set to the same defaults used for
properties created by the ECMAScript language assignment operator. Normally, the property
will not already exist. If it does exist and is not configurable or if O is not extensible,
[[DefineOwnProperty]] will return false.

7.3.6 CreateMethodProperty (O, P, V)

The abstract operation CreateMethodProperty takes arguments O (an Object), P (a property key), and V (an
ECMAScript language value). It is used to create a new own property of an object. It performs the following steps
when called:

1. Assert: Type(O) is Object.

2. Assert: IsPropertyKey(P) is true.

3. Let newDesc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: false, [[Configurable]]:
true }.

4. Return ? O.[[DefineOwnProperty]](P, newDesc).

NOTE This abstract operation creates a property whose attributes are set to the same defaults used for
built-in methods and methods defined using class declaration syntax. Normally, the property
will not already exist. If it does exist and is not configurable or if O is not extensible,
[[DefineOwnProperty]] will return false.

7.3.7 CreateDataPropertyOrThrow (O, P, V)

The abstract operation CreateDataPropertyOrThrow takes arguments O (an Object), P (a property key), and V (an
ECMAScript language value). It is used to create a new own property of an object. It throws a TypeError exception if
the requested property update cannot be performed. It performs the following steps when called:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Let success be ? CreateDataProperty(O, P, V).

If success is false, throw a TypeError exception.

SIS S

Return success.

NOTE This abstract operation creates a property whose attributes are set to the same defaults used for
properties created by the ECMAScript language assignment operator. Normally, the property
will not already exist. If it does exist and is not configurable or if O is not extensible,
[[DefineOwnProperty]] will return false causing this operation to throw a TypeError exception.

7.3.8 DefinePropertyOrThrow ( O, P, desc)

The abstract operation DefinePropertyOrThrow takes arguments O (an Object), P (a property key), and desc (a
Property Descriptor). It is used to call the [[DefineOwnProperty]] internal method of an object in a manner that will
throw a TypeError exception if the requested property update cannot be performed. It performs the following steps

130



when called:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Let success be ? O.[[DefineOwnProperty]](P, desc).
If success is false, throw a TypeError exception.

SRS -

Return success.

7.3.9 DeletePropertyOrThrow (O, P)

The abstract operation DeletePropertyOrThrow takes arguments O (an Object) and P (a property key). It is used to
remove a specific own property of an object. It throws an exception if the property is not configurable. It performs the
following steps when called:

Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Let success be ? O.[[Delete]](P).

If success is false, throw a TypeError exception.

SUESICENS -

Return success.

7.3.10 GetMethod (V, P)

The abstract operation GetMethod takes arguments V (an ECMAScript language value) and P (a property key). It is
used to get the value of a specific property of an ECMAScript language value when the value of the property is
expected to be a function. It performs the following steps when called:

Assert: IsPropertyKey(P) is true.

Let func be ? GetV(V, P).

If func is either undefined or null, return undefined.

If IsCallable(func) is false, throw a TypeError exception.

SRS S

Return func.

7.3.11 HasProperty (O, P)

The abstract operation HasProperty takes arguments O (an Object) and P (a property key) and returns a completion
record which, if its [[Type]] is normal, has a [[Value]] which is a Boolean. It is used to determine whether an object has
a property with the specified property key. The property may be either an own or inherited. It performs the following
steps when called:

1. Assert: Type(O) is Object.
2. Assert: IsPropertyKey(P) is true.
3. Return ? O.[[HasProperty]](P).

7.3.12 HasOwnProperty (O, P)

The abstract operation HasOwnProperty takes arguments O (an Object) and P (a property key) and returns a
completion record which, if its [[Type]] is normal, has a [[Value]] which is a Boolean. It is used to determine whether
an object has an own property with the specified property key. It performs the following steps when called:

131



Assert: Type(O) is Object.

Assert: IsPropertyKey(P) is true.

Let desc be ? O.[[GetOwnProperty]](P).
If desc is undefined, return false.

SRS -

Return true.

7.3.13 Call (F, V[, argumentsList])

The abstract operation Call takes arguments F (an ECMAScript language value) and V (an ECMAScript language
value) and optional argument argumentsList (a List of ECMAScript language values). It is used to call the [[Call]]
internal method of a function object. F is the function object, V is an ECMAScript language value that is the this value
of the [[Call]], and argumentsList is the value passed to the corresponding argument of the internal method. If
arqumentsList is not present, a new empty List is used as its value. It performs the following steps when called:

1. If argumentsList is not present, set argumentsList to a new empty List.
2. If IsCallable(F) is false, throw a TypeError exception.
3. Return ? F.[[Call]](V, argumentsList).

7.3.14 Construct ( F [, argumentsList [ , newTarget]])

The abstract operation Construct takes argument F (a function object) and optional arguments argumentsList and
newTarget. It is used to call the [[Construct]] internal method of a function object. arqumentsList and newTarget are the
values to be passed as the corresponding arguments of the internal method. If argumentsList is not present, a new
empty List is used as its value. If newTnarget is not present, F is used as its value. It performs the following steps when
called:

If newTnrget is not present, set newTarget to F.

If argumentsList is not present, set argumentsList to a new empty List.
Assert: IsConstructor(F) is true.

Assert: IsConstructor(newTarget) is true.

SUESICENS -

Return ? F.[[Construct]](argumentsList, newTarget).

NOTE If newTarget is not present, this operation is equivalent to: new F(...argumentsList)

7.3.15 SetIntegrityLevel ( O, level)

The abstract operation SetIntegrityLevel takes arguments O and level. It is used to fix the set of own properties of an
object. It performs the following steps when called:

Assert: Type(O) is Object.
Assert: level is either sealed or frozen.
Let status be ? O.[[PreventExtensions]]().
If status is false, return false.
Let keys be ? O.[[OwnPropertyKeys]]().
If level is sealed, then

a. For each element k of keys, do

i. Perform ? DefinePropertyOrThrow(O, k, PropertyDescriptor { [[Configurable]]: false }).

S

132



7. Else,
a. Assert: level is frozen.
b. For each element k of keys, do
i. Let currentDesc be ? O.[[GetOwnProperty]](k).
ii. If currentDesc is not undefined, then
1. If IsAccessorDescriptor(currentDesc) is true, then
a. Let desc be the PropertyDescriptor { [[Configurable]]: false }.
2. Else,
a. Let desc be the PropertyDescriptor { [[Configurable]]: false, [[Writable]]: false }.
3. Perform ? DefinePropertyOrThrow(O, k, desc).
8. Return true.

7.3.16 TestIntegrityLevel ( O, level )

The abstract operation TestIntegrityLevel takes arguments O and level. It is used to determine if the set of own
properties of an object are fixed. It performs the following steps when called:

Assert: Type(O) is Object.
Assert: level is either sealed or frozen.
Let extensible be ? IsExtensible(O).
If extensible is true, return false.
NOTE: If the object is extensible, none of its properties are examined.
Let keys be ? O.[[OwnPropertyKeys]]().
For each element k of keys, do
a. Let currentDesc be ? O.[[GetOwnProperty]](k).
b. If currentDesc is not undefined, then

NG =

i. If currentDesc.[[Configurable]] is true, return false.
ii. If level is frozen and IsDataDescriptor(currentDesc) is true, then
1. If currentDesc.[[Writable]] is true, return false.
8. Return true.

7.3.17 CreateArrayFromlList ( elements)

The abstract operation CreateArrayFromList takes argument elements (a List). It is used to create an Array object
whose elements are provided by elements. It performs the following steps when called:

1. Assert: elements is a List whose elements are all ECMAScript language values.
2. Letarray be ! ArrayCreate(0).
3. Let nnbe 0.
4. For each element ¢ of elements, do
a. Perform ! CreateDataPropertyOrThrow(array, ! ToString(F(n)), e).
b. Setnton + 1.
5. Return array.

7.3.18 LengthOfArrayLike ( 0bj)

The abstract operation LengthOfArrayLike takes argument obj. It returns the value of the "length" property of an
array-like object (as a non-negative integer). It performs the following steps when called:

133


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD

1. Assert: Type(obj) is Object.
2. Return R(? ToLength(? Get(obj, ""length'))).

An array-like object is any object for which this operation returns an integer rather than an abrupt completion.

NOTE 1 Typically, an array-like object would also have some properties with integer index names.
However, that is not a requirement of this definition.

NOTE 2 Array objects and String objects are examples of array-like objects.

7.3.19 CreateListFromArrayLike ( obj [, elementTypes])

The abstract operation CreateListFromArrayLike takes argument obj and optional argument elementTypes (a List of
names of ECMAScript Language Types). It is used to create a List value whose elements are provided by the indexed
properties of obj. elementTypes contains the names of ECMAScript Language Types that are allowed for element values
of the List that is created. It performs the following steps when called:

1. If elementTypes is not present, set elementTypes to « Undefined, Null, Boolean, String, Symbol, Number, Biglnt,
Object ».
If Type(obj) is not Object, throw a TypeError exception.
Let len be ? LengthOfArrayLike(obj).
Let list be a new empty List.
Let index be 0.
Repeat, while index < len,
a. Let indexName be ! ToString(F(index)).
b. Let next be ? Get(obj, indexName).
c. If Type(next) is not an element of elementTypes, throw a TypeError exception.

S

d. Append next as the last element of /ist.
e. Set index to index + 1.
7. Return list.

7.3.20 Invoke (V, P [, argumentsList])

The abstract operation Invoke takes arguments V (an ECMAScript language value) and P (a property key) and
optional argument argumentsList (a List of ECMAScript language values). It is used to call a method property of an
ECMAScript language value. V serves as both the lookup point for the property and the this value of the call.
argumentsList is the list of arguments values passed to the method. If argumentsList is not present, a new empty List is
used as its value. It performs the following steps when called:

1. Assert: IsPropertyKey(P) is true.

2. If arqumentsList is not present, set arqumentsList to a new empty List.
3. Let func be ? GetV(V, P).

4. Return ? Call(func, V, argumentsList).

7.3.21 OrdinaryHasInstance (C, O)

The abstract operation OrdinaryHasInstance takes arguments C (an ECMAScript language value) and O. It
134


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD

implements the default algorithm for determining if O inherits from the instance object inheritance path provided by
C. It performs the following steps when called:

—_

. If IsCallable(C) is false, return false.

. If C has a [[BoundTargetFunction]] internal slot, then
a. Let BC be C.[[BoundTargetFunction]].
b. Return ? InstanceofOperator(O, BC).

. If Type(O) is not Object, return false.

. Let P be ? Get(C, "prototype").

. If Type(P) is not Object, throw a TypeError exception.

N

AN U1 B~ W

. Repeat,
a. Set O to ? O.[[GetPrototypeOf]]().
b. If O is null, return false.
c. If SameValue(P, O) is true, return true.

7.3.22 SpeciesConstructor ( O, defaultConstructor)

The abstract operation SpeciesConstructor takes arguments O (an Object) and defaultConstructor (a constructor). It is
used to retrieve the constructor that should be used to create new objects that are derived from O. defaultConstructor is
the constructor to use if a constructor @@species property cannot be found starting from O. It performs the following
steps when called:

Assert: Type(O) is Object.

Let C be ? Get(O, "constructor").

If C is undefined, return defaultConstructor.

If Type(C) is not Object, throw a TypeError exception.
Let S be ? Get(C, @@species).

If S is either undefined or null, return defaultConstructor.
If IsConstructor(S) is true, return S.

® NS N

Throw a TypeError exception.

7.3.23 EnumerableOwnPropertyNames ( O, kind )

The abstract operation EnumerableOwnPropertyNames takes arguments O (an Object) and kind (one of key, value, or
key+value). It performs the following steps when called:

1. Assert: Type(O) is Object.
2. Let ownKeys be ? O.[[OwnPropertyKeys]]().
3. Let properties be a new empty List.
4. For each element key of ownKeys, do
a. If Type(key) is String, then
i. Let desc be ? O.[[GetOwnProperty]](key).
ii. If desc is not undefined and desc.[[Enumerable]] is true, then
1. If kind is key, append key to properties.
2. Else,
a. Let value be ? Get(O, key).
b. If kind is value, append value to properties.
c. Else,

135



i. Assert: kind is key+value.
ii. Letentry be! CreateArrayFromList(« key, value »).
iii. Append entry to properties.
5. Return properties.

7.3.24 GetFunctionRealm ( obj)

The abstract operation GetFunctionRealm takes argument obj. It performs the following steps when called:

1. Assert: | IsCallable(obj) is true.
2. If obj has a [[Realm]] internal slot, then
a. Return obj.[[Realm]].
3. If obj is a bound function exotic object, then
a. Let target be obj.[[BoundTargetFunction]].
b. Return ? GetFunctionRealm(target).
4. If obj is a Proxy exotic object, then
a. If obj.[[ProxyHandler]] is null, throw a TypeError exception.
b. Let proxyTarget be obj.[[ProxyTarget]].
c. Return ? GetFunctionRealm(proxyTarget).
5. Return the current Realm Record.

NOTE Step 5 will only be reached if obj is a non-standard function exotic object that does not have a
[[Realm]] internal slot.

7.3.25 CopyDataProperties ( target, source, excludedItems)

The abstract operation CopyDataProperties takes arguments target, source, and excludedItems. It performs the following
steps when called:

Assert: Type(target) is Object.

Assert: excludedItems is a List of property keys.
If source is undefined or null, return target.
Let from be ! ToObject(source).

Let keys be ? from.[[OwnPropertyKeys]]().

For each element nextKey of keys, do

SR S i

a. Let excluded be false.
b. For each element ¢ of excludedlItems, do
i. If SameValue(e, nextKey) is true, then
1. Set excluded to true.
c. If excluded is false, then
i. Let desc be ? from.[[GetOwnProperty]](nextKey).
ii. If desc is not undefined and desc.[[Enumerable]] is true, then
1. Let propValue be ? Get(from, nextKey).
2. Perform ! CreateDataPropertyOrThrow(target, nextKey, propValue).
7. Return target.

136



NOTE The target passed in here is always a newly created object which is not directly accessible in case

of an error being thrown.

7.4 Operations on Iterator Objects

See Common Iteration Interfaces (27.1).

7.4.1 Getlterator (obj [, hint [, method1])

The abstract operation Getlterator takes argument obj and optional arguments hint and method. It performs the
following steps when called:

1. If hint is not present, set hint to sync.
2. Assert: hint is either sync or async.
3. If method is not present, then
a. If hint is async, then
i. Set method to ? GetMethod(obj, @@asynclterator).
ii. If method is undefined, then
1. Let syncMethod be ? GetMethod(obj, @@iterator).
2. Let synclteratorRecord be ? Getlterator(obj, sync, syncMethod).
3. Return ! CreateAsyncFromSynclterator(synclteratorRecord).
b. Otherwise, set method to ? GetMethod(obj, @@iterator).
Let iterator be ? Call(method, obj).
If Type(iterator) is not Object, throw a TypeError exception.
Let nextMethod be ? GetV(iterator, "next'").
Let iteratorRecord be the Record { [[Iterator]]: iterator, [[NextMethod]]: nextMethod, [[Done]]: false }.
Return iteratorRecord.

© N O

7.4.2 IteratorNext ( iteratorRecord [, value])

The abstract operation IteratorNext takes argument iteratorRecord and optional argument value. It performs the
following steps when called:

1. If value is not present, then
a. Let result be ? Call(iteratorRecord.[[NextMethod]], iteratorRecord.[[Iterator]]).
2. Else,
a. Let result be ? Call(iteratorRecord.[[NextMethod]], iteratorRecord.[[Iterator]], « value »).
3. If Type(result) is not Object, throw a TypeError exception.
4. Return result.

7.4.3 IteratorComplete ( iterResult)

The abstract operation IteratorComplete takes argument iterResult. It performs the following steps when called:

1. Assert: Type(iterResult) is Object.
2. Return ! ToBoolean(? Get(iterResult, "done")).

137



7.4.4 IteratorValue (iterResult)

The abstract operation IteratorValue takes argument iterResult. It performs the following steps when called:

1. Assert: Type(iterResult) is Object.
2. Return ? Get(iterResult, "'value").

7.4.5 IteratorStep (iteratorRecord)

The abstract operation IteratorStep takes argument iteratorRecord. It requests the next value from iteratorRecord.
[[Tterator]] by calling iteratorRecord.[[NextMethod]] and returns either false indicating that the iterator has reached its
end or the IteratorResult object if a next value is available. It performs the following steps when called:

Let result be ? IteratorNext(iteratorRecord).
Let done be ? IteratorComplete(result).
If done is true, return false.

LN

Return result.

7.4.6 IteratorClose (iteratorRecord, completion)

The abstract operation IteratorClose takes arguments iteratorRecord and completion. It is used to notify an iterator that it
should perform any actions it would normally perform when it has reached its completed state. It performs the
following steps when called:

Assert: Type(iteratorRecord.[[Iterator]]) is Object.
Assert: completion is a Completion Record.

Let iterator be iteratorRecord.[[Iterator]].

Let innerResult be GetMethod(iterator, "return').
If innerResult.[[Type]] is normal, then

SIS

a. Let return be innerResult.[[Value]].
b. If return is undefined, return Completion(completion).
c. Set innerResult to Call(return, iterator).
If completion.[[Type]] is throw, return Completion(completion).
If innerResult.[[Type]] is throw, return Completion(innerResult).
If Type(innerResult.[[Value]]) is not Object, throw a TypeError exception.

o *© N

Return Completion(completion).

7.4.7 AsynclteratorClose ( iteratorRecord, completion)

The abstract operation AsynclteratorClose takes arguments iteratorRecord and completion. It is used to notify an async
iterator that it should perform any actions it would normally perform when it has reached its completed state. It
performs the following steps when called:

Assert: Typel(iteratorRecord.[[Iterator]]) is Object.
Assert: completion is a Completion Record.

Let iterator be iteratorRecord.[[Iterator]].

Let innerResult be GetMethod(iterator, "return').
If innerResult.[[Type]] is normal, then

SN .

a. Let return be innerResult.[[Value]].

138



b. If return is undefined, return Completion(completion).

c. Set innerResult to Call(return, iterator).

d. If innerResult.[[Type]] is normal, set innerResult to Await(innerResult.[[Value]]).
If completion.[[Type]] is throw, return Completion(completion).
If innerResult.[[Type]] is throw, return Completion(innerResult).
If Type(innerResult.[[Value]]) is not Object, throw a TypeError exception.

v *® N

Return Completion(completion).

7.4.8 CreatelterResultObject (value, done)

The abstract operation CreatelterResultObject takes arguments value and done. It creates an object that supports the
IteratorResult interface. It performs the following steps when called:

Assert: Type(done) is Boolean.

Let obj be ! OrdinaryObjectCreate(%ODbject.prototype%).
Perform ! CreateDataPropertyOrThrow(obj, "value", value).
Perform ! CreateDataPropertyOrThrow(obj, "done", done).

SRS -

Return obj.

7.4.9 CreateListIteratorRecord ( list)

The abstract operation CreateListlteratorRecord takes argument list. It creates an Iterator (27.1.1.2) object record whose
next method returns the successive elements of ist. It performs the following steps when called:

1. Let closure be a new Abstract Closure with no parameters that captures list and performs the following steps
when called:
a. For each element E of list, do
i. Perform ? Yield(E).
b. Return undefined.
2. Let iterator be ! CreatelteratorFromClosure(closure, empty, %IteratorPrototype%).
3. Return Record { [[Iterator]]: iterator, [[NextMethod]]: %GeneratorFunction.prototype.prototype.next%,
[[Done]]: false }.

NOTE The list iterator object is never directly accessible to ECMAScript code.

7.4.10 IterableToList (items [, method ])

The abstract operation IterableToList takes argument items and optional argument method. It performs the following
steps when called:

1. If method is present, then
a. Let iteratorRecord be ? Getlterator(items, sync, method).
2. Else,
a. Let iteratorRecord be ? Getlterator(items, sync).
3. Let values be a new empty List.
4. Let next be true.
5. Repeat, while next is not false,

139



a. Set next to ? IteratorStep(iteratorRecord).
b. If next is not false, then
i. Let nextValue be ? IteratorValue(next).
ii. Append nextValue to the end of the List values.
6. Return values.

8 Syntax-Directed Operations

In addition to those defined in this section, specialized syntax-directed operations are defined throughout this
specification.

8.1 Scope Analysis

8.1.1 Static Semantics: BoundNames

NOTE "*default*" is used within this specification as a synthetic name for hoistable anonymous
functions that are defined using export declarations.

Bindingldentifier : Identifier
1. Return a List whose sole element is the StringValue of Identifier.
Bindingldentifier : yield
1. Return a List whose sole element is "yield".
Bindingldentifier : await
1. Return a List whose sole element is "await".
LexicalDeclaration : LetOrConst BindingList ;
1. Return the BoundNames of BindingList.
BindingList : BindingList , LexicalBinding

1. Let names be the BoundNames of BindingList.
2. Append to names the elements of the BoundNames of LexicalBinding.
3. Return names.

LexicalBinding : Bindingldentifier Initializer

1. Return the BoundNames of Bindingldentifier.
LexicalBinding : BindingPattern Initializer

1. Return the BoundNames of BindingPattern.

VariableDeclarationList : VariableDeclarationList , VariableDeclaration
140



1. Let names be BoundNames of VariableDeclarationList.
2. Append to names the elements of BoundNames of VariableDeclaration.
3. Return names.

VariableDeclaration : Bindingldentifier Initializer

1. Return the BoundNames of Bindingldentifier.
VariableDeclaration : BindingPattern Initializer

1. Return the BoundNames of BindingPattern.
ObjectBindingPattern : { }

1. Return a new empty List.
ObjectBindingPattern : { BindingPropertyList , BindingRestProperty }

1. Let names be BoundNames of BindingPropertyList.
2. Append to names the elements of BoundNames of BindingRestProperty.
3. Return names.

ArrayBindingPattern : [ Elision ]
1. Return a new empty List.

ArrayBindingPattern : [ Elision BindingRestElement |
1. Return the BoundNames of BindingRestElement.
ArrayBindingPattern : [ BindingElementList , Elision 1
1. Return the BoundNames of BindingElementList.

ArrayBindingPattern : [ BindingElementList , Elision BindingRestElement ]

1. Let names be BoundNames of BindingElementList.
2. Append to names the elements of BoundNames of BindingRestElement.
3. Return names.

BindingPropertyList : BindingPropertyList , BindingProperty

1. Let names be BoundNames of BindingPropertyList.
2. Append to names the elements of BoundNames of BindingProperty.
3. Return names.

BindingElementList : BindingElementList , BindingElisionElement

1. Let names be BoundNames of BindingElementList.
2. Append to names the elements of BoundNames of BindingElisionElement.
3. Return names.

BindingElisionElement : Elision BindingElement

141



1. Return BoundNames of BindingElement.
BindingProperty : PropertyName : BindingElement

1. Return the BoundNames of BindingElement.
SingleNameBinding : Bindingldentifier Initializer

1. Return the BoundNames of Bindingldentifier.
BindingElement : BindingPattern Initializer

1. Return the BoundNames of BindingPattern.
ForDeclaration : LetOrConst ForBinding
1. Return the BoundNames of ForBinding.
FunctionDeclaration : function Bindingldentifier ( FormalParameters ) { FunctionBody }
1. Return the BoundNames of Bindingldentifier.
FunctionDeclaration : function ( FormalParameters ) { FunctionBody }
1. Return « "*default*'" ».
FormalParameters : [empty]
1. Return a new empty List.
FormalParameters : FormalParameterList , FunctionRestParameter

1. Let names be BoundNames of FormalParameterList.
2. Append to names the BoundNames of FunctionRestParameter.
3. Return names.

FormalParameterList : FormalParameterList , FormalParameter

1. Let names be BoundNames of FormalParameterList.
2. Append to names the BoundNames of FormalParameter.
3. Return names.

ArrowParameters : CoverParenthesizedExpression AndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesizedExpression AndArrowParameterList.
2. Return the BoundNames of formals.

GeneratorDeclaration : function x Bindingldentifier ( FormalParameters ) { GeneratorBody }
1. Return the BoundNames of Bindingldentifier.

GeneratorDeclaration : function % ( FormalParameters ) { GeneratorBody }
1. Return « "*default*'" ».

AsyncGeneratorDeclaration : async function x Bindingldentifier ( FormalParameters ) { AsyncGeneratorBody }

142



1. Return the BoundNames of Bindingldentifier.

AsyncGeneratorDeclaration : async function % ( FormalParameters ) { AsyncGeneratorBody }
1. Return « "*default*" ».

ClassDeclaration : class Bindingldentifier ClassTail
1. Return the BoundNames of Bindingldentifier.

ClassDeclaration : class ClassTail
1. Return « "*default*" ».

AsyncFunctionDeclaration : async function Bindingldentifier ( FormalParameters ) { AsyncFunctionBody }
1. Return the BoundNames of Bindingldentifier.

AsyncFunctionDeclaration : async function ( FormalParameters ) { AsyncFunctionBody }
1. Return « '"*default™" ».

CoverCallExpressionAnd AsyncArrowHead : MemberExpression Arguments

1. Let head be Covered AsyncArrowHead of CoverCallExpressionAnd AsyncArrowHead.
2. Return the BoundNames of head.

ImportDeclaration : import ImportClause FromClause ;

1. Return the BoundNames of ImportClause.
ImportDeclaration : import ModuleSpecifier ;

1. Return a new empty List.
ImportClause : ImportedDefaultBinding , NameSpacelmport

1. Let names be the BoundNames of ImportedDefaultBinding.
2. Append to names the elements of the BoundNames of NameSpacelmport.
3. Return names.

ImportClause : ImportedDefaultBinding , NamedImports

1. Let names be the BoundNames of ImportedDefaultBinding.
2. Append to names the elements of the BoundNames of NamedImports.
3. Return names.

NamedImports : { }
1. Return a new empty List.
ImportsList : ImportsList , ImportSpecifier

1. Let names be the BoundNames of ImportsList.
2. Append to names the elements of the BoundNames of ImportSpecifier.
3. Return names.

143



ImportSpecifier : IdentifierName as ImportedBinding
1. Return the BoundNames of ImportedBinding.

ExportDeclaration :
export ExportFromClause FromClause ;

export NamedExports ;
1. Return a new empty List.
ExportDeclaration : export VariableStatement
1. Return the BoundNames of VariableStatement.
ExportDeclaration : export Declaration
1. Return the BoundNames of Declaration.
ExportDeclaration : export default HoistableDeclaration

1. Let declarationNames be the BoundNames of HoistableDeclaration.
2. If declarationNames does not include the element "*default*", append "*default*" to declarationNames.
3. Return declarationNames.

ExportDeclaration : export default ClassDeclaration

1. Let declarationNames be the BoundNames of ClassDeclaration.
2. If declarationNames does not include the element "*default*", append "*default*" to declarationNames.
3. Return declarationNames.

ExportDeclaration : export default AssignmentExpression ;

1. Return « "*default*" ».

8.1.2 Static Semantics: DeclarationPart
HoistableDeclaration : FunctionDeclaration

1. Return FunctionDeclaration.
HoistableDeclaration : GeneratorDeclaration

1. Return GeneratorDeclaration.
HoistableDeclaration : AsyncFunctionDeclaration

1. Return AsyncFunctionDeclaration.
HoistableDeclaration : AsyncGeneratorDeclaration

1. Return AsyncGeneratorDeclaration.
Declaration : ClassDeclaration

1. Return ClassDeclaration.

144



Declaration : LexicalDeclaration

1. Return LexicalDeclaration.

8.1.3 Static Semantics: IsConstantDeclaration
LexicalDeclaration : LetOrConst BindingList ;

1. Return IsConstantDeclaration of LetOrConst.

LetOrConst : let

1. Return false.

LetOrConst : const

1. Return true.

FunctionDeclaration :
function Bindingldentifier ( FormalParameters ) { FunctionBody }

function ( FormalParameters ) { FunctionBody }

GeneratorDeclaration :
function x Bindingldentifier ( FormalParameters ) { GeneratorBody }

function x ( FormalParameters ) { GeneratorBody }

AsyncGeneratorDeclaration :
async function x Bindingldentifier ( FormalParameters ) { AsyncGeneratorBody }

async function x ( FormalParameters ) { AsyncGeneratorBody }

AsyncFunctionDeclaration :
async function Bindingldentifier ( FormalParameters ) { AsyncFunctionBody }

async function ( FormalParameters ) { AsyncFunctionBody }

1. Return false.

ClassDeclaration :
class Bindingldentifier ClassTail

class ClassTail

1. Return false.

ExportDeclaration :
export ExportFromClause FromClause ;

export NamedExports ;
export default AssignmentExpression ;

1. Return false.

NOTE It is not necessary to treat export default AssignmentExpression as a constant declaration
because there is no syntax that permits assignment to the internal bound name used to reference

a module's default object.

145



8.1.4 Static Semantics: LexicallyDeclaredNames
Block : { }

1. Return a new empty List.
StatementList : StatementList StatementListltem

1. Let names be LexicallyDeclaredNames of StatementList.
2. Append to names the elements of the LexicallyDeclaredNames of StatementListItem.
3. Return names.

StatementListItem : Statement

1. If Statement is Statement : LabelledStatement , return LexicallyDeclaredNames of LabelledStatement.
2. Return a new empty List.

StatementListltem : Declaration

1. Return the BoundNames of Declaration.
CaseBlock : { }

1. Return a new empty List.

CaseBlock : { CaseClauses DefaultClause CaseClauses }

If the first CaseClauses is present, let names be the LexicallyDeclaredNames of the first CaseClauses.
Else, let names be a new empty List.

Append to names the elements of the LexicallyDeclaredNames of DefaultClause.

If the second CaseClauses is not present, return names.

SRS -

Return the result of appending to names the elements of the LexicallyDeclaredNames of the second CaseClauses.
CaseClauses : CaseClauses CaseClause

1. Let names be LexicallyDeclaredNames of CaseClauses.
2. Append to names the elements of the LexicallyDeclaredNames of CaseClause.
3. Return names.

CaseClause : case Expression : StatementList

1. If the StatementList is present, return the LexicallyDeclaredNames of StatementList.
2. Return a new empty List.

DefaultClause : default : StatementList

1. If the StatementList is present, return the LexicallyDeclaredNames of StatementList.
2. Return a new empty List.

LabelledStatement : Labelldentifier : LabelledItem
1. Return the LexicallyDeclaredNames of LabelledItem.

LabelledItem : Statement

146



1. Return a new empty List.
LabelledItem : FunctionDeclaration

1. Return BoundNames of FunctionDeclaration.
FunctionStatementList : [empty]

1. Return a new empty List.
FunctionStatementList : StatementList

1. Return TopLevelLexicallyDeclaredNames of StatementList.
ConciseBody : ExpressionBody

1. Return a new empty List.
AsyncConciseBody : ExpressionBody

1. Return a new empty List.
ScriptBody : StatementList

1. Return TopLevelLexicallyDeclaredNames of StatementList.

NOTE 1 At the top level of a Script, function declarations are treated like var declarations rather than like
lexical declarations.

NOTE 2 The LexicallyDeclaredNames of a Module includes the names of all of its imported bindings.

ModuleltemList : ModuleltemList Moduleltem

1. Let names be LexicallyDeclaredNames of ModuleltemList.
2. Append to names the elements of the LexicallyDeclaredNames of Moduleltem.
3. Return names.

Moduleltem : ImportDeclaration
1. Return the BoundNames of ImportDeclaration.
Moduleltem : ExportDeclaration

1. If ExportDeclaration is export VariableStatement, return a new empty List.
2. Return the BoundNames of ExportDeclaration.

Moduleltem : StatementListltem

1. Return LexicallyDeclaredNames of StatementListItem.

NOTE 3 At the top level of a Module, function declarations are treated like lexical declarations rather than
like var declarations.

147



8.1.5 Static Semantics: LexicallyScopedDeclarations
StatementList : StatementList StatementListItem

1. Let declarations be LexicallyScopedDeclarations of StatementList.
2. Append to declarations the elements of the LexicallyScopedDeclarations of StatementListItem.
3. Return declarations.

StatementListltem : Statement

1. If Statement is Statement : LabelledStatement , return LexicallyScopedDeclarations of LabelledStatement.
2. Return a new empty List.

StatementListltem : Declaration

1. Return a List whose sole element is DeclarationPart of Declaration.
CaseBlock : { }

1. Return a new empty List.

CaseBlock : { CaseClauses DefaultClause CaseClauses }

If the first CaseClauses is present, let declarations be the LexicallyScopedDeclarations of the first CaseClauses.
Else, let declarations be a new empty List.

Append to declarations the elements of the LexicallyScopedDeclarations of DefaultClause.

If the second CaseClauses is not present, return declarations.

SRS -

Return the result of appending to declarations the elements of the LexicallyScopedDeclarations of the second
CaseClauses.

CaseClauses : CaseClauses CaseClause

1. Let declarations be LexicallyScopedDeclarations of CaseClauses.
2. Append to declarations the elements of the LexicallyScopedDeclarations of CaseClause.
3. Return declarations.

CaseClause : case Expression : StatementList

1. If the StatementList is present, return the LexicallyScopedDeclarations of StatementList.
2. Return a new empty List.

DefaultClause : default : StatementList

1. If the StatementList is present, return the LexicallyScopedDeclarations of StatementList.
2. Return a new empty List.

LabelledStatement : Labelldentifier : LabelledItem

1. Return the LexicallyScopedDeclarations of LabelledItem.
LabelledItem : Statement

1. Return a new empty List.
LabelledItem : FunctionDeclaration

148



1. Return a List whose sole element is FunctionDeclaration.
FunctionStatementList : [empty]

1. Return a new empty List.
FunctionStatementList : StatementList

1. Return the TopLevelLexicallyScopedDeclarations of StatementList.
ConciseBody : ExpressionBody

1. Return a new empty List.
AsyncConciseBody : ExpressionBody

1. Return a new empty List.
ScriptBody : StatementList

1. Return TopLevelLexicallyScopedDeclarations of StatementList.
Module : [empty]

1. Return a new empty List.
ModuleltemList : ModuleltemList Moduleltem

1. Let declarations be LexicallyScopedDeclarations of ModuleltemList.

2. Append to declarations the elements of the LexicallyScopedDeclarations of Moduleltem.

3. Return declarations.
Moduleltem : ImportDeclaration
1. Return a new empty List.

ExportDeclaration :
export ExportFromClause FromClause ;
export NamedExports ;

export VariableStatement

1. Return a new empty List.
ExportDeclaration : export Declaration

1. Return a List whose sole element is DeclarationPart of Declaration.
ExportDeclaration : export default HoistableDeclaration

1. Return a List whose sole element is DeclarationPart of HoistableDeclaration.
ExportDeclaration : export default ClassDeclaration

1. Return a List whose sole element is ClassDeclaration.

ExportDeclaration : export default AssignmentExpression ;

149



1. Return a List whose sole element is this ExportDeclaration.

8.1.6 Static Semantics: VarDeclaredNames
Statement

EmptyStatement
ExpressionStatement
ContinueStatement
BreakStatement
ReturnStatement
ThrowStatement

DebuggerStatement
1. Return a new empty List.
Block : { }
1. Return a new empty List.
StatementList : StatementList StatementListItem

1. Let names be VarDeclaredNames of StatementList.
2. Append to names the elements of the VarDeclaredNames of StatementListItem.
3. Return names.

StatementListltem : Declaration

1. Return a new empty List.
VariableStatement : var VariableDeclarationList ;

1. Return BoundNames of VariableDeclarationList.
IfStatement : if ( Expression ) Statement else Statement

1. Let names be VarDeclaredNames of the first Statement.

2. Append to names the elements of the VarDeclaredNames of the second Statement.

3. Return names.
IfStatement : if ( Expression ) Statement
1. Return the VarDeclaredNames of Statement.
DoWhileStatement : do Statement while ( Expression ) ;
1. Return the VarDeclaredNames of Statement.
WhileStatement : while ( Expression ) Statement
1. Return the VarDeclaredNames of Statement.
ForStatement : for ( Expression ; Expression ; Expression ) Statement

1. Return the VarDeclaredNames of Statement.

150



ForStatement : for ( var VariableDeclarationList ; Expression ; Expression ) Statement

1. Let names be BoundNames of VariableDeclarationList.
2. Append to names the elements of the VarDeclaredNames of Statement.
3. Return names.

ForStatement : for ( LexicalDeclaration Expression ; Expression ) Statement

1. Return the VarDeclaredNames of Statement.

ForInOfStatement :
for ( LeftHandSideExpression in Expression ) Statement
for ( ForDeclaration in Expression ) Statement
for ( LeftHandSideExpression of AssignmentExpression ) Statement
for ( ForDeclaration of AssignmentExpression ) Statement
for await ( LeftHandSideExpression of AssignmentExpression ) Statement

for await ( ForDeclaration of AssignmentExpression ) Statement
1. Return the VarDeclaredNames of Statement.

ForInOfStatement :
for ( var ForBinding in Expression ) Statement

for ( var ForBinding of AssignmentExpression ) Statement

for await ( var ForBinding of AssignmentExpression ) Statement

1. Let names be the BoundNames of ForBinding.
2. Append to names the elements of the VarDeclaredNames of Statement.
3. Return names.

NOTE This section is extended by Annex B.3.6.

WithStatement : with ( Expression ) Statement

1. Return the VarDeclaredNames of Statement.
SwitchStatement : switch ( Expression ) CaseBlock

1. Return the VarDeclaredNames of CaseBlock.
CaseBlock : { }

1. Return a new empty List.

CaseBlock : { CaseClauses DefaultClause CaseClauses }

If the first CaseClauses is present, let names be the VarDeclaredNames of the first CaseClauses.

Else, let names be a new empty List.

Append to names the elements of the VarDeclaredNames of DefaultClause.

If the second CaseClauses is not present, return names.

Return the result of appending to names the elements of the VarDeclaredNames of the second CaseClauses.

SUESIRCENS -

151



CaseClauses : CaseClauses CaseClause

1. Let names be VarDeclaredNames of CaseClauses.
2. Append to names the elements of the VarDeclaredNames of CaseClause.
3. Return names.

CaseClause : case Expression : StatementList

1. If the StatementList is present, return the VarDeclaredNames of StatementList.

2. Return a new empty List.

DefaultClause : default : StatementList

1. If the StatementList is present, return the VarDeclaredNames of StatementList.

2. Return a new empty List.
LabelledStatement : Labelldentifier : LabelledItem

1. Return the VarDeclaredNames of LabelledItem.
LabelledItem : FunctionDeclaration

1. Return a new empty List.
TryStatement : try Block Catch

1. Let names be VarDeclaredNames of Block.
2. Append to names the elements of the VarDeclaredNames of Catch.
3. Return names.

TryStatement : try Block Finally

1. Let names be VarDeclaredNames of Block.
2. Append to names the elements of the VarDeclaredNames of Finally.
3. Return names.

TryStatement : try Block Catch Finally

. Let names be VarDeclaredNames of Block.
. Append to names the elements of the VarDeclaredNames of Catch.
. Append to names the elements of the VarDeclaredNames of Finally.

= W N =

. Return names.
Catch : catch ( CatchParameter ) Block

1. Return the VarDeclaredNames of Block.
FunctionStatementList : [empty]

1. Return a new empty List.
FunctionStatementList : StatementList

1. Return TopLevelVarDeclaredNames of StatementList.

152



ConciseBody : ExpressionBody
1. Return a new empty List.
AsyncConciseBody : ExpressionBody
1. Return a new empty List.
ScriptBody : StatementList
1. Return TopLevelVarDeclaredNames of StatementList.
Module : [empty]
1. Return a new empty List.
ModuleltemList : ModuleltemList Moduleltem

1. Let names be VarDeclaredNames of ModuleltemList.
2. Append to names the elements of the VarDeclaredNames of Modulelten.
3. Return names.

Moduleltem : ImportDeclaration
1. Return a new empty List.
Moduleltem : ExportDeclaration

1. If ExportDeclaration is eXxport VariableStatement, return BoundNames of ExportDeclaration.
2. Return a new empty List.

8.1.7 Static Semantics: VarScopedDeclarations
Statement :

EmptyStatement
ExpressionStatement
ContinueStatement
BreakStatement
ReturnStatement
ThrowStatement

DebuggerStatement
1. Return a new empty List.
Block : { }
1. Return a new empty List.
StatementList : StatementList StatementListItem

1. Let declarations be VarScopedDeclarations of StatementList.
2. Append to declarations the elements of the VarScopedDeclarations of StatementListIten.
3. Return declarations.

153



StatementListltem : Declaration

1. Return a new empty List.
VariableDeclarationList : VariableDeclaration

1. Return a List whose sole element is VariableDeclaration.
VariableDeclarationList : VariableDeclarationList , VariableDeclaration

1. Let declarations be VarScopedDeclarations of VariableDeclarationList.
2. Append VariableDeclaration to declarations.
3. Return declarations.

IfStatement : if ( Expression ) Statement else Statement

1. Let declarations be VarScopedDeclarations of the first Statement.

2. Append to declarations the elements of the VarScopedDeclarations of the second Statement.

3. Return declarations.
IfStatement : if ( Expression ) Statement

1. Return the VarScopedDeclarations of Statement.
DoWhileStatement : do Statement while ( Expression ) ;

1. Return the VarScopedDeclarations of Statement.
WhileStatement : while ( Expression ) Statement

1. Return the VarScopedDeclarations of Statement.

ForStatement : for ( Expression ; Expression ; Expression ) Statement

1. Return the VarScopedDeclarations of Statement.
ForStatement : for ( var VariableDeclarationList ; Expression ; Expression ) Statement

1. Let declarations be VarScopedDeclarations of VariableDeclarationList.
2. Append to declarations the elements of the VarScopedDeclarations of Statement.
3. Return declarations.

ForStatement : for ( LexicalDeclaration Expression ; Expression ) Statement
1. Return the VarScopedDeclarations of Statement.

ForInOfStatement :
for ( LeftHandSideExpression in Expression ) Statement
for ( ForDeclaration in Expression ) Statement
for ( LeftHandSideExpression of AssignmentExpression ) Statement
for ( ForDeclaration of AssignmentExpression ) Statement
for await ( LeftHandSideExpression of AssignmentExpression ) Statement

for await ( ForDeclaration of AssignmentExpression ) Statement

154



1. Return the VarScopedDeclarations of Statement.

ForInOfStatement :
for ( var ForBinding in Expression ) Statement
for ( var ForBinding of AssignmentExpression ) Statement

for await ( var ForBinding of AssignmentExpression ) Statement

1. Let declarations be a List whose sole element is ForBinding.
2. Append to declarations the elements of the VarScopedDeclarations of Statement.
3. Return declarations.

NOTE This section is extended by Annex B.3.6.

WithStatement : with ( Expression ) Statement

1. Return the VarScopedDeclarations of Statement.
SwitchStatement : switch ( Expression ) CaseBlock

1. Return the VarScopedDeclarations of CaseBlock.
CaseBlock : { }

1. Return a new empty List.

CaseBlock : { CaseClauses DefaultClause CaseClauses }

If the first CaseClauses is present, let declarations be the VarScopedDeclarations of the first CaseClauses.
Else, let declarations be a new empty List.

Append to declarations the elements of the VarScopedDeclarations of DefaultClause.

If the second CaseClauses is not present, return declarations.

SRS .

Return the result of appending to declarations the elements of the VarScopedDeclarations of the second
CaseClauses.

CaseClauses : CaseClauses CaseClause

1. Let declarations be VarScopedDeclarations of CaseClauses.
2. Append to declarations the elements of the VarScopedDeclarations of CaseClause.
3. Return declarations.

CaseClause : case Expression : StatementList

1. If the StatementList is present, return the VarScopedDeclarations of StatementList.
2. Return a new empty List.

DefaultClause : default : StatementList

1. If the StatementList is present, return the VarScopedDeclarations of StatementList.
2. Return a new empty List.

LabelledStatement : Labelldentifier : LabelledItem

155



1. Return the VarScopedDeclarations of Labelledltem.
LabelledItem : FunctionDeclaration

1. Return a new empty List.
TryStatement : try Block Catch

1. Let declarations be VarScopedDeclarations of Block.
2. Append to declarations the elements of the VarScopedDeclarations of Catch.
3. Return declarations.

TryStatement : try Block Finally

1. Let declarations be VarScopedDeclarations of Block.

2. Append to declarations the elements of the VarScopedDeclarations of Finally.

3. Return declarations.
TryStatement : try Block Catch Finally

. Let declarations be VarScopedDeclarations of Block.
. Append to declarations the elements of the VarScopedDeclarations of Catch.

1
2
3. Append to declarations the elements of the VarScopedDeclarations of Finally.
4

. Return declarations.

Catch : catch ( CatchParameter ) Block

1. Return the VarScopedDeclarations of Block.
FunctionStatementList : [empty]

1. Return a new empty List.
FunctionStatementList : StatementList

1. Return the TopLevelVarScopedDeclarations of StatementList.
ConciseBody : ExpressionBody

1. Return a new empty List.
AsyncConciseBody : ExpressionBody

1. Return a new empty List.
ScriptBody : StatementList

1. Return TopLevelVarScopedDeclarations of StatementList.
Module : [empty]

1. Return a new empty List.
ModuleltemList : ModuleltemList Moduleltem

1. Let declarations be VarScopedDeclarations of ModuleltemList.

156



2. Append to declarations the elements of the VarScopedDeclarations of Moduleltem.
3. Return declarations.

Moduleltem : ImportDeclaration
1. Return a new empty List.
Moduleltem : ExportDeclaration

1. If ExportDeclaration is export VariableStatement, return VarScopedDeclarations of VariableStatement.
2. Return a new empty List.

8.1.8 Static Semantics: TopLevelLexicallyDeclaredNames

StatementList : StatementList StatementListltem

1. Let names be TopLevelLexicallyDeclaredNames of StatementList.
2. Append to names the elements of the TopLevelLexicallyDeclaredNames of StatementListItem.
3. Return names.

StatementListItem : Statement
1. Return a new empty List.
StatementListItem : Declaration

1. If Declaration is Declaration : HoistableDeclaration , then
a. Return « ».

2. Return the BoundNames of Declaration.

NOTE At the top level of a function, or script, function declarations are treated like var declarations
rather than like lexical declarations.

LabelledStatement : Labelldentifier : LabelledItem

1. Return a new empty List.

8.1.9 Static Semantics: TopLevelLexicallyScopedDeclarations
Block : { }

1. Return a new empty List.
StatementList : StatementList StatementListltem

1. Let declarations be TopLevelLexicallyScopedDeclarations of StatementList.
2. Append to declarations the elements of the TopLevelLexicallyScopedDeclarations of StatementListIten.
3. Return declarations.

StatementListItem : Statement

1. Return a new empty List.

157



StatementListltem : Declaration

1. If Declaration is Declaration : HoistableDeclaration , then
a. Return « ».
2. Return a List whose sole element is Declaration.

LabelledStatement : Labelldentifier : LabelledItem

1. Return a new empty List.

8.1.10 Static Semantics: TopLevelVarDeclaredNames
Block : { }

1. Return a new empty List.
StatementList : StatementList StatementListltem

1. Let names be TopLevelVarDeclaredNames of StatementList.
2. Append to names the elements of the TopLevelVarDeclaredNames of StatementListIter.
3. Return names.

StatementListItem : Declaration

1. If Declaration is Declaration : HoistableDeclaration , then
a. Return the BoundNames of HoistableDeclaration.
2. Return a new empty List.

StatementListItem : Statement

1. If Statement is Statement : LabelledStatement , return TopLevelVarDeclaredNames of Statement.
2. Return VarDeclaredNames of Statement.

NOTE At the top level of a function or script, inner function declarations are treated like var
declarations.

LabelledStatement : Labelldentifier : LabelledItem
1. Return the TopLevelVarDeclaredNames of Labelledltem.
LabelledItem : Statement

1. If Statement is Statement : LabelledStatement , return TopLevelVarDeclaredNames of Statement.
2. Return VarDeclaredNames of Statement.

LabelledItem : FunctionDeclaration

1. Return BoundNames of FunctionDeclaration.

8.1.11 Static Semantics: TopLevel VarScopedDeclarations
Block : { }

1. Return a new empty List.
158



StatementList : StatementList StatementListltem

1. Let declarations be TopLevelVarScopedDeclarations of StatementList.
2. Append to declarations the elements of the TopLevelVarScopedDeclarations of StatementListItem.
3. Return declarations.

StatementListItem : Statement

1. If Statement is Statement : LabelledStatement , return TopLevelVarScopedDeclarations of Statement.

2. Return VarScopedDeclarations of Statement.
StatementListItem : Declaration

1. If Declaration is Declaration : HoistableDeclaration , then
a. Let declaration be DeclarationPart of HoistableDeclaration.
b. Return « declaration ».

2. Return a new empty List.

LabelledStatement : Labelldentifier : LabelledItem
1. Return the TopLevelVarScopedDeclarations of LabelledItem.

LabelledItem : Statement

1. If Statement is Statement : LabelledStatement , return TopLevelVarScopedDeclarations of Statement.

2. Return VarScopedDeclarations of Statement.
LabelledItem : FunctionDeclaration

1. Return a List whose sole element is FunctionDeclaration.

8.2 Labels

8.2.1 Static Semantics: ContainsDuplicateLabels
With parameter labelSet.

Statement :
VariableStatement
EmptyStatement
ExpressionStatement
ContinueStatement
BreakStatement
ReturnStatement
ThrowStatement
DebuggerStatement

Block : { }
StatementListltem : Declaration

1. Return false.

159



StatementList : StatementList StatementListltem

1. Let hasDuplicates be ContainsDuplicateLabels of StatementList with argument labelSet.

2. If hasDuplicates is true, return true.

3. Return ContainsDuplicateLabels of StatementListItem with argument labelSet.

IfStatement : if ( Expression ) Statement else Statement

1. Let hasDuplicate be ContainsDuplicateLabels of the first Statement with argument labelSet.

2. If hasDuplicate is true, return true.

3. Return ContainsDuplicateLabels of the second Statement with argument labelSet.

IfStatement : if ( Expression ) Statement

1. Return ContainsDuplicateLabels of Statement with argument labelSet.
DoWhileStatement : do Statement while ( Expression ) ;

1. Return ContainsDuplicateLabels of Statement with argument labelSet.
WhileStatement : while ( Expression ) Statement

1. Return ContainsDuplicateLabels of Statement with argument labelSet.

ForStatement :

for ( Expression ; Expression ; Expression ) Statement
for ( var VariableDeclarationList ; Expression ; Expression ) Statement
for ( LexicalDeclaration Expression ; Expression ) Statement

1. Return ContainsDuplicateLabels of Statement with argument labelSet.

ForInOfStatement :

for ( LeftHandSideExpression in Expression ) Statement

for ( var ForBinding in Expression ) Statement

for ( ForDeclaration in Expression ) Statement

for ( LeftHandSideExpression of AssignmentExpression ) Statement
for ( var ForBinding of AssignmentExpression ) Statement

for ( ForDeclaration of AssignmentExpression ) Statement

for await ( LeftHandSideExpression of AssignmentExpression ) Statement

for await ( var ForBinding of AssignmentExpression ) Statement

for await ( ForDeclaration of AssignmentExpression ) Statement

1. Return ContainsDuplicateLabels of Statement with argument labelSet.

NOTE This section is extended by Annex B.3.6.

WithStatement : with ( Expression ) Statement
1. Return ContainsDuplicateLabels of Statement with argument labelSet.

SwitchStatement : switch ( Expression ) CaseBlock

160



1. Return ContainsDuplicateLabels of CaseBlock with argument labelSet.
CaseBlock : { }
1. Return false.

CaseBlock : { CaseClauses DefaultClause CaseClauses }

1. If the first CaseClauses is present, then
a. Let hasDuplicates be ContainsDuplicateLabels of the first CaseClauses with argument labelSet.
b. If hasDuplicates is true, return true.

2. Let hasDuplicates be ContainsDuplicateLabels of DefaultClause with argument labelSet.

3. If hasDuplicates is true, return true.

4. If the second CaseClauses is not present, return false.

5. Return ContainsDuplicateLabels of the second CaseClauses with argument labelSet.

CaseClauses : CaseClauses CaseClause

1. Let hasDuplicates be ContainsDuplicateLabels of CaseClauses with argument labelSet.
2. If hasDuplicates is true, return true.
3. Return ContainsDuplicateLabels of CaseClause with argument labelSet.

CaseClause : case Expression : StatementList

1. If the StatementList is present, return ContainsDuplicateLabels of StatementList with argument labelSet.
2. Return false.

DefaultClause : default : StatementList

1. If the StatementList is present, return ContainsDuplicateLabels of StatementList with argument labelSet.
2. Return false.

LabelledStatement : Labelldentifier : LabelledItem

1. Let label be the StringValue of Labelldentifier.

2. If label is an element of labelSet, return true.

3. Let newLabelSet be a copy of labelSet with label appended.

4. Return ContainsDuplicateLabels of LabelledItern with argument newLabelSet.

LabelledItem : FunctionDeclaration
1. Return false.
TryStatement : try Block Catch

1. Let hasDuplicates be ContainsDuplicateLabels of Block with argument labelSet.
2. If hasDuplicates is true, return true.
3. Return ContainsDuplicateLabels of Catch with argument labelSet.

TryStatement : try Block Finally

1. Let hasDuplicates be ContainsDuplicateLabels of Block with argument labelSet.
2. If hasDuplicates is true, return true.

161



3.

Return ContainsDuplicateLabels of Finally with argument labelSet.

TryStatement : try Block Catch Finally

SUESICENS -

Catch :

1.

Let hasDuplicates be ContainsDuplicateLabels of Block with argument labelSet.
If hasDuplicates is true, return true.

Let hasDuplicates be ContainsDuplicateLabels of Catch with argument labelSet.

If hasDuplicates is true, return true.
Return ContainsDuplicateLabels of Finally with argument labelSet.

catch ( CatchParameter ) Block

Return ContainsDuplicateLabels of Block with argument labelSet.

FunctionStatementList : [empty]

1.

Return false.

ModuleltemList : ModuleltemList Moduleltem

1. Let hasDuplicates be ContainsDuplicateLabels of ModuleltemList with argument labelSet.
2.
3.

If hasDuplicates is true, return true.
Return ContainsDuplicateLabels of Moduleltem with argument labelSet.

Moduleltem :

1.

ImportDeclaration

ExportDeclaration

Return false.

8.2.2 Static Semantics: ContainsUndefinedBreakTarget

With parameter labelSet.

Statement :

Block

VariableStatement
EmptyStatement
ExpressionStatement
ContinueStatement
ReturnStatement
ThrowStatement

DebuggerStatement

{1}

StatementListItem : Declaration

1.

Return false.

StatementList : StatementList StatementListltem

1. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of StatementList with argument labelSet.
2.

If hasUndefinedLabels is true, return true.

162



3. Return ContainsUndefinedBreakTarget of StatementListItem with argument labelSet.

IfStatement : if ( Expression ) Statement else Statement

1. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of the first Statement with argument labelSet.

2. If hasUndefinedLabels is true, return true.

3. Return ContainsUndefinedBreakTarget of the second Statement with argument labelSet.

IfStatement : if ( Expression ) Statement

1. Return ContainsUndefinedBreakTarget of Statement with argument labelSet.
DoWhileStatement : do Statement while ( Expression ) ;

1. Return ContainsUndefinedBreakTarget of Statement with argument labelSet.
WhileStatement : while ( Expression ) Statement

1. Return ContainsUndefinedBreakTarget of Statement with argument labelSet.

ForStatement :

for ( Expression ; Expression ; Expression ) Statement
for ( var VariableDeclarationList ; Expression ; Expression ) Statement
for ( LexicalDeclaration Expression ; Expression ) Statement

1. Return ContainsUndefinedBreakTarget of Statement with argument labelSet.

ForInOfStatement :
for ( LeftHandSideExpression in Expression ) Statement
for ( var ForBinding in Expression ) Statement
for ( ForDeclaration in Expression ) Statement
for ( LeftHandSideExpression of AssignmentExpression ) Statement
for ( var ForBinding of AssignmentExpression ) Statement
for ( ForDeclaration of AssignmentExpression ) Statement
for await ( LeftHandSideExpression of AssignmentExpression ) Statement
for await ( var ForBinding of AssignmentExpression ) Statement

for await ( ForDeclaration of AssignmentExpression ) Statement

1. Return ContainsUndefinedBreakTarget of Statement with argument labelSet.

NOTE This section is extended by Annex B.3.6.

BreakStatement : break ;
1. Return false.
BreakStatement : break Labelldentifier ;

1. If the StringValue of Labelldentifier is not an element of labelSet, return true.
2. Return false.

163



WithStatement : with ( Expression ) Statement

1. Return ContainsUndefinedBreakTarget of Statement with argument labelSet.
SwitchStatement : switch ( Expression ) CaseBlock

1. Return ContainsUndefinedBreakTarget of CaseBlock with argument [abelSet.
CaseBlock : { }

1. Return false.
CaseBlock : { CaseClauses DefaultClause CaseClauses }

1. If the first CaseClauses is present, then
a. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of the first CaseClauses with argument labelSet.
b. If hasUndefinedLabels is true, return true.

2. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of DefaultClause with argument labelSet.

3. If hasUndefinedLabels is true, return true.

4. If the second CaseClauses is not present, return false.

5. Return ContainsUndefinedBreakTarget of the second CaseClauses with argument labelSet.

CaseClauses : CaseClauses CaseClause

1. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of CaseClauses with argument labelSet.
2. If hasUndefinedLabels is true, return true.
3. Return ContainsUndefinedBreakTarget of CaseClause with argument labelSet.

CaseClause : case Expression : StatementList

1. If the StatementList is present, return ContainsUndefinedBreakTarget of StatementList with argument labelSet.
2. Return false.

DefaultClause : default : StatementList

1. If the StatementList is present, return ContainsUndefinedBreakTarget of StatementList with argument labelSet.
2. Return false.

LabelledStatement : Labelldentifier : LabelledItem

1. Let label be the StringValue of Labelldentifier.
2. Let newLabelSet be a copy of labelSet with label appended.
3. Return ContainsUndefinedBreakTarget of LabelledItem with argument newLabelSet.

LabelledItem : FunctionDeclaration
1. Return false.
TryStatement : try Block Catch

1. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of Block with argument labelSet.
2. If hasUndefinedLabels is true, return true.
3. Return ContainsUndefinedBreakTarget of Catch with argument labelSet.

164



TryStatement : try Block Finally

1.
2.
3.

Let hasUndefinedLabels be ContainsUndefinedBreakTarget of Block with argument labelSet.

If hasUndefinedLabels is true, return true.
Return ContainsUndefinedBreakTarget of Finally with argument labelSet.

TryStatement : try Block Catch Finally

SRS -

Catch :

1.

Let hasUndefinedLabels be ContainsUndefinedBreakTarget of Block with argument labelSet.

If hasUndefinedLabels is true, return true.

Let hasUndefinedLabels be ContainsUndefinedBreakTarget of Catch with argument labelSet.

If hasUndefinedLabels is true, return true.
Return ContainsUndefinedBreakTarget of Finally with argument labelSet.

catch ( CatchParameter ) Block

Return ContainsUndefinedBreakTarget of Block with argument labelSet.

FunctionStatementList : [empty]

1.

Return false.

ModuleltemList : ModuleltemList Moduleltem

1. Let hasUndefinedLabels be ContainsUndefinedBreakTarget of ModuleltemList with argument labelSet.
2.
3.

If hasUndefinedLabels is true, return true.
Return ContainsUndefinedBreakTarget of Moduleltem with argument labelSet.

Moduleltem

1.

ImportDeclaration

ExportDeclaration

Return false.

8.2.3 Static Semantics: ContainsUndefinedContinueTarget

With parameters iterationSet and labelSet.

Statement :

Block

VariableStatement
EmptyStatement
ExpressionStatement
BreakStatement
ReturnStatement
ThrowStatement

DebuggerStatement

{1}

StatementListltem : Declaration

1.

Return false.

165



BreakableStatement : IterationStatement

1. Let newlterationSet be a copy of iterationSet with all the elements of labelSet appended.
2. Return ContainsUndefinedContinueTarget of IterationStatement with arguments newlterationSet and « ».

StatementList : StatementList StatementListltem

1. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of StatementList with arguments iterationSet and «
».

2. If hasUndefinedLabels is true, return true.

3. Return ContainsUndefinedContinueTarget of StatementListItem with arguments iterationSet and « ».

IfStatement : if ( Expression ) Statement else Statement

1. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of the first Statement with arguments iterationSet
and « ».

2. If hasUndefinedLabels is true, return true.

3. Return ContainsUndefinedContinueTarget of the second Statement with arguments iterationSet and « ».

IfStatement : if ( Expression ) Statement

1. Return ContainsUndefinedContinueTarget of Statement with arguments iterationSet and « ».
DoWhileStatement : do Statement while ( Expression ) ;

1. Return ContainsUndefinedContinueTarget of Statement with arguments iterationSet and « ».
WhileStatement : while ( Expression ) Statement

1. Return ContainsUndefinedContinueTarget of Statement with arguments iterationSet and « ».

ForStatement :

for ( Expression ; Expression ; Expression ) Statement
for ( var VariableDeclarationList ; Expression ; Expression ) Statement
for ( LexicalDeclaration Expression ; Expression ) Statement

1. Return ContainsUndefinedContinueTarget of Statement with arguments iterationSet and « ».

ForInOfStatement :
for ( LeftHandSideExpression in Expression ) Statement
for ( var ForBinding in Expression ) Statement
for ( ForDeclaration in Expression ) Statement

for

(
(
for ( LeftHandSideExpression of AssignmentExpression ) Statement
( var ForBinding of AssignmentExpression ) Statement

(

for ( ForDeclaration of AssignmentExpression ) Statement
for await ( LeftHandSideExpression of AssignmentExpression ) Statement
for await ( var ForBinding of AssignmentExpression ) Statement

for await ( ForDeclaration of AssignmentExpression ) Statement

1. Return ContainsUndefinedContinueTarget of Statement with arguments iterationSet and « ».

166



NOTE This section is extended by Annex B.3.6.

ContinueStatement : continue ;
1. Return false.
ContinueStatement : continue Labelldentifier ;

1. If the StringValue of Labelldentifier is not an element of iterationSet, return true.
2. Return false.

WithStatement : with ( Expression ) Statement

1. Return ContainsUndefinedContinueTarget of Statement with arguments iterationSet and « ».
SwitchStatement : switch ( Expression ) CaseBlock

1. Return ContainsUndefinedContinueTarget of CaseBlock with arguments iterationSet and « ».
CaseBlock : { }

1. Return false.
CaseBlock : { CaseClauses DefaultClause CaseClauses }

1. If the first CaseClauses is present, then
a. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of the first CaseClauses with arguments
iterationSet and « ».
b. If hasUndefinedLabels is true, return true.
2. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of DefaultClause with arguments iterationSet and «
».
3. If hasUndefinedLabels is true, return true.
4. If the second CaseClauses is not present, return false.
5. Return ContainsUndefinedContinueTarget of the second CaseClauses with arguments iterationSet and « ».

CaseClauses : CaseClauses CaseClause

1. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of CaseClauses with arguments iterationSet and « ».
2. If hasUndefinedLabels is true, return true.
3. Return ContainsUndefinedContinueTarget of CaseClause with arguments iterationSet and « ».

CaseClause : case Expression : StatementList

1. If the StatementList is present, return ContainsUndefinedContinueTarget of StatementList with arguments
iterationSet and « ».
2. Return false.

DefaultClause : default : StatementList

1. If the StatementList is present, return ContainsUndefinedContinueTarget of StatementList with arguments
iterationSet and « ».
2. Return false.

167



LabelledStatement : Labelldentifier : Labelledltem

1. Let label be the StringValue of Labelldentifier.
2. Let newLabelSet be a copy of labelSet with label appended.
3. Return ContainsUndefinedContinueTarget of LabelledItem with arguments iterationSet and newLabelSet.

LabelledItem : FunctionDeclaration
1. Return false.
TryStatement : try Block Catch

1. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of Block with arguments iterationSet and « ».
2. If hasUndefinedLabels is true, return true.
3. Return ContainsUndefinedContinueTarget of Catch with arguments iterationSet and « ».

TryStatement : try Block Finally

1. Let hasUndefinedLabels be ContainsUndefined ContinueTarget of Block with arguments iterationSet and « ».
2. If hasUndefinedLabels is true, return true.
3. Return ContainsUndefinedContinueTarget of Finally with arguments iterationSet and « ».

TryStatement : try Block Catch Finally

Let hasUndefinedLabels be ContainsUndefined ContinueTarget of Block with arguments iterationSet and « ».
If hasUndefinedLabels is true, return true.
Let hasUndefinedLabels be ContainsUndefined ContinueTarget of Catch with arguments iterationSet and « ».
If hasUndefinedLabels is true, return true.

SUESICENS -

Return ContainsUndefinedContinueTarget of Finally with arguments iterationSet and « ».
Catch : catch ( CatchParameter ) Block

1. Return ContainsUndefinedContinueTarget of Block with arguments iterationSet and « ».
FunctionStatementList : [empty]

1. Return false.
ModuleltemList : ModuleltemList Moduleltem

1. Let hasUndefinedLabels be ContainsUndefinedContinueTarget of ModuleltemList with arguments iterationSet and

LM,
2. If hasUndefinedLabels is true, return true.
3. Return ContainsUndefinedContinueTarget of Moduleltem with arguments iterationSet and « ».

Moduleltem :
ImportDeclaration

ExportDeclaration

1. Return false.

8.3 Function Name Inference

168



8.3.1 Static Semantics: HasName
PrimaryExpression : CoverParenthesized ExpressionAndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of CoverParenthesizedExpression And ArrowParameterList.
2. If IsFunctionDefinition of expr is false, return false.
3. Return HasName of expr.

FunctionExpression :

function ( FormalParameters ) { FunctionBody }
GeneratorExpression :

function x ( FormalParameters ) { GeneratorBody }
AsyncGeneratorExpression :

async function x ( FormalParameters ) { AsyncGeneratorBody }
AsyncFunctionExpression :

async function ( FormalParameters ) { AsyncFunctionBody }
ArrowFunction :

ArrowParameters => ConciseBody
AsyncArrowFunction :

async AsyncArrowBindingldentifier => AsyncConciseBody

CoverCallExpressionAnd AsyncArrowHead => AsyncConciseBody

ClassExpression : class ClassTail
1. Return false.

FunctionExpression :

function Bindingldentifier ( FormalParameters ) { FunctionBody }
GeneratorExpression :

function x Bindingldentifier ( FormalParameters ) { GeneratorBody }
AsyncGeneratorExpression :

async function x Bindingldentifier ( FormalParameters ) { AsyncGeneratorBody }
AsyncFunctionExpression :

async function Bindingldentifier ( FormalParameters ) { AsyncFunctionBody }
ClassExpression : class Bindingldentifier ClassIail

1. Return true.

8.3.2 Static Semantics: IsFunctionDefinition
PrimaryExpression : CoverParenthesizedExpression AndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAnd ArrowParameterList.
2. Return IsFunctionDefinition of expr.

PrimaryExpression :
this
IdentifierReference
Literal
ArrayLiteral
ObjectLiteral

169



RegularExpressionLiteral

TemplateLiteral
MemberExpression :

MemberExpression [ Expression 1

MemberExpression . IdentifierName

MemberExpression TemplateLiteral

SuperProperty

MetaProperty

new MemberExpression Arguments
NewExpression :

new NewExpression
LeftHandSideExpression :

CallExpression

Optional Expression
UpdateExpression :

LeftHandSideExpression ++

LeftHandSideExpression --

++ UnaryExpression

-- UnaryExpression
UnaryExpression :

delete UnaryExpression

void UnaryExpression

typeof UnaryExpression

+ UnaryExpression

- UnaryExpression

~ UnaryExpression

' UnaryExpression

AwaitExpression
ExponentiationExpression :

UpdateExpression s+ ExponentiationExpression
MultiplicativeExpression :

MultiplicativeExpression MultiplicativeOperator ExponentiationExpression
AdditiveExpression :

AdditiveExpression + MultiplicativeExpression

AdditiveExpression - MultiplicativeExpression
ShiftExpression :

ShiftExpression << AdditiveExpression

ShiftExpression >> AdditiveExpression

ShiftExpression >>> AdditiveExpression
Relational Expression :

Relational Expression < ShiftExpression

Relational Expression > ShiftExpression

Relational Expression <= ShiftExpression

Relational Expression >= ShiftExpression

170



Relational Expression instanceof ShiftExpression

Relational Expression in ShiftExpression
EqualityExpression :

EqualityExpression == Relational Expression

EqualityExpression 1= Relational Expression

EqualityExpression === Relational Expression

EqualityExpression == Relational Expression
Bitwise ANDExpression :

Bitwise ANDExpression & EqualityExpression
BitwiseXORExpression :

BitwiseXORExpression ~ Bitwise ANDExpression
BitwiseORExpression :

BitwiseORExpression | BitwiseXORExpression
Logical ANDExpression :

Logical ANDExpression && BitwiseORExpression
Logical ORExpression :

Logical ORExpression || Logical ANDExpression
CoalesceExpression :

CoalesceExpressionHead ?? BitwiseORExpression
Conditional Expression :

ShortCircuitExpression ? AssignmentExpression : AssignmentExpression
AssignmentExpression :

YieldExpression

LeftHandSideExpression = AssignmentExpression

LeftHandSideExpression AssignmentOperator AssignmentExpression

LeftHandSideExpression &&= AssignmentExpression

LeftHandSideExpression ||= AssignmentExpression

LeftHandSideExpression ??= AssignmentExpression
Expression :

Expression , AssignmentExpression

1. Return false.

AssignmentExpression :

ArrowFunction

AsyncArrowFunction
FunctionExpression :

function Bindingldentifier ( FormalParameters ) { FunctionBody }
GeneratorExpression :

function x Bindingldentifier ( FormalParameters ) { GeneratorBody }
AsyncGeneratorExpression :

async function x Bindingldentifier ( FormalParameters ) { AsyncGeneratorBody 3}
AsyncFunctionExpression :

async function Bindingldentifier ( FormalParameters ) { AsyncFunctionBody }

ClassExpression : class Bindingldentifier ClassTail

171



1. Return true.

8.3.3 Static Semantics: IsAnonymousFunctionDefinition ( expr)

The abstract operation IsAnonymousFunctionDefinition takes argument expr (a Parse Node for AssignmentExpression
or a Parse Node for Initializer). It determines if its argument is a function definition that does not bind a name. It
performs the following steps when called:

1. If IsFunctionDefinition of expr is false, return false.
2. Let hasName be HasName of expr.

3. If hasName is true, return false.

4. Return true.

8.3.4 Static Semantics: IsldentifierRef

PrimaryExpression : IdentifierReference
1. Return true.

PrimaryExpression :
this
Literal
ArrayLiteral
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
AsyncFunctionExpression
AsyncGeneratorExpression
RegularExpressionLiteral
TemplateLiteral
CoverParenthesized Expression And ArrowParameterList
MemberExpression :
MemberExpression [ Expression ]
MemberExpression . IdentifierName
MemberExpression TemplateLiteral
SuperProperty
MetaProperty
new MemberExpression Arguments
NewExpression :
new NewExpression
LeftHandSideExpression :
CallExpression

Optional Expression

1. Return false.

172



8.3.5 Runtime Semantics: NamedEvaluation
With parameter name.
PrimaryExpression : CoverParenthesizedExpression AndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.
2. Return the result of performing NamedEvaluation for expr with argument name.

ParenthesizedExpression : ( Expression )

1. Assert: IsAnonymousFunctionDefinition(Expression) is true.
2. Return the result of performing NamedEvaluation for Expression with argument name.

FunctionExpression : function ( FormalParameters ) { FunctionBody }

1. Return InstantiateOrdinaryFunctionExpression of FunctionExpression with argument name.
GeneratorExpression : function % ( FormalParameters ) { GeneratorBody }

1. Return InstantiateGeneratorFunctionExpression of GeneratorExpression with argument name.
AsyncGeneratorExpression : async function * ( FormalParameters ) { AsyncGeneratorBody }

1. Return InstantiateAsyncGeneratorFunctionExpression of AsyncGeneratorExpression with argument name.
AsyncFunctionExpression : async function ( FormalParameters ) { AsyncFunctionBody }

1. Return InstantiateAsyncFunctionExpression of AsyncFunctionExpression with argument nane.
ArrowFunction : ArrowParameters => ConciseBody

1. Return Instantiate ArrowFunctionExpression of ArrowFunction with argument name.

AsyncArrowFunction :
async AsyncArrowBindingldentifier => AsyncConciseBody
CoverCallExpressionAnd AsyncArrowHead => AsyncConciseBody

1. Return InstantiateAsyncArrowFunctionExpression of AsyncArrowFunction with argument name.
ClassExpression : class ClassTail

1. Let value be the result of ClassDefinitionEvaluation of ClassTail with arguments undefined and name.
2. ReturnIfAbrupt(value).

3. Set value.[[SourceText]] to the source text matched by ClassExpression.

4. Return value.

8.4 Contains

8.4.1 Static Semantics: Contains

With parameter symbol.

173



Every grammar production alternative in this specification which is not listed below implicitly has the following
default definition of Contains:

1. For each child node child of this Parse Node, do
a. If child is an instance of symbol, return true.
b. If child is an instance of a nonterminal, then
i. Let contained be the result of child Contains symbol.
ii. If contained is true, return true.
2. Return false.

FunctionDeclaration :

function Bindingldentifier ( FormalParameters ) { FunctionBody }

function ( FormalParameters ) { FunctionBody }
FunctionExpression :

function Bindingldentifier ( FormalParameters ) { FunctionBody }
GeneratorDeclaration :

function x Bindingldentifier ( FormalParameters ) { GeneratorBody }

function x ( FormalParameters ) { GeneratorBody }
GeneratorExpression :

function x Bindingldentifier ( FormalParameters ) { GeneratorBody }
AsyncGeneratorDeclaration :

async function x Bindingldentifier ( FormalParameters ) { AsyncGeneratorBody }

async function x ( FormalParameters ) { AsyncGeneratorBody }
AsyncGeneratorExpression :

async function x Bindingldentifier ( FormalParameters ) { AsyncGeneratorBody }
AsyncFunctionDeclaration :

async function Bindingldentifier ( FormalParameters ) { AsyncFunctionBody }

async function ( FormalParameters ) { AsyncFunctionBody }
AsyncFunctionExpression :

async function Bindingldentifier ( FormalParameters ) { AsyncFunctionBody }

1. Return false.

NOTE 1 Static semantic rules that depend upon substructure generally do not look into function
definitions.

ClassTail : ClassHeritage { ClassBody }

1. If symbol is ClassBody, return true.
2. If symbol is ClassHeritage, then
a. If ClassHeritage is present, return true; otherwise return false.
3. Let inHeritage be ClassHeritage Contains symbol.
4. If inHeritage is true, return true.
5. Return the result of ComputedPropertyContains for ClassBody with argument symbol.

174



NOTE 2 Static semantic rules that depend upon substructure generally do not look into class bodies
except for PropertyNames.

ArrowFunction : ArrowParameters => ConciseBody

1. If symbol is not one of NewTarget, SuperProperty, SuperCall, super or this, return false.
2. If ArrowParameters Contains symbol is true, return true.
3. Return ConciseBody Contains symbol.

ArrowParameters : CoverParenthesized ExpressionAndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesized ExpressionAnd ArrowParameterList.
2. Return formals Contains symbol.

AsyncArrowFunction : async AsyncArrowBindingldentifier => AsyncConciseBody

1. If symbol is not one of NewTarget, SuperProperty, SuperCall, super, or this, return false.
2. Return AsyncConciseBody Contains symbol.

AsyncArrowFunction : CoverCallExpressionAndAsyncArrowHead => AsyncConciseBody

1. If symbol is not one of NewTarget, SuperProperty, SuperCall, super, or this, return false.
2. Let head be Covered AsyncArrowHead of CoverCallExpression AndAsyncArrowHead.

3. If head Contains symbol is true, return true.

4. Return AsyncConciseBody Contains symbol.

NOTE 3 Contains is used to detect new. target, this, and super usage within an ArrowFunction or
AsyncArrowFunction.

PropertyDefinition : MethodDefinition

1. If symbol is MethodDefinition, return true.
2. Return the result of ComputedPropertyContains for MethodDefinition with argument symbol.

LiteralPropertyName : IdentifierName
1. Return false.
MemberExpression : MemberExpression . ldentifierName

1. If MemberExpression Contains symbol is true, return true.
2. Return false.

SuperProperty : super . IdentifierName

1. If symbol is the ReservedWord super, return true.
2. Return false.

CallExpression : CallExpression . IdentifierName

1. If CallExpression Contains symbol is true, return true.
2. Return false.

175



OptionalChain : ?. IdentifierName
1. Return false.
OptionalChain : OptionalChain . IdentifierName

1. If OptionalChain Contains symbol is true, return true.
2. Return false.

8.4.2 Static Semantics: ComputedPropertyContains

With parameter symbol.
PropertyName : Literal PropertyName
1. Return false.
PropertyName : ComputedPropertyName
1. Return the result of ComputedPropertyName Contains symbol.

MethodDefinition :
PropertyName ( UniqueFormalParameters ) { FunctionBody }
get PropertyName () { FunctionBody }
set PropertyName ( PropertySetParameterList ) { FunctionBody }

1. Return the result of ComputedPropertyContains for PropertyName with argument symbol.
GeneratorMethod : % PropertyName ( UniqueFormalParameters ) { GeneratorBody }

1. Return the result of ComputedPropertyContains for PropertyName with argument symbol.
AsyncGeneratorMethod : async * PropertyName ( UniqueFormalParameters ) { AsyncGeneratorBody }
1. Return the result of ComputedPropertyContains for PropertyName with argument symbol.

ClassElementList : ClassElementList ClassElement

1. Let inList be ComputedPropertyContains of ClassElementList with argument symbol.
2. If inList is true, return true.
3. Return the result of ComputedPropertyContains for ClassElement with argument symbol.

ClassElement : ;
1. Return false.
AsyncMethod : async PropertyName ( UniqueFormalParameters ) { AsyncFunctionBody }

1. Return the result of ComputedPropertyContains for PropertyName with argument symbol.

8.5 Miscellaneous

These operations are used in multiple places throughout the specification.

176



8.5.1 Runtime Semantics: InstantiateFunctionObject
With parameter scope.

FunctionDeclaration :
function Bindingldentifier ( FormalParameters ) { FunctionBody }

function ( FormalParameters ) { FunctionBody }
1. Return ? InstantiateOrdinaryFunctionObject of FunctionDeclaration with argument scope.

GeneratorDeclaration :
function x Bindingldentifier ( FormalParameters ) { GeneratorBody }

function x ( FormalParameters ) { GeneratorBody }
1. Return ? InstantiateGeneratorFunctionObject of GeneratorDeclaration with argument scope.

AsyncGeneratorDeclaration :
async function x Bindingldentifier ( FormalParameters ) { AsyncGeneratorBody }

async function x ( FormalParameters ) { AsyncGeneratorBody }
1. Return ? InstantiateAsyncGeneratorFunctionObject of AsyncGeneratorDeclaration with argument scope.

AsyncFunctionDeclaration :
async function Bindingldentifier ( FormalParameters ) { AsyncFunctionBody }

async function ( FormalParameters ) { AsyncFunctionBody }

1. Return ? InstantiateAsyncFunctionObject of AsyncFunctionDeclaration with argument scope.

8.5.2 Runtime Semantics: BindinglInitialization

With parameters value and environment.

NOTE undefined is passed for environment to indicate that a PutValue operation should be used to
assign the initialization value. This is the case for var statements and formal parameter lists of
some non-strict functions (See 10.2.10). In those cases a lexical binding is hoisted and

preinitialized prior to evaluation of its initializer.

Bindingldentifier : Identifier

1. Let name be StringValue of Identifier.
2. Return ? InitializeBoundName(name, value, environment).

Bindingldentifier : yield

1. Return ? InitializeBoundName("yield", value, environment).
Bindingldentifier : await

1. Return ? InitializeBoundName("await", value, environment).
BindingPattern : ObjectBindingPattern

177



1. Perform ? RequireObjectCoercible(value).
2. Return the result of performing BindinglInitialization for ObjectBindingPattern using value and environment as

arguments.
BindingPattern : ArrayBindingPattern

1. Let iteratorRecord be ? Getlterator(value).

2. Let result be IteratorBindingInitialization of ArrayBindingPattern with arguments iteratorRecord and environment.
3. If iteratorRecord.[[Done]] is false, return ? IteratorClose(iteratorRecord, result).

4. Return result.

ObjectBindingPattern : { }
1. Return NormalCompletion(empty).

ObjectBindingPattern :
{ BindingPropertyList }
{ BindingPropertyList , }

1. Perform ? PropertyBindingInitialization for BindingPropertyList using value and environment as the arguments.
2. Return NormalCompletion(empty).

ObjectBindingPattern : { BindingRestProperty }

1. Let excludedNames be a new empty List.
2. Return the result of performing RestBindinglInitialization of BindingRestProperty with value, environment, and
excludedNames as the arguments.

ObjectBindingPattern : { BindingPropertyList , BindingRestProperty }

1. Let excludedNames be ? PropertyBindinglInitialization of BindingPropertyList with arguments value and
environment.

2. Return the result of performing RestBindinglnitialization of BindingRestProperty with arguments value,
environment, and excludedNames.

8.5.2.1 InitializeBoundName ( name, value, environment)

The abstract operation InitializeBoundName takes arguments name, value, and environment. It performs the following
steps when called:

1. Assert: Type(name) is String.
2. If environment is not undefined, then
a. Perform environment.InitializeBinding(name, value).
b. Return NormalCompletion(undefined).
3. Else,
a. Let Ihs be ResolveBinding(name).
b. Return ? PutValue(lhs, value).

8.5.3 Runtime Semantics: IteratorBindinglInitialization

With parameters iteratorRecord and environment.

178



NOTE When undefined is passed for environment it indicates that a PutValue operation should be used
to assign the initialization value. This is the case for formal parameter lists of non-strict functions.
In that case the formal parameter bindings are preinitialized in order to deal with the possibility
of multiple parameters with the same name.

ArrayBindingPattern : [ 1
1. Return NormalCompletion(empty).
ArrayBindingPattern : [ Elision ]

1. Return the result of performing IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as the

argument.
ArrayBindingPattern : [ Elision BindingRestElement |

1. If Elision is present, then
a. Perform ? IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as the argument.
2. Return the result of performing IteratorBindinglnitialization for BindingRestElement with iteratorRecord and

environment as arguments.
ArrayBindingPattern : [ BindingElementList , Elision ]

1. Perform ? IteratorBindingInitialization for BindingElementList with iteratorRecord and environment as arguments.
2. Return the result of performing IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as the
argument.

ArrayBindingPattern : [ BindingElementList , Elision BindingRestElement ]

1. Perform ? IteratorBindingInitialization for BindingElementList with iteratorRecord and environment as arguments.
2. If Elision is present, then

a. Perform ? IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as the argument.
3. Return the result of performing IteratorBindinglnitialization for BindingRestElement with iteratorRecord and

environment as arguments.
BindingElementList : BindingElementList , BindingElisionElement

1. Perform ? IteratorBindingInitialization for BindingElementList with iteratorRecord and environment as arguments.
2. Return the result of performing IteratorBindinglnitialization for BindingElisionElement using iteratorRecord and
environment as arguments.

BindingElisionElement : Elision BindingElement

1. Perform ? IteratorDestructuring AssignmentEvaluation of Elision with iteratorRecord as the argument.
2. Return the result of performing IteratorBindinglnitialization of BindingElement with iteratorRecord and

environment as the arguments.

SingleNameBinding : Bindingldentifier Initializer

1. Let bindingld be StringValue of Bindingldentifier.
2. Let lhs be ? ResolveBinding(bindingld, environment).
3. If iteratorRecord.[[Done]] is false, then
179



Let next be IteratorStep(iteratorRecord).
If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
ReturnIfAbrupt(next).
If next is false, set iteratorRecord.[[Done]] to true.
Else,
i. Let v be IteratorValue(next).

© N T

ii. If v is an abrupt completion, set iteratorRecord.[[Done]] to true.
iii. ReturnIfAbrupt(v).
4. If iteratorRecord.[[Done]] is true, let v be undefined.
5. If Initializer is present and v is undefined, then
a. If IsAnonymousFunctionDefinition(Initializer) is true, then
i. Set v to the result of performing NamedEvaluation for Initializer with argument bindingld.
b. Else,
i. Let defaultValue be the result of evaluating Initializer.
ii. Setv to ? GetValue(defaultValue).
6. If environment is undefined, return ? PutValue(lhs, v).
7. Return InitializeReferencedBinding(lhs, v).

BindingElement : BindingPattern Initializer

1. If iteratorRecord.[[Done]] is false, then
a. Let next be IteratorStep(iteratorRecord).
If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
ReturnIfAbrupt(next).
If next is false, set iteratorRecord.[[Done]] to true.
Else,
i. Let v be IteratorValue(next).

© &n T

ii. If v is an abrupt completion, set iteratorRecord.[[Done]] to true.
iii. ReturnIfAbrupt(v).
2. If iteratorRecord.[[Done]] is true, let v be undefined.
3. If Initializer is present and v is undefined, then
a. Let defaultValue be the result of evaluating Initializer.
b. Set v to ? GetValue(defaultValue).
4. Return the result of performing BindingInitialization of BindingPattern with v and environment as the

arguments.
BindingRestElement : ... Bindingldentifier

1. Let Ihs be ? ResolveBinding(StringValue of Bindingldentifier, environment).
2. Let A be ! ArrayCreate(0).
3. Letnbe 0.
4. Repeat,
a. If iteratorRecord.[[Done]] is false, then
i. Let next be IteratorStep(iteratorRecord).
ii. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
iii. ReturnIfAbrupt(next).
iv. If next is false, set iteratorRecord.[[Done]] to true.
b. If iteratorRecord.[[Done]] is true, then
i. If environment is undefined, return ? PutValue(ls, A).

180



ii. Return InitializeReferencedBinding(lhs, A).
Let nextValue be IteratorValue(next).
If nextValue is an abrupt completion, set iteratorRecord.[[Done]] to true.
ReturnIfAbrupt(nextValue).
Perform ! CreateDataPropertyOrThrow(A4, ! ToString(H(n)), nextValue).
g. Setnton+1.

- o 0

BindingRestElement : ... BindingPattern

1.

Let A be ! ArrayCreate(0).

2. Let n be 0.
3. Repeat,

a. If iteratorRecord.[[Done]] is false, then
i. Let next be IteratorStep(iteratorRecord).
ii. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
iii. ReturnlfAbrupt(next).
iv. If next is false, set iteratorRecord.[[Done]] to true.
b. If iteratorRecord.[[Donel]] is true, then
i. Return the result of performing BindingInitialization of BindingPattern with A and environment as
the arguments.
Let nextValue be IteratorValue(next).
If nextValue is an abrupt completion, set iteratorRecord.[[Done]] to true.
ReturnIfAbrupt(nextValue).
Perform ! CreateDataPropertyOrThrow(4, ! ToString(FH(n)), nextValue).
Setnton+1.

®Q =~ 0o & n

FormalParameters : [empty]

1.

Return NormalCompletion(empty).

FormalParameters : FormalParameterList , FunctionRestParameter

1.

Perform ? IteratorBindinglInitialization for FormalParameterList using iteratorRecord and environment as the
arguments.

Return the result of performing IteratorBindingInitialization for FunctionRestParameter using iteratorRecord and
environment as the arguments.

FormalParameterList : FormalParameterList , FormalParameter

1.

Perform ? IteratorBindinglInitialization for FormalParameterList using iteratorRecord and environment as the
arguments.

Return the result of performing IteratorBindinglnitialization for FormalParameter using iteratorRecord and
environment as the arguments.

ArrowParameters : Bindingldentifier

SRS -

Assert: iteratorRecord.[[Done]] is false.

Let next be IteratorStep(iteratorRecord).

If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
ReturnlfAbrupt(next).

If next is false, set iteratorRecord.[[Done]] to true.

181


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD

6. Else,
a. Let v be IteratorValue(next).
b. If v is an abrupt completion, set iteratorRecord.[[Done]] to true.
c. ReturnIfAbrupt(v).
7. If iteratorRecord.[[Done]] is true, let v be undefined.
8. Return the result of performing Bindinglnitialization for Bindingldentifier using v and environment as the
arguments.

ArrowParameters : CoverParenthesizedExpressionAndArrowParameterList

1. Let formals be CoveredFormalsList of CoverParenthesizedExpression AndArrowParameterList.
2. Return IteratorBindinglInitialization of formals with arguments iteratorRecord and environment.

AsyncArrowBindingldentifier : Bindingldentifier

Assert: iteratorRecord.[[Done]] is false.
Let next be IteratorStep(iteratorRecord).
If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
ReturnIfAbrupt(next).
If next is false, set iteratorRecord.[[Done]] to true.
Else,
a. Let v be IteratorValue(next).

AL SR

b. If v is an abrupt completion, set iteratorRecord.[[Done]] to true.
¢. ReturnIfAbrupt(v).
7. If iteratorRecord.[[Done]] is true, let v be undefined.
8. Return the result of performing BindinglInitialization for Bindingldentifier using v and environment as the

arguments.

8.5.4 Static Semantics: AssignmentTargetType
IdentifierReference : Identifier

1. If this IdentifierReference is contained in strict mode code and StringValue of Identifier is "eval" or "arguments",
return invalid.
2. Return simple.

IdentifierReference :
yield
await
CallExpression :
CallExpression [ Expression 1
CallExpression . IdentifierName
MemberExpression :
MemberExpression [ Expression 1
MemberExpression . IdentifierName

SuperProperty
1. Return simple.

PrimaryExpression :

182



CoverParenthesized Expression And ArrowParameterList

1. Let expr be CoveredParenthesizedExpression of CoverParenthesized Expression And ArrowParameterList.
2. Return AssignmentTargetType of expr.

PrimaryExpression :
this
Literal
ArrayLiteral
ObjectLiteral
FunctionExpression
ClassExpression
GeneratorExpression
AsyncFunctionExpression
AsyncGeneratorExpression
RegularExpressionLiteral
TemplateLiteral
CallExpression :
CoverCallExpressionAnd AsyncArrowHead
SuperCall
ImportCall
CallExpression Arguments
CallExpression TemplateLiteral
NewExpression :
new NewExpression
MemberExpression :
MemberExpression TemplateLiteral
new MemberExpression Arguments
NewTnrget :
new . target
ImportMeta :
import . meta
LeftHandSideExpression :
Optional Expression
UpdateExpression :
LeftHandSideExpression ++
LeftHandSideExpression --
++ UnaryExpression
-- UnaryExpression
UnaryExpression :
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression
+ UnaryExpression

- UnaryExpression

183



~ UnaryExpression

! UnaryExpression

AwaitExpression
ExponentiationExpression :

UpdateExpression s+ ExponentiationExpression
MultiplicativeExpression :

MultiplicativeExpression MultiplicativeOperator ExponentiationExpression
AdditiveExpression :

AdditiveExpression + MultiplicativeExpression

AdditiveExpression - MultiplicativeExpression
ShiftExpression :

ShiftExpression << AdditiveExpression

ShiftExpression >> AdditiveExpression

ShiftExpression >>> AdditiveExpression
Relational Expression :

Relational Expression < ShiftExpression

Relational Expression > ShiftExpression

RelationalExpression <= ShiftExpression

RelationalExpression >= ShiftExpression

Relational Expression instanceof ShiftExpression

RelationalExpression in ShiftExpression
EqualityExpression :

EqualityExpression == Relational Expression

EqualityExpression = Relational Expression

EqualityExpression === Relational Expression

EqualityExpression == Relational Expression
BitwiseANDExpression :

Bitwise ANDExpression & EqualityExpression
BitwiseXORExpression :

BitwiseXORExpression ~ Bitwise ANDExpression
BitwiseORExpression :

BitwiseORExpression | BitwiseXORExpression
Logical ANDExpression :

Logical ANDExpression && BitwiseORExpression
Logical ORExpression :

Logical ORExpression || Logical ANDExpression
CoalesceExpression :

CoalesceExpressionHead ?? BitwiseORExpression
Conditional Expression :

ShortCircuitExpression ? AssignmentExpression : AssignmentExpression
AssignmentExpression :

YieldExpression

ArrowFunction

AsyncArrowFunction

LeftHandSideExpression = AssignmentExpression
184



LeftHandSideExpression AssignmentOperator AssignmentExpression
LeftHandSideExpression &&= AssignmentExpression
LeftHandSideExpression ||= AssignmentExpression
LeftHandSideExpression ??= AssignmentExpression

Expression :

Expression , AssignmentExpression

1. Return invalid.

8.5.5 Static Semantics: PropName
PropertyDefinition : IdentifierReference

1. Return StringValue of IdentifierReference.
PropertyDefinition : ... AssignmentExpression
1. Return empty.
PropertyDefinition : PropertyName : AssignmentExpression
1. Return PropName of PropertyName.
Literal PropertyName : IdentifierName
1. Return StringValue of IdentifierName.
LiteralPropertyName : StringLiteral
1. Return the SV of StringLiteral.
LiteralPropertyName : NumericLiteral

1. Let nbr be the NumericValue of NumericLiteral.
2. Return ! ToString(nbr).

ComputedPropertyName : [ AssignmentExpression 1
1. Return empty.

MethodDefinition :
PropertyName ( UniqueFormalParameters ) { FunctionBody }
get PropertyName ( ) { FunctionBody }
set PropertyName ( PropertySetParameterList ) { FunctionBody }

1. Return PropName of PropertyName.
GeneratorMethod : % PropertyName ( UniqueFormalParameters ) { GeneratorBody }
1. Return PropName of PropertyName.
AsyncGeneratorMethod : async * PropertyName ( UniqueFormalParameters ) { AsyncGeneratorBody }

1. Return PropName of PropertyName.

185



ClassElement : ;

1. Return empty.
AsyncMethod : async PropertyName ( UniqueFormalParameters ) { AsyncFunctionBody }

1. Return PropName of PropertyName.

9 Executable Code and Execution Contexts

9.1 Environment Records

Environment Record is a specification type used to define the association of Identifiers to specific variables and
functions, based upon the lexical nesting structure of ECMAScript code. Usually an Environment Record is associated
with some specific syntactic structure of ECMAScript code such as a FunctionDeclaration, a BlockStatement, or a Catch
clause of a TryStatement. Each time such code is evaluated, a new Environment Record is created to record the
identifier bindings that are created by that code.

Every Environment Record has an [[OuterEnv]] field, which is either null or a reference to an outer Environment
Record. This is used to model the logical nesting of Environment Record values. The outer reference of an (inner)
Environment Record is a reference to the Environment Record that logically surrounds the inner Environment Record.
An outer Environment Record may, of course, have its own outer Environment Record. An Environment Record may
serve as the outer environment for multiple inner Environment Records. For example, if a FunctionDeclaration contains
two nested FunctionDeclarations then the Environment Records of each of the nested functions will have as their outer
Environment Record the Environment Record of the current evaluation of the surrounding function.

Environment Records are purely specification mechanisms and need not correspond to any specific artefact of an
ECMAScript implementation. It is impossible for an ECMAScript program to directly access or manipulate such

values.

9.1.1 The Environment Record Type Hierarchy

Environment Records can be thought of as existing in a simple object-oriented hierarchy where Environment Record
is an abstract class with three concrete subclasses: declarative Environment Record, object Environment Record, and
global Environment Record. Function Environment Records and module Environment Records are subclasses of

declarative Environment Record.
e Environment Record (abstract)

o Adeclarative Environment Record is used to define the effect of ECMAScript language syntactic elements
such as FunctionDeclarations, VariableDeclarations, and Catch clauses that directly associate identifier
bindings with ECMAScript language values.

» A function Environment Record corresponds to the invocation of an ECMAScript function object,
and contains bindings for the top-level declarations within that function. It may establish a new

this binding. It also captures the state necessary to support super method invocations.

» A module Environment Record contains the bindings for the top-level declarations of a Module. It

186



also contains the bindings that are explicitly imported by the Module. Its [[OuterEnv]] is a global
Environment Record.

o An object Environment Record is used to define the effect of ECMAScript elements such as WithStatement
that associate identifier bindings with the properties of some object.

o A global Environment Record is used for Script global declarations. It does not have an outer environment;
its [[OuterEnv]] is null. It may be prepopulated with identifier bindings and it includes an associated
global object whose properties provide some of the global environment's identifier bindings. As
ECMAScript code is executed, additional properties may be added to the global object and the initial
properties may be modified.

The Environment Record abstract class includes the abstract specification methods defined in Table 17. These abstract
methods have distinct concrete algorithms for each of the concrete subclasses.

187



Table 17: Abstract Methods of Environment Records

Method

Purpose

HasBinding(N)

Determine if an Environment Record has a binding for the String value N. Return
true if it does and false if it does not.

CreateMutableBinding(N,
D)

Create a new but uninitialized mutable binding in an Environment Record. The
String value N is the text of the bound name. If the Boolean argument D is true the
binding may be subsequently deleted.

CreateImmutableBinding(N,
S)

Create a new but uninitialized immutable binding in an Environment Record. The
String value N is the text of the bound name. If S is true then attempts to set it after it
has been initialized will always throw an exception, regardless of the strict mode
setting of operations that reference that binding.

InitializeBinding(N, V)

Set the value of an already existing but uninitialized binding in an Environment
Record. The String value N is the text of the bound name. V is the value for the
binding and is a value of any ECMAScript language type.

SetMutableBinding(N, V, S)

Set the value of an already existing mutable binding in an Environment Record. The
String value N is the text of the bound name. V is the value for the binding and may
be a value of any ECMAScript language type. S is a Boolean flag. If S is true and the
binding cannot be set throw a TypeError exception.

GetBindingValue(N, S)

Returns the value of an already existing binding from an Environment Record. The
String value N is the text of the bound name. S is used to identify references
originating in strict mode code or that otherwise require strict mode reference
semantics. If S is true and the binding does not exist throw a ReferenceError
exception. If the binding exists but is uninitialized a ReferenceError is thrown,
regardless of the value of S.

DeleteBinding(N)

Delete a binding from an Environment Record. The String value N is the text of the
bound name. If a binding for N exists, remove the binding and return true. If the
binding exists but cannot be removed return false. If the binding does not exist

return true.

HasThisBinding()

Determine if an Environment Record establishes a this binding. Return true if it
does and false if it does not.

HasSuperBinding()

Determine if an Environment Record establishes a super method binding. Return
true if it does and false if it does not.

WithBaseObject()

If this Environment Record is associated with a With statement, return the with
object. Otherwise, return undefined.

9.1.1.1 Declarative Environment Records

Each declarative Environment Record is associated with an ECMAScript program scope containing variable, constant,

let, class, module, import, and/or function declarations. A declarative Environment Record binds the set of identifiers

defined by the declarations contained within its scope.

188




The behaviour of the concrete specification methods for declarative Environment Records is defined by the following
algorithms.

9.1.1.1.1 HasBinding (N)

The HasBinding concrete method of a declarative Environment Record envRec takes argument N (a String). It
determines if the argument identifier is one of the identifiers bound by the record. It performs the following steps
when called:

1. If envRec has a binding for the name that is the value of N, return true.
2. Return false.

9.1.1.1.2 CreateMutableBinding (N, D)

The CreateMutableBinding concrete method of a declarative Environment Record envRec takes arguments N (a String)
and D (a Boolean). It creates a new mutable binding for the name N that is uninitialized. A binding must not already
exist in this Environment Record for N. If D has the value true, the new binding is marked as being subject to deletion.
It performs the following steps when called:

1. Assert: envRec does not already have a binding for N.

2. Create a mutable binding in envRec for N and record that it is uninitialized. If D is true, record that the newly
created binding may be deleted by a subsequent DeleteBinding call.

3. Return NormalCompletion(empty).

9.1.1.1.3 CreatelmmutableBinding (N, S)

The CreateImmutableBinding concrete method of a declarative Environment Record envRec takes arguments N (a
String) and S (a Boolean). It creates a new immutable binding for the name N that is uninitialized. A binding must not
already exist in this Environment Record for N. If S has the value true, the new binding is marked as a strict binding.
It performs the following steps when called:

1. Assert: envRec does not already have a binding for N.

2. Create an immutable binding in envRec for N and record that it is uninitialized. If S is true, record that the
newly created binding is a strict binding.

3. Return NormalCompletion(empty).

9.1.1.1.4 InitializeBinding (N, V)

The InitializeBinding concrete method of a declarative Environment Record envRec takes arguments N (a String) and
V (an ECMAScript language value). It is used to set the bound value of the current binding of the identifier whose
name is the value of the argument N to the value of argument V. An uninitialized binding for N must already exist. It
performs the following steps when called:

1. Assert: envRec must have an uninitialized binding for N.

2. Set the bound value for N in envRec to V.

3. Record that the binding for N in envRec has been initialized.
4. Return NormalCompletion(empty).

9.1.1.1.5 SetMutableBinding (N, V, S)

The SetMutableBinding concrete method of a declarative Environment Record envRec takes arguments N (a String), V

189



(an ECMAScript language value), and S (a Boolean). It attempts to change the bound value of the current binding of
the identifier whose name is the value of the argument N to the value of argument V. A binding for N normally
already exists, but in rare cases it may not. If the binding is an immutable binding, a TypeError is thrown if S is true. It
performs the following steps when called:

1. If envRec does not have a binding for N, then

a. If S is true, throw a ReferenceError exception.

b. Perform envRec.CreateMutableBinding(N, true).

c¢. Perform envRec InitializeBinding(N, V).

d. Return NormalCompletion(empty).
2. If the binding for N in envRec is a strict binding, set S to true.
3. If the binding for N in envRec has not yet been initialized, throw a ReferenceError exception.
4. Else if the binding for N in envRec is a mutable binding, change its bound value to V.
5. Else,

a. Assert: This is an attempt to change the value of an immutable binding.

b. If S is true, throw a TypeError exception.
6. Return NormalCompletion(empty).

NOTE An example of ECMAScript code that results in a missing binding at step 1 is:

f eval

9.1.1.1.6 GetBindingValue (N, S)

The GetBindingValue concrete method of a declarative Environment Record envRec takes arguments N (a String) and
S (a Boolean). It returns the value of its bound identifier whose name is the value of the argument N. If the binding
exists but is uninitialized a ReferenceError is thrown, regardless of the value of S. It performs the following steps
when called:

1. Assert: envRec has a binding for N.
2. If the binding for N in envRec is an uninitialized binding, throw a ReferenceError exception.
3. Return the value currently bound to N in envRec.

9.1.1.1.7 DeleteBinding (N )

The DeleteBinding concrete method of a declarative Environment Record envRec takes argument N (a String). It can
only delete bindings that have been explicitly designated as being subject to deletion. It performs the following steps
when called:

1. Assert: envRec has a binding for the name that is the value of N.
2. If the binding for N in envRec cannot be deleted, return false.

3. Remove the binding for N from envRec.

4. Return true.

9.1.1.1.8 HasThisBinding ()

The HasThisBinding concrete method of a declarative Environment Record envRec takes no arguments. It performs
the following steps when called:

190



1. Return false.

NOTE A regular declarative Environment Record (i.e., one that is neither a function Environment

Record nor a module Environment Record) does not provide a this binding.

9.1.1.1.9 HasSuperBinding ()

The HasSuperBinding concrete method of a declarative Environment Record envRec takes no arguments. It performs

the following steps when called:

1. Return false.

NOTE A regular declarative Environment Record (i.e., one that is neither a function Environment

Record nor a module Environment Record) does not provide a super binding.

9.1.1.1.10 WithBaseObject ()

The WithBaseObject concrete method of a declarative Environment Record envRec takes no arguments. It performs the

following steps when called:

1. Return undefined.

9.1.1.2 Object Environment Records

Each object Environment Record is associated with an object called its binding object. An object Environment Record
binds the set of string identifier names that directly correspond to the property names of its binding object. Property
keys that are not strings in the form of an IdentifierName are not included in the set of bound identifiers. Both own and
inherited properties are included in the set regardless of the setting of their [[Enumerable]] attribute. Because
properties can be dynamically added and deleted from objects, the set of identifiers bound by an object Environment
Record may potentially change as a side-effect of any operation that adds or deletes properties. Any bindings that are
created as a result of such a side-effect are considered to be a mutable binding even if the Writable attribute of the
corresponding property has the value false. Inmutable bindings do not exist for object Environment Records.

Object Environment Records created for with statements (14.11) can provide their binding object as an implicit this
value for use in function calls. The capability is controlled by a withEnvironment Boolean value that is associated with
each object Environment Record. By default, the value of withEnvironment is false for any object Environment Record.

The behaviour of the concrete specification methods for object Environment Records is defined by the following

algorithms.

9.1.1.2.1 HasBinding (N)

The HasBinding concrete method of an object Environment Record envRec takes argument N (a String). It determines
if its associated binding object has a property whose name is the value of the argument N. It performs the following

steps when called:

1. Let bindings be the binding object for envRec.
2. Let foundBinding be ? HasProperty(bindings, N).
3. If foundBinding is false, return false.

191



4. If the withEnvironment flag of envRec is false, return true.
5. Let unscopables be ? Get(bindings, @@unscopables).
6. If Type(unscopables) is Object, then
a. Let blocked be ! ToBoolean(? Get(unscopables, N)).
b. If blocked is true, return false.
7. Return true.

9.1.1.2.2 CreateMutableBinding ( N, D)

The CreateMutableBinding concrete method of an object Environment Record envRec takes arguments N (a String)
and D (a Boolean). It creates in an Environment Record's associated binding object a property whose name is the
String value and initializes it to the value undefined. If D has the value true, the new property's [[Configurable]]
attribute is set to true; otherwise it is set to false. It performs the following steps when called:

1. Let bindings be the binding object for envRec.
2. Return ? DefinePropertyOrThrow(bindings, N, PropertyDescriptor { [[Value]]: undefined, [[Writable]]: true,
[[Enumerable]]: true, [[Configurable]]: D }).

NOTE Normally envRec will not have a binding for N but if it does, the semantics of
DefinePropertyOrThrow may result in an existing binding being replaced or shadowed or cause
an abrupt completion to be returned.

9.1.1.2.3 CreatelmmutableBinding (N, S)

The CreateImmutableBinding concrete method of an object Environment Record is never used within this
specification.

9.1.1.2.4 InitializeBinding (N, V)

The InitializeBinding concrete method of an object Environment Record envRec takes arguments N (a String) and V (an
ECMAScript language value). It is used to set the bound value of the current binding of the identifier whose name is
the value of the argument N to the value of argument V. It performs the following steps when called:

1. Return ? envRec.SetMutableBinding(N, V, false).

NOTE In this specification, all uses of CreateMutableBinding for object Environment Records are
immediately followed by a call to InitializeBinding for the same name. Hence, this specification
does not explicitly track the initialization state of bindings in object Environment Records.

9.1.1.2.5 SetMutableBinding (N, V, S)

The SetMutableBinding concrete method of an object Environment Record envRec takes arguments N (a String), V (an
ECMAScript language value), and S (a Boolean). It attempts to set the value of the Environment Record's associated
binding object's property whose name is the value of the argument N to the value of argument V. A property named N
normally already exists but if it does not or is not currently writable, error handling is determined by S. It performs
the following steps when called:

1. Let bindings be the binding object for envRec.
2. Let stillExists be ? HasProperty(bindings, N).

192



3. If stillExists is false and S is true, throw a ReferenceError exception.
4. Return ? Set(bindings, N, V, S).
9.1.1.2.6 GetBindingValue (N, S)

The GetBindingValue concrete method of an object Environment Record envRec takes arguments N (a String) and S (a
Boolean). It returns the value of its associated binding object's property whose name is the String value of the
argument identifier N. The property should already exist but if it does not the result depends upon S. It performs the
following steps when called:

1. Let bindings be the binding object for envRec.
2. Let value be ? HasProperty(bindings, N).
3. If value is false, then
a. If S is false, return the value undefined; otherwise throw a ReferenceError exception.
4. Return ? Get(bindings, N).
9.1.1.2.7 DeleteBinding ( N)

The DeleteBinding concrete method of an object Environment Record envRec takes argument N (a String). It can only
delete bindings that correspond to properties of the environment object whose [[Configurable]] attribute have the
value true. It performs the following steps when called:

1. Let bindings be the binding object for envRec.
2. Return ? bindings.[[Delete]](N).

9.1.1.2.8 HasThisBinding ()

The HasThisBinding concrete method of an object Environment Record envRec takes no arguments. It performs the
following steps when called:

1. Return false.

NOTE Object Environment Records do not provide a this binding.

9.1.1.2.9 HasSuperBinding ()

The HasSuperBinding concrete method of an object Environment Record envRec takes no arguments. It performs the
following steps when called:

1. Return false.

NOTE Object Environment Records do not provide a super binding.

9.1.1.2.10 WithBaseObject ()

The WithBaseObject concrete method of an object Environment Record envRec takes no arguments. It performs the
following steps when called:

1. If the withEnvironment flag of envRec is true, return the binding object for envRec.
2. Otherwise, return undefined.

193



9.1.1.3 Function Environment Records

A function Environment Record is a declarative Environment Record that is used to represent the top-level scope of a
function and, if the function is not an ArrowFunction, provides a th1is binding. If a function is not an ArrowFunction
function and references super, its function Environment Record also contains the state that is used to perform

super method invocations from within the function.
Function Environment Records have the additional state fields listed in Table 18.

Table 18: Additional Fields of Function Environment Records

Field Name Value Meaning
[[ThisValue]] Any This is the this value used for this invocation of the function.
[[ThisBindingStatus]] | lexical | If the value is lexical, this is an ArrowFunction and does not have a local this
initialized | value.
uninitialized
[[FunctionObject]] Object The function object whose invocation caused this Environment Record to be
created.
[[NewTarget]] Object | If this Environment Record was created by the [[Construct]] internal method,
undefined [[NewTarget]] is the value of the [[Construct]] newTarget parameter.
Otherwise, its value is undefined.

Function Environment Records support all of the declarative Environment Record methods listed in Table 17 and
share the same specifications for all of those methods except for HasThisBinding and HasSuperBinding. In addition,
function Environment Records support the methods listed in Table 19:

Table 19: Additional Methods of Function Environment Records

Method Purpose

BindThisValue(V) | Set the [[ThisValue]] and record that it has been initialized.

GetThisBinding() | Return the value of this Environment Record's th1is binding. Throws a ReferenceError if the
this binding has not been initialized.

GetSuperBase() Return the object that is the base for super property accesses bound in this Environment
Record. The value undefined indicates that super property accesses will produce runtime
errors.

The behaviour of the additional concrete specification methods for function Environment Records is defined by the
following algorithms:

9.1.1.3.1 BindThisValue (V')

The BindThisValue concrete method of a function Environment Record envRec takes argument V (an ECMAScript
language value). It performs the following steps when called:

194



Assert: envRec.[[ThisBindingStatus]] is not lexical.

If envRec.[[ThisBindingStatus]] is initialized, throw a ReferenceError exception.
Set envRec.[[ThisValue]] to V.

Set envRec.[[ThisBindingStatus]] to initialized.

Return V.

USRS

9.1.1.3.2 HasThisBinding ()

The HasThisBinding concrete method of a function Environment Record envRec takes no arguments. It performs the
following steps when called:

1. If envRec.[[ThisBindingStatus]] is lexical, return false; otherwise, return true.

9.1.1.3.3 HasSuperBinding ()

The HasSuperBinding concrete method of a function Environment Record envRec takes no arguments. It performs the
following steps when called:

1. If envRec.[[ThisBindingStatus]] is lexical, return false.
2. If envRec.[[FunctionObject]].[[HomeObject]] has the value undefined, return false; otherwise, return true.

9.1.1.3.4 GetThisBinding ()

The GetThisBinding concrete method of a function Environment Record envRec takes no arguments. It performs the
following steps when called:

1. Assert: envRec.[[ThisBindingStatus]] is not lexical.

2. If envRec.[[ThisBindingStatus]] is uninitialized, throw a ReferenceError exception.
3. Return envRec.[[ThisValuel]].

9.1.1.3.5 GetSuperBase ()

The GetSuperBase concrete method of a function Environment Record envRec takes no arguments. It performs the
following steps when called:

1. Let home be envRec.[[FunctionObject]].[[HomeObject]].
2. If home has the value undefined, return undefined.

3. Assert: Type(home) is Object.

4. Return ? home.[[GetPrototypeOf]]().

9.1.1.4 Global Environment Records

A global Environment Record is used to represent the outer most scope that is shared by all of the ECMAScript Script
elements that are processed in a common realm. A global Environment Record provides the bindings for built-in
globals (clause 19), properties of the global object, and for all top-level declarations (8.1.9, 8.1.11) that occur within a
Script.

A global Environment Record is logically a single record but it is specified as a composite encapsulating an object
Environment Record and a declarative Environment Record. The object Environment Record has as its base object the
global object of the associated Realm Record. This global object is the value returned by the global Environment
Record's GetThisBinding concrete method. The object Environment Record component of a global Environment

195



Record contains the bindings for all built-in globals (clause 19) and all bindings introduced by a FunctionDeclaration,
GeneratorDeclaration, AsyncFunctionDeclaration, AsyncGeneratorDeclaration, or VariableStatement contained in global
code. The bindings for all other ECMAScript declarations in global code are contained in the declarative Environment
Record component of the global Environment Record.

Properties may be created directly on a global object. Hence, the object Environment Record component of a global
Environment Record may contain both bindings created explicitly by FunctionDeclaration, GeneratorDeclaration,
AsyncFunctionDeclaration, AsyncGeneratorDeclaration, or VariableDeclaration declarations and bindings created
implicitly as properties of the global object. In order to identify which bindings were explicitly created using
declarations, a global Environment Record maintains a list of the names bound using its CreateGlobalVarBinding and
CreateGlobalFunctionBinding concrete methods.

Global Environment Records have the additional fields listed in Table 20 and the additional methods listed in Table 21.

Table 20: Additional Fields of Global Environment Records

Field Name Value Meaning

[[ObjectRecord]] Object Binding object is the global object. It contains global built-in bindings as well
Environment | as FunctionDeclaration, GeneratorDeclaration, AsyncFunctionDeclaration,
Record AsyncGeneratorDeclaration, and VariableDeclaration bindings in global code for
the associated realm.

[[GlobalThisValue]] | Object The value returned by th1is in global scope. Hosts may provide any
ECMAScript Object value.

[[DeclarativeRecord]] | Declarative | Contains bindings for all declarations in global code for the associated realm
Environment | code except for FunctionDeclaration, GeneratorDeclaration,

Record AsyncFunctionDeclaration, AsyncGeneratorDeclaration, and VariableDeclaration
bindings.
[[VarNames]] List of String | The string names bound by FunctionDeclaration, GeneratorDeclaration,

AsyncFunctionDeclaration, AsyncGeneratorDeclaration, and VariableDeclaration
declarations in global code for the associated realm.

196



Table 21: Additional Methods of Global Environment Records

Method Purpose
GetThisBinding|() Return the value of this Environment Record's th1is binding.
HasVarDeclaration (N) Determines if the argument identifier has a binding in this Environment Record

that was created using a VariableDeclaration, FunctionDeclaration,
GeneratorDeclaration, AsyncFunctionDeclaration, or AsyncGeneratorDeclaration.

HasLexicalDeclaration (N) Determines if the argument identifier has a binding in this Environment Record
that was created using a lexical declaration such as a LexicalDeclaration or a
ClassDeclaration.

HasRestrictedGlobalProperty Determines if the argument is the name of a global object property that may not

(N) be shadowed by a global lexical binding.

CanDeclareGlobalVar (N) Determines if a corresponding CreateGlobalVarBinding call would succeed if

called for the same argument N.

CanDeclareGlobalFunction (N) | Determines if a corresponding CreateGlobalFunctionBinding call would succeed
if called for the same argument N.

CreateGlobalVarBinding(N, D) Used to create and initialize to undefined a global var binding in the
[[ObjectRecord]] component of a global Environment Record. The binding will
be a mutable binding. The corresponding global object property will have
attribute values appropriate for a var. The String value N is the bound name. If
D is true the binding may be deleted. Logically equivalent to
CreateMutableBinding followed by a SetMutableBinding but it allows var
declarations to receive special treatment.

CreateGlobalFunctionBinding(N, | Create and initialize a global function binding in the [[ObjectRecord]]
V,D) component of a global Environment Record. The binding will be a mutable
binding. The corresponding global object property will have attribute values
appropriate for a function. The String value N is the bound name. V is the
initialization value. If the Boolean argument D is true the binding may be
deleted. Logically equivalent to CreateMutableBinding followed by a
SetMutableBinding but it allows function declarations to receive special

treatment.

The behaviour of the concrete specification methods for global Environment Records is defined by the following
algorithms.

9.1.1.4.1 HasBinding (N)

The HasBinding concrete method of a global Environment Record envRec takes argument N (a String). It determines if
the argument identifier is one of the identifiers bound by the record. It performs the following steps when called:

1. Let DclRec be envRec.[[DeclarativeRecord]].
2. If DclRec.HasBinding(N) is true, return true.

197



3. Let ObjRec be envRec.[[ObjectRecord]].
4. Return ? ObjRec.HasBinding(N).

9.1.1.4.2 CreateMutableBinding (N, D)

The CreateMutableBinding concrete method of a global Environment Record envRec takes arguments N (a String) and
D (a Boolean). It creates a new mutable binding for the name N that is uninitialized. The binding is created in the
associated DeclarativeRecord. A binding for N must not already exist in the DeclarativeRecord. If D has the value true,
the new binding is marked as being subject to deletion. It performs the following steps when called:

1. Let DclRec be envRec.[[DeclarativeRecord]].
2. If DclRec.HasBinding(N) is true, throw a TypeError exception.
3. Return DclRec.CreateMutableBinding(N, D).

9.1.1.4.3 CreatelmmutableBinding (N, S)

The CreateImmutableBinding concrete method of a global Environment Record envRec takes arguments N (a String)
and S (a Boolean). It creates a new immutable binding for the name N that is uninitialized. A binding must not already
exist in this Environment Record for N. If S has the value true, the new binding is marked as a strict binding. It
performs the following steps when called:

1. Let DclRec be envRec.[[DeclarativeRecord]].
2. If DclRec.HasBinding(N) is true, throw a TypeError exception.
3. Return DclRec.CreatelmmutableBinding(N, S).

9.1.1.4.4 InitializeBinding (N, V)

The InitializeBinding concrete method of a global Environment Record envRec takes arguments N (a String) and V (an
ECMAScript language value). It is used to set the bound value of the current binding of the identifier whose name is
the value of the argument N to the value of argument V. An uninitialized binding for N must already exist. It
performs the following steps when called:

1. Let DclRec be envRec.[[DeclarativeRecord]].
2. If DclRec.HasBinding(N) is true, then
a. Return DclRec.InitializeBinding(N, V).
3. Assert: If the binding exists, it must be in the object Environment Record.
4. Let ObjRec be envRec.[[ObjectRecord]].
5. Return ? ObjRec.InitializeBinding(N, V).

9.1.1.4.5 SetMutableBinding (N, V,S)

The SetMutableBinding concrete method of a global Environment Record envRec takes arguments N (a String), V (an
ECMAScript language value), and S (a Boolean). It attempts to change the bound value of the current binding of the
identifier whose name is the value of the argument N to the value of argument V. If the binding is an immutable
binding, a TypeError is thrown if S is true. A property named N normally already exists but if it does not or is not
currently writable, error handling is determined by S. It performs the following steps when called:

1. Let DclRec be envRec.[[DeclarativeRecord]].
2. If DclRec.HasBinding(N) is true, then
a. Return DclRec.SetMutableBinding(N, V, S).

198



3. Let ObjRec be envRec.[[ObjectRecord]].
4. Return ? ObjRec.SetMutableBinding(N, V, S).

9.1.1.4.6 GetBindingValue (N, S)

The GetBindingValue concrete method of a global Environment Record envRec takes arguments N (a String) and S (a
Boolean). It returns the value of its bound identifier whose name is the value of the argument N. If the binding is an
uninitialized binding throw a ReferenceError exception. A property named N normally already exists but if it does
not or is not currently writable, error handling is determined by S. It performs the following steps when called:

1. Let DclRec be envRec.[[DeclarativeRecord]].
2. If DclRec.HasBinding(N) is true, then

a. Return DclRec.GetBindingValue(N, S).
3. Let ObjRec be envRec.[[ObjectRecord]].
4. Return ? ObjRec.GetBindingValue(N, S).

9.1.1.4.7 DeleteBinding ( N)

The DeleteBinding concrete method of a global Environment Record envRec takes argument N (a String). It can only
delete bindings that have been explicitly designated as being subject to deletion. It performs the following steps when
called:

1. Let DclRec be envRec.[[DeclarativeRecord]].
2. If DclRec.HasBinding(N) is true, then
a. Return DclRec.DeleteBinding(N).
Let ObjRec be envRec.[[ObjectRecord]].
Let ¢lobalObject be the binding object for ObjRec.
Let existingProp be ? HasOwnProperty(globalObject, N).

S

If existingProp is true, then
a. Let status be ? ObjRec.DeleteBinding(N).
b. If status is true, then
i. Let varNames be envRec.[[VarNames]].
ii. If N is an element of varNames, remove that element from the varNames.
c. Return status.
7. Return true.

9.1.1.4.8 HasThisBinding ()

The HasThisBinding concrete method of a global Environment Record envRec takes no arguments. It performs the
following steps when called:

1. Return true.

NOTE Global Environment Records always provide a this binding.

9.1.1.4.9 HasSuperBinding ()

The HasSuperBinding concrete method of a global Environment Record envRec takes no arguments. It performs the
following steps when called:

199



1. Return false.

NOTE Global Environment Records do not provide a super binding.

9.1.1.4.10 WithBaseObject ()

The WithBaseObject concrete method of a global Environment Record envRec takes no arguments. It performs the
following steps when called:

1. Return undefined.

9.1.1.4.11 GetThisBinding ()

The GetThisBinding concrete method of a global Environment Record envRec takes no arguments. It performs the
following steps when called:

1. Return envRec.[[GlobalThisValue]].

9.1.1.4.12 HasVarDeclaration (N )

The HasVarDeclaration concrete method of a global Environment Record envRec takes argument N (a String). It
determines if the argument identifier has a binding in this record that was created using a VariableStatement or a
FunctionDeclaration. It performs the following steps when called:

1. Let varDeclaredNames be envRec.[[VarNames]].
2. If varDeclaredNames contains N, return true.
3. Return false.

9.1.1.4.13 HasLexicalDeclaration ( N)

The HasLexicalDeclaration concrete method of a global Environment Record envRec takes argument N (a String). It
determines if the argument identifier has a binding in this record that was created using a lexical declaration such as a
LexicalDeclaration or a ClassDeclaration. It performs the following steps when called:

1. Let DclRec be envRec.[[DeclarativeRecord]].
2. Return DclRec.HasBinding(N).

9.1.1.4.14 HasRestrictedGlobalProperty ( N)

The HasRestrictedGlobalProperty concrete method of a global Environment Record envRec takes argument N (a
String). It determines if the argument identifier is the name of a property of the global object that must not be
shadowed by a global lexical binding. It performs the following steps when called:

Let ObjRec be envRec.[[ObjectRecord]].

Let ¢lobalObject be the binding object for ObjRec.

Let existingProp be ? global Object.[[GetOwnProperty]](N).
If existingProp is undefined, return false.

If existingProp.[[Configurable]] is true, return false.

S .

Return true.

200



NOTE Properties may exist upon a global object that were directly created rather than being declared
using a var or function declaration. A global lexical binding may not be created that has the same
name as a non-configurable property of the global object. The global property "undefined" is an
example of such a property.

9.1.1.4.15 CanDeclareGlobalVar (N)

The CanDeclareGlobalVar concrete method of a global Environment Record envRec takes argument N (a String). It
determines if a corresponding CreateGlobalVarBinding call would succeed if called for the same argument N.
Redundant var declarations and var declarations for pre-existing global object properties are allowed. It performs the
following steps when called:

Let ObjRec be envRec.[[ObjectRecord]].

Let globalObject be the binding object for ObjRec.

Let hasProperty be ? HasOwnProperty(globalObject, N).
If hasProperty is true, return true.

Return ? IsExtensible(global Object).

SRS .

9.1.1.4.16 CanDeclareGlobalFunction (N )

The CanDeclareGlobalFunction concrete method of a global Environment Record envRec takes argument N (a String).
It determines if a corresponding CreateGlobalFunctionBinding call would succeed if called for the same argument N.
It performs the following steps when called:

Let ObjRec be envRec.[[ObjectRecord]].

Let globalObject be the binding object for ObjRec.

Let existingProp be ? globalObject.[[GetOwnProperty]](N).

If existingProp is undefined, return ? IsExtensible(global Object).
If existingProp.[[Configurable]] is true, return true.

SAELEE SR

If IsDataDescriptor(existingProp) is true and existingProp has attribute values { [[Writable]]: true,
[[Enumerable]]: true }, return true.
7. Return false.

9.1.1.4.17 CreateGlobalVarBinding (N, D)

The CreateGlobalVarBinding concrete method of a global Environment Record envRec takes arguments N (a String)
and D (a Boolean). It creates and initializes a mutable binding in the associated object Environment Record and
records the bound name in the associated [[VarNames]] List. If a binding already exists, it is reused and assumed to be
initialized. It performs the following steps when called:

Let ObjRec be envRec.[[ObjectRecord]].
Let globalObject be the binding object for ObjRec.
Let hasProperty be ? HasOwnProperty(globalObject, N).
Let extensible be ? IsExtensible(global Object).
If hasProperty is false and extensible is true, then

a. Perform ? ObjRec.CreateMutableBinding(N, D).

b. Perform ? ObjRec InitializeBinding(N, undefined).
6. Let varDeclaredNames be envRec.[[VarNames]].

SRS -

7. If varDeclaredNames does not contain N, then

201



a. Append N to varDeclaredNames.
8. Return NormalCompletion(empty).

9.1.1.4.18 CreateGlobalFunctionBinding (N, V, D)

The CreateGlobalFunctionBinding concrete method of a global Environment Record envRec takes arguments N (a
String), V (an ECMAScript language value), and D (a Boolean). It creates and initializes a mutable binding in the
associated object Environment Record and records the bound name in the associated [[VarNames]] List. If a binding
already exists, it is replaced. It performs the following steps when called:

Let ObjRec be envRec.[[ObjectRecord]].
Let globalObject be the binding object for ObjRec.
Let existingProp be ? globalObject.[[GetOwnProperty]](N).
If existingProp is undefined or existingProp.[[Configurable]] is true, then
a. Let desc be the PropertyDescriptor { [[Value]]: V, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: D }.

Ll e

5. Else,

a. Let desc be the PropertyDescriptor { [[Value]]: V'}.
Perform ? DefinePropertyOrThrow(globalObject, N, desc).
Perform ? Set(globalObject, N, V, false).

Let varDeclaredNames be envRec.[[VarNames]].

v N

If varDeclaredNames does not contain N, then
a. Append N to varDeclaredNames.
10. Return NormalCompletion(empty).

NOTE Global function declarations are always represented as own properties of the global object. If
possible, an existing own property is reconfigured to have a standard set of attribute values. Step
7 is equivalent to what calling the InitializeBinding concrete method would do and if globalObject
is a Proxy will produce the same sequence of Proxy trap calls.

9.1.1.5 Module Environment Records

A module Environment Record is a declarative Environment Record that is used to represent the outer scope of an
ECMAScript Module. In additional to normal mutable and immutable bindings, module Environment Records also
provide immutable import bindings which are bindings that provide indirect access to a target binding that exists in
another Environment Record.

Module Environment Records support all of the declarative Environment Record methods listed in Table 17 and share
the same specifications for all of those methods except for GetBindingValue, DeleteBinding, HasThisBinding and
GetThisBinding. In addition, module Environment Records support the methods listed in Table 22:

202



Table 22: Additional Methods of Module Environment Records

Method Purpose

CreateImportBinding(N, | Create an immutable indirect binding in a module Environment Record. The String value
M, N2) N is the text of the bound name. M is a Module Record, and N2 is a binding that exists in

M's module Environment Record.

GetThisBinding() Return the value of this Environment Record's th1is binding.

The behaviour of the additional concrete specification methods for module Environment Records are defined by the

following algorithms:

9.1.1.5.1 GetBindingValue (N, S)

The GetBindingValue concrete method of a module Environment Record envRec takes arguments N (a String) and S (a
Boolean). It returns the value of its bound identifier whose name is the value of the argument N. However, if the
binding is an indirect binding the value of the target binding is returned. If the binding exists but is uninitialized a

ReferenceError is thrown. It performs the following steps when called:

1. Assert: S is true.
2. Assert: envRec has a binding for N.
3. If the binding for N is an indirect binding, then
a. Let M and N2 be the indirection values provided when this binding for N was created.
b. Let targetEnv be M.[[Environment]].
c. If targetEnv is undefined, throw a ReferenceError exception.
d. Return ? targetEnv.GetBindingValue(N2, true).
4. If the binding for N in envRec is an uninitialized binding, throw a ReferenceError exception.

5. Return the value currently bound to N in envRec.

NOTE S will always be true because a Module is always strict mode code.

9.1.1.5.2 DeleteBinding ( N')

The DeleteBinding concrete method of a module Environment Record is never used within this specification.

NOTE Module Environment Records are only used within strict code and an early error rule prevents
the delete operator, in strict code, from being applied to a Reference Record that would resolve to

a module Environment Record binding. See 13.5.1.1.

9.1.1.5.3 HasThisBinding ()

The HasThisBinding concrete method of a module Environment Record envRec takes no arguments. It performs the

following steps when called:

1. Return true.

203




NOTE Module Environment Records always provide a this binding.

9.1.1.5.4 GetThisBinding ()

The GetThisBinding concrete method of a module Environment Record envRec takes no arguments. It performs the
following steps when called:

1. Return undefined.

9.1.1.5.5 CreateImportBinding (N, M, N2)

The CreateImportBinding concrete method of a module Environment Record envRec takes arguments N (a String), M
(a Module Record), and N2 (a String). It creates a new initialized immutable indirect binding for the name N. A
binding must not already exist in this Environment Record for N. N2 is the name of a binding that exists in M's
module Environment Record. Accesses to the value of the new binding will indirectly access the bound value of the
target binding. It performs the following steps when called:

Assert: envRec does not already have a binding for N.
Assert: M is a Module Record.
Assert: When M.[[Environment]] is instantiated it will have a direct binding for N2.

LN

Create an immutable indirect binding in envRec for N that references M and N2 as its target binding and record
that the binding is initialized.
5. Return NormalCompletion(empty).

9.1.2 Environment Record Operations

The following abstract operations are used in this specification to operate upon Environment Records:

9.1.2.1 GetldentifierReference ( env, name, strict)

The abstract operation GetldentifierReference takes arguments env (an Environment Record or null), name (a String),
and strict (a Boolean). It performs the following steps when called:

1. If env is the value null, then
a. Return the Reference Record { [[Base]]: unresolvable, [[ReferencedName]]: name, [[Strict]]: strict,
[[ThisValue]]: empty }.
2. Let exists be ? env.HasBinding(name).
3. If exists is true, then
a. Return the Reference Record { [[Base]]: env, [[ReferencedNamel]]: name, [[Strict]]: strict, [[ThisValue]]:
empty }.
4. Else,
a. Let outer be env.[[OuterEnv]].
b. Return ? GetldentifierReference(outer, name, strict).

9.1.2.2 NewDeclarativeEnvironment ( E )

The abstract operation NewDeclarativeEnvironment takes argument E (an Environment Record). It performs the
following steps when called:

204



1.
2.
3.

Let env be a new declarative Environment Record containing no bindings.
Set env.[[OuterEnv]] to E.
Return eno.

9.1.2.3 NewObjectEnvironment ( O, E)

The abstract operation NewObjectEnvironment takes arguments O (an Object) and E (an Environment Record). It

performs the following steps when called:

1.
2.
3.

Let env be a new object Environment Record containing O as the binding object.
Set env.[[OuterEnv]] to E.
Return eno.

9.1.2.4 NewFunctionEnvironment ( F, newTarget )

The abstract operation NewFunctionEnvironment takes arguments F and newTarget. It performs the following steps

when called:

0 0 NG » N

Assert: F is an ECMAScript function.

Assert: Type(newTnarget) is Undefined or Object.

Let env be a new function Environment Record containing no bindings.
Set env.[[FunctionObject]] to F.

If F.[[ThisModel]] is lexical, set eno.[[ThisBindingStatus]] to lexical.
Else, set env.[[ThisBindingStatus]] to uninitialized.

Set env.[[NewTarget]] to newTarget.

Set env.[[OuterEnv]] to F.[[Environment]].

Return env.

9.1.2.5 NewGlobalEnvironment ( G, thisValue)

The abstract operation NewGlobalEnvironment takes arguments G and thisValue. It performs the following steps

when called:

O X N U=

Let objRec be a new object Environment Record containing G as the binding object.
Let dclRec be a new declarative Environment Record containing no bindings.

Let env be a new global Environment Record.

Set env.[[ObjectRecord]] to objRec.

Set eno.[[GlobalThisValue]] to thisValue.

Set env.[[DeclarativeRecord]] to dclRec.

Set env.[[VarNames]] to a new empty List.

Set env.[[OuterEnv]] to null.

Return env.

9.1.2.6 NewModuleEnvironment (E)

The abstract operation NewModuleEnvironment takes argument E (an Environment Record). It performs the

following steps when called:

1.

Let env be a new module Environment Record containing no bindings.

205



2. Set env.[[OuterEnv]] to E.

3. Return env.

9.2 Realms

Before it is evaluated, all ECMAScript code must be associated with a realm. Conceptually, a realm consists of a set of
intrinsic objects, an ECMAScript global environment, all of the ECMAScript code that is loaded within the scope of

that global environment, and other associated state and resources.

A realm is represented in this specification as a Realm Record with the fields specified in Table 23:

Table 23: Realm Record Fields

Field Name Value Meaning

[[Intrinsics]] Record whose field | The intrinsic values used by code associated with this realm
names are intrinsic
keys and whose
values are objects

[[GlobalObject]] | Object The global object for this realm

[[GlobalEnv]] global Environment | The global environment for this realm
Record

[[TemplateMap]] | A List of Record { Template objects are canonicalized separately for each realm using its
[[Site]]: Parse Node, [ Realm Record's [[TemplateMap]]. Each [[Site]] value is a Parse Node that is
[[Array]]: Object }. | a TemplateLiteral. The associated [[Array]] value is the corresponding

template object that is passed to a tag function.

NOTE Once a Parse Node becomes unreachable, the
corresponding [[Array]] is also unreachable, and it
would be unobservable if an implementation
removed the pair from the [[TemplateMap]] list.

[[HostDefined]] | Any, default value | Field reserved for use by hosts that need to associate additional
is undefined. information with a Realm Record.

9.2.1 CreateRealm ()

The abstract operation CreateRealm takes no arguments. It performs the following steps when called:

AN S i N

Perform Createlntrinsics(realmRec).

Set realmRec.[[GlobalObject]] to undefined.

Set realmRec.[[GlobalEnv]] to undefined.

Set realmRec.[[TemplateMap]] to a new empty List.
Return realmRec.

Let realmRec be a new Realm Record.

206




9.2.2 Createlntrinsics ( realmRec)
The abstract operation Createlntrinsics takes argument realmRec. It performs the following steps when called:

1. Let intrinsics be a new Record.

2. Set realmRec.[[Intrinsics]] to intrinsics.

3. Set fields of intrinsics with the values listed in Table 8. The field names are the names listed in column one of
the table. The value of each field is a new object value fully and recursively populated with property values as
defined by the specification of each object in clauses 19 through 28. All object property values are newly created
object values. All values that are built-in function objects are created by performing
CreateBuiltinFunction(steps, length, name, slots, realmRec, prototype) where steps is the definition of that function
provided by this specification, name is the initial value of the function's name property, length is the initial
value of the function's Length property, slofs is a list of the names, if any, of the function's specified internal
slots, and prototype is the specified value of the function's [[Prototype]] internal slot. The creation of the
intrinsics and their properties must be ordered to avoid any dependencies upon objects that have not yet been
created.

4. Perform AddRestrictedFunctionProperties(intrinsics.[[%Function.prototype%]], realmRec).

5. Return intrinsics.

9.2.3 SetRealmGlobalObject ( realmRec, globalObj, thisValue')

The abstract operation SetRealmGlobalObject takes arguments realmRec, ¢lobalObj, and thisValue. It performs the
following steps when called:

1. If ¢lobalObj is undefined, then
a. Let intrinsics be realmRec.[[Intrinsics]].
b. Set globalObj to ! OrdinaryObjectCreate(intrinsics.[[%Object.prototype%]]).
Assert: Type(globalObj) is Object.
If thisValue is undefined, set thisValue to globalObj.
Set realmRec.[[GlobalObject]] to global Obj.
Let newGlobalEnv be NewGlobalEnvironment(global Obj, thisValue).
Set realmRec.[[GlobalEnv]] to newGlobal Env.
Return realmRec.

NSO e

9.2.4 SetDefaultGlobalBindings ( realmRec)

The abstract operation SetDefaultGlobalBindings takes argument realmRec. It performs the following steps when
called:

1. Let global be realmRec.[[GlobalObject]].
2. For each property of the Global Object specified in clause 19, do

a. Let name be the String value of the property name.

b. Let desc be the fully populated data Property Descriptor for the property, containing the specified
attributes for the property. For properties listed in 19.2, 19.3, or 19.4 the value of the [[Value]] attribute is
the corresponding intrinsic object from realmRec.

c. Perform ? DefinePropertyOrThrow(global, name, desc).

3. Return global.

207



9.3 Execution Contexts

An execution context is a specification device that is used to track the runtime evaluation of code by an ECMAScript
implementation. At any point in time, there is at most one execution context per agent that is actually executing code.
This is known as the agent's running execution context. All references to the running execution context in this

specification denote the running execution context of the surrounding agent.

The execution context stack is used to track execution contexts. The running execution context is always the top element
of this stack. A new execution context is created whenever control is transferred from the executable code associated
with the currently running execution context to executable code that is not associated with that execution context. The
newly created execution context is pushed onto the stack and becomes the running execution context.

An execution context contains whatever implementation specific state is necessary to track the execution progress of
its associated code. Each execution context has at least the state components listed in Table 24.

Table 24: State Components for All Execution Contexts

Component Purpose

code evaluation | Any state needed to perform, suspend, and resume evaluation of the code associated with this

state execution context.

Function If this execution context is evaluating the code of a function object, then the value of this
component is that function object. If the context is evaluating the code of a Script or Module, the

value is null.

Realm The Realm Record from which associated code accesses ECMAScript resources.

ScriptOrModule | The Module Record or Script Record from which associated code originates. If there is no
originating script or module, as is the case for the original execution context created in
InitializeHostDefinedRealm, the value is null.

Evaluation of code by the running execution context may be suspended at various points defined within this
specification. Once the running execution context has been suspended a different execution context may become the
running execution context and commence evaluating its code. At some later time a suspended execution context may
again become the running execution context and continue evaluating its code at the point where it had previously
been suspended. Transition of the running execution context status among execution contexts usually occurs in stack-
like last-in/ first-out manner. However, some ECMAScript features require non-LIFO transitions of the running

execution context.

The value of the Realm component of the running execution context is also called the current Realm Record. The value
of the Function component of the running execution context is also called the active function object.

Execution contexts for ECMAScript code have the additional state components listed in Table 25.

208



Table 25: Additional State Components for ECMAScript Code Execution Contexts

Component Purpose

LexicalEnvironment | Identifies the Environment Record used to resolve identifier references made by code within

this execution context.

VariableEnvironment | Identifies the Environment Record that holds bindings created by VariableStatements within

this execution context.

The LexicalEnvironment and VariableEnvironment components of an execution context are always Environment

Records.

Execution contexts representing the evaluation of generator objects have the additional state components listed in
Table 26.

Table 26: Additional State Components for Generator Execution Contexts

Component Purpose

Generator | The generator object that this execution context is evaluating.

In most situations only the running execution context (the top of the execution context stack) is directly manipulated
by algorithms within this specification. Hence when the terms “LexicalEnvironment”, and “VariableEnvironment” are
used without qualification they are in reference to those components of the running execution context.

An execution context is purely a specification mechanism and need not correspond to any particular artefact of an
ECMAScript implementation. It is impossible for ECMAScript code to directly access or observe an execution context.

9.3.1 GetActiveScriptOrModule ()

The abstract operation GetActiveScriptOrModule takes no arguments. It is used to determine the running script or
module, based on the running execution context. It performs the following steps when called:

1. If the execution context stack is empty, return null.

2. Let ec be the topmost execution context on the execution context stack whose ScriptOrModule component is
not null.

3. If no such execution context exists, return null. Otherwise, return ec's ScriptOrModule.

9.3.2 ResolveBinding (name [, env ])

The abstract operation ResolveBinding takes argument name (a String) and optional argument env (an Environment
Record). It is used to determine the binding of name. env can be used to explicitly provide the Environment Record
that is to be searched for the binding. It performs the following steps when called:

1. If env is not present or if env is undefined, then
a. Set env to the running execution context's LexicalEnvironment.

2. Assert: env is an Environment Record.

209



3. If the code matching the syntactic production that is being evaluated is contained in strict mode code, let strict
be true; else let strict be false.
4. Return ? GetldentifierReference(env, name, strict).

NOTE The result of ResolveBinding is always a Reference Record whose [[ReferencedName]] field is
name.

9.3.3 GetThisEnvironment ()

The abstract operation GetThisEnvironment takes no arguments. It finds the Environment Record that currently

supplies the binding of the keyword this. It performs the following steps when called:

1. Let env be the running execution context's LexicalEnvironment.
2. Repeat,
a. Let exists be env.HasThisBinding().
If exists is true, return enov.
Let outer be env.[[OuterEnv]].
Assert: outer is not null.

c 2o T

Set env to outer.

NOTE The loop in step 2 will always terminate because the list of environments always ends with the

global environment which has a this binding.

9.3.4 ResolveThisBinding ()

The abstract operation ResolveThisBinding takes no arguments. It determines the binding of the keyword th1is using
the LexicalEnvironment of the running execution context. It performs the following steps when called:

1. Let envRec be GetThisEnvironment().
2. Return ? envRec.GetThisBinding().

9.3.5 GetNewTarget ()

The abstract operation GetNewTarget takes no arguments. It determines the NewTarget value using the
LexicalEnvironment of the running execution context. It performs the following steps when called:

1. Let envRec be GetThisEnvironment().
2. Assert: envRec has a [[NewTarget]] field.
3. Return envRec.[[NewTarget]].

9.3.6 GetGlobalObject ()

The abstract operation GetGlobalObject takes no arguments. It returns the global object used by the currently running
execution context. It performs the following steps when called:

1. Let currentRealm be the current Realm Record.
2. Return currentRealm.[[GlobalObject]].

210



9.4 Jobs and Host Operations to Enqueue Jobs

AJob is an Abstract Closure with no parameters that initiates an ECMAScript computation when no other
ECMAScript computation is currently in progress.

Jobs are scheduled for execution by ECMAScript host environments. This specification describes the host hook
HostEnqueuePromiseJob to schedule one kind of job; hosts may define additional abstract operations which schedule
jobs. Such operations accept a Job Abstract Closure as the parameter and schedule it to be performed at some future

time. Their implementations must conform to the following requirements:

e At some future point in time, when there is no running execution context and the execution context stack is
empty, the implementation must:
1. Perform any host-defined preparation steps.
2. Invoke the Job Abstract Closure.
3. Perform any host-defined cleanup steps, after which the execution context stack must be empty.
e Only one Job may be actively undergoing evaluation at any point in time.
e Once evaluation of a Job starts, it must run to completion before evaluation of any other Job starts.
e The Abstract Closure must return a normal completion, implementing its own handling of errors.

NOTE 1 Host environments are not required to treat Jobs uniformly with respect to scheduling. For
example, web browsers and Node.js treat Promise-handling Jobs as a higher priority than other
work; future features may add Jobs that are not treated at such a high priority.

At any particular time, scriptOrModule (a Script Record, a Module Record, or null) is the active script or module if all of
the following conditions are true:

e GetActiveScriptOrModule() is scriptOrModule.

o If scriptOrModule is a Script Record or Module Record, let ec be the topmost execution context on the execution
context stack whose ScriptOrModule component is scriptOrModule. The Realm component of ec is
scriptOrModule.[[Realm]].

At any particular time, an execution is prepared to evaluate ECMAScript code if all of the following conditions are true:

o The execution context stack is not empty.
e The Realm component of the topmost execution context on the execution context stack is a Realm Record.

NOTE 2 Host environments may prepare an execution to evaluate code by pushing execution contexts
onto the execution context stack. The specific steps are implementation-defined.

The specific choice of Realm is up to the host environment. This initial execution context and
Realm is only in use before any callback function is invoked. When a callback function related to
a Job, like a Promise handler, is invoked, the invocation pushes its own execution context and
Realm.

Particular kinds of Jobs have additional conformance requirements.

9.4.1 JobCallback Records

A JobCallback Record is a Record value used to store a function object and a host-defined value. Function objects that

211



are invoked via a Job enqueued by the host may have additional host-defined context. To propagate the state, Job
Abstract Closures should not capture and call function objects directly. Instead, use HostMakeJobCallback and
HostCallJobCallback.

NOTE The WHATWG HTML specification (https:/ /html.spec.whatwg.org/), for example, uses the
host-defined value to propagate the incumbent settings object for Promise callbacks.

JobCallback Records have the fields listed in Table 27.

Table 27: JobCallback Record Fields

Field Name Value Meaning

[[Callback]] A function object The function to invoke when the Job is invoked.

[[HostDefined]] | Any, default value is empty. | Field reserved for use by hosts.

9.4.2 HostMake]JobCallback ( callback )

The host-defined abstract operation HostMakeJobCallback takes argument callback (a function object).
The implementation of HostMakeJobCallback must conform to the following requirements:

o It must always complete normally (i.e., not return an abrupt completion).
e It must always return a JobCallback Record whose [[Callback]] field is callback.

The default implementation of HostMakeJobCallback performs the following steps when called:

1. Assert: IsCallable(callback) is true.
2. Return the JobCallback Record { [[Callback]]: callback, [[HostDefined]]: empty }.

ECMAScript hosts that are not web browsers must use the default implementation of HostMakeJobCallback.

NOTE This is called at the time that the callback is passed to the function that is responsible for its being
eventually scheduled and run. For example, promise.then(thenAction) calls
MakeJobCallback on thenAction at the time of invoking Promise.prototype. then,
not at the time of scheduling the reaction Job.

9.4.3 HostCallJobCallback ( jobCallback, V, argumentsList)

The host-defined abstract operation HostCallJobCallback takes arguments jobCallback (a JobCallback Record), V (an
ECMAScript language value), and argumentsList (a List of ECMAScript language values).

The implementation of HostCallJobCallback must conform to the following requirements:

e It must always perform and return the result of Call(jobCallback.[[Callback]], V, arqumentsList).

NOTE This requirement means that hosts cannot change the [[Call]] behaviour of function objects
defined in this specification.

212


https://html.spec.whatwg.org/

The default implementation of HostCallJobCallback performs the following steps when called:

1. Assert: IsCallable(jobCallback.[[Callback]]) is true.
2. Return ? Call(jobCallback.[[Callback]], V, arqumentsList).

ECMAScript hosts that are not web browsers must use the default implementation of HostCallJobCallback.

9.4.4 HostEnqueuePromiseJob (job, realm)

The host-defined abstract operation HostEnqueuePromiseJob takes arguments job (a Job Abstract Closure) and realm

(a Realm Record or null). It schedules job to be performed at some future time. The Abstract Closures used with this

algorithm are intended to be related to the handling of Promises, or otherwise, to be scheduled with equal priority to
Promise handling operations.

The implementation of HostEnqueuePromiseJob must conform to the requirements in 9.4 as well as the following:

e If realm is not null, each time job is invoked the implementation must perform implementation-defined steps
such that execution is prepared to evaluate ECMAScript code at the time of job's invocation.

o Let scriptOrModule be GetActiveScriptOrModule() at the time HostEnqueuePromiseJob is invoked. If realm is
not null, each time job is invoked the implementation must perform implementation-defined steps such that
scriptOrModule is the active script or module at the time of job's invocation.

e Jobs must run in the same order as the HostEnqueuePromiseJob invocations that scheduled them.

NOTE The realm for Jobs returned by NewPromiseResolveThenableJob is usually the result of calling
GetFunctionRealm on the then function object. The realm for Jobs returned by
NewPromiseReactionJob is usually the result of calling GetFunctionRealm on the handler if the
handler is not undefined. If the handler is undefined, realm is null. For both kinds of Jobs, when
GetFunctionRealm completes abnormally (i.e. called on a revoked Proxy), realm is the current
Realm at the time of the GetFunctionRealm call. When the realm is null, no user ECMAScript
code will be evaluated and no new ECMAScript objects (e.g. Error objects) will be created. The
WHATWG HTML specification (https:/ /html.spec.whatwg.org/), for example, uses real to
check for the ability to run script and for the entry concept.

9.5 InitializeHostDefinedRealm ()

The abstract operation InitializeHostDefinedRealm takes no arguments. It performs the following steps when called:

Let realm be CreateRealm().

Let newContext be a new execution context.

Set the Function of newContext to null.

Set the Realm of newContext to realm.

Set the ScriptOrModule of newContext to null.

Push newContext onto the execution context stack; newContext is now the running execution context.

NG @ =

If the host requires use of an exotic object to serve as realm's global object, let global be such an object created in
a host-defined manner. Otherwise, let ¢lobal be undefined, indicating that an ordinary object should be created
as the global object.

8. If the host requires that the this binding in realm's global scope return an object other than the global object,
let thisValue be such an object created in a host-defined manner. Otherwise, let thisValue be undefined,

213


https://html.spec.whatwg.org/
https://html.spec.whatwg.org/#entry

indicating that realm's global th1is binding should be the global object.
9. Perform SetRealmGlobalObject(realm, global, thisValue).
10. Let globalObj be ? SetDefaultGlobalBindings(realm).
11. Create any host-defined global object properties on globalObj.
12. Return NormalCompletion(empty).

9.6 Agents

An agent comprises a set of ECMAScript execution contexts, an execution context stack, a running execution context,
an Agent Record, and an executing thread. Except for the executing thread, the constituents of an agent belong
exclusively to that agent.

An agent's executing thread executes a job on the agent's execution contexts independently of other agents, except that
an executing thread may be used as the executing thread by multiple agents, provided none of the agents sharing the
thread have an Agent Record whose [[CanBlock]] property is true.

NOTE 1 Some web browsers share a single executing thread across multiple unrelated tabs of a browser
window, for example.

While an agent's executing thread executes jobs, the agent is the surrounding agent for the code in those jobs. The code
uses the surrounding agent to access the specification level execution objects held within the agent: the running
execution context, the execution context stack, and the Agent Record's fields.

214



Table 28: Agent Record Fields

Field Name Value Meaning
[[LittleEndian]] Boolean | The default value computed for the isLittleEndian parameter when it is needed
by the algorithms GetValueFromBuffer and SetValueInBuffer. The choice is
implementation-defined and should be the alternative that is most efficient for
the implementation. Once the value has been observed it cannot change.
[[CanBlock]] Boolean | Determines whether the agent can block or not.
[[Signifier]] Any Uniquely identifies the agent within its agent cluster.
globally-
unique
value
[[IsLockFreel]] Boolean | true if atomic operations on one-byte values are lock-free, false otherwise.
[[TsLockFree2]] Boolean | true if atomic operations on two-byte values are lock-free, false otherwise.
[[IsLockFree8]] Boolean | true if atomic operations on eight-byte values are lock-free, false otherwise.
[[CandidateExecution]] | A See the memory model.
candidate
execution
Record
[[KeptAlive]] List of Initially a new empty List, representing the list of objects to be kept alive until
objects the end of the current Job

Once the values of

[[Signifier]], [[IsLockFreel]], and [[IsLockFree2]] have been observed by any agent in the agent

cluster they cannot change.

NOTE 2

The values of [[IsLockFreel]] and [[IsLockFree2]] are not necessarily determined by the
hardware, but may also reflect implementation choices that can vary over time and between
ECMAScript implementations.

There is no [[IsLockFree4]] property: 4-byte atomic operations are always lock-free.

In practice, if an atomic operation is implemented with any type of lock the operation is not lock-
free. Lock-free does not imply wait-free: there is no upper bound on how many machine steps
may be required to complete a lock-free atomic operation.

That an atomic access of size n is lock-free does not imply anything about the (perceived)
atomicity of non-atomic accesses of size n, specifically, non-atomic accesses may still be
performed as a sequence of several separate memory accesses. See ReadSharedMemory and
WriteSharedMemory for details.

215




NOTE 3 An agent is a specification mechanism and need not correspond to any particular artefact of an
ECMAScript implementation.

9.6.1 AgentSignifier ()
The abstract operation AgentSignifier takes no arguments. It performs the following steps when called:

1. Let AR be the Agent Record of the surrounding agent.
2. Return AR.[[Signifier]].

9.6.2 AgentCanSuspend ()
The abstract operation AgentCanSuspend takes no arguments. It performs the following steps when called:
1. Let AR be the Agent Record of the surrounding agent.

2. Return AR.[[CanBlock]].

NOTE In some environments it may not be reasonable for a given agent to suspend. For example, in a
web browser environment, it may be reasonable to disallow suspending a document's main
event handling thread, while still allowing workers' event handling threads to suspend.

9.7 Agent Clusters

An agent cluster is a maximal set of agents that can communicate by operating on shared memory.

NOTE 1 Programs within different agents may share memory by unspecified means. At a minimum, the
backing memory for Shared ArrayBuffer objects can be shared among the agents in the cluster.

There may be agents that can communicate by message passing that cannot share memory; they
are never in the same agent cluster.

Every agent belongs to exactly one agent cluster.

NOTE 2 The agents in a cluster need not all be alive at some particular point in time. If agent A creates
another agent B, after which A terminates and B creates agent C, the three agents are in the same
cluster if A could share some memory with B and B could share some memory with C.

All agents within a cluster must have the same value for the [[LittleEndian]] property in their respective Agent
Records.

NOTE 3 If different agents within an agent cluster have different values of [[LittleEndian]] it becomes
hard to use shared memory for multi-byte data.

All agents within a cluster must have the same values for the [[IsLockFreel]] property in their respective Agent
Records; similarly for the [[IsLockFree2]] property.
216



All agents within a cluster must have different values for the [[Signifier]] property in their respective Agent Records.

An embedding may deactivate (stop forward progress) or activate (resume forward progress) an agent without the
agent's knowledge or cooperation. If the embedding does so, it must not leave some agents in the cluster active while
other agents in the cluster are deactivated indefinitely.

NOTE 4 The purpose of the preceding restriction is to avoid a situation where an agent deadlocks or
starves because another agent has been deactivated. For example, if an HTML shared worker that
has a lifetime independent of documents in any windows were allowed to share memory with
the dedicated worker of such an independent document, and the document and its dedicated
worker were to be deactivated while the dedicated worker holds a lock (say, the document is
pushed into its window's history), and the shared worker then tries to acquire the lock, then the
shared worker will be blocked until the dedicated worker is activated again, if ever. Meanwhile
other workers trying to access the shared worker from other windows will starve.

The implication of the restriction is that it will not be possible to share memory between agents
that don't belong to the same suspend / wake collective within the embedding.

An embedding may terminate an agent without any of the agent's cluster's other agents' prior knowledge or
cooperation. If an agent is terminated not by programmatic action of its own or of another agent in the cluster but by
forces external to the cluster, then the embedding must choose one of two strategies: Either terminate all the agents in
the cluster, or provide reliable APIs that allow the agents in the cluster to coordinate so that at least one remaining
member of the cluster will be able to detect the termination, with the termination data containing enough information
to identify the agent that was terminated.

NOTE 5 Examples of that type of termination are: operating systems or users terminating agents that are
running in separate processes; the embedding itself terminating an agent that is running in-
process with the other agents when per-agent resource accounting indicates that the agent is
runaway.

Prior to any evaluation of any ECMAScript code by any agent in a cluster, the [[CandidateExecution]] field of the
Agent Record for all agents in the cluster is set to the initial candidate execution. The initial candidate execution is an
empty candidate execution whose [[EventsRecords]] field is a List containing, for each agent, an Agent Events Record
whose [[AgentSignifier]] field is that agent's signifier, and whose [[EventList]] and [[AgentSynchronizesWith]] fields
are empty Lists.

NOTE 6 All agents in an agent cluster share the same candidate execution in its Agent Record's
[[CandidateExecution]] field. The candidate execution is a specification mechanism used by the
memory model.

NOTE 7 An agent cluster is a specification mechanism and need not correspond to any particular artefact
of an ECMAScript implementation.

9.8 Forward Progress

217



For an agent to make forward progress is for it to perform an evaluation step according to this specification.

An agent becomes blocked when its running execution context waits synchronously and indefinitely for an external
event. Only agents whose Agent Record's [[CanBlock]] property is true can become blocked in this sense. An unblocked
agent is one that is not blocked.

Implementations must ensure that:

e every unblocked agent with a dedicated executing thread eventually makes forward progress
e in a set of agents that share an executing thread, one agent eventually makes forward progress
e an agent does not cause another agent to become blocked except via explicit APIs that provide blocking.

NOTE This, along with the liveness guarantee in the memory model, ensures that all SeqCst writes
eventually become observable to all agents.

9.9 Processing Model of WeakRef and FinalizationRegistry Objects

9.9.1 Objectives

This specification does not make any guarantees that any object will be garbage collected. Objects which are not live
may be released after long periods of time, or never at all. For this reason, this specification uses the term "may" when
describing behaviour triggered by garbage collection.

The semantics of WeakRef and FinalizationRegistry objects is based on two operations which happen at particular
points in time:

o When WeakRef .prototype.deref is called, the referent (if undefined is not returned) is kept alive so
that subsequent, synchronous accesses also return the object. This list is reset when synchronous work is done
using the ClearKeptObjects abstract operation.

e When an object which is registered with a FinalizationRegistry becomes unreachable, a call of the
FinalizationRegistry's cleanup callback may eventually be made, after synchronous ECMAScript execution
completes. The FinalizationRegistry cleanup is performed with the CleanupFinalizationRegistry abstract
operation.

Neither of these actions (ClearKeptObjects or CleanupFinalizationRegistry) may interrupt synchronous ECMAScript
execution. Because hosts may assemble longer, synchronous ECMAScript execution runs, this specification defers the
scheduling of ClearKeptObjects and CleanupFinalizationRegistry to the host environment.

Some ECMAScript implementations include garbage collector implementations which run in the background,
including when ECMAScript is idle. Letting the host environment schedule CleanupFinalizationRegistry allows it to
resume ECMAScript execution in order to run finalizer work, which may free up held values, reducing overall

memory usage.

9.9.2 Liveness

For some set of objects S, a hypothetical WeakRef-oblivious execution with respect to S is an execution whereby the
abstract operation WeakRefDeref of a WeakRef whose referent is an element of S always returns undefined.

218



NOTE 1 WeakRef-obliviousness, together with liveness, capture two notions. One, that a WeakRef itself
does not keep an object alive. Two, that cycles in liveness does not imply that an object is live. To
be concrete, if determining o0bj's liveness depends on determining the liveness of another
WeakRef referent, 0bj2, 0bj2's liveness cannot assume obj's liveness, which would be circular

reasoning.

NOTE 2 WeakRef-obliviousness is defined on sets of objects instead of individual objects to account for
cycles. If it were defined on individual objects, then an object in a cycle will be considered live
even though its Object value is only observed via WeakRefs of other objects in the cycle.

NOTE 3 Colloquially, we say that an individual object is live if every set of objects containing it is live.

At any point during evaluation, a set of objects S is considered live if either of the following conditions is met:

e Any element in S is included in any agent's [[KeptAlive]] List.
o There exists a valid future hypothetical WeakRef-oblivious execution with respect to S that observes the Object
value of any object in S.

NOTE 4 The intuition the second condition above intends to capture is that an object is live if its identity
is observable via non-WeakRef means. An object's identity may be observed by observing a strict
equality comparison between objects or observing the object being used as key in a Map.

NOTE 5 Presence of an object in a field, an internal slot, or a property does not imply that the object is
live. For example if the object in question is never passed back to the program, then it cannot be
observed.

This is the case for keys in a WeakMap, members of a WeakSet, as well as the [[WeakRefTarget]]
and [[UnregisterToken]] fields of a FinalizationRegistry Cell record.

The above definition implies that, if a key in a WeakMap is not live, then its corresponding value
is not necessarily live either.

NOTE 6 Liveness is the lower bound for guaranteeing which WeakRefs engines must not empty. Liveness
as defined here is undecidable. In practice, engines use conservative approximations such as
reachability. There is expected to be significant implementation leeway.

9.9.3 Execution

At any time, if a set of objects S is not live, an ECMAScript implementation may perform the following steps
atomically:

1. For each element obj of S, do
a. For each WeakRef ref such that ref.[[ WeakRefTarget]] is obj, do
i. Set ref.[[WeakRefTarget]] to empty.

219



NOTE 1

NOTE 2

b. For each FinalizationRegistry fg such that fg.[[Cells]] contains a Record cell such that cell.
[[WeakRefTarget]] is obj, do

i. Set cell.[[WeakRefTarget]] to empty.

ii. Optionally, perform ! HostEnqueueFinalizationRegistryCleanup]Job(fg).
c. For each WeakMap map such that map.[[WeakMapData]] contains a Record r such that r.[[Key]] is 0bj, do

i. Set r.[[Key]] to empty.

ii. Set r.[[Value]] to empty.
d. For each WeakSet set such that set.[[WeakSetData]] contains obj, do

i. Replace the element of set.[[WeakSetData]] whose value is obj with an element whose value is

empty.

Together with the definition of liveness, this clause prescribes legal optimizations that an
implementation may apply regarding WeakRefs.

It is possible to access an object without observing its identity. Optimizations such as dead
variable elimination and scalar replacement on properties of non-escaping objects whose identity
is not observed are allowed. These optimizations are thus allowed to observably empty
WeakRefs that point to such objects.

On the other hand, if an object's identity is observable, and that object is in the [[WeakRefTarget]]
internal slot of a WeakRef, optimizations such as rematerialization that observably empty the
WeakRef are prohibited.

Because calling HostEnqueueFinalizationRegistryCleanup]ob is optional, registered objects in a
FinalizationRegistry do not necessarily hold that FinalizationRegistry live. Implementations may
omit FinalizationRegistry callbacks for any reason, e.g., if the FinalizationRegistry itself becomes
dead, or if the application is shutting down.

Implementations are not obligated to empty WeakRefs for maximal sets of non-live objects.

If an implementation chooses a non-live set S in which to empty WeakRefs, it must empty
WeakRefs for all objects in S simultaneously. In other words, an implementation must not empty
a WeakRef pointing to an object obj without emptying out other WeakRefs that, if not emptied,
could result in an execution that observes the Object value of obj.

9.9.4 Host Hooks

9.9.4.1 HostEnqueueFinalizationRegistryCleanupJob ( finalizationRegistry )

The abstract operation HostEnqueueFinalizationRegistryCleanup]Job takes argument finalizationRegistry (a

FinalizationRegistry). HostEnqueueFinalizationRegistryCleanup]ob is an implementation-defined abstract operation

that is expected to call CleanupFinalizationRegistry(finalizationRegistry) at some point in the future, if possible. The

host's responsibility is to make this call at a time which does not interrupt synchronous ECMAScript code execution.

9.10 ClearKeptObjects ()

220



The abstract operation ClearKeptObjects takes no arguments. ECMAScript implementations are expected to call
ClearKeptObjects when a synchronous sequence of ECMAScript executions completes. It performs the following steps
when called:

1. Let agentRecord be the surrounding agent's Agent Record.
2. Set agentRecord.[[KeptAlive]] to a new empty List.

9.11 AddToKeptObjects ( object)

The abstract operation AddToKeptObjects takes argument object (an Object). It performs the following steps when
called:

1. Let agentRecord be the surrounding agent's Agent Record.
2. Append object to agentRecord.[[KeptAlive]].

NOTE When the abstract operation AddToKeptObjects is called with a target object reference, it adds
the target to a list that will point strongly at the target until ClearKeptObjects is called.

9.12 CleanupFinalizationRegistry ( finalizationRegistry )

The abstract operation CleanupFinalizationRegistry takes argument finalizationRegistry (a FinalizationRegistry). It
performs the following steps when called:

1. Assert: finalizationRegistry has [[Cells]] and [[CleanupCallback]] internal slots.
2. Let callback be finalizationRegistry.[[CleanupCallback]].
3. While finalizationRegistry.[[Cells]] contains a Record cell such that cell.[[WeakRefTarget]] is empty, an
implementation may perform the following steps:
a. Choose any such cell.
b. Remove cell from finalizationRegistry.[[Cells]].
c. Perform ? Call(callback, undefined, « cell.[[HeldValue]] »).
4. Return NormalCompletion(undefined).

10 Ordinary and Exotic Objects Behaviours

10.1 Ordinary Object Internal Methods and Internal Slots

All ordinary objects have an internal slot called [[Prototype]]. The value of this internal slot is either null or an object
and is used for implementing inheritance. Data properties of the [[Prototype]] object are inherited (and visible as
properties of the child object) for the purposes of get access, but not for set access. Accessor properties are inherited
for both get access and set access.

Every ordinary object has a Boolean-valued [[Extensible]] internal slot which is used to fulfill the extensibility-related
internal method invariants specified in 6.1.7.3. Namely, once the value of an object's [[Extensible]] internal slot has
been set to false, it is no longer possible to add properties to the object, to modify the value of the object's

221



[[Prototype]] internal slot, or to subsequently change the value of [[Extensible]] to true.

In the following algorithm descriptions, assume O is an ordinary object, P is a property key value, V is any
ECMAScript language value, and Desc is a Property Descriptor record.

Each ordinary object internal method delegates to a similarly-named abstract operation. If such an abstract operation
depends on another internal method, then the internal method is invoked on O rather than calling the similarly-
named abstract operation directly. These semantics ensure that exotic objects have their overridden internal methods
invoked when ordinary object internal methods are applied to them.

10.1.1 [[GetPrototypeOfI] ()

The [[GetPrototypeOf]] internal method of an ordinary object O takes no arguments. It performs the following steps
when called:

1. Return ! OrdinaryGetPrototypeOf(O).

10.1.1.1 OrdinaryGetPrototypeOf ( O)

The abstract operation OrdinaryGetPrototypeOf takes argument O (an Object). It performs the following steps when
called:

1. Return O.[[Prototype]].

10.1.2 [[SetPrototypeOf]] (V)

The [[SetPrototypeOf]] internal method of an ordinary object O takes argument V (an Object or null). It performs the
following steps when called:

1. Return ! OrdinarySetPrototypeOf(O, V).

10.1.2.1 OrdinarySetPrototypeOf (O, V)

The abstract operation OrdinarySetPrototypeOf takes arguments O (an Object) and V (an ECMAScript language
value). It performs the following steps when called:

Assert: Either Type(V) is Object or Type(V) is Null.
Let current be O.[[Prototype]].

If SameValue(V, current) is true, return true.

Let extensible be O.[[Extensible]].

If extensible is false, return false.

Letpbe V.

Let done be false.

Repeat, while done is false,

© NS

a. If p is null, set done to true.
b. Else if SameValue(p, O) is true, return false.
c. Else,
i. If p.[[GetPrototypeOf]] is not the ordinary object internal method defined in 10.1.1, set done to
true.
ii. Else, set p to p.[[Prototype]].
222



9. Set O.[[Prototype]] to V.
10. Return true.

NOTE The loop in step 8 guarantees that there will be no circularities in any prototype chain that only
includes objects that use the ordinary object definitions for [[GetPrototypeOf]] and
[[SetPrototypeOf]].

10.1.3 [[IsExtensiblell ()

The [[IsExtensible]] internal method of an ordinary object O takes no arguments. It performs the following steps when
called:

1. Return ! OrdinaryIsExtensible(O).

10.1.3.1 OrdinarylIsExtensible ( O)

The abstract operation OrdinaryIsExtensible takes argument O (an Object). It performs the following steps when
called:

1. Return O.[[Extensible]].

10.1.4 [[PreventExtensions]] ()

The [[PreventExtensions]] internal method of an ordinary object O takes no arguments. It performs the following steps
when called:

1. Return ! OrdinaryPreventExtensions(O).

10.1.4.1 OrdinaryPreventExtensions ( O )

The abstract operation OrdinaryPreventExtensions takes argument O (an Object). It performs the following steps
when called:

1. Set O.[[Extensible]] to false.
2. Return true.

10.1.5 [[GetOwnPropertyl] (P)

The [[GetOwnProperty]] internal method of an ordinary object O takes argument P (a property key). It performs the
following steps when called:

1. Return ! OrdinaryGetOwnProperty(O, P).

10.1.5.1 OrdinaryGetOwnProperty (O, P)

The abstract operation OrdinaryGetOwnProperty takes arguments O (an Object) and P (a property key). It performs
the following steps when called:

1. Assert: IsPropertyKey(P) is true.

223



If O does not have an own property with key P, return undefined.
Let D be a newly created Property Descriptor with no fields.
Let X be O's own property whose key is P.

S N

If X is a data property, then
a. Set D.[[Value]] to the value of X's [[Value]] attribute.
b. Set D.[[Writable]] to the value of X's [[Writable]] attribute.
6. Else,
a. Assert: X is an accessor property.
b. Set D.[[Get]] to the value of X's [[Get]] attribute.
c. Set D.[[Set]] to the value of X's [[Set]] attribute.
7. Set D.[[Enumerable]] to the value of X's [[Enumerable]] attribute.
8. Set D.[[Configurable]] to the value of X's [[Configurable]] attribute.
9. Return D.

10.1.6 [[DefineOwnPropertyll ( P, Desc)

The [[DefineOwnProperty]] internal method of an ordinary object O takes arguments P (a property key) and Desc (a
Property Descriptor). It performs the following steps when called:

1. Return ? OrdinaryDefineOwnProperty(O, P, Desc).

10.1.6.1 OrdinaryDefineOwnProperty ( O, P, Desc)

The abstract operation OrdinaryDefineOwnProperty takes arguments O (an Object), P (a property key), and Desc (a
Property Descriptor). It performs the following steps when called:

1. Let current be ? O.[[GetOwnProperty]](P).
2. Let extensible be ? IsExtensible(O).
3. Return ValidateAnd ApplyPropertyDescriptor(O, P, extensible, Desc, current).

10.1.6.2 IsCompatiblePropertyDescriptor ( Extensible, Desc, Current )

The abstract operation IsCompatiblePropertyDescriptor takes arguments Extensible (a Boolean), Desc (a Property
Descriptor), and Current (a Property Descriptor). It performs the following steps when called:

1. Return ValidateAndApplyPropertyDescriptor(undefined, undefined, Extensible, Desc, Current).

10.1.6.3 ValidateAndApplyPropertyDescriptor ( O, P, extensible, Desc, current)

The abstract operation ValidateAnd ApplyPropertyDescriptor takes arguments O (an Object or undefined), P (a
property key), extensible (a Boolean), Desc (a Property Descriptor), and current (a Property Descriptor). It performs the
following steps when called:

NOTE If undefined is passed as O, only validation is performed and no object updates are performed.

1. Assert: If O is not undefined, then IsPropertyKey(P) is true.
2. If current is undefined, then
a. If extensible is false, return false.

224



10.

b. Assert: extensible is true.
c. If IsGenericDescriptor(Desc) is true or IsDataDescriptor(Desc) is true, then

i. If O is not undefined, create an own data property named P of object O whose [[Value]],
[[Writable]], [[Enumerable]], and [[Configurable]] attribute values are described by Desc. If the
value of an attribute field of Desc is absent, the attribute of the newly created property is set to its
default value.

d. Else,

i. Assert: ! IsAccessorDescriptor(Desc) is true.

ii. If O is not undefined, create an own accessor property named P of object O whose [[Get]], [[Set]],
[[Enumerable]], and [[Configurable]] attribute values are described by Desc. If the value of an
attribute field of Desc is absent, the attribute of the newly created property is set to its default
value.

e. Return true.
If every field in Desc is absent, return true.
If current.[[Configurable]] is false, then
a. If Desc.[[Configurable]] is present and its value is true, return false.
b. If Desc.[[Enumerable]] is present and ! SameValue(Desc.[[Enumerable]], current.[[Enumerable]]) is false,
return false.
If ! IsGenericDescriptor(Desc) is true, then
a. NOTE: No further validation is required.
Else if ! SameValue(! IsDataDescriptor(current), ! IsDataDescriptor(Desc)) is false, then
a. If current.[[Configurable]] is false, return false.
b. If IsDataDescriptor(current) is true, then

i. If O is not undefined, convert the property named P of object O from a data property to an
accessor property. Preserve the existing values of the converted property's [[Configurable]] and
[[Enumerable]] attributes and set the rest of the property's attributes to their default values.

c. Else,

i. If O is not undefined, convert the property named P of object O from an accessor property to a
data property. Preserve the existing values of the converted property's [[Configurable]] and
[[Enumerable]] attributes and set the rest of the property's attributes to their default values.

Else if IsDataDescriptor(current) and IsDataDescriptor(Desc) are both true, then
a. If current.[[Configurable]] is false and current.[[Writable]] is false, then

i. If Desc.[[Writable]] is present and Desc.[[Writable]] is true, return false.

ii. If Desc.[[Value]] is present and SameValue(Desc.[[Value]], current.[[Value]]) is false, return false.

iii. Return true.
Else,
a. Assert: ! IsAccessorDescriptor(current) and ! IsAccessorDescriptor(Desc) are both true.
b. If current.[[Configurable]] is false, then
i. If Desc.[[Set]] is present and SameValue(Desc.[[Set]], current.[[Set]]) is false, return false.
ii. If Desc.[[Get]] is present and SameValue(Desc.[[Get]], current.[[Get]]) is false, return false.
iii. Return true.
If O is not undefined, then
a. For each field of Desc that is present, set the corresponding attribute of the property named P of object O
to the value of the field.
Return true.

10.1.7 [[HasPropertyl] ( P)

225



The [[HasProperty]] internal method of an ordinary object O takes argument P (a property key). It performs the
following steps when called:

1. Return ? OrdinaryHasProperty(O, P).

10.1.7.1 OrdinaryHasProperty ( O, P)

The abstract operation OrdinaryHasProperty takes arguments O (an Object) and P (a property key). It performs the
following steps when called:

Assert: IsPropertyKey(P) is true.
Let hasOwn be ? O.[[GetOwnProperty]](P).
If hasOwn is not undefined, return true.
Let parent be ? O.[[GetPrototypeOf]]().
If parent is not null, then

a. Return ? parent.[[HasProperty]](P).
6. Return false.

SRS -

10.1.8 [[Get]] ( P, Receiver)

The [[Get]] internal method of an ordinary object O takes arguments P (a property key) and Receiver (an ECMAScript
language value). It performs the following steps when called:

1. Return ? OrdinaryGet(O, P, Receiver).

10.1.8.1 OrdinaryGet ( O, P, Receiver)

The abstract operation OrdinaryGet takes arguments O (an Object), P (a property key), and Receiver (an ECMAScript
language value). It performs the following steps when called:

1. Assert: IsPropertyKey(P) is true.
2. Let desc be ? O.[[GetOwnProperty]](P).
3. If desc is undefined, then
a. Let parent be ? O.[[GetPrototypeOf£]]().
b. If parent is null, return undefined.
c. Return ? parent.[[Get]](P, Receiver).
If IsDataDescriptor(desc) is true, return desc.[[Value]].
Assert: IsAccessorDescriptor(desc) is true.
Let getter be desc.[[Get]].
If getter is undefined, return undefined.
Return ? Call(getter, Receiver).

*® NSO

10.1.9 [[Set]]l ( P, V, Receiver)

The [[Set]] internal method of an ordinary object O takes arguments P (a property key), V (an ECMAScript language
value), and Receiver (an ECMAScript language value). It performs the following steps when called:

1. Return ? OrdinarySet(O, P, V, Receiver).

226



10.1.9.1 OrdinarySet ( O, P, V, Receiver)

The abstract operation OrdinarySet takes arguments O (an Object), P (a property key), V (an ECMAScript language
value), and Receiver (an ECMAScript language value). It performs the following steps when called:

1. Assert: IsPropertyKey(P) is true.
2. Let ownDesc be ? O.[[GetOwnProperty]](P).
3. Return OrdinarySetWithOwnDescriptor(O, P, V, Receiver, ownDesc).

10.1.9.2 OrdinarySetWithOwnDescriptor ( O, P, V, Receiver, ownDesc )

The abstract operation OrdinarySetWithOwnDescriptor takes arguments O (an Object), P (a property key), V (an
ECMAScript language value), Receiver (an ECMAScript language value), and ownDesc (a Property Descriptor or
undefined). It performs the following steps when called:

1. Assert: IsPropertyKey(P) is true.
2. If ownDesc is undefined, then
a. Let parent be ? O.[[GetPrototypeOf]]().
b. If parent is not null, then
i. Return ? parent.[[Set]](P, V, Receiver).
c. Else,
i. Set ownDesc to the PropertyDescriptor { [[Value]]: undefined, [[Writable]]: true, [[Enumerable]]:
true, [[Configurable]]: true }.
3. If IsDataDescriptor(ownDesc) is true, then
a. If ownDesc.[[Writable]] is false, return false.
b. If Type(Receiver) is not Object, return false.
c. Let existingDescriptor be ? Receiver.[[ GetOwnProperty]](P).
d. If existingDescriptor is not undefined, then
i. If IsAccessorDescriptor(existingDescriptor) is true, return false.
ii. If existingDescriptor.[[Writable]] is false, return false.
iii. Let valueDesc be the PropertyDescriptor { [[Value]]: V'}.
iv. Return ? Receiver.[[DefineOwnProperty]](P, valueDesc).
e. Else,
i. Assert: Receiver does not currently have a property P.
ii. Return ? CreateDataProperty(Receiver, P, V).
Assert: IsAccessorDescriptor(ownDesc) is true.
Let setter be ownDesc.[[Set]].
If setter is undefined, return false.
Perform ? Call(setter, Receiver, « V »).

® N9

Return true.

10.1.10 [[Delete]l (P)

The [[Delete]] internal method of an ordinary object O takes argument P (a property key). It performs the following
steps when called:

1. Return ? OrdinaryDelete(O, P).

10.1.10.1 OrdinaryDelete ( O, P)

227



The abstract operation OrdinaryDelete takes arguments O (an Object) and P (a property key). It performs the
following steps when called:

1. Assert: IsPropertyKey(P) is true.

2. Let desc be ? O.[[GetOwnProperty]](P).

3. If desc is undefined, return true.

4. If desc.[[Configurable]] is true, then
a. Remove the own property with name P from O.
b. Return true.

5. Return false.

10.1.11 [[OwnPropertyKeysl] ()

The [[OwnPropertyKeys]] internal method of an ordinary object O takes no arguments. It performs the following
steps when called:

1. Return ! OrdinaryOwnPropertyKeys(O).

10.1.11.1 OrdinaryOwnPropertyKeys ( O )

The abstract operation OrdinaryOwnPropertyKeys takes argument O (an Object). It performs the following steps
when called:

1. Let keys be a new empty List.
2. For each own property key P of O such that P is an array index, in ascending numeric index order, do
a. Add P as the last element of keys.
3. For each own property key P of O such that Type(P) is String and P is not an array index, in ascending
chronological order of property creation, do
a. Add P as the last element of keys.
4. For each own property key P of O such that Type(P) is Symbol, in ascending chronological order of property
creation, do
a. Add P as the last element of keys.
5. Return keys.

10.1.12 OrdinaryObjectCreate ( proto [, additionallnternalSlotsList ])

The abstract operation OrdinaryObjectCreate takes argument proto (an Object or null) and optional argument
additionallnternalSlotsList (a List of names of internal slots). It is used to specify the runtime creation of new ordinary
objects. additionallnternalSlotsList contains the names of additional internal slots that must be defined as part of the
object, beyond [[Prototype]] and [[Extensible]]. If additionallnternalSlotsList is not provided, a new empty List is used.
It performs the following steps when called:

Let internalSlotsList be « [[Prototype]], [[Extensible]] ».

If additionallnternalSlotsList is present, append each of its elements to internalSlotsList.
Let O be ! MakeBasicObject(internalSlotsList).

Set O.[[Prototype]] to proto.

Return O.

SURSICENS -

228



NOTE Although OrdinaryObjectCreate does little more than call MakeBasicObject, its use
communicates the intention to create an ordinary object, and not an exotic one. Thus, within this
specification, it is not called by any algorithm that subsequently modifies the internal methods of
the object in ways that would make the result non-ordinary. Operations that create exotic objects
invoke MakeBasicObject directly.

10.1.13 OrdinaryCreateFromConstructor ( constructor, intrinsicDefaultProto [,
internalSlotsList ] )

The abstract operation OrdinaryCreateFromConstructor takes arguments constructor and intrinsicDefaultProto and
optional argument internalSlotsList (a List of names of internal slots). It creates an ordinary object whose [[Prototype]]
value is retrieved from a constructor's "prototype" property, if it exists. Otherwise the intrinsic named by
intrinsicDefaultProto is used for [[Prototypel]]. internalSlotsList contains the names of additional internal slots that must
be defined as part of the object. If internalSlotsList is not provided, a new empty List is used. It performs the following
steps when called:

1. Assert: intrinsicDefaultProto is a String value that is this specification's name of an intrinsic object. The
corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value of an object.

2. Let proto be ? GetPrototypeFromConstructor(constructor, intrinsicDefaultProto).

3. Return ! OrdinaryObjectCreate(proto, internalSlotsList).

10.1.14 GetPrototypeFromConstructor ( constructor, intrinsicDefaultProto )

The abstract operation GetPrototypeFromConstructor takes arguments constructor and intrinsicDefaultProto. It
determines the [[Prototype]] value that should be used to create an object corresponding to a specific constructor. The
value is retrieved from the constructor's "prototype" property, if it exists. Otherwise the intrinsic named by
intrinsicDefaultProto is used for [[Prototype]]. It performs the following steps when called:

1. Assert: intrinsicDefaultProto is a String value that is this specification's name of an intrinsic object. The
corresponding object must be an intrinsic that is intended to be used as the [[Prototype]] value of an object.
2. Assert: IsCallable(constructor) is true.

W

Let proto be ? Get(constructor, ""prototype").
4. If Type(proto) is not Object, then

a. Let realm be ? GetFunctionRealm(constructor).

b. Set proto to realm's intrinsic object named intrinsicDefaultProto.
5. Return proto.

NOTE If constructor does not supply a [[Prototype]] value, the default value that is used is obtained from
the realm of the constructor function rather than from the running execution context.

10.1.15 RequirelnternalSlot ( O, internalSlot)

The abstract operation RequireInternalSlot takes arguments O and internalSlot. It throws an exception unless O is an
Object and has the given internal slot. It performs the following steps when called:

1. If Type(O) is not Object, throw a TypeError exception.
2. If O does not have an internalSlot internal slot, throw a TypeError exception.
229



10.2 ECMAScript Function Objects

ECMAScript function objects encapsulate parameterized ECMAScript code closed over a lexical environment and

support the dynamic evaluation of that code. An ECMAScript function object is an ordinary object and has the same

internal slots and the same internal methods as other ordinary objects. The code of an ECMAScript function object

may be either strict mode code (11.2.2) or non-strict code. An ECMAScript function object whose code is strict mode

code is called a strict function. One whose code is not strict mode code is called a non-strict function.

In addition to [[Extensible]] and [[Prototype]], ECMAScript function objects also have the internal slots listed in Table

29.
Table 29: Internal Slots of ECMAScript Function Objects
Internal Slot Type Description
[[Environment]] Environment | The Environment Record that the function was closed over. Used as the
Record outer environment when evaluating the code of the function.
[[FormalParameters]] | Parse Node | The root parse node of the source text that defines the function's formal
parameter list.
[[ECMAScriptCode]] | Parse Node | The root parse node of the source text that defines the function's body.
[[ConstructorKind]] base | Whether or not the function is a derived class constructor.
derived
[[Realm]] Realm The realm in which the function was created and which provides any
Record intrinsic objects that are accessed when evaluating the function.
[[ScriptOrModule]] Script The script or module in which the function was created.
Record or
Module
Record
[[ThisMode]] lexical | Defines how th1is references are interpreted within the formal parameters
strict | and code body of the function. lexical means that th1is refers to the this
global value of a lexically enclosing function. strict means that the this value is used
exactly as provided by an invocation of the function. global means that a this
value of undefined or null is interpreted as a reference to the global object,
and any other this value is first passed to ToObject.
[[Strict]] Boolean true if this is a strict function, false if this is a non-strict function.
[[HomeObject]] Object If the function uses super, this is the object whose [[GetPrototypeOf]]
provides the object where super property lookups begin.
[[SourceText]] sequence of | The source text that defines the function.

Unicode
code points

[[IsClassConstructor]]

Boolean

Indicates whether the function is a class constructor. (If true, invoking the
function's [[Call]] will immediately throw a TypeError exception.)

230




All ECMAScript function objects have the [[Call]] internal method defined here. ECMAScript functions that are also
constructors in addition have the [[Construct]] internal method.

10.2.1 [[Calll] ( thisArgument, argumentsList )

The [[Call]] internal method of an ECMAScript function object F takes arguments thisArgument (an ECMAScript
language value) and argumentsList (a List of ECMAScript language values). It performs the following steps when

called:

SRS -

9.
10.
11.

Assert: F is an ECMAScript function object.
Let callerContext be the running execution context.
Let calleeContext be PrepareForOrdinaryCall(F, undefined).
Assert: calleeContext is now the running execution context.
If F.[[IsClassConstructor]] is true, then
a. Let error be a newly created TypeError object.
b. NOTE: error is created in calleeContext with F's associated Realm Record.
c. Remove calleeContext from the execution context stack and restore callerContext as the running execution
context.
d. Return ThrowCompletion(error).
Perform OrdinaryCallBind This(F, calleeContext, thisArgument).
Let result be OrdinaryCallEvaluateBody(F, argumentsList).
Remove calleeContext from the execution context stack and restore callerContext as the running execution
context.
If result.[[Type]] is return, return NormalCompletion(result.[[Value]]).
ReturnlfAbrupt(result).
Return NormalCompletion(undefined).

NOTE When calleeContext is removed from the execution context stack in step 8 it must not be destroyed

if it is suspended and retained for later resumption by an accessible generator object.

10.2.1.1 PrepareForOrdinaryCall ( F, newTarget )

The abstract operation PrepareForOrdinaryCall takes arguments F (a function object) and newTarget (an ECMAScript

language value). It performs the following steps when called:

O X N U=

—_ e =
W N R o

Assert: Type(newTnrget) is Undefined or Object.

Let callerContext be the running execution context.

Let calleeContext be a new ECMAScript code execution context.
Set the Function of calleeContext to F.

Let calleeRealm be F.[[Realm]].

Set the Realm of calleeContext to calleeRealm.

Set the ScriptOrModule of calleeContext to F.[[ScriptOrModule]].
Let localEnv be NewFunctionEnvironment(F, newTarget).

Set the LexicalEnvironment of calleeContext to localEnv.

Set the VariableEnvironment of calleeContext to local Env.

. If callerContext is not already suspended, suspend callerContext.
. Push calleeContext onto the execution context stack; calleeContext is now the running execution context.
. NOTE: Any exception objects produced after this point are associated with calleeRealm.

231



14. Return calleeContext.

10.2.1.2 OrdinaryCallBindThis ( F, calleeContext, thisArgument)

The abstract operation OrdinaryCallBindThis takes arguments F (a function object), calleeContext (an execution
context), and thisArqument (an ECMAScript language value). It performs the following steps when called:

Let thisMode be F.[[ThisMode]].
If thisMode is lexical, return NormalCompletion(undefined).
Let calleeRealm be F.[[Realm]].
Let localEnv be the LexicalEnvironment of calleeContext.
If thisMode is strict, let thisValue be this Argument.
Else,
a. If thisArqument is undefined or null, then
i. Let ¢lobalEnv be calleeRealm.[[GlobalEnv]].
ii. Assert: globalEnv is a global Environment Record.
iii. Let thisValue be globalEnv.[[GlobalThisValue]].
b. Else,
i. Let thisValue be ! ToObject(thisArgument).
ii. NOTE: ToObject produces wrapper objects using calleeRealm.

S o e

7. Assert: localEnv is a function Environment Record.

8. Assert: The next step never returns an abrupt completion because localEnv.[[ThisBindingStatus]] is not
initialized.

9. Return localEnv.Bind ThisValue(this Value).

10.2.1.3 Runtime Semantics: EvaluateBody

With parameters functionObject and argumentsList (a List).
FunctionBody : FunctionStatementList

1. Return ? EvaluateFunctionBody of FunctionBody with arguments functionObject and arqumentsList.
ConciseBody : ExpressionBody

1. Return ? EvaluateConciseBody of ConciseBody with arguments functionObject and argumentsList.
GeneratorBody : FunctionBody

1. Return ? EvaluateGeneratorBody of GeneratorBody with arguments functionObject and arqumentsList.
AsyncGeneratorBody : FunctionBody

1. Return ? EvaluateAsyncGeneratorBody of AsyncGeneratorBody with arguments functionObject and
argumentsList.

AsyncFunctionBody : FunctionBody
1. Return ? EvaluateAsyncFunctionBody of AsyncFunctionBody with arguments functionObject and arqumentsList.

AsyncConciseBody : ExpressionBody

232



1. Return ? EvaluateAsyncConciseBody of AsyncConciseBody with arguments functionObject and arqumentsList.

10.2.1.4 OrdinaryCallEvaluateBody ( F, argumentsList)

The abstract operation OrdinaryCallEvaluateBody takes arguments F (a function object) and argumentsList (a List). It
performs the following steps when called:

1. Return the result of EvaluateBody of the parsed code that is F.[[ECMAScriptCode]] passing F and argumentsList
as the arguments.

10.2.2 [[Construct]] ( argumentsList, newTarget)

The [[Construct]] internal method of an ECMAScript function object F takes arguments arqumentsList (a List of
ECMAScript language values) and newTarget (a constructor). It performs the following steps when called:

Assert: F is an ECMAScript function object.
Assert: Type(newTarget) is Object.
Let callerContext be the running execution context.
Let kind be F.[[ConstructorKind]].
If kind is base, then
a. Let thisArqument be ? OrdinaryCreateFromConstructor(newTarget, "% Object.prototype%").

SIS -

Let calleeContext be PrepareForOrdinaryCall(F, newTarget).

Assert: calleeContext is now the running execution context.

If kind is base, perform OrdinaryCallBindThis(F, calleeContext, thisArgument).
Let constructorEnv be the LexicalEnvironment of calleeContext.

10. Let result be OrdinaryCallEvaluateBody(F, argumentsList).

11. Remove calleeContext from the execution context stack and restore callerContext as the running execution

o *® N

context.
12. If result.[[Type]] is return, then
a. If Type(result.[[Value]]) is Object, return NormalCompletion(result.[[Value]]).
b. If kind is base, return NormalCompletion(thisArgument).
c. If result.[[Value]] is not undefined, throw a TypeError exception.
13. Else, ReturnlfAbrupt(result).
14. Return ? constructorEnv.GetThisBinding().

10.2.3 OrdinaryFunctionCreate ( functionPrototype, sourcelext, ParameterList, Body,
thisMode, Scope )

The abstract operation OrdinaryFunctionCreate takes arguments functionPrototype (an Object), sourceText (a sequence
of Unicode code points), ParameterList (a Parse Node), Body (a Parse Node), thisMode (either lexical-this or non-lexical-
this), and Scope (an Environment Record). sourceText is the source text of the syntactic definition of the function to be
created. It performs the following steps when called:

Assert: Type(functionPrototype) is Object.

Let internalSlotsList be the internal slots listed in Table 29.

Let F be ! OrdinaryObjectCreate(functionPrototype, internalSlotsList).
Set F.[[Call]] to the definition specified in 10.2.1.

Set F.[[SourceText]] to sourceText.

SRS .

233



Set F.[[FormalParameters]] to ParameterList.

Set F.[[ECMAScriptCode]] to Body.

If the source text matching Body is strict mode code, let Strict be true; else let Strict be false.
Set F.[[Strict]] to Strict.

10. If thisMode is lexical-this, set F.[[ThisMode]] to lexical.
11. Else if Strict is true, set F.[[ThisMode]] to strict.

12. Else, set F.[[ThisMode]] to global.

13. Set F.[[IsClassConstructor]] to false.

14. Set F.[[Environment]] to Scope.

15. Set F.[[ScriptOrModule]] to GetActiveScriptOrModule().
16. Set F.[[Realm]] to the current Realm Record.

17. Set F.[[HomeODbject]] to undefined.

18. Let len be the Expected ArgumentCount of ParameterList.
19. Perform ! SetFunctionLength(F, len).

20. Return F.

o ® N

10.2.4 AddRestrictedFunctionProperties ( F, realm )

The abstract operation AddRestrictedFunctionProperties takes arguments F (a function object) and realm (a Realm
Record). It performs the following steps when called:

1. Assert: realm.[[Intrinsics]].[[% ThrowTypeError%]] exists and has been initialized.

2. Let thrower be realm.[[Intrinsics]].[[% ThrowTypeError%]].

3. Perform ! DefinePropertyOrThrow(F, "caller", PropertyDescriptor { [[Get]]: thrower, [[Set]]: thrower,
[[Enumerable]]: false, [[Configurable]]: true }).

4. Return ! DefinePropertyOrThrow(F, "arguments", PropertyDescriptor { [[Get]]: thrower, [[Set]]: thrower,
[[Enumerable]]: false, [[Configurable]]: true }).

10.2.4.1 %ThrowTypeError% ()

The % ThrowTypeError% intrinsic is an anonymous built-in function object that is defined once for each realm. When
%ThrowTypeError% is called it performs the following steps:

1. Throw a TypeError exception.
The value of the [[Extensible]] internal slot of a % ThrowTypeError% function is false.

The "length" property of a % ThrowTypeError% function has the attributes { [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: false }.

The "name" property of a % ThrowTypeError% function has the attributes { [[Writable]]: false, [[Enumerable]]: false,
[[Configurable]]: false }.

10.2.5 MakeConstructor ( F [, writablePrototype [, prototype]11])

The abstract operation MakeConstructor takes argument F (a function object) and optional arguments
writablePrototype (a Boolean) and prototype (an Object). It converts F into a constructor. It performs the following steps
when called:

234



1. Assert: F is an ECMAScript function object or a built-in function object.
2. If F is an ECMAScript function object, then
a. Assert: IsConstructor(F) is false.
b. Assert: F is an extensible object that does not have a "prototype' own property.
c. Set F.[[Construct]] to the definition specified in 10.2.2.
3. Set F.[[ConstructorKind]] to base.
4. If writablePrototype is not present, set writablePrototype to true.
5. If prototype is not present, then
a. Set prototype to ! OrdinaryObjectCreate(%ODbject.prototype%).
b. Perform ! DefinePropertyOrThrow(prototype, "constructor", PropertyDescriptor { [[Value]]: F,
[[Writable]]: writablePrototype, [[Enumerable]]: false, [[Configurable]]: true }).
6. Perform ! DefinePropertyOrThrow(F, "prototype'", PropertyDescriptor { [[Value]]: prototype, [[Writable]]:
writablePrototype, [[Enumerable]]: false, [[Configurable]]: false }).
7. Return NormalCompletion(undefined).

10.2.6 MakeClassConstructor ( F)

The abstract operation MakeClassConstructor takes argument F. It performs the following steps when called:

1. Assert: F is an ECMAScript function object.
2. Assert: F.[[IsClassConstructor]] is false.

3. Set F.[[IsClassConstructor]] to true.

4. Return NormalCompletion(undefined).

10.2.7 MakeMethod ( F, homeObject )

The abstract operation MakeMethod takes arguments F and homeObject. It configures F as a method. It performs the
following steps when called:

1. Assert: F is an ECMAScript function object.
2. Assert: Type(homeObject) is Object.

3. Set F.[[HomeObject]] to homeObject.

4. Return NormalCompletion(undefined).

10.2.8 SetFunctionName ( F, name [, prefix])

The abstract operation SetFunctionName takes arguments F (a function object) and name (a property key) and optional
argument prefix (a String). It adds a "mame" property to F. It performs the following steps when called:

Assert: F is an extensible object that does not have a "name' own property.
Assert: Type(name) is either Symbol or String.
Assert: If prefix is present, then Type(prefix) is String.

Ll e

If Type(name) is Symbol, then

a. Let description be name's [[Description]] value.

b. If description is undefined, set name to the empty String.

c. Else, set name to the string-concatenation of ""["!, description, and "]".
5. If F has an [[InitialName]] internal slot, then
a. Set F.[[InitialName]] to name.

235



6.

7.

If prefix is present, then
a. Set name to the string-concatenation of prefix, the code unit 0x0020 (SPACE), and narme.
b. If F has an [[InitialName]] internal slot, then
i. Optionally, set F.[[InitialName]] to name.
Return ! DefinePropertyOrThrow(F, "name", PropertyDescriptor { [[Value]]: name, [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: true }).

10.2.9 SetFunctionLength ( F, length)

The abstract operation SetFunctionLength takes arguments F (a function object) and length (a non-negative integer or

+o0). It adds a "length" property to F. It performs the following steps when called:

1.
2.

Assert: F is an extensible object that does not have a "length" own property.
Return ! DefinePropertyOrThrow(F, "length", PropertyDescriptor { [[Value]]: F(length), [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: true }).

10.2.10 FunctionDeclarationInstantiation ( func, argumentsList)

NOTE 1 When an execution context is established for evaluating an ECMAScript function a new function

Environment Record is created and bindings for each formal parameter are instantiated in that
Environment Record. Each declaration in the function body is also instantiated. If the function's
formal parameters do not include any default value initializers then the body declarations are
instantiated in the same Environment Record as the parameters. If default value parameter
initializers exist, a second Environment Record is created for the body declarations. Formal
parameters and functions are initialized as part of FunctionDeclarationInstantiation. All other
bindings are initialized during evaluation of the function body.

The abstract operation FunctionDeclarationInstantiation takes arguments func (a function object) and argumentsList.

func is the function object for which the execution context is being established. It performs the following steps when

called:

O X NN U=

—_ e e e e
N A =)

Let calleeContext be the running execution context.

Let code be func.[[ECMAScriptCode]].

Let strict be func.[[Strict]].

Let formals be func.[[FormalParameters]].

Let parameterNames be the BoundNames of formals.

If parameterNames has any duplicate entries, let hasDuplicates be true. Otherwise, let hasDuplicates be false.
Let simpleParameterList be IsSimpleParameterList of formals.

Let hasParameterExpressions be ContainsExpression of formals.

Let varNames be the VarDeclaredNames of code.

Let varDeclarations be the VarScopedDeclarations of code.

. Let lexicalNames be the LexicallyDeclaredNames of code.

. Let functionNames be a new empty List.

. Let functionsTolnitialize be a new empty List.

. For each element d of varDeclarations, in reverse List order, do

a. If d is neither a VariableDeclaration nor a ForBinding nor a Bindingldentifier, then
i. Assert: d is either a FunctionDeclaration, a GeneratorDeclaration, an AsyncFunctionDeclaration, or an

236


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD

AsyncGeneratorDeclaration.
ii. Let fin be the sole element of the BoundNames of d.
iii. If fn is not an element of functionNames, then
1. Insert fin as the first element of functionNames.
2. NOTE: If there are multiple function declarations for the same name, the last declaration is
used.
3. Insert d as the first element of functionsTolnitialize.
15. Let argumentsObjectNeeded be true.
16. If func.[[ThisMode]] is lexical, then
a. NOTE: Arrow functions never have an arguments objects.
b. Set argumentsObjectNeeded to false.
17. Else if "arguments" is an element of parameterNames, then
a. Set argumentsObjectNeeded to false.
18. Else if hasParameterExpressions is false, then
a. If "arguments" is an element of functionNames or if ""arguments" is an element of lexicalNames, then
i. Set arqumentsObjectNeeded to false.
19. If strict is true or if hasParameterExpressions is false, then
a. NOTE: Only a single Environment Record is needed for the parameters and top-level vars.
b. Let env be the LexicalEnvironment of calleeContext.
20. Else,
a. NOTE: A separate Environment Record is needed to ensure that bindings created by direct eval calls in
the formal parameter list are outside the environment where parameters are declared.
Let calleeEnv be the LexicalEnvironment of calleeContext.

Let env be NewDeclarativeEnvironment(calleeEnv).

o T

Assert: The VariableEnvironment of calleeContext is calleeEnv.
e. Set the LexicalEnvironment of calleeContext to env.
21. For each String paramName of parameterNames, do
a. Let alreadyDeclared be env.HasBinding(paramName).
b. NOTE: Early errors ensure that duplicate parameter names can only occur in non-strict functions that do
not have parameter default values or rest parameters.
c. If alreadyDeclared is false, then
i. Perform ! env.CreateMutableBinding(paramName, false).
ii. If hasDuplicates is true, then
1. Perform ! env.InitializeBinding(paramName, undefined).
22. If argumentsObjectNeeded is true, then
a. If strict is true or if simpleParameterList is false, then
i. Let ao be CreateUnmapped ArgumentsObject(argumentsList).
b. Else,
i. NOTE: A mapped argument object is only provided for non-strict functions that don't have a rest
parameter, any parameter default value initializers, or any destructured parameters.
ii. Let ao be CreateMapped ArgumentsObject(furnc, formals, argumentsList, env).
c. If strict is true, then
i. Perform ! env.CreatelmmutableBinding("'arguments", false).
d. Else,
i. Perform ! env.CreateMutableBinding("'arguments", false).
e. Call env.InitializeBinding("'arguments", 10).
f. Let parameterBindings be a List whose elements are the elements of parameterNames, followed by

"arguments'".

237



23

24
25

26

27

28

29
30

31
32

. Else,

a.

Let parameterBindings be parameterNames.

. Let iteratorRecord be CreateListIteratorRecord(arqumentsList).

. If hasDuplicates is true, then

a.

. Else,

a.

Perform ? IteratorBindingInitialization for formals with iteratorRecord and undefined as arguments.

Perform ? IteratorBindingInitialization for formals with iteratorRecord and env as arguments.

. If hasParameterExpressions is false, then

a.
b.
c.

. Else,

c 2o T

NOTE: Only a single Environment Record is needed for the parameters and top-level vars.
Let instantiatedVarNames be a copy of the List parameterBindings.
For each element # of varNames, do
i. If n is not an element of instantiated VarNames, then
1. Append n to instantiated VarNames.
2. Perform ! env.CreateMutableBinding(#, false).
3. Call env.InitializeBinding(, undefined).

. Let varEnv be env.

NOTE: A separate Environment Record is needed to ensure that closures created by expressions in the
formal parameter list do not have visibility of declarations in the function body.
Let varEnv be NewDeclarativeEnvironment(env).
Set the VariableEnvironment of calleeContext to varEnv.
Let instantiatedVarNames be a new empty List.
For each element n of varNames, do
i. If n is not an element of instantiated VarNames, then
1. Append n to instantiated VarNames.
2. Perform ! varEnv.CreateMutableBinding(r, false).
3. If n is not an element of parameterBindings or if n is an element of functionNames, let
initial Value be undefined.
4. Else,
a. Let initialValue be ! env.GetBindingValue(r, false).
5. Call varEnv.InitializeBinding(n, initial Value).
6. NOTE: A var with the same name as a formal parameter initially has the same value as the
corresponding initialized parameter.

. NOTE: Annex B.3.3.1 adds additional steps at this point.
. If strict is false, then

a.

b.

Let lexEnv be NewDeclarativeEnvironment(varEnov).

NOTE: Non-strict functions use a separate Environment Record for top-level lexical declarations so that
a direct eval can determine whether any var scoped declarations introduced by the eval code conflict
with pre-existing top-level lexically scoped declarations. This is not needed for strict functions because a
strict direct eval always places all declarations into a new Environment Record.

. Else, let lexEnv be varEnv.

. Set the LexicalEnvironment of calleeContext to lexEnov.

33. Let lexDeclarations be the LexicallyScopedDeclarations of code.

34. For each element d of lexDeclarations, do

a.

b.

NOTE: A lexically declared name cannot be the same as a function/generator declaration, formal
parameter, or a var name. Lexically declared names are only instantiated here but not initialized.
For each element dn of the BoundNames of d, do

i. If IsConstantDeclaration of d is true, then

238



1. Perform ! lexEnv.CreateImmutableBinding(dn, true).
ii. Else,
1. Perform ! lexEnv.CreateMutableBinding(dn, false).
35. For each Parse Node f of functionsTolnitialize, do
a. Let fin be the sole element of the BoundNames of f.
b. Let fo be InstantiateFunctionObject of f with argument lexEnv.
c. Perform ! varEnv.SetMutableBinding(fn, fo, false).
36. Return NormalCompletion(empty).

NOTE 2 B.3.3 provides an extension to the above algorithm that is necessary for backwards compatibility
with web browser implementations of ECMAScript that predate ECMAScript 2015.

NOTE 3 Parameter Initializers may contain direct eval expressions. Any top level declarations of such
evals are only visible to the eval code (11.2). The creation of the environment for such
declarations is described in 8.5.3.

10.3 Built-in Function Objects

The built-in function objects defined in this specification may be implemented as either ECMAScript function objects
(10.2) whose behaviour is provided using ECMAScript code or as implementation provided function exotic objects
whose behaviour is provided in some other manner. In either case, the effect of calling such functions must conform to
their specifications. An implementation may also provide additional built-in function objects that are not defined in
this specification.

If a built-in function object is implemented as an exotic object it must have the ordinary object behaviour specified in
10.1. All such function exotic objects also have [[Prototype]], [[Extensible]], and [[Realm]] internal slots.

Unless otherwise specified every built-in function object has the % Function.prototype% object as the initial value of its
[[Prototype]] internal slot.

The behaviour specified for each built-in function via algorithm steps or other means is the specification of the
function body behaviour for both [[Call]] and [[Construct]] invocations of the function. However, [[Construct]]
invocation is not supported by all built-in functions. For each built-in function, when invoked with [[Call]], the [[Call]]
thisArgument provides the this value, the [[Call]] argumentsList provides the named parameters, and the NewTarget
value is undefined. When invoked with [[Construct]], the this value is uninitialized, the [[Construct]] arqumentsList
provides the named parameters, and the [[Construct]] newTuarget parameter provides the NewTarget value. If the built-
in function is implemented as an ECMAScript function object then this specified behaviour must be implemented by
the ECMAScript code that is the body of the function. Built-in functions that are ECMAScript function objects must be
strict functions. If a built-in constructor has any [[Call]] behaviour other than throwing a TypeError exception, an
ECMAScript implementation of the function must be done in a manner that does not cause the function's
[[IsClassConstructor]] internal slot to have the value true.

Built-in function objects that are not identified as constructors do not implement the [[Construct]] internal method
unless otherwise specified in the description of a particular function. When a built-in constructor is called as part of a
new expression the argumentsList parameter of the invoked [[Construct]] internal method provides the values for the

built-in constructor's named parameters.

239



Built-in functions that are not constructors do not have a "prototype' property unless otherwise specified in the
description of a particular function.

Built-in functions have an [[InitialName]] internal slot.

If a built-in function object is not implemented as an ECMAScript function it must provide [[Call]] and [[Construct]]
internal methods that conform to the following definitions:

10.3.1 [[Calll] ( thisArgument, argumentsList )

The [[Call]] internal method of a built-in function object F takes arguments thisArgument (an ECMAScript language
value) and argumentsList (a List of ECMAScript language values). It performs the following steps when called:

Let callerContext be the running execution context.

If callerContext is not already suspended, suspend callerContext.

Let calleeContext be a new execution context.

Set the Function of calleeContext to F.

Let calleeRealm be F.[[Realm]].

Set the Realm of calleeContext to calleeRealm.

Set the ScriptOrModule of calleeContext to null.

Perform any necessary implementation-defined initialization of calleeContext.

0 0 N

Push calleeContext onto the execution context stack; calleeContext is now the running execution context.

—_
e

Let result be the Completion Record that is the result of evaluating F in a manner that conforms to the
specification of F. thisArqument is the this value, argumentsList provides the named parameters, and the
NewTarget value is undefined.

11. Remove calleeContext from the execution context stack and restore callerContext as the running execution
context.

12. Return result.

NOTE When calleeContext is removed from the execution context stack it must not be destroyed if it has
been suspended and retained by an accessible generator object for later resumption.

10.3.2 [[Construct]] ( argumentsList, newTarget)

The [[Construct]] internal method of a built-in function object F takes arguments arqumentsList (a List of ECMAScript
language values) and newTarget (a constructor). The steps performed are the same as [[Call]] (see 10.3.1) except that
step 10 is replaced by:

10. Let result be the Completion Record that is the result of evaluating F in a manner that conforms to the
specification of F. The this value is uninitialized, argumentsList provides the named parameters, and newTarget
provides the NewTarget value.

10.3.3 CreateBuiltinFunction ( steps, length, name, internalSlotsList [ , realm [, prototype [,
prefix11])

The abstract operation CreateBuiltinFunction takes arguments steps, length, name, and internalSlotsList (a List of names
of internal slots) and optional arguments realm, prototype, and prefix. internalSlotsList contains the names of additional
internal slots that must be defined as part of the object. This operation creates a built-in function object. It performs the

240



following steps when called:

1. Assert: steps is either a set of algorithm steps or other definition of a function's behaviour provided in this
specification.

If realm is not present or realm is empty, set realm to the current Realm Record.

Assert: realm is a Realm Record.

If prototype is not present, set prototype to realm.[[Intrinsics]].[[% Function.prototype%]].

S N

Let func be a new built-in function object that when called performs the action described by steps. The new
function object has internal slots whose names are the elements of internalSlotsList, and an [[InitialName]]
internal slot.

Set func.[[Realm]] to realm.

Set func.[[Prototype]] to prototype.

Set func.[[Extensible]] to true.

Set func.[[InitialName]] to null.

10. Perform ! SetFunctionLength(func, length).

o ©® N

11. If prefix is not present, then

a. Perform ! SetFunctionName(func, name).
12. Else,

a. Perform ! SetFunctionName(func, name, prefix).
13. Return func.

Each built-in function defined in this specification is created by calling the CreateBuiltinFunction abstract operation.

10.4 Built-in Exotic Object Internal Methods and Slots

This specification defines several kinds of built-in exotic objects. These objects generally behave similar to ordinary
objects except for a few specific situations. The following exotic objects use the ordinary object internal methods
except where it is explicitly specified otherwise below:

10.4.1 Bound Function Exotic Objects

A bound function exotic object is an exotic object that wraps another function object. A bound function exotic object is
callable (it has a [[Call]] internal method and may have a [[Construct]] internal method). Calling a bound function
exotic object generally results in a call of its wrapped function.

An object is a bound function exotic object if its [[Call]] and (if applicable) [[Construct]] internal methods use the
following implementations, and its other essential internal methods use the definitions found in 10.1. These methods
are installed in BoundFunctionCreate.

Bound function exotic objects do not have the internal slots of ECMAScript function objects listed in Table 29. Instead
they have the internal slots listed in Table 30, in addition to [[Prototype]] and [[Extensible]].

241



Table 30: Internal Slots of Bound Function Exotic Objects

Internal Slot Type Description

[[BoundTargetFunction]] | Callable The wrapped function object.

Object
[[BoundThis]] Any The value that is always passed as the this value when calling the wrapped
function.
[[Bound Arguments]] List of Any | A list of values whose elements are used as the first arguments to any call to

the wrapped function.

10.4.1.1 [[Callll ( thisArgument, argumentsList)

The [[Call]] internal method of a bound function exotic object F takes arguments thisArqument (an ECMAScript
language value) and argumentsList (a List of ECMAScript language values). It performs the following steps when
called:

Let target be F.[[BoundTargetFunction]].

Let boundThis be F.[[BoundThis]].

Let boundArgs be F.[[Bound Arguments]].

Let args be a List whose elements are the elements of boundArgs, followed by the elements of arquimentsList.

SUESICENS -

Return ? Call(target, boundThis, args).

10.4.1.2 [[Construct]] ( argumentsList, newTarget )

The [[Construct]] internal method of a bound function exotic object F takes arguments arqumentsList (a List of
ECMAScript language values) and newTarget (a constructor). It performs the following steps when called:

Let target be F.[[BoundTargetFunction]].

Assert: IsConstructor(target) is true.

Let boundArgs be F.[[Bound Arguments]].

Let args be a List whose elements are the elements of boundArgs, followed by the elements of arquimentsList.
If SameValue(F, newTarget) is true, set newTarget to target.

S

Return ? Construct(target, args, newTarget).

10.4.1.3 BoundFunctionCreate ( targetFunction, boundThis, boundArgs)

The abstract operation BoundFunctionCreate takes arguments targetFunction, boundThis, and boundArgs. It is used to
specify the creation of new bound function exotic objects. It performs the following steps when called:

Assert: Type(targetFunction) is Object.
Let proto be ? targetFunction.[[GetPrototypeOf]]().
Let internalSlotsList be the internal slots listed in Table 30, plus [[Prototype]] and [[Extensible]].
Let obj be | MakeBasicObject(internalSlotsList).
Set obj.[[Prototype]] to proto.
Set obj.[[Call]] as described in 10.4.1.1.
If IsConstructor(targetFunction) is true, then
a. Set obj.[[Construct]] as described in 10.4.1.2.

NSO e

242



8. Set obj.[[BoundTargetFunction]] to fargetFunction.
9. Set obj.[[BoundThis]] to boundThis.

10. Set obj.[[Bound Arguments]] to boundArgs.

11. Return obj.

10.4.2 Array Exotic Objects

An Array object is an exotic object that gives special treatment to array index property keys (see 6.1.7). A property
whose property name is an array index is also called an element. Every Array object has a non-configurable "length"

property whose value is always a non-negative integral Number whose mathematical value is less than 232. The value
of the "length" property is numerically greater than the name of every own property whose name is an array index;
whenever an own property of an Array object is created or changed, other properties are adjusted as necessary to
maintain this invariant. Specifically, whenever an own property is added whose name is an array index, the value of
the "length" property is changed, if necessary, to be one more than the numeric value of that array index; and
whenever the value of the "length' property is changed, every own property whose name is an array index whose
value is not smaller than the new length is deleted. This constraint applies only to own properties of an Array object
and is unaffected by "length" or array index properties that may be inherited from its prototypes.

NOTE A String property name P is an array index if and only if ToString(ToUint32(P)) equals P and
ToUint32(P) is not the same value as F(232 - 1).

An object is an Array exotic object (or simply, an Array object) if its [[DefineOwnProperty]] internal method uses the
following implementation, and its other essential internal methods use the definitions found in 10.1. These methods
are installed in ArrayCreate.

10.4.2.1 [[DefineOwnPropertyl] ( P, Desc)

The [[DefineOwnProperty]] internal method of an Array exotic object A takes arguments P (a property key) and Desc
(a Property Descriptor). It performs the following steps when called:

1. Assert: IsPropertyKey(P) is true.
2. If P is "length", then
a. Return ? ArraySetLength(A, Desc).
3. Elseif P is an array index, then
a. Let oldLenDesc be OrdinaryGetOwnProperty(A4, "length").
Assert: ! IsDataDescriptor(oldLenDesc) is true.
Assert: oldLenDesc.[[Configurable]] is false.
Let oldLen be oldLenDesc.[[Valuel]].
Assert: oldLen is a non-negative integral Number.
Let index be ! ToUint32(P).
If index = oldLen and oldLenDesc.[[Writable]] is false, return false.
Let succeeded be ! OrdinaryDefineOwnProperty(A, P, Desc).
If succeeded is false, return false.
j. If index = oldLen, then
i. Set oldLenDesc.[[Value]] to index + 1F.

ii. Let succeeded be OrdinaryDefineOwnProperty(A, "length", oldLenDesc).

5® =0 & n T

e

iii. Assert: succeeded is true.

243


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD

4.

k. Return true.
Return OrdinaryDefineOwnProperty(A, P, Desc).

10.4.2.2 ArrayCreate ( length [, proto])

The abstract operation ArrayCreate takes argument length (a non-negative integer) and optional argument proto. It is

used to specify the creation of new Array exotic objects. It performs the following steps when called:

SR T i

If length > 232_1, throw a RangeError exception.

If proto is not present, set proto to %o Array.prototype%.

Let A be ! MakeBasicObject(« [[Prototype]], [[Extensible]] »).

Set A.[[Prototype]] to proto.

Set A.[[DefineOwnProperty]] as specified in 10.4.2.1.

Perform ! OrdinaryDefineOwnProperty(4, "length", PropertyDescriptor { [[Value]]: F(length), [[Writable]]: true,
[[Enumerable]]: false, [[Configurable]]: false }).

Return A.

10.4.2.3 ArraySpeciesCreate ( originalArray, length')

The abstract operation ArraySpeciesCreate takes arguments original Array and length (a non-negative integer). It is

used to specify the creation of a new Array object using a constructor function that is derived from original Array. It

performs the following steps when called:

L

Let isArray be ? IsArray(original Array).
If isArray is false, return ? ArrayCreate(length).
Let C be ? Get(original Array, "constructor").
If IsConstructor(C) is true, then
a. Let thisRealm be the current Realm Record.
b. Let realmC be ? GetFunctionRealm(C).
c. If thisRealm and realmC are not the same Realm Record, then
i. If SameValue(C, realmC.[[Intrinsics]].[[% Array%]]) is true, set C to undefined.
If Type(C) is Object, then
a. Set C to ? Get(C, @@species).
b. If C is null, set C to undefined.
If C is undefined, return ? ArrayCreate(length).
If IsConstructor(C) is false, throw a TypeError exception.
Return ? Construct(C, « Hlength) »).

NOTE If original Array was created using the standard built-in Array constructor for a realm that is not

the realm of the running execution context, then a new Array is created using the realm of the
running execution context. This maintains compatibility with Web browsers that have historically
had that behaviour for the Array . prototype methods that now are defined using
ArraySpeciesCreate.

10.4.2.4 ArraySetLength (A, Desc)

The abstract operation ArraySetLength takes arguments A (an Array object) and Desc (a Property Descriptor). It

performs the following steps when called:

244


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD

0 ® N U »DN

_ =
= O

_ e
= W N

15.
16.
17.

18.

19.

If Desc.[[Value]] is absent, then
a. Return OrdinaryDefineOwnProperty(A4, "length", Desc).
Let newLenDesc be a copy of Desc.
Let newLen be ? ToUint32(Desc.[[Value]]).
Let numberLen be ? ToNumber(Desc.[[Value]]).
If newLen is not the same value as numberLen, throw a RangeError exception.
Set newLenDesc.[[Value]] to newLen.
Let oldLenDesc be OrdinaryGetOwnProperty(A, "length").
Assert: | IsDataDescriptor(oldLenDesc) is true.
Assert: oldLenDesc.[[Configurable]] is false.
Let oldLen be oldLenDesc.[[Value]].

. If newLen = oldLen, then

a. Return OrdinaryDefineOwnProperty(A4, "length", newLenDesc).

. If oldLenDesc.[[Writable]] is false, return false.
. If newLenDesc.[[Writable]] is absent or has the value true, let newWritable be true.
. Else,

a. NOTE: Setting the [[Writable]] attribute to false is deferred in case any elements cannot be deleted.
b. Let newWritable be false.
c. Set newLenDesc.[[Writable]] to true.
Let succeeded be ! OrdinaryDefineOwnProperty(A, "length", newLenDesc).
If succeeded is false, return false.
For each own property key P of A that is an array index, whose numeric value is greater than or equal to
newLen, in descending numeric index order, do
a. Let deleteSucceeded be ! A.[[Delete]](P).
b. If deleteSucceeded is false, then
i. Set newLenDesc.[[Value]] to ! ToUint32(P) + 1.
ii. If newWritable is false, set newLenDesc.[[Writable]] to false.
iii. Perform ! OrdinaryDefineOwnProperty(A, "length", newLenDesc).
iv. Return false.
If newWritable is false, then
a. Let succeeded be ! OrdinaryDefineOwnProperty(A4, "length'", PropertyDescriptor { [[Writable]]: false }).
b. Assert: succeeded is true.
Return true.

NOTE In steps 3 and 4, if Desc.[[Value]] is an object then its valueOf method is called twice. This is

legacy behaviour that was specified with this effect starting with the 2" Edition of this
specification.

10.4.3 String Exotic Objects

A String object is an exotic object that encapsulates a String value and exposes virtual integer-indexed data properties

corresponding to the individual code unit elements of the String value. String exotic objects always have a data

property named "length" whose value is the number of code unit elements in the encapsulated String value. Both the

code unit data properties and the "length' property are non-writable and non-configurable.

An object is a String exotic object (or simply, a String object) if its [[GetOwnProperty]], [[DefineOwnProperty]], and

[[OwnPropertyKeys]] internal methods use the following implementations, and its other essential internal methods

245



use the definitions found in 10.1. These methods are installed in StringCreate.

String exotic objects have the same internal slots as ordinary objects. They also have a [[StringData]] internal slot.

10.4.3.1 [[GetOwnPropertyll (P)

The [[GetOwnProperty]] internal method of a String exotic object S takes argument P (a property key). It performs the

following steps when called:

1.
2.
3.
4.

Assert: IsPropertyKey(P) is true.

Let desc be OrdinaryGetOwnProperty(S, P).
If desc is not undefined, return desc.

Return ! StringGetOwnProperty(S, P).

10.4.3.2 [[DefineOwnPropertyl] ( P, Desc)

The [[DefineOwnProperty]] internal method of a String exotic object S takes arguments P (a property key) and Desc (a

Property Descriptor). It performs the following steps when called:

1.
2.
3.

4.

Assert: IsPropertyKey(P) is true.
Let stringDesc be ! StringGetOwnProperty(S, P).
If stringDesc is not undefined, then
a. Let extensible be S.[[Extensible]].
b. Return ! IsCompatiblePropertyDescriptor(extensible, Desc, stringDesc).
Return ! OrdinaryDefineOwnProperty(S, P, Desc).

10.4.3.3 [[OwnPropertyKeysl] ()

The [[OwnPropertyKeys]] internal method of a String exotic object O takes no arguments. It performs the following

steps when called:

SRS

Let keys be a new empty List.
Let str be O.[[StringData]].
Assert: Type(str) is String.
Let len be the length of str.
For each integer i starting with 0 such that i < [er, in ascending order, do
a. Add ! ToString([(7)) as the last element of keys.
For each own property key P of O such that P is an array index and ! TolntegerOrInfinity(P) = len, in ascending
numeric index order, do
a. Add P as the last element of keys.
For each own property key P of O such that Type(P) is String and P is not an array index, in ascending
chronological order of property creation, do
a. Add P as the last element of keys.
For each own property key P of O such that Type(P) is Symbol, in ascending chronological order of property
creation, do
a. Add P as the last element of keys.
Return keys.

10.4.3.4 StringCreate ( value, prototype)

246


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD

The abstract operation StringCreate takes arguments value (a String) and prototype. It is used to specify the creation of
new String exotic objects. It performs the following steps when called:

Let S be | MakeBasicObject(« [[Prototype]], [[Extensible]], [[StringData]] »).

Set S.[[Prototype]] to prototype.

Set S.[[StringData]] to value.

Set S.[[GetOwnProperty]] as specified in 10.4.3.1.

Set S.[[DefineOwnProperty]] as specified in 10.4.3.2.

Set S.[[OwnPropertyKeys]] as specified in 10.4.3.3.

Let length be the number of code unit elements in value.

Perform ! DefinePropertyOrThrow(S, "length", PropertyDescriptor { [[Value]]: F(length), [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: false }).

9. Return S.

© NG » N

10.4.3.5 StringGetOwnProperty (S, P)

The abstract operation StringGetOwnProperty takes arguments S and P. It performs the following steps when called:

Assert: S is an Object that has a [[StringData]] internal slot.
Assert: IsPropertyKey(P) is true.

If Type(P) is not String, return undefined.

Let index be ! CanonicalNumericIndexString(P).

If index is undefined, return undefined.

If IsIntegralNumber(index) is false, return undefined.
If index is -0, return undefined.

Let str be S.[[StringData]].

Assert: Type(str) is String.

Let len be the length of str.

. If R(index) < 0 or len < R(index), return undefined.

O X N oGk W=

[ G ST
N o~ o

. Let resultStr be the String value of length 1, containing one code unit from str, specifically the code unit at index
R(index).

. Return the PropertyDescriptor { [[Value]]: resultStr, [[Writable]]: false, [[Enumerable]]: true, [[Configurable]]:
false }.

—_
[S8]

10.4.4 Arguments Exotic Objects

Most ECMAScript functions make an arguments object available to their code. Depending upon the characteristics of
the function definition, its arguments object is either an ordinary object or an arguments exotic object. An arguments
exotic object is an exotic object whose array index properties map to the formal parameters bindings of an invocation
of its associated ECMAScript function.

An object is an arquments exotic object if its internal methods use the following implementations, with the ones not
specified here using those found in 10.1. These methods are installed in CreateMapped ArgumentsObject.

NOTE 1 While CreateUnmapped ArgumentsObject is grouped into this clause, it creates an ordinary
object, not an arguments exotic object.

Arguments exotic objects have the same internal slots as ordinary objects. They also have a [[ParameterMap]] internal

247


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D

slot. Ordinary arguments objects also have a [[ParameterMap]] internal slot whose value is always undefined. For
ordinary argument objects the [[ParameterMap]] internal slot is only used by Object.prototype.toString
(20.1.3.6) to identify them as such.

NOTE 2 The integer-indexed data properties of an arguments exotic object whose numeric name values
are less than the number of formal parameters of the corresponding function object initially share
their values with the corresponding argument bindings in the function's execution context. This
means that changing the property changes the corresponding value of the argument binding and
vice-versa. This correspondence is broken if such a property is deleted and then redefined or if
the property is changed into an accessor property. If the arguments object is an ordinary object,
the values of its properties are simply a copy of the arguments passed to the function and there is
no dynamic linkage between the property values and the formal parameter values.

NOTE 3 The ParameterMap object and its property values are used as a device for specifying the
arguments object correspondence to argument bindings. The ParameterMap object and the
objects that are the values of its properties are not directly observable from ECMAScript code. An
ECMAScript implementation does not need to actually create or use such objects to implement
the specified semantics.

NOTE 4 Ordinary arguments objects define a non-configurable accessor property named "callee' which
throws a TypeError exception on access. The ""callee" property has a more specific meaning for
arguments exotic objects, which are created only for some class of non-strict functions. The
definition of this property in the ordinary variant exists to ensure that it is not defined in any
other manner by conforming ECMAScript implementations.

NOTE 5 ECMAScript implementations of arguments exotic objects have historically contained an accessor
property named "caller". Prior to ECMAScript 2017, this specification included the definition of a
throwing "caller" property on ordinary arguments objects. Since implementations do not contain
this extension any longer, ECMAScript 2017 dropped the requirement for a throwing "caller"

accessor.

10.4.4.1 [[GetOwnPropertyl] (P)

The [[GetOwnProperty]] internal method of an arguments exotic object args takes argument P (a property key). It
performs the following steps when called:

Let desc be OrdinaryGetOwnProperty/(args, P).
If desc is undefined, return desc.

Let map be args.[[ParameterMapl]].

Let isMapped be | HasOwnProperty(map, P).

SRS -

If isMapped is true, then
a. Set desc.[[Value]] to Get(map, P).
6. Return desc.

10.4.4.2 [[DefineOwnPropertyl] ( P, Desc)

248



The [[DefineOwnProperty]] internal method of an arguments exotic object args takes arguments P (a property key)
and Desc (a Property Descriptor). It performs the following steps when called:

Let map be args.[[ParameterMapl]].
Let isMapped be HasOwnProperty(imap, P).
Let newArgDesc be Desc.

=W =

If isMapped is true and IsDataDescriptor(Desc) is true, then
a. If Desc.[[Value]] is not present and Desc.[[Writable]] is present and its value is false, then
i. Set newArgDesc to a copy of Desc.
ii. Set newArgDesc.[[Value]] to Get(map, P).
5. Let allowed be ? OrdinaryDefineOwnProperty(args, P, newArgDesc).
6. If allowed is false, return false.
7. If isMapped is true, then
a. If IsAccessorDescriptor(Desc) is true, then
i. Call map.[[Delete]](P).
b. Else,
i. If Desc.[[Value]] is present, then
1. Let setStatus be Set(map, P, Desc.[[Value]], false).
2. Assert: setStatus is true because formal parameters mapped by argument objects are
always writable.
ii. If Desc.[[Writable]] is present and its value is false, then
1. Call map.[[Delete]](P).
8. Return true.

10.4.4.3 [[Get]] ( P, Receiver)

The [[Get]] internal method of an arguments exotic object args takes arguments P (a property key) and Receiver (an
ECMAScript language value). It performs the following steps when called:

1. Let map be args.[[ParameterMap]].

2. Let isMapped be | HasOwnProperty(map, P).

3. If isMapped is false, then
a. Return ? OrdinaryGet(args, P, Receiver).

4. Else,
a. Assert: map contains a formal parameter mapping for P.
b. Return Get(map, P).

10.4.4.4 [[Set]] ( P, V, Receiver)

The [[Set]] internal method of an arguments exotic object args takes arguments P (a property key), V (an ECMAScript
language value), and Receiver (an ECMAScript language value). It performs the following steps when called:

1. If SameValue(args, Receiver) is false, then

a. Let isMapped be false.
2. Else,

a. Let map be args.[[ParameterMap]].

b. Let isMapped be ! HasOwnProperty(map, P).
3. If isMapped is true, then

a. Let setStatus be Set(map, P, V, false).

249



4.

b. Assert: setStatus is true because formal parameters mapped by argument objects are always writable.
Return ? OrdinarySet(args, P, V, Receiver).

10.4.4.5 [[Delete]]l (P)

The [[Delete]] internal method of an arguments exotic object args takes argument P (a property key). It performs the

following steps when called:

W =

Let map be args.[[ParameterMap]].
Let isMapped be ! HasOwnProperty(map, P).
Let result be ? OrdinaryDelete(args, P).
If result is true and isMapped is true, then
a. Call map.[[Delete]](P).
Return result.

10.4.4.6 CreateUnmappedArgumentsObject ( argumentsList)

The abstract operation CreateUnmapped ArgumentsObject takes argument argumentsList. It performs the following

steps when called:

L e

Let len be the number of elements in argumentsList.

Let obj be ! OrdinaryObjectCreate(%Object.prototype%, « [[ParameterMap]] »).

Set obj.[[ParameterMap]] to undefined.

Perform DefinePropertyOrThrow(obj, "length", PropertyDescriptor { [[Value]]: F(len), [[Writable]]: true,
[[Enumerable]]: false, [[Configurable]]: true }).

5. Let index be 0.

Repeat, while index < len,

a. Let val be arqumentsList[index].

b. Perform ! CreateDataPropertyOrThrow(obj, ! ToString(Findex)), val).

c. Set index to index + 1.
Perform ! DefinePropertyOrThrow(obj, @@iterator, PropertyDescriptor { [[Value]]: % Array.prototype.values%,
[[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }).
Perform ! DefinePropertyOrThrow(obj, "callee", PropertyDescriptor { [[Get]]: % ThrowTypeError%, [[Set]]:
%ThrowTypeError%, [[Enumerable]]: false, [[Configurable]]: false }).
Return obj.

10.4.4.7 CreateMappedArgumentsObiject ( func, formals, argumentsList, env )

The abstract operation CreateMapped ArgumentsObject takes arguments furnc (an Object), formals (a Parse Node),

argumentsList (a List), and env (an Environment Record). It performs the following steps when called:

1.

N oG »DN

Assert: formals does not contain a rest parameter, any binding patterns, or any initializers. It may contain
duplicate identifiers.

Let len be the number of elements in argumentsList.

Let obj be ! MakeBasicObject(« [[Prototype]], [[Extensible]], [[ParameterMap]] »).

Set obj.[[GetOwnProperty]] as specified in 10.4.4.1.

Set obj.[[DefineOwnProperty]] as specified in 10.4.4.2.

Set obj.[[Get]] as specified in 10.4.4.3.

Set obj.[[Set]] as specified in 10.4.4.4.

250


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD

8. Set obj.[[Delete]] as specified in 10.4.4.5.
9. Set obj.[[Prototype]] to %Object.prototype.
10. Let map be ! OrdinaryObjectCreate(null).
11. Set obj.[[ParameterMap]] to map.
12. Let parameterNames be the BoundNames of formals.
13. Let numberOfParameters be the number of elements in parameterNames.
14. Let index be 0.
15. Repeat, while index < len,
a. Let val be arqumentsList[index].
b. Perform ! CreateDataPropertyOrThrow(obj, ! ToString(F(index)), val).
c. Setindex to index + 1.
16. Perform ! DefinePropertyOrThrow(obj, "length", PropertyDescriptor { [[Value]]: F(len), [[Writable]]: true,
[[Enumerable]]: false, [[Configurable]]: true }).
17. Let mappedNames be a new empty List.
18. Let index be numberOfParameters - 1.
19. Repeat, while index =0,
a. Let name be parameterNames[index].
b. If name is not an element of mappedNames, then
i. Add name as an element of the list mappedNames.
ii. If index < len, then
1. Let ¢ be MakeArgGetter(name, env).
2. Let p be MakeArgSetter(name, env).
3. Perform map.[[DefineOwnProperty]](! ToString(F(index)), PropertyDescriptor { [[Set]]: p,
[[Get]]: g, [[Enumerable]]: false, [[Configurable]]: true }).
c. Set index to index - 1.
20. Perform ! DefinePropertyOrThrow(obj, @@iterator, PropertyDescriptor { [[Value]]: % Array.prototype.values%,
[[Writable]]: true, [[Enumerable]]: false, [[Configurable]]: true }).
21. Perform ! DefinePropertyOrThrow(obj, ""callee", PropertyDescriptor { [[Value]]: func, [[Writable]]: true,
[[Enumerable]]: false, [[Configurable]]: true }).
22. Return obj.

10.4.4.7.1 MakeArgGetter (name, env)

The abstract operation MakeArgGetter takes arguments name (a String) and env (an Environment Record). It creates a
built-in function object that when executed returns the value bound for name in env. It performs the following steps
when called:

Let steps be the steps of an ArgGetter function as specified below.

Let length be the number of non-optional parameters of an ArgGetter function as specified below.
Let getter be ! CreateBuiltinFunction(steps, length, """, « [[Name]], [[Env]] »).

Set getter.[[Namel]] to name.

Set getter.[[Env]] to env.

AL SR

Return getter.

An ArgGetter function is an anonymous built-in function with [[Name]] and [[Env]] internal slots. When an ArgGetter
function that expects no arguments is called it performs the following steps:

1. Let fbe the active function object.
2. Let name be f.[[Name]].

251


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD

3. Let env be f.[[Env]].
4. Return env.GetBindingValue(name, false).

NOTE ArgGetter functions are never directly accessible to ECMAScript code.

10.4.4.7.2 MakeArgSetter ( name, env)

The abstract operation MakeArgSetter takes arguments name (a String) and env (an Environment Record). It creates a
built-in function object that when executed sets the value bound for name in env. It performs the following steps when
called:

Let steps be the steps of an ArgSetter function as specified below.

Let length be the number of non-optional parameters of an ArgSetter function as specified below.
Let setter be ! CreateBuiltinFunction(steps, length, "', « [[Name]], [[Env]] »).

Set setter.[[Name]] to name.

Set setter.[[Env]] to env.

SN T

Return setter.

An ArgSetter function is an anonymous built-in function with [[Name]] and [[Env]] internal slots. When an ArgSetter
function is called with argument value it performs the following steps:

1. Let fbe the active function object.

2. Let name be f.[[Name]].

3. Let env be f.[[Env]].

4. Return env.SetMutableBinding(name, value, false).

NOTE ArgSetter functions are never directly accessible to ECMAScript code.

10.4.5 Integer-Indexed Exotic Objects

An Integer-Indexed exotic object is an exotic object that performs special handling of integer index property keys.

Integer-Indexed exotic objects have the same internal slots as ordinary objects and additionally
[[Viewed ArrayBuffer]], [[ArrayLength]], [[ByteOffset]], [[ContentType]], and [[Typed ArrayName]] internal slots.

An object is an Integer-Indexed exotic object if its [[GetOwnProperty]], [[HasProperty]], [[DefineOwnProperty]], [[Get]],
[[Set]], [[Delete]], and [[OwnPropertyKeys]] internal methods use the definitions in this section, and its other essential
internal methods use the definitions found in 10.1. These methods are installed by IntegerIndexedObjectCreate.

10.4.5.1 [[GetOwnPropertyl]] (P)

The [[GetOwnProperty]] internal method of an Integer-Indexed exotic object O takes argument P (a property key). It
performs the following steps when called:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Integer-Indexed exotic object.
3. If Type(P) is String, then
a. Let numericIndex be ! CanonicalNumericIndexString(P).
b. If numericlndex is not undefined, then
252



i. Let value be ! IntegerIndexedElementGet(O, numericIndex).
ii. If value is undefined, return undefined.
iii. Return the PropertyDescriptor { [[Value]]: value, [[Writable]]: true, [[Enumerable]]: true,
[[Configurable]]: true }.
4. Return OrdinaryGetOwnProperty(O, P).

10.4.5.2 [[HasProperty]l (P)

The [[HasProperty]] internal method of an Integer-Indexed exotic object O takes argument P (a property key). It
performs the following steps when called:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Integer-Indexed exotic object.
3. If Type(P) is String, then
a. Let numericIndex be ! CanonicalNumericIndexString(P).
b. If numericlndex is not undefined, return ! IsValidIntegerIndex(O, numericlndex).
4. Return ? OrdinaryHasProperty(O, P).

10.4.5.3 [[DefineOwnPropertyl] ( P, Desc)

The [[DefineOwnProperty]] internal method of an Integer-Indexed exotic object O takes arguments P (a property key)
and Desc (a Property Descriptor). It performs the following steps when called:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Integer-Indexed exotic object.
3. If Type(P) is String, then
a. Let numericIndex be ! CanonicalNumericIndexString(P).
b. If numericIndex is not undefined, then
i. If ! IsValidIntegerIndex(O, numericlndex) is false, return false.
ii. If Desc has a [[Configurable]] field and if Desc.[[Configurable]] is false, return false.
iii. If Desc has an [[Enumerable]] field and if Desc.[[Enumerable]] is false, return false.
iv. If ! IsAccessorDescriptor(Desc) is true, return false.
v. If Desc has a [[Writable]] field and if Desc.[[Writable]] is false, return false.
vi. If Desc has a [[Value]] field, perform ? IntegerIndexedElementSet(O, numericlndex, Desc.[[Value]]).
vii. Return true.
4. Return ! OrdinaryDefineOwnProperty(O, P, Desc).

10.4.5.4 [[Get]]l ( P, Receiver)

The [[Get]] internal method of an Integer-Indexed exotic object O takes arguments P (a property key) and Receiver (an
ECMAScript language value). It performs the following steps when called:

1. Assert: IsPropertyKey(P) is true.
2. If Type(P) is String, then
a. Let numericIndex be ! CanonicalNumericIndexString(P).
b. If numericIndex is not undefined, then
i. Return ! IntegerIndexedElementGet(O, numericlndex).
3. Return ? OrdinaryGet(O, P, Receiver).

253



10.4.5.5 [[Set]] ( P, V, Receiver)

The [[Set]] internal method of an Integer-Indexed exotic object O takes arguments P (a property key), V (an

ECMAScript language value), and Receiver (an ECMAScript language value). It performs the following steps when
called:

1. Assert: IsPropertyKey(P) is true.
2. If Type(P) is String, then
a. Let numericIndex be ! CanonicalNumericIndexString(P).
b. If numericIndex is not undefined, then
i. Perform ? IntegerIndexedElementSet(O, numericlndex, V).
ii. Return true.
3. Return ? OrdinarySet(O, P, V, Receiver).

10.4.5.6 [[Delete]]l (P)

The [[Delete]] internal method of an Integer-Indexed exotic object O takes arguments P (a property key). It performs
the following steps when called:

1. Assert: IsPropertyKey(P) is true.
2. Assert: O is an Integer-Indexed exotic object.
3. If Type(P) is String, then
a. Let numericIndex be ! CanonicalNumericIndexString(P).
b. If numericlndex is not undefined, then
i. If I IsValidIntegerIndex(O, numericIndex) is false, return true; else return false.
4. Return ? OrdinaryDelete(O, P).

10.4.5.7 [[OwnPropertyKeysl] ()

The [[OwnPropertyKeys]] internal method of an Integer-Indexed exotic object O takes no arguments. It performs the
following steps when called:

1. Let keys be a new empty List.
2. Assert: O is an Integer-Indexed exotic object.
3. If IsDetachedBuffer(O.[[Viewed ArrayBuffer]]) is false, then
a. For each integer i starting with 0 such that i < O.[[ArrayLength]], in ascending order, do
i. Add ! ToString([(7)) as the last element of keys.
4. For each own property key P of O such that Type(P) is String and P is not an integer index, in ascending
chronological order of property creation, do
a. Add P as the last element of keys.
5. For each own property key P of O such that Type(P) is Symbol, in ascending chronological order of property
creation, do
a. Add P as the last element of keys.
6. Return keys.

10.4.5.8 IntegerIndexedObjectCreate ( prototype)

The abstract operation IntegerIndexedObjectCreate takes argument prototype. It is used to specify the creation of new
Integer-Indexed exotic objects. It performs the following steps when called:

254


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD

1. Let internalSlotsList be « [[Prototype]], [[Extensible]], [[Viewed ArrayBuffer]], [[Typed ArrayName]],
[[ContentType]], [[ByteLength]], [[ByteOffset]], [[ArrayLength]] ».
Let A be ! MakeBasicObject(internalSlotsList).

Set A.[[GetOwnProperty]] as specified in 10.4.5.1.

Set A.[[HasProperty]] as specified in 10.4.5.2.

Set A.[[DefineOwnProperty]] as specified in 10.4.5.3.

Set A.[[Get]] as specified in 10.4.5.4.

Set A.[[Set]] as specified in 10.4.5.5.

Set A.[[Delete]] as specified in 10.4.5.6.

Set A.[[OwnPropertyKeys]] as specified in 10.4.5.7.

Set A.[[Prototype]] to prototype.

. Return A.

0 ® NSO »DN

_ =
= O

10.4.5.9 IsValidIntegerIndex ( O, index)

The abstract operation IsValidIntegerIndex takes arguments O and index (a Number). It performs the following steps
when called:

Assert: O is an Integer-Indexed exotic object.

If IsDetachedBuffer(O.[[Viewed ArrayBuffer]]) is true, return false.
If ! IsIntegralNumber(index) is false, return false.

If index is -0, return false.

If R(index) < 0 or R(index) = O.[[ArrayLength]], return false.
Return true.

AL e

10.4.5.10 IntegerIndexedElementGet ( O, index)

The abstract operation IntegerIndexedElementGet takes arguments O and index (a Number). It performs the following
steps when called:

Assert: O is an Integer-Indexed exotic object.

If ! IsValidIntegerIndex(O, index) is false, return undefined.

Let offset be O.[[ByteOffset]].

Let arrayTypeName be the String value of O.[[TypedArrayName]].

Let elementSize be the Element Size value specified in Table 60 for arrayTypeName.
Let indexedPosition be (R(index) x elementSize) + offset.

Let elementType be the Element Type value in Table 60 for arrayTypeName.

® Nk LN

Return GetValueFromBuffer(O.[[Viewed ArrayBuffer]], indexedPosition, elementType, true, Unordered).

10.4.5.11 IntegerIndexedElementSet ( O, index, value)

The abstract operation IntegerIndexedElementSet takes arguments O, index (a Number), and value. It performs the
following steps when called:

1. Assert: O is an Integer-Indexed exotic object.
2. If O.[[ContentType]] is BigInt, let numValue be ? ToBigInt(value).
3. Otherwise, let numValue be ? ToNumber(value).
4. If ! IsValidIntegerIndex(O, index) is true, then
a. Let offset be O.[[ByteOffset]].

255


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D

Let arrayTypeName be the String value of O.[[Typed ArrayName]].

Let elementSize be the Element Size value specified in Table 60 for arrayTypeName.

Let indexedPosition be (R(index) x elementSize) + offset.

Let elementType be the Element Type value in Table 60 for arrayTypeName.

Perform SetValuelnBuffer(O.[[Viewed ArrayBuffer]], indexedPosition, elementType, numValue, true,
Unordered).

5. Return NormalCompletion(undefined).

-~ 0 24 n O

NOTE This operation always appears to succeed, but it has no effect when attempting to write past the
end of a TypedArray or to a TypedArray which is backed by a detached ArrayBuffer.

10.4.6 Module Namespace Exotic Objects

A module namespace exotic object is an exotic object that exposes the bindings exported from an ECMAScript Module
(See 16.2.3). There is a one-to-one correspondence between the String-keyed own properties of a module namespace
exotic object and the binding names exported by the Module. The exported bindings include any bindings that are
indirectly exported using export * exportitems. Each String-valued own property key is the StringValue of the
corresponding exported binding name. These are the only String-keyed properties of a module namespace exotic
object. Each such property has the attributes { [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: false }. Module
namespace exotic objects are not extensible.

An object is a module namespace exotic object if its [[SetPrototypeOf]], [[IsExtensible]], [[PreventExtensions]],
[[GetOwnProperty]], [[DefineOwnProperty]], [[HasProperty]], [[Get]], [[Set]], [[Delete]], and [[OwnPropertyKeys]]
internal methods use the definitions in this section, and its other essential internal methods use the definitions found
in 10.1. These methods are installed by ModuleNamespaceCreate.

Module namespace exotic objects have the internal slots defined in Table 31.

Table 31: Internal Slots of Module Namespace Exotic Objects

Internal Type Description
Slot

[[Module]] |Module | The Module Record whose exports this namespace exposes.
Record

[[Exports]] Listof [ A List whose elements are the String values of the exported names exposed as own
String | properties of this object. The list is ordered as if an Array of those String values had been
sorted using % Array.prototype.sort% using undefined as comparefn.

[[Prototype]] | Null This slot always contains the value null (see 10.4.6.1).

Module namespace exotic objects provide alternative definitions for all of the internal methods except
[[GetPrototypeOf]], which behaves as defined in 10.1.1.

10.4.6.1 [[SetPrototypeOfl] (V)

The [[SetPrototypeOf]] internal method of a module namespace exotic object O takes argument V (an Object or null).

256


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%9D

It performs the following steps when called:

1.

Return ? SetimmutablePrototype(O, V).

10.4.6.2 [[IsExtensible]] ()

The [[IsExtensible]] internal method of a module namespace exotic object takes no arguments. It performs the

following steps when called:

1.

Return false.

10.4.6.3 [[PreventExtensions]] ()

The [[PreventExtensions]] internal method of a module namespace exotic object takes no arguments. It performs the

following steps when called:

1.

Return true.

10.4.6.4 [[GetOwnPropertyl] (P)

The [[GetOwnProperty]] internal method of a module namespace exotic object O takes argument P (a property key). It

performs the following steps when called:

SRS -

If Type(P) is Symbol, return OrdinaryGetOwnProperty(O, P).

Let exports be O.[[Exports]].

If P is not an element of exports, return undefined.

Let value be ? O.[[Get]](P, O).

Return PropertyDescriptor { [[Value]]: value, [[Writable]]: true, [[Enumerable]]: true, [[Configurable]]: false }.

10.4.6.5 [[DefineOwnPropertyl] ( P, Desc)

The [[DefineOwnProperty]] internal method of a module namespace exotic object O takes arguments P (a property

key) and Desc (a Property Descriptor). It performs the following steps when called:

O X N U=

If Type(P) is Symbol, return OrdinaryDefineOwnProperty(O, P, Desc).

Let current be ? O.[[GetOwnProperty]](P).

If current is undefined, return false.

If Desc.[[Configurable]] is present and has value true, return false.

If Desc.[[Enumerable]] is present and has value false, return false.

If ! IsAccessorDescriptor(Desc) is true, return false.

If Desc.[[Writable]] is present and has value false, return false.

If Desc.[[Value]] is present, return SameValue(Desc.[[Value]], current.[[Value]]).
Return true.

10.4.6.6 [[HasProperty]l (P)

The [[HasProperty]] internal method of a module namespace exotic object O takes argument P (a property key). It

performs the following steps when called:

1.

If Type(P) is Symbol, return OrdinaryHasProperty(O, P).

257



2. Let exports be O.[[Exports]].
3. If P is an element of exports, return true.
4. Return false.

10.4.6.7 [[Get]] ( P, Receiver)

The [[Get]] internal method of a module namespace exotic object O takes arguments P (a property key) and Receiver
(an ECMAScript language value). It performs the following steps when called:

—_

. Assert: IsPropertyKey(P) is true.
2. If Type(P) is Symbol, then
a. Return ? OrdinaryGet(O, P, Receiver).
Let exports be O.[[Exports]].
If P is not an element of exports, return undefined.
Let m be O.[[Module]].
Let binding be ! m.ResolveExport(P).
Assert: binding is a ResolvedBinding Record.
Let targetModule be binding.[[Module]].
Assert: targetModule is not undefined.

O X N oUW

10. If binding.[[BindingName]] is "“namespace*", then
a. Return ? GetModuleNamespace(targetModule).
11. Let targetEnv be targetModule.[[Environment]].
12. If targetEnv is undefined, throw a ReferenceError exception.
13. Return ? targetEnv.GetBindingValue(binding.[[BindingName]], true).

NOTE ResolveExport is side-effect free. Each time this operation is called with a specific exportName,
resolveSet pair as arguments it must return the same result. An implementation might choose to
pre-compute or cache the ResolveExport results for the [[Exports]] of each module namespace
exotic object.

10.4.6.8 [[Setll ( P, V, Receiver)

The [[Set]] internal method of a module namespace exotic object takes arguments P (a property key), V (an
ECMAScript language value), and Receiver (an ECMAScript language value). It performs the following steps when
called:

1. Return false.

10.4.6.9 [[Deletell (P)

The [[Delete]] internal method of a module namespace exotic object O takes argument P (a property key). It performs
the following steps when called:

1. Assert: IsPropertyKey(P) is true.
2. If Type(P) is Symbol, then
a. Return ? OrdinaryDelete(O, P).
3. Let exports be O.[[Exports]].
4. If P is an element of exports, return false.

258



5. Return true.

10.4.6.10 [[OwnPropertyKeysl] ()

The [[OwnPropertyKeys]] internal method of a module namespace exotic object O takes no arguments. It performs the
following steps when called:

1. Let exports be a copy of O.[[Exports]].

2. Let symbolKeys be ! OrdinaryOwnPropertyKeys(O).

3. Append all the entries of symbolKeys to the end of exports.
4. Return exports.

10.4.6.11 ModuleNamespaceCreate ( module, exports)

The abstract operation ModuleNamespaceCreate takes arguments module and exports. It is used to specify the creation
of new module namespace exotic objects. It performs the following steps when called:

Assert: module is a Module Record.

Assert: module.[[Namespace]] is undefined.

Assert: exports is a List of String values.

Let internalSlotsList be the internal slots listed in Table 31.

Let M be ! MakeBasicObject(internalSlotsList).

Set M's essential internal methods to the definitions specified in 10.4.6.

Set M.[[Prototype]] to null.

Set M.[[Module]] to module.

Let sortedExports be a List whose elements are the elements of exports ordered as if an Array of the same values

0 0N U D=

had been sorted using % Array.prototype.sort% using undefined as comparefn.
10. Set M.[[Exports]] to sorted Exports.
11. Create own properties of M corresponding to the definitions in 28.3.
12. Set module.[[Namespace]] to M.
13. Return M.

10.4.7 Immutable Prototype Exotic Objects
An immutable prototype exotic object is an exotic object that has a [[Prototype]] internal slot that will not change once
it is initialized.

An object is an immutable prototype exotic object if its [[SetPrototypeOf]] internal method uses the following
implementation. (Its other essential internal methods may use any implementation, depending on the specific
immutable prototype exotic object in question.)

NOTE Unlike other exotic objects, there is not a dedicated creation abstract operation provided for
immutable prototype exotic objects. This is because they are only used by %Object.prototype%
and by host environments, and in host environments, the relevant objects are potentially exotic in
other ways and thus need their own dedicated creation operation.

10.4.7.1 [[SetPrototypeOf]] (V)

259



The [[SetPrototypeOf]] internal method of an immutable prototype exotic object O takes argument V' (an Object or
null). It performs the following steps when called:

1. Return ? SetimmutablePrototype(O, V).

10.4.7.2 SetImmutablePrototype (O, V)

The abstract operation SetimmutablePrototype takes arguments O and V. It performs the following steps when called:

1. Assert: Either Type(V) is Object or Type(V) is Null.
2. Let current be ? O.[[GetPrototypeOf]]().

3. If SameValue(V, current) is true, return true.

4. Return false.

10.5 Proxy Object Internal Methods and Internal Slots

A proxy object is an exotic object whose essential internal methods are partially implemented using ECMAScript code.
Every proxy object has an internal slot called [[ProxyHandler]]. The value of [[ProxyHandler]] is an object, called the
proxy's handler object, or null. Methods (see Table 32) of a handler object may be used to augment the implementation
for one or more of the proxy object's internal methods. Every proxy object also has an internal slot called
[[ProxyTarget]] whose value is either an object or the null value. This object is called the proxy's target object.

An object is a Proxy exotic object if its essential internal methods (including [[Call]] and [[Construct]], if applicable) use
the definitions in this section. These internal methods are installed in ProxyCreate.

260



Table 32: Proxy Handler Methods

Internal Method Handler Method

[[GetPrototypeOf]] getPrototypeOf

[[SetPrototypeOf]] setPrototypeOf

[[IsExtensible]] isExtensible

[[PreventExtensions]] |preventExtensions

[[GetOwnProperty]] getOwnPropertyDescriptor

[[DefineOwnProperty]] | defineProperty

[[HasProperty]] has
[[Getl] get
[[Set]] set
[[Delete]] deleteProperty

[[OwnPropertyKeys]] | ownKeys

[[Call]] apply

[[Construct]] construct

When a handler method is called to provide the implementation of a proxy object internal method, the handler
method is passed the proxy's target object as a parameter. A proxy's handler object does not necessarily have a method
corresponding to every essential internal method. Invoking an internal method on the proxy results in the invocation
of the corresponding internal method on the proxy's target object if the handler object does not have a method
corresponding to the internal trap.

The [[ProxyHandler]] and [[ProxyTarget]] internal slots of a proxy object are always initialized when the object is
created and typically may not be modified. Some proxy objects are created in a manner that permits them to be
subsequently revoked. When a proxy is revoked, its [[ProxyHandler]] and [[ProxyTarget]] internal slots are set to null
causing subsequent invocations of internal methods on that proxy object to throw a TypeError exception.

Because proxy objects permit the implementation of internal methods to be provided by arbitrary ECMAScript code,
it is possible to define a proxy object whose handler methods violates the invariants defined in 6.1.7.3. Some of the
internal method invariants defined in 6.1.7.3 are essential integrity invariants. These invariants are explicitly enforced
by the proxy object internal methods specified in this section. An ECMAScript implementation must be robust in the
presence of all possible invariant violations.

In the following algorithm descriptions, assume O is an ECMAScript proxy object, P is a property key value, V is any
ECMAScript language value and Desc is a Property Descriptor record.

10.5.1 [[GetPrototypeOf]] ()

The [[GetPrototypeOf]] internal method of a Proxy exotic object O takes no arguments. It performs the following steps
261



when called:

SRS .

Let handler be O.[[ProxyHandler]].
If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be O.[[ProxyTarget]].
Let trap be ? GetMethod(handler, ""getPrototypeOf").
If trap is undefined, then

a. Return ? target.[[GetPrototypeOf]]().

7. Let handlerProto be ? Call(trap, handler, « target »).

8.
9.
10.
11.
12.
13.

If Type(handlerProto) is neither Object nor Null, throw a TypeError exception.
Let extensibleTarget be ? IsExtensible(target).

If extensibleTarget is true, return handlerProto.

Let targetProto be ? target.[[ GetPrototypeOf]]().

If SameValue(handlerProto, targetProto) is false, throw a TypeError exception.
Return handlerProto.

NOTE [[GetPrototypeOf]] for proxy objects enforces the following invariants:

e The result of [[GetPrototypeOf]] must be either an Object or null.
e If the target object is not extensible, [[GetPrototypeOf]] applied to the proxy object must
return the same value as [[GetPrototypeOf]] applied to the proxy object's target object.

10.5.2 [[SetPrototypeOf]] (V)

The [[SetPrototypeOf]] internal method of a Proxy exotic object O takes argument V (an Object or null). It performs

the following steps when called:

NSO @

S

10.
11.
12.
13.
14.

Assert: Either Type(V) is Object or Type(V) is Null.
Let handler be O.[[ProxyHandler]].
If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be O.[[ProxyTarget]].
Let trap be ? GetMethod(handler, "'setPrototypeOf").
If trap is undefined, then
a. Return ? target.[[SetPrototypeOf]](V).
Let booleanTrapResult be ! ToBoolean(? Call(trap, handler, « target, V »)).
If booleanTrapResult is false, return false.
Let extensibleTarget be ? IsExtensible(target).
If extensibleTnrget is true, return true.
Let targetProto be ? target.[[GetPrototypeOf]]().
If SameValue(V, targetProto) is false, throw a TypeError exception.
Return true.

262



NOTE [[SetPrototypeOf]] for proxy objects enforces the following invariants:

e The result of [[SetPrototypeOf]] is a Boolean value.
e If the target object is not extensible, the argument value must be the same as the result of
[[GetPrototypeOf]] applied to target object.

10.5.3 [[IsExtensiblel] ()

The [[IsExtensible]] internal method of a Proxy exotic object O takes no arguments. It performs the following steps
when called:

Let handler be O.[[ProxyHandler]].

If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.

Let target be O.[[ProxyTarget]].

Let trap be ? GetMethod(handler, ""isExtensible").
If trap is undefined, then

S .

a. Return ? IsExtensible(target).
7. Let booleanTrapResult be | ToBoolean(? Call(trap, handler, « target »)).
8. Let targetResult be ? IsExtensible(target).
9. If SameValue(booleanTrapResult, targetResult) is false, throw a TypeError exception.
10. Return booleanTrapResult.

NOTE [[IsExtensible]] for proxy objects enforces the following invariants:

e The result of [[IsExtensible]] is a Boolean value.
e [[IsExtensible]] applied to the proxy object must return the same value as [[IsExtensible]]
applied to the proxy object's target object with the same argument.

10.5.4 [[PreventExtensions]] ()

The [[PreventExtensions]] internal method of a Proxy exotic object O takes no arguments. It performs the following
steps when called:

Let handler be O.[[ProxyHandler]].

If handler is null, throw a TypeError exception.

Assert: Type(handler) is Object.

Let target be O.[[ProxyTarget]].

Let trap be ? GetMethod (handler, "preventExtensions").

S o

If trap is undefined, then
a. Return ? target.[[PreventExtensions]]().

7. Let booleanTrapResult be ! ToBoolean(? Call(trap, handler, « target »)).
8. If booleanTrapResult is true, then

a. Let extensibleTarget be ? IsExtensible(target).

b. If extensibleTarget is true, throw a TypeError exception.
9. Return booleanTrapResult.
263



NOTE [[PreventExtensions]] for proxy objects enforces the following invariants:

e The result of [[PreventExtensions]] is a Boolean value.
e [[PreventExtensions]] applied to the proxy object only returns true if [[IsExtensible]]
applied to the proxy object's target object is false.

10.5.5 [[GetOwnProperty]] (P)

The [[GetOwnProperty]] internal method of a Proxy exotic object O takes argument P (a property key). It performs the

following steps when called:

NSO »N =

S

10.
11.

12.
13.
14.
15.
16.
17.

18.

Assert: IsPropertyKey(P) is true.
Let handler be O.[[ProxyHandler]].
If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be O.[[ProxyTarget]].
Let trap be ? GetMethod (handler, "getOwnPropertyDescriptor").
If trap is undefined, then
a. Return ? target.[[GetOwnProperty]](P).
Let trapResultObj be ? Call(trap, handler, « target, P »).
If Type(trapResultObj) is neither Object nor Undefined, throw a TypeError exception.
Let targetDesc be ? target.[[ GetOwnProperty]](P).
If trapResultObj is undefined, then
a. If targetDesc is undefined, return undefined.
b. If targetDesc.[[Configurable]] is false, throw a TypeError exception.
c. Let extensibleTarget be ? IsExtensible(target).
d. If extensibleTarget is false, throw a TypeError exception.
e. Return undefined.
Let extensibleTarget be ? IsExtensible(target).
Let resultDesc be ? ToPropertyDescriptor(trapResultObyj).
Call CompletePropertyDescriptor(resultDesc).
Let valid be IsCompatiblePropertyDescriptor(extensibleTarget, resultDesc, targetDesc).
If valid is false, throw a TypeError exception.
If resultDesc.[[Configurable]] is false, then
a. If targetDesc is undefined or targetDesc.[[Configurable]] is true, then
i. Throw a TypeError exception.
b. If resultDesc has a [[Writable]] field and resultDesc.[[Writable]] is false, then
i. If targetDesc.[[Writable]] is true, throw a TypeError exception.
Return resultDesc.

264



NOTE [[GetOwnProperty]] for proxy objects enforces the following invariants:

e The result of [[GetOwnProperty]] must be either an Object or undefined.

e A property cannot be reported as non-existent, if it exists as a non-configurable own
property of the target object.

e A property cannot be reported as non-existent, if the target object is not extensible, unless
it does not exist as an own property of the target object.

e A property cannot be reported as existent, if the target object is not extensible, unless it
exists as an own property of the target object.

e A property cannot be reported as non-configurable, unless it exists as a non-configurable
own property of the target object.

e A property cannot be reported as both non-configurable and non-writable, unless it exists
as a non-configurable, non-writable own property of the target object.

10.5.6 [[DefineOwnProperty]l ( P, Desc)

The [[DefineOwnProperty]] internal method of a Proxy exotic object O takes arguments P (a property key) and Desc (a
Property Descriptor). It performs the following steps when called:

Assert: IsPropertyKey(P) is true.

Let handler be O.[[ProxyHandler]].

If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.

Let target be O.[[ProxyTarget]].

Let trap be ? GetMethod (handler, ""defineProperty").
If trap is undefined, then

NGl =

a. Return ? target.[[DefineOwnProperty]](P, Desc).

*

Let descObj be FromPropertyDescriptor(Desc).
9. Let booleanTrapResult be ! ToBoolean(? Call(trap, handler, « target, P, descObj »)).
10. If booleanTrapResult is false, return false.
11. Let targetDesc be ? target.[[GetOwnProperty]](P).
12. Let extensibleTarget be ? IsExtensible(target).
13. If Desc has a [[Configurable]] field and if Desc.[[Configurable]] is false, then
a. Let settingConfigFalse be true.
14. Else, let settingConfigFalse be false.
15. If targetDesc is undefined, then
a. If extensibleTarget is false, throw a TypeError exception.
b. If settingConfigFalse is true, throw a TypeError exception.
16. Else,
a. If IsCompatiblePropertyDescriptor(extensibleTarget, Desc, targetDesc) is false, throw a TypeError
exception.
b. If settingConfigFalse is true and targetDesc.[[Configurable]] is true, throw a TypeError exception.
c. If IsDataDescriptor(targetDesc) is true, targetDesc.[[Configurable]] is false, and targetDesc.[[Writable]] is
true, then
i. If Desc has a [[Writable]] field and Desc.[[Writable]] is false, throw a TypeError exception.
17. Return true.

265



NOTE [[DefineOwnProperty]] for proxy objects enforces the following invariants:

e The result of [[DefineOwnProperty]] is a Boolean value.

e A property cannot be added, if the target object is not extensible.

e A property cannot be non-configurable, unless there exists a corresponding non-
configurable own property of the target object.

e Anon-configurable property cannot be non-writable, unless there exists a corresponding
non-configurable, non-writable own property of the target object.

e If a property has a corresponding target object property then applying the Property
Descriptor of the property to the target object using [[DefineOwnProperty]] will not throw

an exception.

10.5.7 [[HasPropertyl] ( P)

The [[HasProperty]] internal method of a Proxy exotic object O takes argument P (a property key). It performs the

following steps when called:

NSO »N =

S

10.

Assert: IsPropertyKey(P) is true.
Let handler be O.[[ProxyHandler]].
If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be O.[[ProxyTarget]].
Let trap be ? GetMethod(handler, ""has").
If trap is undefined, then
a. Return ? target.[[HasProperty]](P).
Let booleanTrapResult be ! ToBoolean(? Call(trap, handler, « target, P »)).
If booleanTrapResult is false, then
a. Let targetDesc be ? target.[[GetOwnProperty]](P).
b. If targetDesc is not undefined, then
i. If targetDesc.[[Configurable]] is false, throw a TypeError exception.
ii. Let extensibleTarget be ? IsExtensible(target).
iii. If extensibleTarget is false, throw a TypeError exception.
Return booleanTrapResult.

NOTE [[HasProperty]] for proxy objects enforces the following invariants:

e The result of [[HasProperty]] is a Boolean value.

e A property cannot be reported as non-existent, if it exists as a non-configurable own
property of the target object.

e A property cannot be reported as non-existent, if it exists as an own property of the target
object and the target object is not extensible.

10.5.8 [[Get]] ( P, Receiver)

The [[Get]] internal method of a Proxy exotic object O takes arguments P (a property key) and Receiver (an

266



ECMAScript language value). It performs the following steps when called:

Assert: IsPropertyKey(P) is true.
Let handler be O.[[ProxyHandler]].
If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be O.[[ProxyTarget]].
Let trap be ? GetMethod (handler, "get").
If trap is undefined, then
a. Return ? target.[[Get]](P, Receiver).
Let trapResult be ? Call(trap, handler, « target, P, Receiver »).
9. Let targetDesc be ? target.[[GetOwnProperty]](P).
10. If targetDesc is not undefined and targetDesc.[[Configurable]] is false, then

NSO N

S

a. If IsDataDescriptor(targetDesc) is true and targetDesc.[[Writable]] is false, then
i. If SameValue(trapResult, targetDesc.[[Value]]) is false, throw a TypeError exception.
b. If IsAccessorDescriptor(targetDesc) is true and targetDesc.[[Get]] is undefined, then
i. If trapResult is not undefined, throw a TypeError exception.
11. Return frapResult.

NOTE [[Get]] for proxy objects enforces the following invariants:

e The value reported for a property must be the same as the value of the corresponding
target object property if the target object property is a non-writable, non-configurable own
data property.

e The value reported for a property must be undefined if the corresponding target object
property is a non-configurable own accessor property that has undefined as its [[Get]]
attribute.

10.5.9 [[Set]] ( P, V, Receiver)

The [[Set]] internal method of a Proxy exotic object O takes arguments P (a property key), V (an ECMAScript language
value), and Receiver (an ECMAScript language value). It performs the following steps when called:

Assert: IsPropertyKey(P) is true.
Let handler be O.[[ProxyHandler]].
If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be O.[[ProxyTarget]].
Let trap be ? GetMethod (handler, "'set").
If trap is undefined, then
a. Return ? target.[[Set]](P, V, Receiver).
Let booleanTrapResult be ! ToBoolean(? Call(trap, handler, « target, P, V, Receiver »)).

NSOk e

*

9. If booleanTrapResult is false, return false.
10. Let targetDesc be ? target.[[GetOwnProperty]](P).
11. If targetDesc is not undefined and targetDesc.[[Configurable]] is false, then
a. If IsDataDescriptor(targetDesc) is true and targetDesc.[[Writable]] is false, then
i. If SameValue(V, targetDesc.[[Value]]) is false, throw a TypeError exception.

267



b. If IsAccessorDescriptor(targetDesc) is true, then
i. If targetDesc.[[Set]] is undefined, throw a TypeError exception.
12. Return true.

NOTE [[Set]] for proxy objects enforces the following invariants:

e The result of [[Set]] is a Boolean value.

e Cannot change the value of a property to be different from the value of the corresponding
target object property if the corresponding target object property is a non-writable, non-
configurable own data property.

e Cannot set the value of a property if the corresponding target object property is a non-
configurable own accessor property that has undefined as its [[Set]] attribute.

10.5.10 [[Delete]l] (P)

The [[Delete]] internal method of a Proxy exotic object O takes argument P (a property key). It performs the following
steps when called:

Assert: IsPropertyKey(P) is true.
Let handler be O.[[ProxyHandler]].
If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be O.[[ProxyTarget]].
Let trap be ? GetMethod (handler, "'deleteProperty").
If trap is undefined, then
a. Return ? target.[[Delete]](P).

8. Let booleanTrapResult be ! ToBoolean(? Call(trap, handler, « target, P »)).

9. If booleanTrapResult is false, return false.
10. Let targetDesc be ? target.[[ GetOwnProperty]](P).
11. If targetDesc is undefined, return true.

NS U e

12. If targetDesc.[[Configurable]] is false, throw a TypeError exception.
13. Let extensibleTarget be ? IsExtensible(target).

14. If extensibleTarget is false, throw a TypeError exception.

15. Return true.

NOTE [[Delete]] for proxy objects enforces the following invariants:

e The result of [[Delete]] is a Boolean value.

e A property cannot be reported as deleted, if it exists as a non-configurable own property
of the target object.

e A property cannot be reported as deleted, if it exists as an own property of the target
object and the target object is non-extensible.

10.5.11 [[OwnPropertyKeysl] ()

The [[OwnPropertyKeys]] internal method of a Proxy exotic object O takes no arguments. It performs the following
268



steps

SRS .

10.
11.
12.
13.
14.
15.
16.

17.

18.

19.

20.
21.

22
23

when called:

Let handler be O.[[ProxyHandler]].
If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.
Let target be O.[[ProxyTarget]].
Let trap be ? GetMethod (handler, "ownKeys").
If trap is undefined, then
a. Return ? target.[[OwnPropertyKeys]]().
. Let trapResultArray be ? Call(trap, handler, « target »).
Let trapResult be ? CreateListFromArrayLike(trapResult Array, « String, Symbol »).
If trapResult contains any duplicate entries, throw a TypeError exception.
Let extensibleTarget be ? IsExtensible(target).
Let targetKeys be ? target.[[OwnPropertyKeys]]().
Assert: targetKeys is a List whose elements are only String and Symbol values.
Assert: targetKeys contains no duplicate entries.
Let targetConfigurableKeys be a new empty List.
Let targetNonconfigurableKeys be a new empty List.
For each element key of targetKeys, do
a. Let desc be ? target.[[GetOwnProperty]](key).
b. If desc is not undefined and desc.[[Configurable]] is false, then
i. Append key as an element of targetNonconfigurableKeys.
c. Else,
i. Append key as an element of targetConfigurableKeys.
If extensibleTarget is true and targetNonconfigurableKeys is empty, then
a. Return trapResult.
Let uncheckedResultKeys be a List whose elements are the elements of trapResult.
For each element key of targetNonconfigurableKeys, do
a. If key is not an element of uncheckedResultKeys, throw a TypeError exception.
b. Remove key from uncheckedResultKeys.
If extensibleTarget is true, return trapResult.
For each element key of targetConfigurableKeys, do
a. If key is not an element of uncheckedResultKeys, throw a TypeError exception.
b. Remove key from uncheckedResultKeys.
. If uncheckedResultKeys is not empty, throw a TypeError exception.
. Return trapResult.

NOTE [[OwnPropertyKeys]] for proxy objects enforces the following invariants:

e The result of [[OwnPropertyKeys]] is a List.

e The returned List contains no duplicate entries.

e The Type of each result List element is either String or Symbol.

e The result List must contain the keys of all non-configurable own properties of the target
object.

o If the target object is not extensible, then the result List must contain all the keys of the
own properties of the target object and no other values.

269



10.5.12 [[Calll] ( thisArgument, argumentsList )

The [[Call]] internal method of a Proxy exotic object O takes arguments thisArqument (an ECMAScript language value)
and argumentsList (a List of ECMAScript language values). It performs the following steps when called:

Let handler be O.[[ProxyHandler]].

If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.

Let target be O.[[ProxyTarget]].

Let trap be ? GetMethod (handler, "apply").

If trap is undefined, then

SR S i

a. Return ? Call(target, thisArgument, argumentsList).
7. LetargArray be ! CreateArrayFromList(argumentsList).
8. Return ? Call(trap, handler, « target, thisArqument, argArray »).

NOTE A Proxy exotic object only has a [[Call]] internal method if the initial value of its [[ProxyTarget]]
internal slot is an object that has a [[Call]] internal method.

10.5.13 [[Constructl] ( argumentsList, newTarget)

The [[Construct]] internal method of a Proxy exotic object O takes arguments argumentsList (a List of ECMAScript
language values) and newTarget (a constructor). It performs the following steps when called:

Let handler be O.[[ProxyHandler]].

If handler is null, throw a TypeError exception.
Assert: Type(handler) is Object.

Let target be O.[[ProxyTarget]].

Assert: IsConstructor(target) is true.

Let trap be ? GetMethod(handler, ""construct").
If trap is undefined, then

N =

a. Return ? Construct(target, argumentsList, newTarget).
8. LetargArray be ! CreateArrayFromList(argumentsList).
9. Let newObj be ? Call(trap, handler, « target, argArray, newTarget »).
10. If Type(newObj) is not Object, throw a TypeError exception.
11. Return newOb;.

NOTE 1 A Proxy exotic object only has a [[Construct]] internal method if the initial value of its
[[ProxyTarget]] internal slot is an object that has a [[Construct]] internal method.

NOTE 2 [[Construct]] for proxy objects enforces the following invariants:

e The result of [[Construct]] must be an Object.

10.5.14 ProxyCreate ( target, handler)

The abstract operation ProxyCreate takes arguments target and handler. It is used to specify the creation of new Proxy

270



exotic objects. It performs the following steps when called:

If Type(target) is not Object, throw a TypeError exception.
If Type(handler) is not Object, throw a TypeError exception.
Let P be ! MakeBasicObject(« [[ProxyHandler]], [[ProxyTarget]] »).
Set P's essential internal methods, except for [[Call]] and [[Construct]], to the definitions specified in 10.5.
If IsCallable(target) is true, then

a. Set P.[[Call]] as specified in 10.5.12.

b. If IsConstructor(target) is true, then

i. Set P.[[Construct]] as specified in 10.5.13.

6. Set P.[[ProxyTarget]] to target.
7. Set P.[[ProxyHandler]] to handler.
8. Return P.

SUESIRCENS -

11 ECMAScript Language: Source Code

11.1 Source Text
Syntax

SourceCharacter
any Unicode code point

ECMAScript code is expressed using Unicode. ECMAScript source text is a sequence of code points. All Unicode code
point values from U+0000 to U+10FFFF, including surrogate code points, may occur in source text where permitted by
the ECMAScript grammars. The actual encodings used to store and interchange ECMAScript source text is not
relevant to this specification. Regardless of the external source text encoding, a conforming ECMAScript
implementation processes the source text as if it was an equivalent sequence of SourceCharacter values, each
SourceCharacter being a Unicode code point. Conforming ECMAScript implementations are not required to perform
any normalization of source text, or behave as though they were performing normalization of source text.

The components of a combining character sequence are treated as individual Unicode code points even though a user
might think of the whole sequence as a single character.

271



NOTE In string literals, regular expression literals, template literals and identifiers, any Unicode code
point may also be expressed using Unicode escape sequences that explicitly express a code
point's numeric value. Within a comment, such an escape sequence is effectively ignored as part
of the comment.

ECMAScript differs from the Java programming language in the behaviour of Unicode escape
sequences. In a Java program, if the Unicode escape sequence \u@@@A, for example, occurs
within a single-line comment, it is interpreted as a line terminator (Unicode code point U+000A is
LINE FEED (LF)) and therefore the next code point is not part of the comment. Similarly, if the
Unicode escape sequence \U@OB@A occurs within a string literal in a Java program, it is likewise
interpreted as a line terminator, which is not allowed within a string literal—one must write \n
instead of \U@@®@A to cause a LINE FEED (LF) to be part of the String value of a string literal. In
an ECMAScript program, a Unicode escape sequence occurring within a comment is never
interpreted and therefore cannot contribute to termination of the comment. Similarly, a Unicode
escape sequence occurring within a string literal in an ECMAScript program always contributes
to the literal and is never interpreted as a line terminator or as a code point that might terminate
the string literal.

11.1.1 Static Semantics: UTF16EncodeCodePoint ( cp )

The abstract operation UTF16EncodeCodePoint takes argument cp (a Unicode code point). It performs the following
steps when called:

Assert: 0 < cp < 0x10FFFE.

If cp < OXFFFF, return the String value consisting of the code unit whose value is cp.
Let cul be the code unit whose value is floor((cp - 0x10000) / 0x400) + 0xD800.

Let cu2 be the code unit whose value is ((cp - 0x10000) modulo 0x400) + 0xDCO00.
Return the string-concatenation of cu1 and cu2.

SUESICENS -

11.1.2 Static Semantics: CodePointsToString ( text)

The abstract operation CodePointsToString takes argument text (a sequence of Unicode code points). It converts fext
into a String value, as described in 6.1.4. It performs the following steps when called:

1. Let result be the empty String.
2. For each code point cp of text, do

a. Set result to the string-concatenation of result and ! UTF16EncodeCodePoint(cp).
3. Return result.

11.1.3 Static Semantics: UTF16SurrogatePairToCodePoint ( lead, trail )

The abstract operation UTF16SurrogatePairToCodePoint takes arguments lead (a code unit) and trail (a code unit). Two
code units that form a UTF-16 surrogate pair are converted to a code point. It performs the following steps when
called:

1. Assert: lead is a leading surrogate and trail is a trailing surrogate.
2. Let cp be (lead - 0xD800) x 0x400 + (trail - 0xDCO00) + 0x10000.

272



3. Return the code point cp.

11.1.4 Static Semantics: CodePointAt ( string, position )

The abstract operation CodePointAt takes arguments string (a String) and position (a non-negative integer). It
interprets string as a sequence of UTF-16 encoded code points, as described in 6.1.4, and reads from it a single code
point starting with the code unit at index position. It performs the following steps when called:

Let size be the length of string.

Assert: position = 0 and position < size.

Let first be the code unit at index position within string.

Let cp be the code point whose numeric value is that of first.

SRS .

If first is not a leading surrogate or trailing surrogate, then
a. Return the Record { [[CodePoint]]: cp, [[CodeUnitCount]]: 1, [[IsUnpairedSurrogate]]: false }.
6. If first is a trailing surrogate or position + 1 = size, then
a. Return the Record { [[CodePoint]]: cp, [[CodeUnitCount]]: 1, [[IsUnpairedSurrogate]]: true }.
7. Let second be the code unit at index position + 1 within string.
8. If second is not a trailing surrogate, then
a. Return the Record { [[CodePoint]]: cp, [[CodeUnitCount]]: 1, [[IsUnpairedSurrogate]]: true }.
9. Set cp to ! UTF16SurrogatePairToCodePoint(first, second).
10. Return the Record { [[CodePoint]]: cp, [[CodeUnitCount]]: 2, [[IsUnpairedSurrogate]]: false }.

11.1.5 Static Semantics: StringToCodePoints ( string)

The abstract operation StringToCodePoints takes argument string (a String). It returns the sequence of Unicode code
points that results from interpreting string as UTF-16 encoded Unicode text as described in 6.1.4. It performs the
following steps when called:

Let codePoints be a new empty List.
Let size be the length of string.
Let position be 0.

Ll

Repeat, while position < size,

a. Let cp be ! CodePointAt(string, position).

b. Append cp.[[CodePoint]] to codePoints.

c. Set position to position + cp.[[CodeUnitCount]].
5. Return codePoints.

11.1.6 Static Semantics: ParseText ( sourceText, goalSymbol)

The abstract operation ParseText takes arguments sourceText (a sequence of Unicode code points) and goalSymbol (a
nonterminal in one of the ECMAScript grammars). It performs the following steps when called:

1. Attempt to parse sourceText using goalSymbol as the goal symbol, and analyse the parse result for any early
error conditions. Parsing and early error detection may be interleaved in an implementation-defined manner.

2. If the parse succeeded and no early errors were found, return the Parse Node (an instance of goalSymbol) at the
root of the parse tree resulting from the parse.

3. Otherwise, return a List of one or more SyntaxError objects representing the parsing errors and/or early errors.
If more than one parsing error or early error is present, the number and ordering of error objects in the list is

273



implementation-defined, but at least one must be present.

NOTE 1 Consider a text that has an early error at a particular point, and also a syntax error at a later
point. An implementation that does a parse pass followed by an early errors pass might report
the syntax error and not proceed to the early errors pass. An implementation that interleaves the
two activities might report the early error and not proceed to find the syntax error. A third
implementation might report both errors. All of these behaviours are conformant.

NOTE 2 See also clause 17.

11.2 Types of Source Code
There are four types of ECMAScript code:

o Global code is source text that is treated as an ECMAScript Script. The global code of a particular Script does not
include any source text that is parsed as part of a FunctionDeclaration, FunctionExpression, GeneratorDeclaration,
GeneratorExpression, AsyncFunctionDeclaration, AsyncFunctionExpression, AsyncGeneratorDeclaration,
AsyncGeneratorExpression, MethodDefinition, ArrowFunction, AsyncArrowFunction, ClassDeclaration, or
ClassExpression.

e Euval code is the source text supplied to the built-in eval function. More precisely, if the parameter to the built-
in eval function is a String, it is treated as an ECMAScript Script. The eval code for a particular invocation of
eval is the global code portion of that Script.

e Function code is source text that is parsed to supply the value of the [[ECMAScriptCode]] and
[[FormalParameters]] internal slots (see 10.2) of an ECMAScript function object. The function code of a
particular ECMAScript function does not include any source text that is parsed as the function code of a nested
FunctionDeclaration, FunctionExpression, GeneratorDeclaration, GeneratorExpression, AsyncFunctionDeclaration,
AsyncFunctionExpression, AsyncGeneratorDeclaration, AsyncGeneratorExpression, MethodDefinition, ArrowFunction,
AsyncArrowFunction, ClassDeclaration, or ClassExpression.

In addition, if the source text referred to above is parsed as:

o the FormalParameters and FunctionBody of a FunctionDeclaration or FunctionExpression,

o the FormalParameters and GeneratorBody of a GeneratorDeclaration or GeneratorExpression,

o the FormalParameters and AsyncFunctionBody of an AsyncFunctionDeclaration or AsyncFunctionExpression,
or

o the FormalParameters and AsyncGeneratorBody of an AsyncGeneratorDeclaration or
AsyncGeneratorExpression,

then the source text matching the Bindingldentifier (if any) of that declaration or expression is also included in
the function code of the corresponding function.

e Module code is source text that is code that is provided as a ModuleBody. It is the code that is directly evaluated
when a module is initialized. The module code of a particular module does not include any source text that is
parsed as part of a nested FunctionDeclaration, FunctionExpression, GeneratorDeclaration, GeneratorExpression,
AsyncFunctionDeclaration, AsyncFunctionExpression, AsyncGeneratorDeclaration, AsyncGeneratorExpression,
MethodDefinition, ArrowFunction, AsyncArrowFunction, ClassDeclaration, or ClassExpression.

274



NOTE 1 Function code is generally provided as the bodies of Function Definitions (15.2), Arrow Function
Definitions (15.3), Method Definitions (15.4), Generator Function Definitions (15.5), Async
Function Definitions (15.8), Async Generator Function Definitions (15.6), and Async Arrow
Functions (15.9). Function code is also derived from the arguments to the Function constructor
(20.2.1.1), the GeneratorFunction constructor (27.3.1.1), and the AsyncFunction constructor
(27.7.1.1).

NOTE 2 The practical effect of including the Bindingldentifier in function code is that the Early Errors for
strict mode code are applied to a Bindingldentifier that is the name of a function whose body
contains a "use strict" directive, even if the surrounding code is not strict mode code.

11.2.1 Directive Prologues and the Use Strict Directive

A Directive Prologue is the longest sequence of ExpressionStatements occurring as the initial StatementListItems or
Moduleltems of a FunctionBody, a ScriptBody, or a ModuleBody and where each ExpressionStatement in the sequence
consists entirely of a StringLiteral token followed by a semicolon. The semicolon may appear explicitly or may be
inserted by automatic semicolon insertion (12.9). A Directive Prologue may be an empty sequence.

A Use Strict Directive is an ExpressionStatement in a Directive Prologue whose StringLiteral is either of the exact code

point sequences "use strict” or "use strict'. A Use Strict Directive may not contain an EscapeSequernce or
LineContinuation.

A Directive Prologue may contain more than one Use Strict Directive. However, an implementation may issue a
warning if this occurs.

NOTE The ExpressionStatements of a Directive Prologue are evaluated normally during evaluation of the
containing production. Implementations may define implementation specific meanings for
ExpressionStatements which are not a Use Strict Directive and which occur in a Directive Prologue.
If an appropriate notification mechanism exists, an implementation should issue a warning if it
encounters in a Directive Prologue an ExpressionStatement that is not a Use Strict Directive and
which does not have a meaning defined by the implementation.

11.2.2 Strict Mode Code

An ECMAScript syntactic unit may be processed using either unrestricted or strict mode syntax and semantics (4.3.2).
Code is interpreted as strict mode code in the following situations:

e Global code is strict mode code if it begins with a Directive Prologue that contains a Use Strict Directive.

e Module code is always strict mode code.

e All parts of a ClassDeclaration or a ClassExpression are strict mode code.

e Eval code is strict mode code if it begins with a Directive Prologue that contains a Use Strict Directive or if the
call to eval is a direct eval that is contained in strict mode code.

e Function code is strict mode code if the associated FunctionDeclaration, FunctionExpression, GeneratorDeclaration,
GeneratorExpression, AsyncFunctionDeclaration, AsyncFunctionExpression, AsyncGeneratorDeclaration,
AsyncGeneratorExpression, MethodDefinition, ArrowFunction, or AsyncArrowFunction is contained in strict mode
code or if the code that produces the value of the function's [[ECMAScriptCode]] internal slot begins with a

275



Directive Prologue that contains a Use Strict Directive.

e Function code that is supplied as the arguments to the built-in Function, Generator, AsyncFunction, and
AsyncGenerator constructors is strict mode code if the last argument is a String that when processed is a
FunctionBody that begins with a Directive Prologue that contains a Use Strict Directive.

ECMAScript code that is not strict mode code is called non-strict code.

11.2.3 Non-ECMAScript Functions

An ECMAScript implementation may support the evaluation of function exotic objects whose evaluative behaviour is
expressed in some host-defined form of executable code other than via ECMAScript code. Whether a function object is
an ECMAScript code function or a non-ECMAScript function is not semantically observable from the perspective of
an ECMAScript code function that calls or is called by such a non-ECMAScript function.

12 ECMAScript Language: Lexical Grammar

The source text of an ECMAScript Script or Module is first converted into a sequence of input elements, which are
tokens, line terminators, comments, or white space. The source text is scanned from left to right, repeatedly taking the
longest possible sequence of code points as the next input element.

There are several situations where the identification of lexical input elements is sensitive to the syntactic grammar
context that is consuming the input elements. This requires multiple goal symbols for the lexical grammar. The
InputElementRegExpOrTemplateTail goal is used in syntactic grammar contexts where a RegularExpressionLiteral, a
TemplateMiddle, or a TemplateTuil is permitted. The InputElementRegExp goal symbol is used in all syntactic grammar
contexts where a RegularExpressionLiteral is permitted but neither a TemplateMiddle, nor a TemplateTuil is permitted. The
InputElementTemplateTnil goal is used in all syntactic grammar contexts where a TemplateMiddle or a TemplateTnil is
permitted but a RegularExpressionLiteral is not permitted. In all other contexts, InputElementDiv is used as the lexical

goal symbol.
NOTE The use of multiple lexical goals ensures that there are no lexical ambiguities that would affect

automatic semicolon insertion. For example, there are no syntactic grammar contexts where both
a leading division or division-assignment, and a leading RegularExpressionLiteral are permitted.
This is not affected by semicolon insertion (see 12.9); in examples such as the following:
where the first non-whitespace, non-comment code point after a LineTerminator is U+002F
(SOLIDUS) and the syntactic context allows division or division-assignment, no semicolon is
inserted at the LineTerminator. That is, the above example is interpreted in the same way as:

Syntax

InputElementDiv =

276



WhiteSpace
LineTerminator
Comment
Common'Token
DivPunctuator

RightBracePunctuator

InputElementRegExp ::
WhiteSpace
LineTerminator
Comment
CommonToken
RightBracePunctuator

RegularExpressionLiteral

InputElementRegExpOrTemplateTail ::
WhiteSpace
LineTerminator
Comment
CommonToken
RegularExpressionLiteral

TemplateSubstitutionTail

InputElementTemplateTail ::
WhiteSpace
LineTerminator
Comment
Common'Token
DivPunctuator

TemplateSubstitutionTail

12.1 Unicode Format-Control Characters

The Unicode format-control characters (i.e., the characters in category “Cf” in the Unicode Character Database such as
LEFT-TO-RIGHT MARK or RIGHT-TO-LEFT MARK) are control codes used to control the formatting of a range of
text in the absence of higher-level protocols for this (such as mark-up languages).

It is useful to allow format-control characters in source text to facilitate editing and display. All format control
characters may be used within comments, and within string literals, template literals, and regular expression literals.

U+200C (ZERO WIDTH NON-JOINER) and U+200D (ZERO WIDTH JOINER) are format-control characters that are
used to make necessary distinctions when forming words or phrases in certain languages. In ECMAScript source text
these code points may also be used in an IdentifierName after the first character.

U+FEFF (ZERO WIDTH NO-BREAK SPACE) is a format-control character used primarily at the start of a text to mark
it as Unicode and to allow detection of the text's encoding and byte order. <ZWNBSP> characters intended for this

277



purpose can sometimes also appear after the start of a text, for example as a result of concatenating files. In
ECMAScript source text <ZWNBSP> code points are treated as white space characters (see 12.2).

The special treatment of certain format-control characters outside of comments, string literals, and regular expression
literals is summarized in Table 33.

Table 33: Format-Control Code Point Usage

Code Point Name Abbreviation Usage
U+200C | ZERO WIDTH NON-JOINER <ZWN]J> IdentifierPart
U+200D | ZERO WIDTH JOINER <ZWJ> IdentifierPart

U+FEFF ZERO WIDTH NO-BREAK SPACE | <ZWNBSP> | WhiteSpace

12.2 White Space

White space code points are used to improve source text readability and to separate tokens (indivisible lexical units)
from each other, but are otherwise insignificant. White space code points may occur between any two tokens and at
the start or end of input. White space code points may occur within a StringLiteral, a RegularExpressionLiteral, a
Template, or a TemplateSubstitutionTail where they are considered significant code points forming part of a literal value.
They may also occur within a Comment, but cannot appear within any other kind of token.

The ECMAScript white space code points are listed in Table 34.

Table 34: White Space Code Points

Code Point Name Abbreviation
U+0009 CHARACTER TABULATION <TAB>
U+0008B LINE TABULATION <VT>
U+000C FORM FEED (FF) <FF>
U+0020 SPACE <SP>
U+00A0 NO-BREAK SPACE <NBSP>
U+FEFF ZERO WIDTH NO-BREAK SPACE <ZWNBSP>
Other category “Zs” | Any other Unicode “Space_Separator” code point | <USP>

ECMAScript implementations must recognize as WhiteSpace code points listed in the “Space_Separator” (“Zs”)
category.

NOTE Other than for the code points listed in Table 34, ECMAScript WhiteSpace intentionally excludes
all code points that have the Unicode “White_Space” property but which are not classified in
category “Space_Separator” (“Zs”).

278



Syntax

WhiteSpace ::
<TAB>
<VT>
<FF>
<SP>
<NBSP>
<ZWNBSP>
<USP>

12.3 Line Terminators

Like white space code points, line terminator code points are used to improve source text readability and to separate
tokens (indivisible lexical units) from each other. However, unlike white space code points, line terminators have
some influence over the behaviour of the syntactic grammar. In general, line terminators may occur between any two
tokens, but there are a few places where they are forbidden by the syntactic grammar. Line terminators also affect the
process of automatic semicolon insertion (12.9). A line terminator cannot occur within any token except a StringLiteral,
Template, or TemplateSubstitutionTail. <LF> and <CR> line terminators cannot occur within a StringLiteral token except
as part of a LineContinuation.

A line terminator can occur within a MultiLineComment but cannot occur within a SingleLineComment.

Line terminators are included in the set of white space code points that are matched by the \s class in regular
expressions.

The ECMAScript line terminator code points are listed in Table 35.

Table 35: Line Terminator Code Points

Code Point Unicode Name Abbreviation

U+000A LINE FEED (LF) <LF>

U+00eD CARRIAGE RETURN (CR) [<CR>

U+2028 LINE SEPARATOR <LS>

U+2029 PARAGRAPH SEPARATOR | <PS>

Only the Unicode code points in Table 35 are treated as line terminators. Other new line or line breaking Unicode code
points are not treated as line terminators but are treated as white space if they meet the requirements listed in Table
34. The sequence <CR><LF> is commonly used as a line terminator. It should be considered a single SourceCharacter
for the purpose of reporting line numbers.

Syntax

LineTerminator ::
<LF>
279



<CR>
<LS>
<PS>

LineTerminatorSequence ::
<LF>
<CR> [lookahead = <LF>]
<LS>
<PS>
<CR> <LF>

12.4 Comments

Comments can be either single or multi-line. Multi-line comments cannot nest.

Because a single-line comment can contain any Unicode code point except a LineTerminator code point, and because of
the general rule that a token is always as long as possible, a single-line comment always consists of all code points
from the // marker to the end of the line. However, the LineTerminator at the end of the line is not considered to be
part of the single-line comment; it is recognized separately by the lexical grammar and becomes part of the stream of
input elements for the syntactic grammar. This point is very important, because it implies that the presence or absence
of single-line comments does not affect the process of automatic semicolon insertion (see 12.9).

Comments behave like white space and are discarded except that, if a MultiLineComment contains a line terminator
code point, then the entire comment is considered to be a LineTerminator for purposes of parsing by the syntactic

grammar.
Syntax

Comment s
MultiLineComment

SingleLineComment

MultiLineComment
/% MultiLineCommentChars */

MultiLineCommentChars ::
MultiLineNotAsteriskChar MultiLineCommentChars

* PostAsteriskCommentChars

PostAsteriskCommentChars
MultiLineNotForwardSlashOrAsteriskChar MultiLineCommentChars

* PostAsteriskCommentChars

MultiLineNot AsteriskChar

SourceCharacter but not

MultiLineNotForwardSlashOrAsteriskChar ::

SourceCharacter but not one of / or *

280



SingleLineComment ::

/7 SingleLineCommentChars

SingleLineCommentChars ::

SingleLineCommentChar SingleLineCommentChars

SingleLineCommentChar ::

SourceCharacter but not LineTerminator

A number of productions in this section are given alternative definitions in section B.1.3

12.5 Tokens

Syntax
CommonToken ::
IdentifierName
Punctuator
NumericLiteral
StringLiteral
Template
NOTE The DivPunctuator, RegularExpressionLiteral, RightBracePunctuator, and TemplateSubstitutionTail

productions derive additional tokens that are not included in the CommonToken production.

12.6 Names and Keywords

IdentifierName and ReservedWord are tokens that are interpreted according to the Default Identifier Syntax given in
Unicode Standard Annex #31, Identifier and Pattern Syntax, with some small modifications. ReservedWord is an
enumerated subset of IdentifierName. The syntactic grammar defines Identifier as an IdentifierName that is not a
ReservedWord. The Unicode identifier grammar is based on character properties specified by the Unicode Standard.
The Unicode code points in the specified categories in the latest version of the Unicode standard must be treated as in
those categories by all conforming ECMAScript implementations. ECMAScript implementations may recognize
identifier code points defined in later editions of the Unicode Standard.

NOTE 1 This standard specifies specific code point additions: U+0024 (DOLLAR SIGN) and U+005F
(LOW LINE) are permitted anywhere in an IdentifierName, and the code points U+200C (ZERO
WIDTH NON-JOINER) and U+200D (ZERO WIDTH JOINER) are permitted anywhere after the
first code point of an IdentifierName.

Unicode escape sequences are permitted in an IdentifierName, where they contribute a single Unicode code point to the
IdentifierName. The code point is expressed by the CodePoint of the UnicodeEscapeSequence (see 12.8.4). The \ preceding
the UnicodeEscapeSequence and the u and { } code units, if they appear, do not contribute code points to the

IdentifierName. A UnicodeEscapeSequence cannot be used to put a code point into an IdentifierName that would otherwise

be illegal. In other words, if a \ UnicodeEscapeSequence sequence were replaced by the SourceCharacter it contributes,

281



the result must still be a valid IdentifierName that has the exact same sequence of SourceCharacter elements as the
original IdentifierName. All interpretations of IdentifierName within this specification are based upon their actual code

points regardless of whether or not an escape sequence was used to contribute any particular code point.

Two IdentifierNames that are canonically equivalent according to the Unicode standard are not equal unless, after
replacement of each UnicodeEscapeSequence, they are represented by the exact same sequence of code points.

Syntax

IdentifierName ::
IdentifierStart
IdentifierName IdentifierPart

IdentifierStart ::
UnicodelDStart

$

\ UnicodeEscapeSequence

IdentifierPart ::
Unicodel DContinue

$

\ UnicodeEscapeSequence
<ZWNJ>

<ZWJ>

Unicodel DStart ::
any Unicode code point with the Unicode property “ID_Start”

UnicodelDContinue ::
any Unicode code point with the Unicode property “ID_Continue”

The definitions of the nonterminal UnicodeEscapeSequence is given in 12.8.4.

NOTE 2 The nonterminal IdentifierPart derives _ via UnicodeIDContinue.

NOTE 3 The sets of code points with Unicode properties “ID_Start” and “ID_Continue” include,
respectively, the code points with Unicode properties “Other_ID_Start” and
“Other_ID_Continue”.

12.6.1 Identifier Names

12.6.1.1 Static Semantics: Early Errors
IdentifierStart :: \ UnicodeEscapeSequence

e Itis a Syntax Error if the SV of UnicodeEscapeSequence is none of "$", or "' ", or ! UTF16EncodeCodePoint(cp) for
some Unicode code point cp matched by the UnicodeIDStart lexical grammar production.

282



IdentifierPart :: \ UnicodeEscapeSequence

e Itis a Syntax Error if the SV of UnicodeEscapeSequence is none of "$","" ", | UTF16EncodeCodePoint(<ZWNJ>), !
UTF16EncodeCodePoint(<ZWJ>), or ! UTF16EncodeCodePoint(cp) for some Unicode code point cp that would
be matched by the UnicodeIDContinue lexical grammar production.

12.6.2 Keywords and Reserved Words

A keyword is a token that matches IdentifierName, but also has a syntactic use; that is, it appears literally, in a
fixed width font, in some syntactic production. The keywords of ECMAScript include 1f, while, async,
await, and many others.

A reserved word is an IdentifierName that cannot be used as an identifier. Many keywords are reserved words, but some
are not, and some are reserved only in certain contexts. 1f and while are reserved words. await is reserved only
inside async functions and modules. @Sync is not reserved; it can be used as a variable name or statement label
without restriction.

This specification uses a combination of grammatical productions and early error rules to specify which names are
valid identifiers and which are reserved words. All tokens in the ReservedWord list below, except for await and
yield, are unconditionally reserved. Exceptions for await and yield are specified in 13.1, using parameterized
syntactic productions. Lastly, several early error rules restrict the set of valid identifiers. See 13.1.1, 14.3.1.1, 14.7.5.1,
and 15.7.1. In summary, there are five categories of identifier names:

e Those that are always allowed as identifiers, and are not keywords, such as Math, window, toString, and

—_—

e Those that are never allowed as identifiers, namely the ReservedWords listed below except await and yield;
e Those that are contextually allowed as identifiers, namely await and yield;

e Those that are contextually disallowed as identifiers, in strict mode code: Let, static, implements,
interface, package, private, protected, and public;

e Those that are always allowed as identifiers, but also appear as keywords within certain syntactic productions,
at places where Identifier is not allowed: as, async, from, get, of, set, and target.

The term conditional keyword, or contextual keyword, is sometimes used to refer to the keywords that fall in the last three
categories, and thus can be used as identifiers in some contexts and as keywords in others.

Syntax

ReservedWord :: one of
await break case catch class const continue debugger default delete do else enum export extends
false finally for function if import in instanceof new null return super switch this throw

true try typeof var void while with yield

283



NOTE 1

NOTE 2

NOTE 3

Per 5.1.5, keywords in the grammar match literal sequences of specific SourceCharacter elements.

A code point in a keyword cannot be expressed by a \ UnicodeEscapeSequence.

An IdentifierName can contain \ UnicodeEscapeSequences, but it is not possible to declare a variable
named "else" by spelling it eLs\u{65}. The early error rules in 13.1.1 rule out identifiers with
the same StringValue as a reserved word.

enum is not currently used as a keyword in this specification. It is a future reserved word, set aside
for use as a keyword in future language extensions.

Similarly, implements, interface, package, private, protected, and public are

future reserved words in strict mode code.

The names arguments and eval are not keywords, but they are subject to some restrictions in
strict mode code. See 13.1.1, 8.5.4, 15.2.1, 15.5.1, 15.6.1, and 15.8.1.

12.7 Punctuators

Syntax

Punctuator ::
OptionalChainingPunctuator

OtherPunctuator

OptionalChainingPunctuator ::
7. [lookahead €& DecimalDigit]

OtherPunctuator :: one of

{()I[T1. ... ,<><=>===l====I==+-%x% kk++ —<<>>>>& | " ~&& || 7?2 7?2 : = 4=

—= %= %= kk= <<= >>= >>>= &= |=

DivPunctuator ::
/
/=

RightBracePunctuator ::
}

"= &&= ||= ?77= =>

12.8 Literals

12.8.1 Null Literals

Syntax

284



NullLiteral ::
null

12.8.2 Boolean Literals

Syntax

BooleanLiteral ::
true

false

12.8.3 Numeric Literals

Syntax

NumericLiteralSeparator ::

NumericLiteral ::
DecimalLiteral
DecimalBiglntegerLiteral

NonDecimallntegerLiteral

NonDecimallntegerLiteral

DecimalBigIntegerLiteral ::
0 BigIntLiteralSuffix
NonZeroDigit DecimalDigits

NonZeroDigit NumericLiteralSeparator DecimalDigits

NonDecimallntegerLiteral
BinaryIntegerLiteral
OctallntegerLiteral
HexIntegerLiteral

BigIntLiteralSuffix ::

DecimalLiteral ::
DecimallntegerLiteral . DecimalDigits
. DecimalDigits ExponentPart

DecimallntegerLiteral ExponentPart

DecimallntegerLiteral ::
0
NonZeroDigit

NonZeroDigit NumericLiteralSeparator

BigIntLiteral Suffix

BigIntLiteral Suffix

BigIntLiteral Suffix

ExponentPart

DecimalDigits

285



DecimalDigits

DecimalDigit
Decimal Digits DecimalDigit
DecimalDigits NumericLiteralSeparator DecimalDigit

DecimalDigit :: one of
01234567829

NonZeroDigit :: one of
123456789

ExponentPart
ExponentIndicator SignedInteger

ExponentIndicator :: one of
e E

SignedInteger
DecimalDigits
+ DecimalDigits
- DecimalDigits

BinaryIntegerLiteral
ob BinaryDigits
@B BinaryDigits

BinaryDigits
BinaryDigit
BinaryDigits BinaryDigit
BinaryDigits NumericLiteralSeparator BinaryDigit

BinaryDigit :: one of
01

OctallntegerLiteral
0o OctalDigits
00 OctalDigits

OctalDigits
OctalDigit
OctalDigits OctalDigit

OctalDigits NumericLiteralSeparator OctalDigit

OctalDigit :: one of
012345617

HexIntegerLiteral

286



ox HexDigits
0X HexDigits

HexDigits
HexDigit
HexDigits HexDigit
HexDigits NumericLiteralSeparator HexDigit

HexDigit :: one of
0123456789abcdefABCDEF

The SourceCharacter immediately following a NumericLiteral must not be an IdentifierStart or Decimal Digit.

NOTE For example: 31N is an error and not the two input elements 3 and in.

A conforming implementation, when processing strict mode code, must not extend, as described in B.1.1, the syntax of
NumericLiteral to include LegacyOctallntegerLiteral, nor extend the syntax of DecimallntegerLiteral to include
NonOctalDecimallntegerLiteral.

12.8.3.1 Static Semantics: MV

A numeric literal stands for a value of the Number type or the BigInt type.

e The MV of NumericLiteral :: DecimalLiteral is the MV of DecimalLiteral.

e The MV of NonDecimallntegerLiteral :: BinarylntegerLiteral is the MV of BinarylntegerLiteral.

e The MV of NonDecimallntegerLiteral :: OctallntegerLiteral is the MV of OctallntegerLiteral.

e The MV of NonDecimallntegerLiteral :: HexIntegerLiteral is the MV of HexIntegerLiteral.

e The MV of DecimalLiteral :: DecimallntegerLiteral . is the MV of DecimallntegerLiteral.

e The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits is the MV of DecimallntegerLiteral plus (the

MV of DecimalDigits x 107"), where 1 is the number of code points in DecimalDigits, excluding all occurrences of
NumericLiteralSeparator.

e The MV of DecimalLiteral :: DecimallntegerLiteral . ExponentPart is the MV of DecimallntegerLiteral x 10°,
where ¢ is the MV of ExponentPart.
o The MV of DecimalLiteral :: DecimallntegerLiteral . DecimalDigits ExponentPart is (the MV of

DecimallntegerLiteral plus (the MV of DecimalDigits x 107)) x 10°, where 7 is the number of code points in
DecimalDigits, excluding all occurrences of NumericLiteralSeparator and e is the MV of ExponentPart.

o The MV of DecimalLiteral :: . DecimalDigits is the MV of DecimalDigits x 107", where 1 is the number of code
points in DecimalDigits, excluding all occurrences of NumericLiteralSeparator.

o The MV of DecimalLiteral :: . DecimalDigits ExponentPart is the MV of DecimalDigits x 10° ™", where 1 is the
number of code points in DecimalDigits, excluding all occurrences of NumericLiteralSeparator, and e is the MV of
ExponentPart.

o The MV of DecimalLiteral :: DecimallntegerLiteral is the MV of DecimallntegerLiteral.

e The MV of DecimalLiteral :: DecimallntegerLiteral ExponentPart is the MV of DecimallntegerLiteral x 10°, where
e is the MV of ExponentPart.

e The MV of DecimallntegerLiteral :: @ is 0.

e The MV of DecimallntegerLiteral :: NonZeroDigit is the MV of NonZeroDigit.

e The MV of DecimallntegerLiteral :: NonZeroDigit NumericLiteralSeparator DecimalDigits is (the MV of

287



NonZeroDigit x 10"") plus the MV of DecimalDigits, where 1 is the number of code points in DecimalDigits,
excluding all occurrences of NumericLiteralSeparator.

The MV of DecimalDigits :: DecimalDigit is the MV of Decimal Digit.

The MV of DecimalDigits :: DecimalDigits DecimalDigit is (the MV of DecimalDigits x 10) plus the MV of
DecimalDigit.

The MV of DecimalDigits ::

10) plus the MV of DecimalDigit.

DecimalDigits NumericLiteralSeparator DecimalDigit is (the MV of DecimalDigits x

The MV of ExponentPart :: ExponentIndicator SignedInteger is the MV of SignedInteger.

The MV of SignedInteger :: DecimalDigits is the MV of DecimalDigits.

The MV of SignedInteger :: + DecimalDigits is the MV of DecimalDigits.

The MV of SignedInteger :: - DecimalDigits is the negative of the MV of DecimalDigits.

The MV of DecimalDigit :: @ or of HexDigit :: 0 orof OctalDigit :: @ or of BinaryDigit : 0 is 0.
The MV of DecimalDigit :: 1 or of NonZeroDigit :: 1 or of HexDigit = 1 or of OctalDigit :: 1 or of
BinaryDigit == 1 is 1.

The MV of DecimalDigit :: 2 or of NonZeroDigit = 2 or of HexDigit :: 2 orof OctalDigit = 2 is 2.
The MV of DecimalDigit :: 3 or of NonZeroDigit = 3 or of HexDigit = 3 orof OctalDigit :: 3 is 3.
The MV of DecimalDigit :: 4 or of NonZeroDigit :: 4 or of HexDigit :: 4 or of OctalDigit :: 4 is 4.
The MV of DecimalDigit :: 5 or of NonZeroDigit = 5 or of HexDigit = 5 orof OctalDigit == 5 is 5.
The MV of DecimalDigit :: 6 or of NonZeroDigit :: 6 or of HexDigit :: 6 or of OctalDigit :: 6 is 6.
The MV of DecimalDigit :: 7 or of NonZeroDigit :: 7 or of HexDigit :: 7 or of OctalDigit :: 7 is7.
The MV of DecimalDigit :: 8 or of NonZeroDigit :: 8 or of HexDigit :: 8 is 8.

The MV of DecimalDigit :: 9 or of NonZeroDigit :: 9 or of HexDigit : 9 is9.

The MV of HexDigit :: a or of HexDigit :: A is 10.

The MV of HexDigit :: b or of HexDigit :: B is 11.

The MV of HexDigit :: ¢ orof HexDigit = € is 12.

The MV of HexDigit :: d or of HexDigit :: D is 13.

The MV of HexDigit :: e or of HexDigit :: E is 14.

The MV of HexDigit :: £ or of HexDigit = F is 15.

The MV of BinarylntegerLiteral :: @b BinaryDigits is the MV of BinaryDigits.

The MV of BinarylntegerLiteral :: @8 BinaryDigits is the MV of BinaryDigits.

The MV of
The MV of
The MV of

BinaryDigits =
BinaryDigits ::
BinaryDigits =

plus the MV of BinaryDigit.

The MV of OctallntegerLiteral ::
The MV of OctallntegerLiteral ::

The MV of
The MV of
The MV of

OctalDigits ::
OctalDigits ::
OctalDigits =

MV of OctalDigit.

The MV of HexIntegerLiteral ::
The MV of HexIntegerLiteral ::

The MV of
The MV of
The MV of

of HexDigit.

HexDigits
HexDigits
HexDigits

BinaryDigit is the MV of BinaryDigit.
BinaryDigits BinaryDigit is (the MV of BinaryDigits x 2) plus the MV of BinaryDigit.

0o OctalDigits is the MV of OctalDigits.
00 OctalDigits is the MV of OctalDigits.
OctalDigit is the MV of OctalDigit.

BinaryDigits NumericLiteralSeparator BinaryDigit is (the MV of BinaryDigits x 2)

OctalDigits OctalDigit is (the MV of OctalDigits x 8) plus the MV of OctalDigit.
OctalDigits NumericLiteralSeparator OctalDigit is (the MV of OctalDigits x 8) plus the

ox HexDigits is the MV of HexDigits.
oX HexDigits is the MV of HexDigits.
HexDigit is the MV of HexDigit.
HexDigits HexDigit is (the MV of HexDigits x 16) plus the MV of HexDigit.

HexDigits NumericLiteralSeparator HexDigit is (the MV of HexDigits x 16) plus the MV

288



12.8.3.2 Static Semantics: NumericValue
NumericLiteral :: DecimalLiteral

1. Return the Number value that results from rounding the MV of DecimalLiteral as described below.
NumericLiteral :: NonDecimallntegerLiteral
1. Return the Number value that results from rounding the MV of NonDecimallntegerLiteral as described below.

Once the exact MV for a numeric literal has been determined, it is then rounded to a value of the Number type. If the
MV is 0, then the rounded value is +0f, otherwise, the rounded value must be the Number value for the MV (as
specified in 6.1.6.1), unless the literal is a DecimalLiteral and the literal has more than 20 significant digits, in which
case the Number value may be either the Number value for the MV of a literal produced by replacing each significant
digit after the 20th with a @ digit or the Number value for the MV of a literal produced by replacing each significant
digit after the 20th with a @ digit and then incrementing the literal at the 20th significant digit position. A digit is
significant if it is not part of an ExponentPart and

e itisnot @; or

e there is a non-zero digit to its left and there is a non-zero digit, not in the ExponentPart, to its right.
NumericLiteral :: NonDecimallntegerLiteral BiglntLiteralSuffix

1. Return the Bignt value that represents the MV of NonDecimallntegerLiteral.
DecimalBigIntegerLiteral :: @ BigIntLiteralSuffix

1. Return 0z.

DecimalBigIntegerLiteral :: NonZeroDigit BigIntLiteralSuffix
1. Return the Biglnt value that represents the MV of NonZeroDigit.

DecimalBigIntegerLiteral ::
NonZeroDigit DecimalDigits BiglntLiteralSuffix
NonZeroDigit NumericLiteralSeparator DecimalDigits BiglntLiteralSuffix

1. Let 1 be the number of code points in DecimalDigits, excluding all occurrences of NumericLiteralSeparator.
2. Let mv be (the MV of NonZeroDigit x 10) plus the MV of DecimalDigits.
3. Return Z(mv).

12.8.4 String Literals

NOTE 1 A string literal is 0 or more Unicode code points enclosed in single or double quotes. Unicode
code points may also be represented by an escape sequence. All code points may appear literally
in a string literal except for the closing quote code points, U+005C (REVERSE SOLIDUS),
U+000D (CARRIAGE RETURN), and U+000A (LINE FEED). Any code points may appear in the
form of an escape sequence. String literals evaluate to ECMAScript String values. When
generating these String values Unicode code points are UTF-16 encoded as defined in 11.1.1.
Code points belonging to the Basic Multilingual Plane are encoded as a single code unit element
of the string. All other code points are encoded as two code unit elements of the string.

289


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%E2%84%A4

Syntax

StringLiteral ::
" DoubleStringCharacters "
' SingleStringCharacters '

DoubleStringCharacters ::
DoubleStringCharacter DoubleStringCharacters

SingleStringCharacters ::
SingleStringCharacter SingleStringCharacters

DoubleStringCharacter ::
SourceCharacter but not one of * or \ or LineTerminator
<LS>
<PS>
\ EscapeSequence

LineContinuation

SingleStringCharacter ::
SourceCharacter but not one of * or \ or LineTerminator
<LS>
<PS>
\ EscapeSequence

LineContinuation

LineContinuation ::

\ LinelerminatorSequence

EscapeSequence ::
CharacterEscapeSequence
0 [lookahead €& DecimalDigit]
HexEscapeSequence

UnicodeEscapeSequence

A conforming implementation, when processing strict mode code, must not extend the syntax of EscapeSequence to
include LegacyOctalEscapeSequence or NonOctalDecimal EscapeSequence as described in B.1.2.

CharacterEscapeSequence ::
SingleEscapeCharacter

NonEscapeCharacter

SingleEscapeCharacter :: one of
""\Nbfnrtyv

NonEscapeCharacter ::

SourceCharacter but not one of EscapeCharacter or Linelerminator

EscapeCharacter ::

290



SingleEscapeCharacter
DecimalDigit
X

HexEscapeSequence ::
x HexDigit HexDigit

UnicodeEscapeSequence ::
u Hex4Digits
u{ CodePoint }

Hex4Digits ::
HexDigit HexDigit HexDigit HexDigit

The definition of the nonterminal HexDigit is given in 12.8.3. SourceCharacter is defined in 11.1.

NOTE 2 <LF> and <CR> cannot appear in a string literal, except as part of a LineContinuation to produce

the empty code points sequence. The proper way to include either in the String value of a string

literal is to use an escape sequence such as \n or \u@@oA.

12.8.4.1 Static Semantics: SV

A string literal stands for a value of the String type. The String value (SV) of the literal is described in terms of String

values contributed by the various parts of the string literal. As part of this process, some Unicode code points within

the string literal are interpreted as having a mathematical value (MV), as described below or in 12.8.3.

The SV of StringLiteral :: * * is the empty String.

The SV of StringLiteral :: * * is the empty String.

The SV of DoubleStringCharacters = DoubleStringCharacter DoubleStringCharacters is the string-concatenation
of the SV of DoubleStringCharacter and the SV of DoubleStringCharacters.

The SV of SingleStringCharacters = SingleStringCharacter SingleStringCharacters is the string-concatenation of
the SV of SingleStringCharacter and the SV of SingleStringCharacters.

The SV of DoubleStringCharacter :: SourceCharacter but not one of * or \ or LineTerminator is the result of
performing UTF16EncodeCodePoint on the code point value of SourceCharacter.

The SV of DoubleStringCharacter :: <LS> is the String value consisting of the code unit 0x2028 (LINE
SEPARATOR).

The SV of DoubleStringCharacter :: <PS> 1is the String value consisting of the code unit 0x2029 (PARAGRAPH
SEPARATOR).

The SV of DoubleStringCharacter :: LineContinuation is the empty String.

The SV of SingleStringCharacter :: SourceCharacter but not one of * or \ or LineTerminator is the result of
performing UTF16EncodeCodePoint on the code point value of SourceCharacter.

The SV of SingleStringCharacter :: <LS> is the String value consisting of the code unit 0x2028 (LINE
SEPARATOR).

The SV of SingleStringCharacter :: <PS> is the String value consisting of the code unit 0x2029 (PARAGRAPH
SEPARATOR).

The SV of SingleStringCharacter :: LineContinuation is the empty String.

The SV of EscapeSequence :: 0 is the String value consisting of the code unit 0x0000 (NULL).

291



o The SV of CharacterEscapeSequence :: SingleEscapeCharacter is the String value consisting of the code unit
whose value is determined by the SingleEscapeCharacter according to Table 36.

Table 36: String Single Character Escape Sequences

Escape Sequence | Code Unit Value | Unicode Character Name | Symbol
\b 0x0008 BACKSPACE <BS>
\t 0x0009 CHARACTER TABULATION | <HT>
\n 0x000A LINE FEED (LF) <LF>
\v 0x0008B LINE TABULATION <VT>
\f 0x000C FORM FEED (FF) <FF>
\r 0x000D CARRIAGE RETURN (CR) <CR>
\" 0x0022 QUOTATION MARK "

A\ 0x0027 APOSTROPHE '

\\ 0x005C REVERSE SOLIDUS \

e The SV of NonEscapeCharacter :: SourceCharacter but not one of EscapeCharacter or LineTerminator is the result
of performing UTF16EncodeCodePoint on the code point value of SourceCharacter.

o The SV of HexEscapeSequence :: x HexDigit HexDigit is the String value consisting of the code unit whose
value is the MV of HexEscapeSequence.

e The SV of Hex4Digits :: HexDigit HexDigit HexDigit HexDigit is the String value consisting of the code unit
whose value is the MV of Hex4Digits.

e The SV of UnicodeEscapeSequence :: u{ CodePoint } is the result of performing UTF16EncodeCodePoint on the
MYV of CodePoint.

12.8.4.2 Static Semantics: MV

e The MV of HexEscapeSequence :: x HexDigit HexDigit is (16 times the MV of the first HexDigit) plus the MV of
the second HexDigit.

e The MV of Hex4Digits :: HexDigit HexDigit HexDigit HexDigit is (0x1000 x the MV of the first HexDigit) plus
(0x100 x the MV of the second HexDigit) plus (0x10 x the MV of the third HexDigit) plus the MV of the fourth
HexDigit.

12.8.5 Regular Expression Literals

NOTE 1 A regular expression literal is an input element that is converted to a RegExp object (see 22.2)
each time the literal is evaluated. Two regular expression literals in a program evaluate to regular
expression objects that never compare as === to each other even if the two literals' contents are
identical. A RegExp object may also be created at runtime by new RegEXxp or calling the
RegExp constructor as a function (see 22.2.3).

292



The productions below describe the syntax for a regular expression literal and are used by the input element scanner
to find the end of the regular expression literal. The source text comprising the RegularExpressionBody and the
RegqularExpressionFlags are subsequently parsed again using the more stringent ECMAScript Regular Expression
grammar (22.2.1).

An implementation may extend the ECMAScript Regular Expression grammar defined in 22.2.1, but it must not
extend the RegularExpressionBody and RegularExpressionFlags productions defined below or the productions used by
these productions.

Syntax

RegularExpressionLiteral ::

/ RegularExpressionBody / RegularExpressionFlags

RegularExpressionBody
RegularExpressionFirstChar RegularExpressionChars

RegularExpressionChars ::
[empty]
RegularExpressionChars RegularExpressionChar

RegularExpressionFirstChar ::
RegularExpressionNonTerminator but not one of * or \ or / or [
RegularExpressionBackslashSequence

RegularExpressionClass

RegularExpressionChar ::
RegularExpressionNonTerminator but not one of \ or / or [
RegularExpressionBackslashSequence

RegularExpressionClass

RegularExpressionBackslashSequence ::

\ RegularExpressionNonTerminator

RegularExpressionNonTerminator ::

SourceCharacter but not LineTerminator

RegularExpressionClass ::
[ RegularExpressionClassChars 1

RegularExpressionClassChars ::
[empty]
RegularExpressionClassChars RegularExpressionClassChar

RegularExpressionClassChar ::
RegularExpressionNonTerminator but not one of 1 or \

RegularExpressionBackslashSequence

RegularExpressionFlags ::
[empty]

293



RegularExpressionFlags IdentifierPart

NOTE 2 Regular expression literals may not be empty; instead of representing an empty regular
expression literal, the code unit sequence // starts a single-line comment. To specify an empty

regular expression, use: /(?:)/.

12.8.5.1 Static Semantics: Early Errors
RegularExpressionFlags :: RegularExpressionFlags IdentifierPart

e Itis a Syntax Error if IdentifierPart contains a Unicode escape sequence.

12.8.5.2 Static Semantics: BodyText

RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags
1. Return the source text that was recognized as RegularExpressionBody.

12.8.5.3 Static Semantics: FlagText

RegularExpressionLiteral :: / RegularExpressionBody / RegularExpressionFlags

1. Return the source text that was recognized as RegularExpressionFlags.

12.8.6 Template Literal Lexical Components

Syntax

Template ::
NoSubstitutionTemplate
TemplateHead

NoSubstitutionTemplate ::
* TemplateCharacters

TemplateHead ::
> TemplateCharacters ${

TemplateSubstitutionTail ::
TemplateMiddle
Templatelnil

TemplateMiddle ::
} TemplateCharacters ${

TemplateTail ::
} TemplateCharacters

TemplateCharacters ::

TemplateCharacter TemplateCharacters

294



TemplateCharacter ::
$ [lookahead = {]
\ EscapeSequence
\ NotEscapeSequence
LineContinuation
LineTerminatorSequence

SourceCharacter but not one of * or \ or $ or LineTerminator

NotEscapeSequence ::
0 DecimalDigit
DecimalDigit but not @
x [lookahead & HexDigit]
HexDigit [lookahead & HexDigit]
[lookahead & HexDigit] [lookahead = {]
HexDigit [lookahead & HexDigit]
HexDigit HexDigit [lookahead & HexDigit]
HexDigit HexDigit HexDigit [lookahead & HexDigit]
{ [lookahead & HexDigit]
u { NotCodePoint [lookahead & HexDigit]
{ CodePoint [lookahead & HexDigit] [lookahead = }]

x

NotCodePoint ::

HexDigits but only if MV of HexDigits > 0x10FFFF
CodePoint ::

HexDigits but only if MV of HexDigits < Ox10FFFF

A conforming implementation must not use the extended definition of EscapeSequence described in B.1.2 when parsing
a TemplateCharacter.

NOTE TemplateSubstitutionTnil is used by the InputElementTemplateTail alternative lexical goal.

12.8.6.1 Static Semantics: TV and TRV

A template literal component is interpreted as a sequence of Unicode code points. The Template Value (TV) of a literal
component is described in terms of String values (SV, 12.8.4) contributed by the various parts of the template literal
component. As part of this process, some Unicode code points within the template component are interpreted as
having a mathematical value (MV, 12.8.3). In determining a TV, escape sequences are replaced by the UTF-16 code
unit(s) of the Unicode code point represented by the escape sequence. The Template Raw Value (TRV) is similar to a
Template Value with the difference that in TRVs escape sequences are interpreted literally.

e The TV and TRV of NoSubstitutionTemplate :: * ~ is the empty String.
e The TV and TRV of TemplateHead :: ° ${ is the empty String.
e The TV and TRV of TemplateMiddle :: } ${ is the empty String.
e The TV and TRV of TemplateTnil :: } * is the empty String.
o The TV of TemplateCharacters :: TemplateCharacter TemplateCharacters is undefined if either the TV of
TemplateCharacter is undefined or the TV of TemplateCharacters is undefined. Otherwise, it is the string-
295



concatenation of the TV of TemplateCharacter and the TV of TemplateCharacters.

The TV of TemplateCharacter :: SourceCharacter but not one of * or \ or $ or LineTerminator is the result of
performing UTF16EncodeCodePoint on the code point value of SourceCharacter.

The TV of TemplateCharacter :: $ is the String value consisting of the code unit 0x0024 (DOLLAR SIGN).

The TV of TemplateCharacter :: \ EscapeSequence is the SV of EscapeSequence.

The TV of TemplateCharacter :: \ NotEscapeSequence is undefined.

The TV of TemplateCharacter :: LineTerminatorSequence is the TRV of LineTerminatorSequence.

The TV of LineContinuation :: \ LineTerminatorSequence is the empty String.

The TRV of TemplateCharacters :: TemplateCharacter TemplateCharacters is the string-concatenation of the TRV
of TemplateCharacter and the TRV of TemplateCharacters.

The TRV of TemplateCharacter :: SourceCharacter but not one of * or\ or $ or LineTerminator is the result of
performing UTF16EncodeCodePoint on the code point value of SourceCharacter.

The TRV of TemplateCharacter :: $ is the String value consisting of the code unit 0x0024 (DOLLAR SIGN).
The TRV of TemplateCharacter :: \ EscapeSequence is the string-concatenation of the code unit 0x005C
(REVERSE SOLIDUS) and the TRV of EscapeSequence.

The TRV of TemplateCharacter :: \ NotEscapeSequence is the string-concatenation of the code unit 0x005C
(REVERSE SOLIDUS) and the TRV of NotEscapeSequence.

The TRV of EscapeSequence :: @ is the String value consisting of the code unit 0x0030 (DIGIT ZERO).

The TRV of NotEscapeSequence :: @ DecimalDigit is the string-concatenation of the code unit 0x0030 (DIGIT
ZERO) and the TRV of DecimalDigit.

The TRV of NotEscapeSequence :: x [lookahead & HexDigit] is the String value consisting of the code unit
0x0078 (LATIN SMALL LETTER X).

The TRV of NotEscapeSequence :: x HexDigit [lookahead & HexDigit] is the string-concatenation of the code
unit 0x0078 (LATIN SMALL LETTER X) and the TRV of HexDigit.

The TRV of NotEscapeSequence :: u [lookahead & HexDigit] [lookahead = {] is the String value consisting of
the code unit 0x0075 (LATIN SMALL LETTER U).

The TRV of NotEscapeSequence :: u HexDigit [lookahead & HexDigit] is the string-concatenation of the code
unit 0x0075 (LATIN SMALL LETTER U) and the TRV of HexDigit.

The TRV of NotEscapeSequence :: u HexDigit HexDigit [lookahead & HexDigit] is the string-concatenation of
the code unit 0x0075 (LATIN SMALL LETTER U), the TRV of the first HexDigit, and the TRV of the second
HexDigit.

The TRV of NotEscapeSequence :: u HexDigit HexDigit HexDigit [lookahead & HexDigit] is the string-
concatenation of the code unit 0x0075 (LATIN SMALL LETTER U), the TRV of the first HexDigit, the TRV of the
second HexDigit, and the TRV of the third HexDigit.

The TRV of NotEscapeSequence :: u { [lookahead & HexDigit] is the string-concatenation of the code unit
0x0075 (LATIN SMALL LETTER U) and the code unit 0x007B (LEFT CURLY BRACKET).

The TRV of NotEscapeSequence :: u { NotCodePoint [lookahead & HexDigit] is the string-concatenation of the
code unit 0x0075 (LATIN SMALL LETTER U), the code unit 0x007B (LEFT CURLY BRACKET), and the TRV of
NotCodePoint.

The TRV of NotEscapeSequence :: u { CodePoint [lookahead & HexDigit] [lookahead = }] is the string-
concatenation of the code unit 0x0075 (LATIN SMALL LETTER U), the code unit 0x007B (LEFT CURLY
BRACKET), and the TRV of CodePoint.

The TRV of DecimalDigit :: oneof 0 12 3 45 6 7 8 9 is the result of performing UTF16EncodeCodePoint
on the single code point matched by this production.

The TRV of CharacterEscapeSequence :: NonEscapeCharacter is the SV of NonEscapeCharacter.

The TRV of SingleEscapeCharacter :: oneof * " \ b f n r t v is the result of performing
UTF16EncodeCodePoint on the single code point matched by this production.

The TRV of HexEscapeSequence :: x HexDigit HexDigit is the string-concatenation of the code unit 0x0078

296



(LATIN SMALL LETTER X), the TRV of the first HexDigit, and the TRV of the second HexDigit.

e The TRV of UnicodeEscapeSequence :: u Hex4Digits is the string-concatenation of the code unit 0x0075 (LATIN
SMALL LETTER U) and the TRV of Hex4Digits.

e The TRV of UnicodeEscapeSequence :: u{ CodePoint } is the string-concatenation of the code unit 0x0075
(LATIN SMALL LETTER U), the code unit 0x007B (LEFT CURLY BRACKET), the TRV of CodePoint, and the
code unit 0x007D (RIGHT CURLY BRACKET).

e The TRV of Hex4Digits :: HexDigit HexDigit HexDigit HexDigit is the string-concatenation of the TRV of the
first HexDigit, the TRV of the second HexDigit, the TRV of the third HexDigit, and the TRV of the fourth
HexDigit.

e The TRV of HexDigits :: HexDigits HexDigit is the string-concatenation of the TRV of HexDigits and the TRV
of HexDigit.

e The TRV of HexDigit :: oneof 0123 456789abcdefABCDEF is the result of performing
UTF16EncodeCodePoint on the single code point matched by this production.

e The TRV of LineContinuation :: \ LineTerminatorSequence is the string-concatenation of the code unit 0x005C
(REVERSE SOLIDUS) and the TRV of LineTerminatorSequence.

e The TRV of LineTerminatorSequence :: <LF> is the String value consisting of the code unit 0x000A (LINE

FEED).

e The TRV of LineTerminatorSequence :: <CR> is the String value consisting of the code unit 0x000A (LINE
FEED).

e The TRV of LineTerminatorSequence :: <LS> is the String value consisting of the code unit 0x2028 (LINE
SEPARATOR).

e The TRV of LineTerminatorSequence :: <PS> is the String value consisting of the code unit 0x2029
(PARAGRAPH SEPARATOR).

e The TRV of LineTerminatorSequence :: <CR> <LF> is the String value consisting of the code unit 0x000A
(LINE FEED).

NOTE TV excludes the code units of LineContinuation while TRV includes them. <CR><LF> and <CR>

LineTerminatorSequences are normalized to <LF> for both TV and TRV. An explicit EscapeSequence
is needed to include a <CR> or <CR><LF> sequence.

12.9 Automatic Semicolon Insertion

Most ECMAScript statements and declarations must be terminated with a semicolon. Such semicolons may always
appear explicitly in the source text. For convenience, however, such semicolons may be omitted from the source text in
certain situations. These situations are described by saying that semicolons are automatically inserted into the source
code token stream in those situations.

12.9.1 Rules of Automatic Semicolon Insertion

In the following rules, “token” means the actual recognized lexical token determined using the current lexical goal
symbol as described in clause 12.

There are three basic rules of semicolon insertion:

1. When, as the source text is parsed from left to right, a token (called the offending token) is encountered that is
not allowed by any production of the grammar, then a semicolon is automatically inserted before the offending
token if one or more of the following conditions is true:

297



o The offending token is separated from the previous token by at least one LineTerminator.

o The offending token is }.

o The previous token is ) and the inserted semicolon would then be parsed as the terminating semicolon
of a do-while statement (14.7.2).

2. When, as the source text is parsed from left to right, the end of the input stream of tokens is encountered and
the parser is unable to parse the input token stream as a single instance of the goal nonterminal, then a
semicolon is automatically inserted at the end of the input stream.

3. When, as the source text is parsed from left to right, a token is encountered that is allowed by some production
of the grammar, but the production is a restricted production and the token would be the first token for a
terminal or nonterminal immediately following the annotation “[no LineTerminator here]” within the restricted
production (and therefore such a token is called a restricted token), and the restricted token is separated from
the previous token by at least one LineTerminator, then a semicolon is automatically inserted before the
restricted token.

However, there is an additional overriding condition on the preceding rules: a semicolon is never inserted
automatically if the semicolon would then be parsed as an empty statement or if that semicolon would become one of

the two semicolons in the header of a for statement (see 14.7.4).

298



NOTE The following are the only restricted productions in the grammar:

UpdateExpression

LeftHandSideExpression [no LineTerminator here] ++

LeftHandSideExpression [no LineTerminator here] --
ContinueStatement

continue ;

continue [no LineTerminator here] Labelldentifier ;
BreakStatement

break ;

break [no LineTerminator here] Labelldentifier ;
ReturnStatement

return ;

return [no LineTerminator here] Expression ;
ThrowStatement

throw [no LineTerminator here] Expression ;
ArrowFunction

ArrowParameters [no LineTerminator here] => ConciseBody
YieldExpression

yield

yield [no LineTerminator here] AssignmentExpression

yield [no LineTerminator here] x AssignmentExpression
The practical effect of these restricted productions is as follows:

e When a ++ or - - token is encountered where the parser would treat it as a postfix
operator, and at least one LineTerminator occurred between the preceding token and the
++ or - - token, then a semicolon is automatically inserted before the ++ or — - token.

e When a continue, break, return, throw, or yield token is encountered and a
LineTerminator is encountered before the next token, a semicolon is automatically inserted
after the continue, break, return, throw, or yield token.

The resulting practical advice to ECMAScript programmers is:

e A postfix ++ or —— operator should appear on the same line as its operand.

e An Expression in a return or throw statement or an AssignmentExpression ina yield
expression should start on the same line as the return, throw, or yield token.

e A Labelldentifier in a break or continue statement should be on the same line as the
break or continue token.

12.9.2 Examples of Automatic Semicolon Insertion
This section is non-normative.

The source

299



is not a valid sentence in the ECMAScript grammar, even with the automatic semicolon insertion rules. In contrast, the
source

is also not a valid ECMAScript sentence, but is transformed by automatic semicolon insertion into the following;:

which is a valid ECMAScript sentence.

The source

is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion because the semicolon is
needed for the header of a for statement. Automatic semicolon insertion never inserts one of the two semicolons in
the header of a for statement.

The source

is transformed by automatic semicolon insertion into the following;:

NOTE 1 The expression @ + b is not treated as a value to be returned by the return statement,

because a LineTerminator separates it from the token return.

The source

is transformed by automatic semicolon insertion into the following;:

NOTE 2 The token ++ is not treated as a postfix operator applying to the variable b, because a

LineTerminator occurs between b and ++.

The source

300



is not a valid ECMAScript sentence and is not altered by automatic semicolon insertion before the el se token, even
though no production of the grammar applies at that point, because an automatically inserted semicolon would then
be parsed as an empty statement.

The source

is not transformed by automatic semicolon insertion, because the parenthesized expression that begins the second line
can be interpreted as an argument list for a function call:

In the circumstance that an assignment statement must begin with a left parenthesis, it is a good idea for the
programmer to provide an explicit semicolon at the end of the preceding statement rather than to rely on automatic
semicolon insertion.

12.9.3 Interesting Cases of Automatic Semicolon Insertion
This section is non-normative.

ECMAScript programs can be written in a style with very few semicolons by relying on automatic semicolon
insertion. As described above, semicolons are not inserted at every newline, and automatic semicolon insertion can
depend on multiple tokens across line terminators.

As new syntactic features are added to ECMAScript, additional grammar productions could be added that cause lines
relying on automatic semicolon insertion preceding them to change grammar productions when parsed.

For the purposes of this section, a case of automatic semicolon insertion is considered interesting if it is a place where
a semicolon may or may not be inserted, depending on the source text which precedes it. The rest of this section
describes a number of interesting cases of automatic semicolon insertion in this version of ECMAScript.

12.9.3.1 Interesting Cases of Automatic Semicolon Insertion in Statement Lists

In a StatementList, many StatementListItems end in semicolons, which may be omitted using automatic semicolon
insertion. As a consequence of the rules above, at the end of a line ending an expression, a semicolon is required if the
following line begins with any of the following:

¢ An opening parenthesis ((). Without a semicolon, the two lines together are treated as a CallExpression.

e An opening square bracket ([). Without a semicolon, the two lines together are treated as property access,
rather than an ArrayLiteral or ArrayAssignmentPattern.

e A template literal (7). Without a semicolon, the two lines together are interpreted as a tagged Template
(13.3.11), with the previous expression as the MemberExpression.

e Unary + or —. Without a semicolon, the two lines together are interpreted as a usage of the corresponding
binary operator.

o A RegExp literal. Without a semicolon, the two lines together may be parsed instead as the /
MultiplicativeOperator, for example if the RegExp has flags.

301



12.9.3.2 Cases of Automatic Semicolon Insertion and “[no LineTerminator here]”
This section is non-normative.

ECMAScript contains grammar productions which include “[no LineTerminator here]”. These productions are
sometimes a means to have optional operands in the grammar. Introducing a LineTerminator in these locations would
change the grammar production of a source text by using the grammar production without the optional operand.

The rest of this section describes a number of productions using “[no LineTerminator here]” in this version of
ECMAScript.

12.9.3.2.1 List of Grammar Productions with Optional Operands and “[no LineTerminator here]”

e UpdateExpression.

e ContinueStatement.

e BreakStatement.

e ReturnStatement.

o YieldExpression.

e Async Function Definitions (15.8) with relation to Function Definitions (15.2)

13 ECMAScript Language: Expressions

13.1 Identifiers

Syntax

IdentifierReference
Identifier
yield

await

Bindingldentifier
Identifier
yield

await

Labelldentifier
Identifier
yield

await

Identifier :
IdentifierName but not ReservedWord

302



NOTE yield and await are permitted as Bindingldentifier in the grammar, and prohibited with static
semantics below, to prohibit automatic semicolon insertion in cases such as

13.1.1 Static Semantics: Early Errors
Bindingldentifier : Identifier

e Itis a Syntax Error if the code matched by this production is contained in strict mode code and the StringValue
of Identifier is "arguments" or "eval".

IdentifierReference : yield
Bindingldentifier : yield
Labelldentifier : yield

e Itis a Syntax Error if the code matched by this production is contained in strict mode code.

IdentifierReference : await
Bindingldentifier : await
Labelldentifier : await

e Itis a Syntax Error if the goal symbol of the syntactic grammar is Module.
Bindingldentifier : yield

e Itis a Syntax Error if this production has a [yje1q] parameter.
Bindingldentifier : await

e Itis a Syntax Error if this production has an [Ayait] parameter.

IdentifierReference : Identifier
Bindingldentifier : Identifier
Labelldentifier : Identifier

e Itis a Syntax Error if this production has a [yjeq] parameter and StringValue of Identifier is "yield".

e Itis a Syntax Error if this production has an [Ay.it] parameter and StringValue of Identifier is "await".

Identifier : IdentifierName but not ReservedWord

e Itis a Syntax Error if this phrase is contained in strict mode code and the StringValue of IdentifierName is:
"implements", "interface", "let", "package", ""private", ""protected", "public", "static", or "yield".

e Itis a Syntax Error if the goal symbol of the syntactic grammar is Module and the StringValue of IdentifierName
is "await"".

e Itis a Syntax Error if StringValue of IdentifierName is the same String value as the StringValue of any
ReservedWord except for yield or await.

303



NOTE StringValue of IdentifierName normalizes any Unicode escape sequences in IdentifierName hence
such escapes cannot be used to write an Identifier whose code point sequence is the same as a
ReservedWord.

13.1.2 Static Semantics: StringValue
IdentifierName ::

IdentifierStart
IdentifierName IdentifierPart

1. Let idText be the source text matched by IdentifierName.

2. Let idTextUnescaped be the result of replacing any occurrences of \ UnicodeEscapeSequence in idText with the
code point represented by the UnicodeEscapeSequence.

3. Return ! CodePointsToString(idTextUnescaped).

IdentifierReference : yield
Bindingldentifier : yield
Labelldentifier : yield

1. Return "yield".

IdentifierReference : await
Bindingldentifier : await
Labelldentifier : await

1. Return "await".
Identifier : IdentifierName but not ReservedWord

1. Return the StringValue of IdentifierName.

13.1.3 Runtime Semantics: Evaluation
IdentifierReference : Identifier

1. Return ? ResolveBinding(StringValue of Identifier).
IdentifierReference : yield

1. Return ? ResolveBinding("yield").
IdentifierReference : await

1. Return ? ResolveBinding("await").

NOTE 1 The result of evaluating an IdentifierReference is always a value of type Reference.

NOTE 2 In non-strict code, the keyword y1eld may be used as an identifier. Evaluating the
IdentifierReference resolves the binding of y1eld as if it was an Identifier. Early Error restriction
ensures that such an evaluation only can occur for non-strict code.

304



13.2 Primary Expression
Syntax

PrimaryExpression
this
IdentifierReference
Literal
ArrayLiteral

ObjectLiteral

FunctionExpression

ClassExpression

GeneratorExpression
AsyncFunctionExpression
AsyncGeneratorExpression
RegularExpressionLiteral

TemplateLiteral

CoverParenthesized Expression And ArrowParameterList

CoverParenthesized Expression And ArrowParameterList
( Expression )
( Expression y )

()
( ... Bindingldentifier )

( ... BindingPattern )
( Expression , ... Bindingldentifier )

( Expression » .. BindingPattern )

Supplemental Syntax

When processing an instance of the production
PrimaryExpression : CoverParenthesizedExpressionAnd ArrowParameterList

the interpretation of CoverParenthesizedExpressionAnd ArrowParameterList is refined using the following grammar:

Parenthesized Expression

( Expression )

13.2.1 Semantics

13.2.1.1 Static Semantics: CoveredParenthesizedExpression
CoverParenthesized Expression And ArrowParameterList : ( Expression )

1. Return the ParenthesizedExpression that is covered by CoverParenthesizedExpression And ArrowParameterList.

305



13.2.2 The this Keyword

13.2.2.1 Runtime Semantics: Evaluation
PrimaryExpression : this

1. Return ? ResolveThisBinding().

13.2.3 Identifier Reference

See 13.1 for IdentifierReference.

13.2.4 Literals

Syntax
Literal :
NullLiteral
BooleanLiteral
NumericLiteral
StringLiteral

13.2.4.1 Runtime Semantics: Evaluation
Literal : NullLiteral

1. Return null.
Literal : BooleanLiteral

1. If BooleanLiteral is the token false, return false.
2. If BooleanLiteral is the token true, return true.

Literal : NumericLiteral
1. Return the NumericValue of NumericLiteral as defined in 12.8.3.
Literal : StringLiteral

1. Return the SV of StringLiteral as defined in 12.8.4.1.

13.2.5 Array Initializer

NOTE An ArrayLiteral is an expression describing the initialization of an Array object, using a list, of
zero or more expressions each of which represents an array element, enclosed in square brackets.
The elements need not be literals; they are evaluated each time the array initializer is evaluated.

Array elements may be elided at the beginning, middle or end of the element list. Whenever a comma in the element
list is not preceded by an AssignmentExpression (i.e., a comma at the beginning or after another comma), the missing
array element contributes to the length of the Array and increases the index of subsequent elements. Elided array

306



elements are not defined. If an element is elided at the end of an array, that element does not contribute to the length

of the Array.
Syntax
ArrayLiteral
[ Elision ]
[ ElementList 1
[ ElementList , Elision 1
ElementList
Elision AssignmentExpression

Elision SpreadElement

ElementList , Elision AssignmentExpression
ElementList , Elision SpreadElement
Elision :
Elision ,
SpreadElement
... AssignmentExpression

13.2.5.1 Runtime Semantics: ArrayAccumulation

With parameters array and nextIndex.
Elision : ,

1. Let len be nextindex + 1.

2. Perform ? Set(array, "length", H(len), true).

3. NOTE: The above Set throws if len exceeds 232-1.
4. Return len.

Elision : Elision ,
1. Return the result of performing ArrayAccumulation for Elision with arguments array and nextIndex + 1.

ElementList : Elision AssignmentExpression

1. If Elision is present, then
a. Set nextIndex to the result of performing ArrayAccumulation for Elision with arguments array and
nextlndex.
b. ReturnIfAbrupt(nextindex).
2. Let initResult be the result of evaluating AssignmentExpression.
3. Let initValue be ? GetValue(initResult).
4. Let created be ! CreateDataPropertyOrThrow(array, | ToString(H(nextIndex)), initValue).
5. Return nextIndex + 1.

307


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD

ElementList : Elision SpreadElement

1. If Elision is present, then
a. Set nextIndex to the result of performing ArrayAccumulation for Elision with arguments array and
nextIndex.
b. ReturnlfAbrupt(nextindex).
2. Return the result of performing ArrayAccumulation for SpreadElement with arguments array and nextindex.

ElementList : ElementList , Elision AssignmentExpression

1. Set nextIndex to the result of performing ArrayAccumulation for ElementList with arguments array and
nextindex.
2. ReturnlfAbrupt(nextIndex).
3. If Elision is present, then
a. Set nextIndex to the result of performing ArrayAccumulation for Elision with arguments array and
nextIndex.
b. ReturnlfAbrupt(nextindex).
Let initResult be the result of evaluating AssignmentExpression.
Let initValue be ? GetValue(initResult).
Let created be ! CreateDataPropertyOrThrow(array, | ToString(F(nextIndex)), initValue).

N oG

Return nextIndex + 1.

ElementList : ElementList , Elision SpreadElement

1. Set nextIndex to the result of performing Array Accumulation for ElementList with arguments array and
nextIndex.
2. ReturnlfAbrupt(nextIndex).
3. If Elision is present, then
a. Set nextIndex to the result of performing Array Accumulation for Elision with arguments array and
nextlndex.
b. ReturnlfAbrupt(nextindex).
4. Return the result of performing ArrayAccumulation for SpreadElement with arguments array and nextIndex.

SpreadElement : ... AssignmentExpression

1. Let spreadRef be the result of evaluating AssignmentExpression.
2. Let spreadObj be ? GetValue(spreadRef).
3. Let iteratorRecord be ? Getlterator(spreadObj).
4. Repeat,
a. Let next be ? IteratorStep(iteratorRecord).
If next is false, return nextlndex.
Let nextValue be ? IteratorValue(next).
Perform ! CreateDataPropertyOrThrow(array, ! ToString(F(nextIndex)), nextValue).
Set nextlndex to nextIndex + 1.

P 2o T

NOTE CreateDataPropertyOrThrow is used to ensure that own properties are defined for the array even
if the standard built-in Array prototype object has been modified in a manner that would
preclude the creation of new own properties using [[Set]].

308


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD
file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD

13.2.5.2 Runtime Semantics: Evaluation
ArrayLiteral : [ Elision 1

1. Let array be ! ArrayCreate(0).

2. If Elision is present, then
a. Let len be the result of performing ArrayAccumulation for Elision with arguments array and 0.
b. ReturnIfAbrupt(len).

3. Return array.

ArrayLiteral : [ ElementList 1

1. Letarray be ! ArrayCreate(0).

2. Let len be the result of performing ArrayAccumulation for ElementList with arguments array and 0.
3. ReturnIfAbrupt(len).

4. Return array.

ArrayLiteral : [ ElementList , Elision 1

Let array be ! ArrayCreate(0).

Let nextIndex be the result of performing ArrayAccumulation for ElementList with arguments array and 0.
ReturnlfAbrupt(nextIndex).

If Elision is present, then

L

a. Let len be the result of performing ArrayAccumulation for Elision with arguments array and nextIndex.
b. ReturnIfAbrupt(len).
5. Return array.

13.2.6 Object Initializer

NOTE 1 An object initializer is an expression describing the initialization of an Object, written in a form
resembling a literal. It is a list of zero or more pairs of property keys and associated values,
enclosed in curly brackets. The values need not be literals; they are evaluated each time the object

initializer is evaluated.

Syntax
ObjectLiteral
{1
{ PropertyDefinitionList }
{ PropertyDefinitionList )

PropertyDefinitionList
PropertyDefinition
PropertyDefinitionList , PropertyDefinition

PropertyDefinition
IdentifierReference
CoverlInitializedName

PropertyName : AssignmentExpression
309



MethodDefinition

... AssignmentExpression

PropertyName
Literal PropertyName
ComputedPropertyName

Literal PropertyName :

IdentifierName
StringLiteral
NumericLiteral
ComputedPropertyName
[ AssignmentExpression ]
CoverlnitializedName
IdentifierReference Initializer
Initializer
= AssignmentExpression
NOTE 2 MethodDefinition is defined in 15.4.
NOTE 3 In certain contexts, ObjectLiteral is used as a cover grammar for a more restricted secondary

grammar. The CoverlnitializedName production is necessary to fully cover these secondary
grammars. However, use of this production results in an early Syntax Error in normal contexts
where an actual ObjectLiteral is expected.

13.2.6.1 Static Semantics: Early Errors
PropertyDefinition : MethodDefinition

e Itis a Syntax Error if HasDirectSuper of MethodDefinition is true.

In addition to describing an actual object initializer the ObjectLiteral productions are also used as a cover grammar for
Object AssignmentPattern and may be recognized as part of a CoverParenthesized Expression AndArrowParameterList. When
ObjectLiteral appears in a context where Object AssignmentPattern is required the following Early Error rules are not
applied. In addition, they are not applied when initially parsing a CoverParenthesized Expression And ArrowParameterList
or CoverCallExpressionAndAsyncArrowHead.

PropertyDefinition : CoverlnitializedName

e Always throw a Syntax Error if code matches this production.

NOTE This production exists so that ObjectLiteral can serve as a cover grammar for
Object AssignmentPattern. It cannot occur in an actual object initializer.

310



13.2.6.2 Static Semantics: IsComputedPropertyKey
PropertyName : Literal PropertyName

1. Return false.
PropertyName : ComputedPropertyName

1. Return true.
13.2.6.3 Static Semantics: PropertyNameList
PropertyDefinitionList : PropertyDefinition

1. If PropName of PropertyDefinition is empty, return a new empty List.
2. Return a List whose sole element is PropName of PropertyDefinition.

PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition

1. Let list be PropertyNameList of PropertyDefinitionList.

2. If PropName of PropertyDefinition is empty, return list.

3. Append PropName of PropertyDefinition to the end of list.
4. Return [ist.

13.2.6.4 Runtime Semantics: Evaluation
ObjectLiteral : { }
1. Return ! OrdinaryObjectCreate(%Object.prototype%).

ObjectLiteral :
{ PropertyDefinitionList }
{ PropertyDefinitionList , }

1. Let obj be ! OrdinaryObjectCreate(%Object.prototype%).

2. Perform ? PropertyDefinitionEvaluation of PropertyDefinitionList with arguments obj and true.

3. Return obj.
LiteralPropertyName : IdentifierName

1. Return StringValue of IdentifierName.
LiteralPropertyName : StringLiteral

1. Return the SV of StringLiteral.
LiteralPropertyName : NumericLiteral

1. Let nbr be the NumericValue of NumericLiteral.
2. Return ! ToString(nbr).

ComputedPropertyName : [ AssignmentExpression ]

1. Let exprValue be the result of evaluating AssignmentExpression.
2. Let propName be ? GetValue(exprValue).
3. Return ? ToPropertyKey(propName).

311



13.2.6.5 Runtime Semantics: PropertyDefinitionEvaluation

With parameters object and enumerable.
PropertyDefinitionList : PropertyDefinitionList , PropertyDefinition

1. Perform ? PropertyDefinitionEvaluation of PropertyDefinitionList with arguments object and enumerable.
2. Return the result of performing PropertyDefinitionEvaluation of PropertyDefinition with arguments object and
enumerable.

PropertyDefinition : ... AssignmentExpression

1. Let exprValue be the result of evaluating AssignmentExpression.
2. Let fromValue be ? GetValue(exprValue).

3. Let excludedNames be a new empty List.

4. Return ? CopyDataProperties(object, fromValue, excludedNames).

PropertyDefinition : IdentifierReference

Let propName be StringValue of IdentifierReference.

Let exprValue be the result of evaluating IdentifierReference.

Let propValue be ? GetValue(exprValue).

Assert: enumerable is true.

Assert: object is an ordinary, extensible object with no non-configurable properties.

AN A

Return ! CreateDataPropertyOrThrow/(object, propName, propValue).
PropertyDefinition : PropertyName : AssignmentExpression

1. Let propKey be the result of evaluating PropertyName.
2. ReturnIfAbrupt(propKey).
3. If IsAnonymousFunctionDefinition(AssignmentExpression) is true, then
a. Let propValue be ? NamedEvaluation of AssignmentExpression with argument propKey.
4. Else,
a. Let exprValueRef be the result of evaluating AssignmentExpression.
b. Let propValue be ? GetValue(exprValueRef).
5. Assert: enumerable is true.
6. Assert: object is an ordinary, extensible object with no non-configurable properties.
7. Return ! CreateDataPropertyOrThrow(object, propKey, propValue).

NOTE An alternative semantics for this production is given in B.3.1.

MethodDefinition :
PropertyName ( UniqueFormalParameters ) { FunctionBody }
get PropertyName ( ) { FunctionBody }
set PropertyName ( PropertySetParameterList ) { FunctionBody }

1. Return ? MethodDefinitionEvaluation of MethodDefinition with arguments object and enumerable.
GeneratorMethod : * PropertyName ( UniqueFormalParameters ) { GeneratorBody }
1. Return ? MethodDefinitionEvaluation of GeneratorMethod with arguments object and enumerable.

312



AsyncGeneratorMethod : async % PropertyName ( UniqueFormalParameters ) { AsyncGeneratorBody }

1.

Return ? MethodDefinitionEvaluation of AsyncGeneratorMethod with arguments object and enumerable.

AsyncMethod : async PropertyName ( UniqueFormalParameters ) { AsyncFunctionBody }

1.

Return ? MethodDefinitionEvaluation of AsyncMethod with arguments object and enumerable.

13.2.7 Function Defining Expressions

See 15.2 for PrimaryExpression : FunctionExpression .

See 15.5 for PrimaryExpression : GeneratorExpression .

See 15.7 for PrimaryExpression : ClassExpression .

See 15.8 for PrimaryExpression : AsyncFunctionExpression .

See 15.6 for PrimaryExpression : AsyncGeneratorExpression .

13.2.8 Regular Expression Literals

Syntax

See 12.8.5.

13.2.8.1 Static Semantics: Early Errors
PrimaryExpression : RegularExpressionLiteral

It is a Syntax Error if IsValidRegularExpressionLiteral(RegularExpressionLiteral) is false.

13.2.8.2 Static Semantics: IsValidRegularExpressionLiteral ( literal )

The abstract operation IsValidRegularExpressionLiteral takes argument literal. It determines if its argument is a valid

regular expression literal. It performs the following steps when called:

1.

Assert: literal is a RegularExpressionLiteral.

2. If FlagText of literal contains any code points other than g, 1, m, S, u, or y, or if it contains the same code point

more than once, return false.
Let patternText be BodyText of literal.
If FlagText of literal contains u, let u be true; else let 1 be false.
If u is false, then
a. Let stringValue be CodePointsToString(patternText).
b. Set patternText to the sequence of code points resulting from interpreting each of the 16-bit elements of
stringValue as a Unicode BMP code point. UTF-16 decoding is not applied to the elements.
Let parseResult be ParsePattern(patternText, u).
If parseResult is a Parse Node, return true; else return false.

13.2.8.3 Runtime Semantics: Evaluation
PrimaryExpression : RegularExpressionLiteral

313



1. Let pattern be | CodePointsToString(BodyText of RegularExpressionLiteral).
2. Let flags be ! CodePointsToString(FlagText of RegularExpressionLiteral).
3. Return RegExpCreate(pattern, flags).

13.2.9 Template Literals

Syntax
TemplateLiteral
NoSubstitutionTemplate
SubstitutionTemplate
SubstitutionTemplate
TemplateHead Expression TemplateSpans
TemplateSpans
Templatelnil
TemplateMiddleList TemplateTail
TemplateMiddleList
TemplateMiddle Expression
TemplateMiddleList TemplateMiddle Expression

13.2.9.1 Static Semantics: Early Errors
TemplateLiteral : NoSubstitutionTemplate

e Itis a Syntax Error if the [Tagged] Parameter was not set and NoSubstitutionTemplate Contains NotEscapeSequence.
TemplateLiteral : SubstitutionTemplate

e Itis a Syntax Error if the number of elements in the result of TemplateStrings of TemplateLiteral with argument

false is greater than 232 - 1.

SubstitutionTemplate : TemplateHead Expression

TemplateSpans

e Itis a Syntax Error if the [Tagged] Parameter was not set and TemplateHead Contains NotEscapeSequence.
TemplateSpans : TemplateTnil

e Itis a Syntax Error if the [Tagged] Parameter was not set and TemplateTail Contains NotEscapeSequence.

TemplateMiddleList
TemplateMiddle Expression
TemplateMiddleList TemplateMiddle Expression

e Itis a Syntax Error if the [Tagged] Parameter was not set and TemplateMiddle Contains NotEscapeSequence.

314



13.2.9.2 Static Semantics: TemplateStrings

With parameter raw.
TemplateLiteral : NoSubstitutionTemplate

1. If raw is false, then

a. Let string be the TV of NoSubstitutionTemplate.
2. Else,

a. Let string be the TRV of NoSubstitutionTemplate.
3. Return a List whose sole element is string.

SubstitutionTemplate : TemplateHead Expression TemplateSpans

1. If raw is false, then
a. Let head be the TV of TemplateHead.
2. Else,
a. Let head be the TRV of TemplateHead.
3. Let tail be TemplateStrings of TemplateSpans with argument raw.
4. Return a List whose elements are head followed by the elements of tail.

TemplateSpans : TemplateTail

1. If raw is false, then

a. Let tail be the TV of TemplateTail.
2. Else,

a. Let tail be the TRV of TemplateTuil.
3. Return a List whose sole element is tail.

TemplateSpans : TemplateMiddleList TemplateTnil

1. Let middle be TemplateStrings of TemplateMiddleList with argument raw.
2. If raw is false, then

a. Let tail be the TV of TemplateTail.
3. Else,

a. Let tail be the TRV of TemplateTail.

4. Return a List whose elements are the elements of middle followed by tail.

TemplateMiddleList : TemplateMiddle Expression

1. If raw is false, then

a. Let string be the TV of TemplateMiddle.
2. Else,

a. Let string be the TRV of TemplateMiddle.
3. Return a List whose sole element is string.

TemplateMiddleList : TemplateMiddleList TemplateMiddle Expression

1. Let front be TemplateStrings of TemplateMiddleList with argument raw.
2. If raw is false, then

a. Let [ast be the TV of TemplateMiddle.
3. Else,

315



4.
5.

a. Let last be the TRV of TemplateMiddle.
Append last as the last element of the List front.
Return front.

13.2.9.3 GetTemplateObject ( templateLiteral )

The abstract operation GetTemplateObject takes argument templateLiteral (a Parse Node). It performs the following

steps when called:

1.

Let realm be the current Realm Record.

2. Let templateRegistry be realm.[[TemplateMap]].

3. For each element ¢ of templateRegistry, do

O X N O

10.
11.

12.
13.

14.
15.
16.

a. If e.[[Site]] is the same Parse Node as templateLiteral, then
i. Return e.[[Array]].
Let rawStrings be TemplateStrings of templateLiteral with argument true.
Let cookedStrings be TemplateStrings of templateLiteral with argument false.
Let count be the number of elements in the List cookedStrings.

Assert: count <232 -1.
Let template be ! ArrayCreate(count).
Let rawObj be ! ArrayCreate(count).
Let index be 0.
Repeat, while index < count,
a. Let prop be ! ToString(H(index)).
b. Let cookedValue be cookedStrings[index].
c. Perform ! DefinePropertyOrThrow(template, prop, PropertyDescriptor { [[Value]]: cooked Value,
[[Writable]]: false, [[Enumerable]]: true, [[Configurable]]: false }).
d. Let rawValue be the String value rawStrings[index].
e. Perform ! DefinePropertyOrThrow(rawObj, prop, PropertyDescriptor { [[Value]]: rawValue, [[Writable]]:
false, [[Enumerable]]: true, [[Configurable]]: false }).
f. Set index to index + 1.
Perform ! SetIntegrityLevel(rawObj, frozen).
Perform ! DefinePropertyOrThrow(template, "raw", PropertyDescriptor { [[Value]]: rawObj, [[Writable]]: false,
[[Enumerable]]: false, [[Configurable]]: false }).
Perform ! SetIntegrityLevel(template, frozen).
Append the Record { [[Site]]: templateLiteral, [[Array]]: template } to templateRegistry.
Return template.

NOTE 1 The creation of a template object cannot result in an abrupt completion.

NOTE 2 Each TemplateLiteral in the program code of a realm is associated with a unique template object

that is used in the evaluation of tagged Templates (13.2.9.5). The template objects are frozen and
the same template object is used each time a specific tagged Template is evaluated. Whether
template objects are created lazily upon first evaluation of the TemplateLiteral or eagerly prior to
first evaluation is an implementation choice that is not observable to ECMAScript code.

316


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD

NOTE 3 Future editions of this specification may define additional non-enumerable properties of

template objects.

13.2.9.4 Runtime Semantics: SubstitutionEvaluation
TemplateSpans : TemplateTnil

1. Return a new empty List.

TemplateSpans : TemplateMiddleList Templatelnil

1. Return the result of SubstitutionEvaluation of TemplateMiddleList.

TemplateMiddleList : TemplateMiddle Expression

1. Let subRef be the result of evaluating Expression.
2. Let sub be ? GetValue(subRef).
3. Return a List whose sole element is sub.

TemplateMiddleList : TemplateMiddleList TemplateMiddle Expression

Let preceding be ? SubstitutionEvaluation of TemplateMiddleList.
Let nextRef be the result of evaluating Expression.

Let next be ? GetValue(nextRef).

Append next as the last element of the List preceding.

SRS -

Return preceding.

13.2.9.5 Runtime Semantics: Evaluation
TemplateLiteral : NoSubstitutionTemplate

1. Return the TV of NoSubstitutionTemplate as defined in 12.8.6.
SubstitutionTemplate : TemplateHead Expression TemplateSpans

Let head be the TV of TemplateHead as defined in 12.8.6.
Let subRef be the result of evaluating Expression.

Let sub be ? GetValue(subRef).

Let middle be ? ToString(sub).

Let tail be the result of evaluating TemplateSpans.
ReturnIfAbrupt(tail).

Return the string-concatenation of head, middle, and tail.

NS e

NOTE 1 The string conversion semantics applied to the Expression value are like
String.prototype. concat rather than the + operator.

TemplateSpans : Templatelnil
1. Return the TV of TemplateTail as defined in 12.8.6.

TemplateSpans : TemplateMiddleList TemplateTnil

317



1. Let head be the result of evaluating TemplateMiddleList.
2. ReturnlfAbrupt(head).

3. Let tail be the TV of TemplateTnil as defined in 12.8.6.
4. Return the string-concatenation of head and tail.

TemplateMiddleList : TemplateMiddle Expression

Let head be the TV of TemplateMiddle as defined in 12.8.6.
Let subRef be the result of evaluating Expression.

Let sub be ? GetValue(subRef).

Let middle be ? ToString(sub).

Return the string-concatenation of head and middle.

SRS .

NOTE 2 The string conversion semantics applied to the Expression value are like
String.prototype. concat rather than the + operator.

TemplateMiddleList : TemplateMiddleList TemplateMiddle Expression

Let rest be the result of evaluating TemplateMiddleList.
ReturnIfAbrupt(rest).

Let middle be the TV of TemplateMiddle as defined in 12.8.6.
Let subRef be the result of evaluating Expression.

Let sub be ? GetValue(subRef).

Let last be ? ToString(sub).

Return the string-concatenation of rest, middle, and last.

NSO =

NOTE 3 The string conversion semantics applied to the Expression value are like
String.prototype. concat rather than the + operator.

13.2.10 The Grouping Operator

13.2.10.1 Static Semantics: Early Errors
PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

e Itis a Syntax Error if CoverParenthesized Expression And ArrowParameterList is not covering a
Parenthesized Expression.

e All Early Error rules for ParenthesizedExpression and its derived productions also apply to
CoveredParenthesizedExpression of CoverParenthesized ExpressionAndArrowParameterList.

13.2.10.2 Runtime Semantics: Evaluation
PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList

1. Let expr be CoveredParenthesizedExpression of CoverParenthesizedExpressionAndArrowParameterList.
2. Return the result of evaluating expr.

ParenthesizedExpression : ( Expression )

1. Return the result of evaluating Expression. This may be of type Reference.

318



NOTE This algorithm does not apply GetValue to the result of evaluating Expression. The principal
motivation for this is so that operators such as delete and typeof may be applied to
parenthesized expressions.

13.3 Left-Hand-Side Expressions
Syntax

MemberExpression
PrimaryExpression
MemberExpression [ Expression 1
MemberExpression . IdentifierName
MemberExpression TemplateLiteral
SuperProperty
MetaProperty

new MemberExpression Arguments

SuperProperty
super [ Expression 1

super . IdentifierName

MetaProperty :
NewIarget
ImportMeta

Newlnrget :

new . target

ImportMeta :

import . meta

NewExpression
MemberExpression

new NewExpression

CallExpression

CoverCallExpressionAnd AsyncArrowHead

SuperCall

ImportCall

CallExpression Arquments

CallExpression [ Expression ]
CallExpression . IdentifierName

CallExpression TemplateLiteral

319



SuperCall

super Arguments

ImportCall

import ( AssignmentExpression )

Arguments

()
( ArgumentList )

( ArgumentList y )

ArqumentList
AssignmentExpression

... AssignmentExpression

ArgumentList
ArgumentList

Optional Expression

MemberExpression

CallExpression

Optional Expression

OptionalChain

?. Arquments

?. [ Expression
?. IdentifierName
?. TemplateLiteral

OptionalChain
OptionalChain
OptionalChain
OptionalChain

LeftHandSideExpression

NewExpression

CallExpression

Optional Expression

Supplemental Syntax

, AssignmentExpression

y -« AssignmentExpression

OptionalChain
OptionalChain
OptionalChain

Argquments

[ Expression

. IdentifierName
TemplateLiteral

When processing an instance of the production

CallExpression : CoverCallExpressionAndAsyncArrowHead

the interpretation of CoverCallExpressionAndAsyncArrowHead is refined using the following grammar:

CallMemberExpression

MemberExpression

Arquments



13.3.1 Static Semantics

13.3.1.1 Static Semantics: Early Errors
OptionalChain :

?. TemplateLiteral
OptionalChain TemplateLiteral

e Itisa Syntax Error if any code matches this production.

NOTE This production exists in order to prevent automatic semicolon insertion rules (12.9) from being
applied to the following code:

so that it would be interpreted as two valid statements. The purpose is to maintain consistency
with similar code without optional chaining:

which is a valid statement and where automatic semicolon insertion does not apply.

ImportMeta :

import . meta

e Itis a Syntax Error if the syntactic goal symbol is not Module.

13.3.1.2 Static Semantics: CoveredCallExpression
CoverCallExpressionAndAsyncArrowHead : MemberExpression Arquments

1. Return the CallMemberExpression that is covered by CoverCallExpressionAndAsyncArrowHead.

13.3.2 Property Accessors

321



NOTE Properties are accessed by name, using either the dot notation:

MemberExpression . ldentifierName
CallExpression . IdentifierName

or the bracket notation:

MemberExpression [ Expression ]

CallExpression [ Expression ]

The dot notation is explained by the following syntactic conversion:
MemberExpression . IdentifierName

is identical in its behaviour to

MemberExpression [ <identifier-name-string> ]

and similarly

CallExpression . IdentifierName

is identical in its behaviour to

CallExpression [ <identifier-name-string> ]

where <identifier-name-string> is the result of evaluating StringValue of IdentifierName.

13.3.2.1 Runtime Semantics: Evaluation
MemberExpression : MemberExpression [ Expression ]

1. Let baseReference be the result of evaluating MemberExpression.

2. Let baseValue be ? GetValue(baseReference).

3. If the code matched by this MemberExpression is strict mode code, let strict be true; else let strict be false.
4. Return ? EvaluatePropertyAccessWithExpressionKey(baseValue, Expression, strict).

MemberExpression : MemberExpression . ldentifierName

1. Let baseReference be the result of evaluating MemberExpression.

2. Let baseValue be ? GetValue(baseReference).

3. If the code matched by this MemberExpression is strict mode code, let strict be true; else let strict be false.
4. Return ? EvaluatePropertyAccessWithldentifierKey(baseValue, IdentifierName, strict).

CallExpression : CallExpression [ Expression ]

1. Let baseReference be the result of evaluating CallExpression.

2. Let baseValue be ? GetValue(baseReference).

3. If the code matched by this CallExpression is strict mode code, let strict be true; else let strict be false.
4. Return ? EvaluateProperty AccessWithExpressionKey(baseValue, Expression, strict).

CallExpression : CallExpression . IdentifierName

322



1. Let baseReference be the result of evaluating CallExpression.

2. Let baseValue be ? GetValue(baseReference).

3. If the code matched by this CallExpression is strict mode code, let strict be true; else let strict be false.
4. Return ? EvaluateProperty AccessWithIdentifierKey(baseValue, IdentifierName, strict).

13.3.3 EvaluatePropertyAccessWithExpressionKey ( baseValue, expression, strict)

The abstract operation EvaluateProperty AccessWithExpressionKey takes arguments baseValue (an ECMAScript
language value), expression (a Parse Node), and strict (a Boolean). It performs the following steps when called:

Let propertyNameReference be the result of evaluating expression.

Let propertyNameValue be ? GetValue(propertyNameReference).

Let bv be ? RequireObjectCoercible(baseValue).

Let propertyKey be ? ToPropertyKey(propertyNameValue).

Return the Reference Record { [[Base]]: bv, [[ReferencedNamel]]: propertyKey, [[Strict]]: strict, [[ThisValue]]:

empty }.

SANESERC I .

13.3.4 EvaluatePropertyAccessWithldentifierKey ( baseValue, identifierName, strict)

The abstract operation EvaluateProperty AccessWithIdentifierKey takes arguments baseValue (an ECMAScript
language value), identifierName (a Parse Node), and strict (a Boolean). It performs the following steps when called:

Assert: identifierName is an IdentifierName.
Let bv be ? RequireObjectCoercible(baseValue).
Let propertyNameString be StringValue of identifierName.

Ll e

Return the Reference Record { [[Base]]: bv, [[ReferencedNamel]]: propertyNameString, [[Strict]]: strict,
[[ThisValue]]: empty }.

13.3.5 The new Operator

13.3.5.1 Runtime Semantics: Evaluation
NewExpression : new NewExpression

1. Return ? EvaluateNew(NewExpression, empty).
MemberExpression : new MemberExpression Arguments

1. Return ? EvaluateNew(MemberExpression, Arquments).

13.3.5.1.1 EvaluateNew ( constructExpr, arguments)

The abstract operation EvaluateNew takes arguments constructExpr and arquments. It performs the following steps
when called:

Assert: constructExpr is either a NewExpression or a MemberExpression.
Assert: arguments is either empty or an Arguments.

Let ref be the result of evaluating constructExpr.

Let constructor be ? GetValue(ref).

If arquments is empty, let argList be a new empty List.

SIS

323



6. Else,

a. Let argList be ? ArgumentListEvaluation of arguments.
7. If IsConstructor(constructor) is false, throw a TypeError exception.
8. Return ? Construct(constructor, argList).

13.3.6 Function Calls

13.3.6.1 Runtime Semantics: Evaluation
CallExpression : CoverCallExpressionAndAsyncArrowHead

Let expr be CoveredCallExpression of CoverCallExpressionAnd AsyncArrowHead.

Let memberExpr be the MemberExpression of expr.

Let arquments be the Arquments of expr.

Let ref be the result of evaluating memberExpr.

Let func be ? GetValue(ref).

If ref is a Reference Record, IsPropertyReference(ref) is false, and ref.[[ReferencedNamel]] is ""eval", then
a. If SameValue(func, %eval%) is true, then

AN A

i. Let argList be ? ArgumentListEvaluation of arguments.
ii. If argList has no elements, return undefined.
iii. Let evalArg be the first element of argList.
iv. If the source code matching this CallExpression is strict mode code, let strictCaller be true.
Otherwise let strictCaller be false.
v. Let evalRealm be the current Realm Record.
vi. Return ? PerformEval(eval Arg, evalRealm, strictCaller, true).
7. Let thisCall be this CallExpression.
8. Let tailCall be IsInTailPosition(thisCall).
9. Return ? EvaluateCall(func, ref, arquments, tailCall).

A CallExpression evaluation that executes step 6.a.vi is a direct eval.
CallExpression : CallExpression Arquments

Let ref be the result of evaluating CallExpression.
Let func be ? GetValue(ref).

Let thisCall be this CallExpression.

Let tailCall be IsInTailPosition(thisCall).

Return ? EvaluateCall(func, ref, Arguments, tailCall).

SRS -

13.3.6.2 EvaluateCall ( func, ref, arguments, tailPosition )

The abstract operation EvaluateCall takes arguments furnc (an ECMAScript language value), ref (an ECMAScript
language value or a Reference Record), arguments (a Parse Node), and tailPosition (a Boolean). It performs the
following steps when called:

1. If ref is a Reference Record, then
a. If IsPropertyReference(ref) is true, then
i. Let thisValue be GetThisValue(ref).
b. Else,
i. Let refEnv be ref.[[Base]].

324



ii. Assert: refEnv is an Environment Record.
iii. Let thisValue be refEnv.WithBaseObject().
2. Else,
a. Let thisValue be undefined.
Let argList be ? ArgumentListEvaluation of arguments.
If Type(func) is not Object, throw a TypeError exception.
If IsCallable(func) is false, throw a TypeError exception.
If tailPosition is true, perform PrepareForTailCall().
Let result be Call(func, thisValue, argList).
Assert: If tailPosition is true, the above call will not return here, but instead evaluation will continue as if the

*® N kW

following return has already occurred.
9. Assert: If result is not an abrupt completion, then Type(result) is an ECMAScript language type.
10. Return result.

13.3.7 The super Keyword

13.3.7.1 Runtime Semantics: Evaluation
SuperProperty : super [ Expression 1]

Let env be GetThisEnvironment().

Let actualThis be ? env.GetThisBinding|().

Let propertyNameReference be the result of evaluating Expression.

Let propertyNameValue be ? GetValue(propertyNameReference).

Let propertyKey be ? ToPropertyKey(propertyNameValue).

If the code matched by this SuperProperty is strict mode code, let strict be true; else let strict be false.

NSO »N =

Return ? MakeSuperPropertyReference(actualThis, propertyKey, strict).
SuperProperty : super . IdentifierName

Let env be GetThisEnvironment().

Let actualThis be ? env.GetThisBinding().

Let propertyKey be StringValue of IdentifierName.

If the code matched by this SuperProperty is strict mode code, let strict be true; else let strict be false.

SRS -

Return ? MakeSuperPropertyReference(actualThis, propertyKey, strict).
SuperCall : super Arguments

Let newTarget be GetNew Target().

Assert: Type(newTarget) is Object.

Let func be ! GetSuperConstructor().

Let arqgList be ? ArgumentListEvaluation of Arguments.

If IsConstructor(func) is false, throw a TypeError exception.
Let result be ? Construct(func, argList, newTarget).

Let thisER be GetThisEnvironment().

Return ? thisER.BindThisValue(result).

© NG » N

13.3.7.2 GetSuperConstructor ()

The abstract operation GetSuperConstructor takes no arguments. It performs the following steps when called:

325



Let envRec be GetThisEnvironment().

Assert: envRec is a function Environment Record.

Let activeFunction be envRec.[[FunctionObject]].

Assert: activeFunction is an ECMAScript function object.

Let superConstructor be ! activeFunction.[[GetPrototypeOf]]().

SR

Return superConstructor.

13.3.7.3 MakeSuperPropertyReference ( actualThis, propertyKey, strict)

The abstract operation MakeSuperPropertyReference takes arguments actualThis, propertyKey, and strict. It performs
the following steps when called:

Let env be GetThisEnvironment().

Assert: env.HasSuperBinding() is true.

Let baseValue be ? env.GetSuperBase().

Let bv be ? RequireObjectCoercible(baseValue).

Return the Reference Record { [[Base]]: b, [[ReferencedNamel]]: propertyKey, [[Strict]]: strict, [[ThisValue]]:
actualThis }.

6. NOTE: This returns a Super Reference Record.

SRS -

13.3.8 Argument Lists

NOTE The evaluation of an argument list produces a List of values.

13.3.8.1 Runtime Semantics: ArgumentListEvaluation
Arguments : ()

1. Return a new empty List.
ArgumentList : AssignmentExpression

1. Let ref be the result of evaluating AssignmentExpression.
2. Let arg be ? GetValue(ref).
3. Return a List whose sole element is arg.

ArgqumentList : ... AssignmentExpression

Let list be a new empty List.
Let spreadRef be the result of evaluating AssignmentExpression.
Let spreadObj be ? GetValue(spreadRef).
Let iteratorRecord be ? Getlterator(spreadOby).
Repeat,
a. Let next be ? IteratorStep(iteratorRecord).

SUESIRCENS -

b. If next is false, return [ist.
c. Let nextArg be ? IteratorValue(next).
d. Append nextArg as the last element of /ist.

ArgumentList : ArqumentList , AssignmentExpression

326



Let precedingArgs be ? ArgumentListEvaluation of ArqumentList.
Let ref be the result of evaluating AssignmentExpression.

Let arg be ? GetValue(ref).

Append arg to the end of precedingArgs.

SANE SRR

Return precedingArgs.
ArgumentList © ArqumentList , ... AssignmentExpression

1. Let precedingArgs be ? ArgumentListEvaluation of ArgumentList.
2. Let spreadRef be the result of evaluating AssignmentExpression.
3. Let iteratorRecord be ? Getlterator(? GetValue(spreadRef)).
4. Repeat,
a. Let next be ? IteratorStep(iteratorRecord).
b. If next is false, return precedingArgs.
c. Let nextArg be ? IteratorValue(next).
d. Append nextArg as the last element of precedingArgs.

TemplateLiteral : NoSubstitutionTemplate

1. Let templateLiteral be this TemplateLiteral.
2. Let siteObj be GetTemplateObject(templateLiteral).
3. Return a List whose sole element is siteObj.

TemplateLiteral : SubstitutionTemplate

1. Let templateLiteral be this TemplateLiteral.

2. Let siteObj be GetTemplateObject(templateLiteral).

3. Let remaining be ? ArgumentListEvaluation of SubstitutionTemplate.

4. Return a List whose first element is siteObj and whose subsequent elements are the elements of remaining.

SubstitutionTemplate : TemplateHead Expression TemplateSpans

Let firstSubRef be the result of evaluating Expression.

Let firstSub be ? GetValue(firstSubRef).

Let restSub be ? SubstitutionEvaluation of TemplateSpans.
Assert: restSub is a List.

O L=

Return a List whose first element is firstSub and whose subsequent elements are the elements of restSub. restSub

may contain no elements.

13.3.9 Optional Chains

NOTE An optional chain is a chain of one or more property accesses and function calls, the first of
which begins with the token ? ..

13.3.9.1 Runtime Semantics: Evaluation
OptionalExpression :

MemberExpression OptionalChain

1. Let baseReference be the result of evaluating MemberExpression.

327



2. Let baseValue be ? GetValue(baseReference).
3. If baseValue is undefined or null, then
a. Return undefined.
4. Return the result of performing ChainEvaluation of OptionalChain with arguments baseValue and baseReference.

OptionalExpression :

CallExpression OptionalChain

1. Let baseReference be the result of evaluating CallExpression.
2. Let baseValue be ? GetValue(baseReference).
3. If baseValue is undefined or null, then
a. Return undefined.
4. Return the result of performing ChainEvaluation of OptionalChain with arguments baseValue and baseReference.

OptionalExpression :

OptionalExpression OptionalChain

1. Let baseReference be the result of evaluating Optional Expression.
2. Let baseValue be ? GetValue(baseReference).
3. If baseValue is undefined or null, then
a. Return undefined.
4. Return the result of performing ChainEvaluation of OptionalChain with arguments baseValue and baseReference.

13.3.9.2 Runtime Semantics: ChainEvaluation

With parameters baseValue and baseReference.
OptionalChain : ?. Arguments

1. Let thisChain be this OptionalChain.
2. Let tailCall be IsInTailPosition(thisChain).
3. Return ? EvaluateCall(baseValue, baseReference, Arquments, tailCall).

OptionalChain : ?. [ Expression 1

1. If the code matched by this OptionalChain is strict mode code, let strict be true; else let strict be false.
2. Return ? EvaluateProperty AccessWithExpressionKey(baseValue, Expression, strict).

OptionalChain : ?. IdentifierName

1. If the code matched by this OptionalChain is strict mode code, let strict be true; else let strict be false.
2. Return ? EvaluateProperty AccessWithIdentifierKey(baseValue, IdentifierName, strict).

OptionalChain : OptionalChain Arguments

Let optionalChain be OptionalChain.

Let newReference be ? ChainEvaluation of optionalChain with arguments baseValue and baseReference.
Let newValue be ? GetValue(newReference).

Let thisChain be this OptionalChain.

Let tailCall be IsInTailPosition(thisChain).

Return ? EvaluateCall(newValue, newReference, Arquments, tailCall).

SR T i

328



OptionalChain : OptionalChain [ Expression ]

SRS -

Let optionalChain be OptionalChain.

Let newReference be ? ChainEvaluation of optionalChain with arguments baseValue and baseReference.
Let newValue be ? GetValue(newReference).

If the code matched by this OptionalChain is strict mode code, let strict be true; else let strict be false.
Return ? EvaluateProperty AccessWithExpressionKey(newValue, Expression, strict).

OptionalChain : OptionalChain . IdentifierName

SUESICENS -

Let optionalChain be OptionalChain.

Let newReference be ? ChainEvaluation of optionalChain with arguments baseValue and baseReference.
Let newValue be ? GetValue(newReference).

If the code matched by this OptionalChain is strict mode code, let strict be true; else let strict be false.
Return ? EvaluateProperty AccessWithldentifierKey(newValue, IdentifierName, strict).

13.3.10 Import Calls

13.3.10.1 Runtime Semantics: Evaluation
ImportCall : import ( AssignmentExpression )

© NSO

Let referencingScriptOrModule be ! GetActiveScriptOrModule().

Let argRef be the result of evaluating AssignmentExpression.

Let specifier be ? GetValue(argRef).

Let promiseCapability be ! NewPromiseCapability(%Promise%).

Let specifierString be ToString(specifier).

If AbruptRejectPromise(specifierString, promiseCapability).

Perform ! HostimportModuleDynamically(referencingScriptOrModule, specifierString, promiseCapability).
Return promiseCapability.[[Promise]].

13.3.11 Tagged Templates

NOTE A tagged template is a function call where the arguments of the call are derived from a

TemplateLiteral (13.2.9). The actual arguments include a template object (13.2.9.3) and the values
produced by evaluating the expressions embedded within the TemplateLiteral.

13.3.11.1 Runtime Semantics: Evaluation
MemberExpression : MemberExpression TemplateLiteral

SRS .

Let tagRef be the result of evaluating MemberExpression.

Let tagFunc be ? GetValue(tagRef).

Let thisCall be this MemberExpression.

Let tailCall be IsInTailPosition(thisCall).

Return ? EvaluateCall(tagFunc, tagRef, TemplateLiteral, tailCall).

CallExpression : CallExpression TemplateLiteral

1.

Let tagRef be the result of evaluating CallExpression.

329



2. Let tagFunc be ? GetValue(tagRef).

3. Let thisCall be this CallExpression.

4. Let tailCall be IsInTailPosition(thisCall).

5. Return ? EvaluateCall(tagFunc, tagRef, TemplateLiteral, tailCall).

13.3.12 Meta Properties

13.3.12.1 Runtime Semantics: Evaluation
NewTarget : new . target

1. Return GetNewTarget().
ImportMeta : import . meta

1. Let module be ! GetActiveScriptOrModule().
2. Assert: module is a Source Text Module Record.
3. Let importMeta be module.[[ImportMeta]].
4. If importMeta is empty, then
a. Set importMeta to ! OrdinaryObjectCreate(null).
b. Let importMetaValues be ! HostGetImportMetaProperties(module).
c. For each Record { [[Key]], [[Value]] } p of importMetaValues, do
i. Perform ! CreateDataPropertyOrThrow(importMeta, p.[[Key]], p.[[Value]]).
d. Perform ! HostFinalizeImportMeta(importMeta, module).
e. Set module.[[ImportMeta]] to importMeta.
f. Return importMeta.

a. Assert: Type(importMeta) is Object.
b. Return importMeta.
13.3.12.1.1 HostGetImportMetaProperties ( moduleRecord )

The host-defined abstract operation HostGetImportMetaProperties takes argument moduleRecord (a Module Record). It
allows hosts to provide property keys and values for the object returned from import.meta.

The implementation of HostGetlmportMetaProperties must conform to the following requirements:

e It must return a List, whose values are all Records with two fields, [[Key]] and [[Value]].

e Each such Record's [[Key]] field must be a property key, i.e., IsPropertyKey must return true when applied to
it.

e Each such Record's [[Value]] field must be an ECMAScript value.

e It must always complete normally (i.e., not return an abrupt completion).

The default implementation of HostGetImportMetaProperties is to return a new empty List.

13.3.12.1.2 HostFinalizeImportMeta ( importMeta, moduleRecord )

The host-defined abstract operation HostFinalizelmportMeta takes arguments importMeta (an Object) and
moduleRecord (a Module Record). It allows hosts to perform any extraordinary operations to prepare the object
returned from import.meta.

330



Most hosts will be able to simply define HostGetlmportMetaProperties, and leave HostFinalizelmportMeta with its
default behaviour. However, HostFinalizelmportMeta provides an "escape hatch" for hosts which need to directly
manipulate the object before it is exposed to ECMAScript code.

The implementation of HostFinalizelmportMeta must conform to the following requirements:
e It must always complete normally (i.e., not return an abrupt completion).

The default implementation of HostFinalizeImportMeta is to return NormalCompletion(empty).

13.4 Update Expressions

Syntax
UpdateExpression
LeftHandSideExpression
LeftHandSideExpression [no LineTerminator here] ++
LeftHandSideExpression [no LineTerminator here] —-

++ UnaryExpression

-- UnaryExpression

13.4.1 Static Semantics: Early Errors
UpdateExpression :

LeftHandSideExpression ++
LeftHandSideExpression --

e Itis an early Syntax Error if AssignmentTargetType of LeftHandSideExpression is not simple.

UpdateExpression :
++ UnaryExpression

-- UnaryExpression

e Itis an early Syntax Error if AssignmentTargetType of UnaryExpression is not simple.

13.4.2 Postfix Increment Operator

13.4.2.1 Runtime Semantics: Evaluation
UpdateExpression : LeftHandSideExpression ++

Let Ihis be the result of evaluating LeftHandSideExpression.

Let oldValue be ? ToNumeric(? GetValue(lhs)).

Let newValue be ! Type(oldValue)::add(oldValue, Type(oldValue)::unit).
Perform ? PutValue(lhs, new Value).

Return old Value.

SRS -

13.4.3 Postfix Decrement Operator
331



13.4.3.1 Runtime Semantics: Evaluation
UpdateExpression : LeftHandSideExpression —-

Let Ihs be the result of evaluating LeftHandSideExpression.

Let oldValue be ? ToNumeric(? GetValue(lhs)).

Let newValue be ! Type(oldValue)::subtract(old Value, Type(oldValue)::unit).
Perform ? PutValue(lhs, new Value).

Return oldValue.

SRS -

13.4.4 Prefix Increment Operator

13.4.4.1 Runtime Semantics: Evaluation
UpdateExpression : ++ UnaryExpression

Let expr be the result of evaluating UnaryExpression.

Let oldValue be ? ToNumeric(? GetValue(expr)).

Let newValue be ! Type(oldValue)::add(oldValue, Type(oldValue)::unit).
Perform ? PutValue(expr, newValue).

SRS

Return newValue.

13.4.5 Prefix Decrement Operator

13.4.5.1 Runtime Semantics: Evaluation
UpdateExpression : —- UnaryExpression

Let expr be the result of evaluating UnaryExpression.

Let oldValue be ? ToNumeric(? GetValue(expr)).

Let newValue be ! Type(oldValue)::subtract(old Value, Type(old Value)::unit).
Perform ? PutValue(expr, newValue).

SRS -

Return newValue.

13.5 Unary Operators
Syntax

UnaryExpression
UpdateExpression
delete UnaryExpression
void UnaryExpression
typeof UnaryExpression

+ UnaryExpression

UnaryExpression

4

UnaryExpression
! UnaryExpression

AuwaitExpression

332



13.5.1 The delete Operator

13.5.1.1 Static Semantics: Early Errors
UnaryExpression : delete UnaryExpression

e Itis a Syntax Error if the UnaryExpression is contained in strict mode code and the derived UnaryExpression is
PrimaryExpression : IdentifierReference .

e Itis a Syntax Error if the derived UnaryExpression is
PrimaryExpression : CoverParenthesizedExpressionAndArrowParameterList
and CoverParenthesized Expression And ArrowParameterList ultimately derives a phrase that, if used in place of
UnaryExpression, would produce a Syntax Error according to these rules. This rule is recursively applied.

NOTE The last rule means that expressions such as delete (((f00))) produce early errors
because of recursive application of the first rule.

13.5.1.2 Runtime Semantics: Evaluation
UnaryExpression : delete UnaryExpression

Let ref be the result of evaluating UnaryExpression.
ReturnIfAbrupt(ref).
If ref is not a Reference Record, return true.

Ll e

If IsUnresolvableReference(ref) is true, then

a. Assert: ref.[[Strict]] is false.

b. Return true.
5. If IsPropertyReference(ref) is true, then

a. If IsSuperReference(ref) is true, throw a ReferenceError exception.

Let baseObj be ! ToObject(ref.[[Base]]).
Let deleteStatus be ? baseObj.[[Delete]](ref.[[ReferencedName]]).
If deleteStatus is false and ref.[[Strict]] is true, throw a TypeError exception.

20 T

Return deleteStatus.
6. Else,

o

Let base be ref.[[Base]].
b. Assert: base is an Environment Record.

c. Return ? base.DeleteBinding(ref.[[ReferencedName]]).

NOTE 1 When a delete operator occurs within strict mode code, a SyntaxError exception is thrown if
its UnaryExpression is a direct reference to a variable, function argument, or function name. In
addition, if a delete operator occurs within strict mode code and the property to be deleted
has the attribute { [[Configurable]]: false } (or otherwise cannot be deleted), a TypeError
exception is thrown.

NOTE 2 The object that may be created in step 5.b is not accessible outside of the above abstract operation
and the ordinary object [[Delete]] internal method. An implementation might choose to avoid the
actual creation of that object.

333



13.5.2 The void Operator

13.5.2.1 Runtime Semantics: Evaluation
UnaryExpression : void UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Perform ? GetValue(expr).
3. Return undefined.

NOTE GetValue must be called even though its value is not used because it may have observable side-
effects.

13.5.3 The typeof Operator

13.5.3.1 Runtime Semantics: Evaluation
UnaryExpression : typeof UnaryExpression

1. Let val be the result of evaluating UnaryExpression.
2. If val is a Reference Record, then
a. If IsUnresolvableReference(val) is true, return "undefined".
3. Set val to ? GetValue(val).
4. Return a String according to Table 37.

Table 37: typeof Operator Results

Type of val Result
Undefined "undefined"
Null "object"
Boolean "boolean"
Number "number"
String "string"
Symbol "symbol"
BigInt "bigint"
Object (does not implement [[Call]]) | "object"
Object (implements [[Call]]) "function"

NOTE An additional entry related to [[[sSHTMLDDA]] Internal Slot can be found in B.3.7.3.

13.5.4 Unary + Operator

334



NOTE The unary + operator converts its operand to Number type.

13.5.4.1 Runtime Semantics: Evaluation
UnaryExpression : + UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Return ? ToNumber(? GetValue(expr)).

13.5.5 Unary - Operator

NOTE The unary - operator converts its operand to Number type and then negates it. Negating +0f
produces -0f, and negating -0 produces +0p.

13.5.5.1 Runtime Semantics: Evaluation
UnaryExpression : - UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Let oldValue be ? ToNumeric(? GetValue(expr)).

3. Let T be Type(oldValue).

4. Return ! T::unaryMinus(old Value).

13.5.6 Bitwise NOT Operator (~)

13.5.6.1 Runtime Semantics: Evaluation
UnaryExpression : ~ UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Let oldValue be ? ToNumeric(? GetValue(expr)).

3. Let T be Type(oldValue).

4. Return ! T::bitwiseNOT(old Value).

13.5.7 Logical NOT Operator ( ! )

13.5.7.1 Runtime Semantics: Evaluation
UnaryExpression : ' UnaryExpression

1. Let expr be the result of evaluating UnaryExpression.
2. Let oldValue be ! ToBoolean(? GetValue(expr)).

3. If oldValue is true, return false.

4. Return true.

13.6 Exponentiation Operator

335



Syntax

ExponentiationExpression
UnaryExpression

UpdateExpression xx ExponentiationExpression

13.6.1 Runtime Semantics: Evaluation
ExponentiationExpression : UpdateExpression sx ExponentiationExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(UpdateExpression, **, ExponentiationExpression).

13.7 Multiplicative Operators
Syntax

MultiplicativeExpression
ExponentiationExpression

MultiplicativeExpression MultiplicativeOperator ExponentiationExpression

MultiplicativeOperator : one of

* / %

NOTE
e The * operator performs multiplication, producing the product of its operands.

e The / operator performs division, producing the quotient of its operands.

e The % operator yields the remainder of its operands from an implied division.

13.7.1 Runtime Semantics: Evaluation
MultiplicativeExpression : MultiplicativeExpression MultiplicativeOperator ExponentiationExpression

1. Let opText be the source text matched by MultiplicativeOperator.
2. Return ? EvaluateStringOrNumericBinaryExpression(MultiplicativeExpression, opText, ExponentiationExpression).

13.8 Additive Operators

Syntax
AdditiveExpression
MultiplicativeExpression
AdditiveExpression + MultiplicativeExpression
AdditiveExpression - MultiplicativeExpression

336



13.8.1 The Addition Operator ( +)

NOTE The addition operator either performs string concatenation or numeric addition.

13.8.1.1 Runtime Semantics: Evaluation
AdditiveExpression : AdditiveExpression + MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, +, MultiplicativeExpression).

13.8.2 The Subtraction Operator ( - )

NOTE The - operator performs subtraction, producing the difference of its operands.

13.8.2.1 Runtime Semantics: Evaluation
AdditiveExpression : AdditiveExpression - MultiplicativeExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(AdditiveExpression, =, MultiplicativeExpression).

13.9 Bitwise Shift Operators
Syntax

ShiftExpression

AdditiveExpression

ShiftExpression << AdditiveExpression
ShiftExpression >> AdditiveExpression
ShiftExpression >>> AdditiveExpression

13.9.1 The Left Shift Operator ( <<)

NOTE Performs a bitwise left shift operation on the left operand by the amount specified by the right
operand.

13.9.1.1 Runtime Semantics: Evaluation
ShiftExpression : ShiftExpression << AdditiveExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(ShiftExpression, <<, AdditiveExpression).

13.9.2 The Signed Right Shift Operator ( >>)

337



NOTE Performs a sign-filling bitwise right shift operation on the left operand by the amount specified
by the right operand.

13.9.2.1 Runtime Semantics: Evaluation
ShiftExpression : ShiftExpression >> AdditiveExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(ShiftExpression, >>, AdditiveExpression).

13.9.3 The Unsigned Right Shift Operator ( >>>)

NOTE Performs a zero-filling bitwise right shift operation on the left operand by the amount specified
by the right operand.

13.9.3.1 Runtime Semantics: Evaluation
ShiftExpression : ShiftExpression >>> AdditiveExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(ShiftExpression, >>>, AdditiveExpression).

13.10 Relational Operators

NOTE 1 The result of evaluating a relational operator is always of type Boolean, reflecting whether the
relationship named by the operator holds between its two operands.

Syntax
Relational Expression
ShiftExpression
Relational Expression < ShiftExpression
Relational Expression > ShiftExpression
Relational Expression <= ShiftExpression
Relational Expression >= ShiftExpression
Relational Expression instanceof ShiftExpression
Relational Expression in ShiftExpression
NOTE 2 The [1,) grammar parameter is needed to avoid confusing the 1n operator in a relational

expression with the 1n operator in a for statement.

13.10.1 Runtime Semantics: Evaluation
Relational Expression : RelationalExpression < ShiftExpression

1. Let Iref be the result of evaluating Relational Expression.

338



Let [val be ? GetValue(lref).

Let rref be the result of evaluating ShiftExpression.

Let rval be ? GetValue(rref).

Let r be the result of performing Abstract Relational Comparison lval < rval.
ReturnIfAbrupt(r).

If r is undefined, return false. Otherwise, return r.

NSO »N

RelationalExpression : RelationalExpression > ShiftExpression

Let Iref be the result of evaluating Relational Expression.

Let [val be ? GetValue(/ref).

Let rref be the result of evaluating ShiftExpression.

Let rval be ? GetValue(rref).

Let r be the result of performing Abstract Relational Comparison rval < lval with LeftFirst equal to false.
ReturnIfAbrupt(r).

If 7 is undefined, return false. Otherwise, return r.

NGk @ =

Relational Expression : RelationalExpression <= ShiftExpression

Let Iref be the result of evaluating Relational Expression.

Let [val be ? GetValue(lref).

Let rref be the result of evaluating ShiftExpression.

Let rval be ? GetValue(rref).

Let r be the result of performing Abstract Relational Comparison rval < lval with LeftFirst equal to false.
ReturnIfAbrupt(r).

If r is true or undefined, return false. Otherwise, return true.

NSO

RelationalExpression : RelationalExpression >= ShiftExpression

Let Iref be the result of evaluating Relational Expression.

Let [val be ? GetValue(/ref).

Let rref be the result of evaluating ShiftExpression.

Let rval be ? GetValue(rref).

Let r be the result of performing Abstract Relational Comparison lval < rval.
ReturnIfAbrupt(r).

If r is true or undefined, return false. Otherwise, return true.

NG =

RelationalExpression : RelationalExpression instanceof ShiftExpression

Let Iref be the result of evaluating Relational Expression.
Let [val be ? GetValue(lref).

Let rref be the result of evaluating ShiftExpression.

Let rval be ? GetValue(rref).

Return ? InstanceofOperator(lval, rval).

SANE SRR

RelationalExpression : RelationalExpression in ShiftExpression

1. Let Iref be the result of evaluating Relational Expression.
2. Let [val be ? GetValue(lref).

3. Let rref be the result of evaluating ShiftExpression.

4. Let rval be ? GetValue(rref).

339



5. If Type(rval) is not Object, throw a TypeError exception.
6. Return ? HasProperty(rval, ? ToPropertyKey(lval)).

13.10.2 InstanceofOperator ( V, target)

The abstract operation InstanceofOperator takes arguments V (an ECMAScript language value) and target (an
ECMAScript language value). It implements the generic algorithm for determining if V is an instance of farget either
by consulting farget's @@hasInstance method or, if absent, determining whether the value of target's "prototype"
property is present in V's prototype chain. It performs the following steps when called:

1. If Type(target) is not Object, throw a TypeError exception.
2. Let instOfHandler be ? GetMethod(target, @@haslInstance).
3. If instOfHandler is not undefined, then
a. Return ! ToBoolean(? Call(instOfHandler, target, « V »)).
4. If IsCallable(target) is false, throw a TypeError exception.
5. Return ? OrdinaryHasInstance(target, V).

NOTE Steps 4 and 5 provide compatibility with previous editions of ECMAScript that did not use a

@@hasInstance method to define the instanceof operator semantics. If an object does not
define or inherit @@hasInstance it uses the default instanceof semantics.

13.11 Equality Operators

NOTE The result of evaluating an equality operator is always of type Boolean, reflecting whether the
relationship named by the operator holds between its two operands.

Syntax
EqualityExpression
Relational Expression
EqualityExpression == Relational Expression
EqualityExpression 1= Relational Expression
EqualityExpression === RelationalExpression
EqualityExpression == Relational Expression

13.11.1 Runtime Semantics: Evaluation
EqualityExpression : EqualityExpression == Relational Expression

Let Iref be the result of evaluating EqualityExpression.

Let [val be ? GetValue(lref).

Let rref be the result of evaluating Relational Expression.

Let rval be ? GetValue(rref).

Return the result of performing Abstract Equality Comparison rval == lval.

SRS -

EqualityExpression : EqualityExpression !'= Relational Expression
340



NSO =

Let Iref be the result of evaluating EqualityExpression.

Let [val be ? GetValue(lref).

Let rref be the result of evaluating Relational Expression.

Let rval be ? GetValue(rref).

Let r be the result of performing Abstract Equality Comparison rval == [val.
ReturnIfAbrupt(r).

If r is true, return false. Otherwise, return true.

EqualityExpression : EqualityExpression === Relational Expression

SRS -

Let Iref be the result of evaluating EqualityExpression.
Let [val be ? GetValue(lref).

Let rref be the result of evaluating Relational Expression.
Let rval be ? GetValue(rref).

Return the result of performing Strict Equality Comparison rval === lval.

EqualityExpression : EqualityExpression '== Relational Expression

NS D=

Let Iref be the result of evaluating EqualityExpression.

Let [val be ? GetValue(lref).

Let rref be the result of evaluating Relational Expression.

Let rval be ? GetValue(rref).

Let r be the result of performing Strict Equality Comparison rval === lval.
Assert: r is a normal completion.

If r.[[Value]] is true, return false. Otherwise, return true.

NOTE 1 Given the above definition of equality:

e String comparison can be forced by: “${a}~ == “${b}".

e Numeric comparison can be forced by: +a == +b.

e Boolean comparison can be forced by: 'a == !b.

NOTE 2 The equality operators maintain the following invariants:

NOTE 3

e A != Bisequivalentto (A == B).

e A == Bisequivalentto B == A, except in the order of evaluation of A and B.

The equality operator is not always transitive. For example, there might be two distinct String

objects, each representing the same String value; each String object would be considered equal to

the String value by the == operator, but the two String objects would not be equal to each other.

For example:

e new String("a"™) == "a" and "a" == new String("a"™) areboth true.

e new String("a"™) == new String("a") is false.

341



NOTE 4 Comparison of Strings uses a simple equality test on sequences of code unit values. There is no
attempt to use the more complex, semantically oriented definitions of character or string equality
and collating order defined in the Unicode specification. Therefore Strings values that are
canonically equal according to the Unicode standard could test as unequal. In effect this
algorithm assumes that both Strings are already in normalized form.

13.12 Binary Bitwise Operators
Syntax

Bitwise ANDExpression
EqualityExpression

Bitwise ANDExpression & EqualityExpression

BitwiseXORExpression
Bitwise ANDExpression
BitwiseXORExpression ~ Bitwise ANDExpression

BitwiseORExpression
BitwiseXORExpression
BitwiseORExpression | BitwiseXORExpression

13.12.1 Runtime Semantics: Evaluation
Bitwise ANDExpression : BitwiseANDExpression & EqualityExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(Bitwise ANDExpression, &, EqualityExpression).
BitwiseXORExpression : BitwiseXORExpression ~ Bitwise ANDExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(BitwiseX ORExpression, A, Bitwise ANDExpression).
BitwiseORExpression : BitwiseORExpression | BitwiseXORExpression

1. Return ? EvaluateStringOrNumericBinaryExpression(BitwiseORExpression, |, BitwiseXORExpression).

13.13 Binary Logical Operators
Syntax

Logical ANDExpression
BitwiseORExpression

Logical ANDExpression && BitwiseORExpression

Logical ORExpression
Logical ANDExpression

342



Logical ORExpression |1 Logical ANDExpression

CoalesceExpression

CoalesceExpressionHead ?? BitwiseORExpression

CoalesceExpressionHead
CoalesceExpression

BitwiseORExpression

ShortCircuitExpression
Logical ORExpression

CoalesceExpression

NOTE The value produced by a && or | | operator is not necessarily of type Boolean. The value
produced will always be the value of one of the two operand expressions.

13.13.1 Runtime Semantics: Evaluation
Logical ANDExpression : Logical ANDExpression && BitwiseORExpression

Let Iref be the result of evaluating Logical ANDExpression.
Let Ival be ? GetValue(ref).

Let Ibool be ! ToBoolean(lval).

If [bool is false, return lval.

Let rref be the result of evaluating BitwiseORExpression.
Return ? GetValue(rref).

SR S i N

Logical ORExpression : LogicalORExpression || Logical ANDExpression

Let Iref be the result of evaluating Logical ORExpression.
Let [val be ? GetValue(lref).

Let [bool be ! ToBoolean(lval).

If Ibool is true, return [val.

Let rref be the result of evaluating Logical ANDExpression.
Return ? GetValue(rref).

AL SR

CoalesceExpression : CoalesceExpressionHead 27 BitwiseORExpression

1. Let Iref be the result of evaluating CoalesceExpressionHead.

2. Let lval be ? GetValue(lref).

3. If lval is undefined or null, then
a. Let rref be the result of evaluating BitwiseORExpression.
b. Return ? GetValue(rref).

4. Otherwise, return lval.

13.14 Conditional Operator (? :)

343



Syntax

Conditional Expression
ShortCircuitExpression

ShortCircuitExpression

AssignmentExpression

? AssignmentExpression

NOTE The grammar for a Conditional Expression in ECMAScript is slightly different from that in C and

Java, which each allow the second subexpression to be an Expression but restrict the third

expression to be a ConditionalExpression. The motivation for this difference in ECMAScript is to

allow an assignment expression to be governed by either arm of a conditional and to eliminate

the confusing and fairly useless case of a comma expression as the centre expression.

13.14.1 Runtime Semantics: Evaluation

ConditionalExpression : ShortCircuitExpression ? AssignmentExpression : AssignmentExpression

1. Let Iref be the result of evaluating ShortCircuitExpression.

2. Let [val be ! ToBoolean(? GetValue(lref)).

3. If lval is true, then

a. Let trueRef be the result of evaluating the first AssignmentExpression.

b. Return ? GetValue(trueRef).
4. Else,

a. Let falseRef be the result of evaluating the second AssignmentExpression.

b. Return ? GetValue(falseRef).

13.15 Assignment Operators
Syntax

AssignmentExpression
Conditional Expression
YieldExpression
ArrowFunction
AsyncArrowFunction
LeftHandSideExpression
LeftHandSideExpression
LeftHandSideExpression
LeftHandSideExpression
LeftHandSideExpression

AssignmentOperator : one of

= AssignmentExpression
AssignmentOperator AssignmentExpression
&&= AssignmentExpression

| |= AssignmentExpression

??= AssignmentExpression

*= /= %= 4= —= <<= >>= >>>= &= "= |= k%=

344



13.15.1 Static Semantics: Early Errors
AssignmentExpression : LeftHandSideExpression = AssignmentExpression

If LeftHandSideExpression is an ObjectLiteral or an ArrayLiteral, the following Early Error rules are applied:

e Itis a Syntax Error if LeftHandSideExpression is not covering an AssignmentPattern.
o All Early Error rules for AssignmentPattern and its derived productions also apply to the AssignmentPattern that
is covered by LeftHandSideExpression.

If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral, the following Early Error rule is applied:
e Itis a Syntax Error if AssignmentTargetType of LeftHandSideExpression is not simple.

AssignmentExpression :
LeftHandSideExpression AssignmentOperator AssignmentExpression
LeftHandSideExpression &&= AssignmentExpression
LeftHandSideExpression ||= AssignmentExpression

LeftHandSideExpression ??= AssignmentExpression

e Itis a Syntax Error if AssignmentTargetType of LeftHandSideExpression is not simple.

13.15.2 Runtime Semantics: Evaluation
AssignmentExpression : LeftHandSideExpression = AssignmentExpression

1. If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral, then
a. Let Iref be the result of evaluating LeftHandSideExpression.
b. ReturnIfAbrupt(lref).
c. If IsAnonymousFunctionDefinition(AssignmentExpression) and IsIdentifierRef of LeftHandSideExpression
are both true, then
i. Let rval be NamedEvaluation of AssignmentExpression with argument [ref.[[ReferencedName]].
d. Else,
i. Let rref be the result of evaluating AssignmentExpression.
ii. Let rval be ? GetValue(rref).
e. Perform ? PutValue(lref, rval).
f. Return rval.
Let assignmentPattern be the AssignmentPattern that is covered by LeftHandSideExpression.
Let rref be the result of evaluating AssignmentExpression.
Let rval be ? GetValue(rref).
Perform ? DestructuringAssignmentEvaluation of assignmentPattern using rval as the argument.

o Uk W N

Return rval.
AssignmentExpression : LeftHandSideExpression AssignmentOperator AssignmentExpression

Let Iref be the result of evaluating LeftHandSideExpression.

Let [val be ? GetValue(lref).

Let rref be the result of evaluating AssignmentExpression.

Let rval be ? GetValue(rref).

Let assignmentOpText be the source text matched by AssignmentOperator.

AL

Let opText be the sequence of Unicode code points associated with assignmentOpText in the following table:

345



7
8
9

assignmentOpText opText

*¥_ *%
*_ *
/= /
%= %
+= +
<<= <<
>>= >>
>>>= >>>
&= &
A= A

. Let r be ApplyStringOrNumericBinaryOperator(lval, opText, rval).
. Perform ? PutValue(lref, r).

. Return r.

AssignmentExpression : LeftHandSideExpression &&= AssignmentExpression

SRS -

o]

Let Iref be the result of evaluating LeftHandSideExpression.
Let [val be ? GetValue(lref).
Let [bool be ! ToBoolean(lval).
If Ibool is false, return [val.
If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsldentifierRef of LeftHandSideExpression
is true, then
a. Let rval be NamedEvaluation of AssignmentExpression with argument [ref.[[ReferencedName]].
Else,
a. Let rref be the result of evaluating AssignmentExpression.
b. Let rval be ? GetValue(rref).
Perform ? PutValue(lref, rval).

. Return rval.

AssignmentExpression : LeftHandSideExpression ||= AssignmentExpression

SRS -

Let Iref be the result of evaluating LeftHandSideExpression.
Let [val be ? GetValue(/ref).
Let Ibool be ! ToBoolean(lval).
If [bool is true, return [val.
If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression
is true, then
a. Let rval be NamedEvaluation of AssignmentExpression with argument Iref.[[ReferencedName]].
Else,
a. Let rref be the result of evaluating AssignmentExpression.
b. Let rval be ? GetValue(rref).
Perform ? PutValue(lref, rval).
Return rval.

346



AssignmentExpression : LeftHandSideExpression 7?= AssignmentExpression

Let Iref be the result of evaluating LeftHandSideExpression.
Let [val be ? GetValue(lref).
If Ival is neither undefined nor null, return lval.

WL N

If IsAnonymousFunctionDefinition(AssignmentExpression) is true and IsIdentifierRef of LeftHandSideExpression
is true, then
a. Let rval be NamedEvaluation of AssignmentExpression with argument Iref.[[ReferencedName]].

5. Else,

a. Let rref be the result of evaluating AssignmentExpression.

b. Let rval be ? GetValue(rref).
6. Perform ? PutValue(lref, rval).
. Return rval.

N

NOTE When this expression occurs within strict mode code, it is a runtime error if lref in step 1.¢, 2, 2, 2,
2 is an unresolvable reference. If it is, a ReferenceError exception is thrown. Additionally, it is a
runtime error if the Irefin step 8, 7, 7, 6 is a reference to a data property with the attribute value {
[[Writable]]: false }, to an accessor property with the attribute value { [[Set]]: undefined }, or to a
non-existent property of an object for which the IsExtensible predicate returns the value false. In
these cases a TypeError exception is thrown.

13.15.3 ApplyStringOrNumericBinaryOperator ( [val, opText, rval)

The abstract operation ApplyStringOrNumericBinaryOperator takes arguments /val (an ECMAScript language value),
opText (a sequence of Unicode code points), and rval (an ECMAScript language value). It performs the following steps
when called:

1. Assert: opText is present in the table in step 8.
2. If opText is +, then
a. Let Iprim be ? ToPrimitive(lval).
b. Let rprim be ? ToPrimitive(rval).
c. If Type(lprim) is String or Type(rprim) is String, then
i. Let Istr be ? ToString(lprim).
ii. Let rstr be ? ToString(rprim).
iii. Return the string-concatenation of Istr and rstr.
d. Set lval to Iprim.
e. Set rval to rprim.
NOTE: At this point, it must be a numeric operation.
Let [num be ? ToNumeric(lval).
Let rnum be ? ToNumeric(roal).
If Type(Inum) is different from Type(rnum), throw a TypeError exception.
Let T be Type(lnum).
Let operation be the abstract operation associated with opText in the following table:

© N @

opText operation

** T::exponentiate
* T:multiply
/ T:divide

347



% T:remainder

+ T::add

- T::subtract

<< T::leftShift

>> T::signedRightShift
>>>  T:unsignedRightShift
T::bitwise AND

A T::bitwiseXOR

| T::bitwiseOR

Ro

9. Return ? operation(lnum, rnum).

NOTE 1 No hint is provided in the calls to ToPrimitive in steps 2.a and 2.b. All standard objects except
Date objects handle the absence of a hint as if number were given; Date objects handle the
absence of a hint as if string were given. Exotic objects may handle the absence of a hint in some
other manner.

NOTE 2 Step 2.c differs from step 3 of the Abstract Relational Comparison algorithm, by using the logical-
or operation instead of the logical-and operation.

13.15.4 EvaluateStringOrNumericBinaryExpression ( leftOperand, opText, rightOperand )

The abstract operation EvaluateStringOrNumericBinaryExpression takes arguments leftOperand (a Parse Node), opText
(a sequence of Unicode code points), and rightOperand (a Parse Node). It performs the following steps when called:

Let Iref be the result of evaluating leftOperand.

Let [val be ? GetValue(lref).

Let rref be the result of evaluating rightOperand.

Let rval be ? GetValue(rref).

Return ? ApplyStringOrNumericBinaryOperator(lval, opText, rval).

SRS

13.15.5 Destructuring Assignment

Supplemental Syntax

In certain circumstances when processing an instance of the production
AssignmentExpression : LeftHandSideExpression = AssignmentExpression
the interpretation of LeftHandSideExpression is refined using the following grammar:

AssignmentPattern
Object AssignmentPattern

ArrayAssignmentPattern

ObjectAssignmentPattern
{1}

348



{ AssignmentRestProperty
{ AssignmentPropertyList
{ AssignmentPropertyList

ArrayAssignmentPattern
[ Elision AssignmentRestElement
[ AssignmentElementList

[ AssignmentElementList

AssignmentRestProperty

... DestructuringAssignmentTarget

AssignmentPropertyList
AssignmentProperty
AssignmentPropertyList

AssignmentElementList
AssignmentElisionElement

AssignmentElementList

AssignmentElisionElement

}

}
, AssignmentRestProperty

1

, Elision AssignmentRestElement

, AssignmentProperty

, AssignmentElisionElement

Elision AssignmentElement
AssignmentProperty
IdentifierReference Initializer
PropertyName : AssignmentElement
AssignmentElement

DestructuringAssignmentTarget

AssignmentRestElement

... DestructuringAssignmentTarget

DestructuringAssignmentTarget
LeftHandSideExpression

Initializer

13.15.5.1 Static Semantics: Early Errors
AssignmentProperty : ldentifierReference Initializer

e Itis a Syntax Error if AssignmentTargetType of IdentifierReference is not simple.
AssignmentRestProperty : ... DestructuringAssignmentTarget
e Itis a Syntax Error if DestructuringAssignmentTarget is an ArrayLiteral or an ObjectLiteral.

DestructuringAssignmentTarget : LeftHandSideExpression

349



If LeftHandSideExpression is an ObjectLiteral or an ArrayLiteral, the following Early Error rules are applied:

o Itis a Syntax Error if LeftHandSideExpression is not covering an AssignmentPattern.

o All Early Error rules for AssignmentPattern and its derived productions also apply to the AssignmentPattern that

is covered by LeftHandSideExpression.
If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral, the following Early Error rule is applied:

e Itis a Syntax Error if AssignmentTargetType of LeftHandSideExpression is not simple.

13.15.5.2 Runtime Semantics: DestructuringAssignmentEvaluation

With parameter value.
ObjectAssignmentPattern : { }

1. Perform ? RequireObjectCoercible(value).
2. Return NormalCompletion(empty).

ObjectAssignmentPattern :
{ AssignmentPropertyList }
{ AssignmentPropertyList , }

1. Perform ? RequireObjectCoercible(value).

2. Perform ? PropertyDestructuringAssignmentEvaluation for AssignmentPropertyList using value as the
argument.

3. Return NormalCompletion(empty).

ArrayAssignmentPattern : [ 1]

1. Let iteratorRecord be ? Getlterator(value).

2. Return ? IteratorClose(iteratorRecord, NormalCompletion(empty)).
ArrayAssignmentPattern : [ Elision 1

1. Let iteratorRecord be ? Getlterator(value).

2. Let result be IteratorDestructuring AssignmentEvaluation of Elision with argument iteratorRecord.
3. If iteratorRecord.[[Donel]] is false, return ? IteratorClose(iteratorRecord, result).

4. Return result.

ArrayAssignmentPattern : [ Elision AssignmentRestElement ]

1. Let iteratorRecord be ? Getlterator(value).
2. If Elision is present, then
a. Let status be IteratorDestructuringAssignmentEvaluation of Elision with argument iteratorRecord.
b. If status is an abrupt completion, then
i. Assert: iteratorRecord.[[Done]] is true.
ii. Return Completion(status).
3. Let result be IteratorDestructuring AssignmentEvaluation of AssignmentRestElement with argument
iteratorRecord.
4. If iteratorRecord.[[Done]] is false, return ? IteratorClose(iteratorRecord, result).
5. Return result.

350



ArrayAssignmentPattern : [ AssignmentElementList ]

1. Let iteratorRecord be ? Getlterator(value).

2. Let result be IteratorDestructuringAssignmentEvaluation of AssignmentElementList with argument
iteratorRecord.

3. If iteratorRecord.[[Donel]] is false, return ? IteratorClose(iteratorRecord, result).

4. Return result.

ArrayAssignmentPattern : [ AssignmentElementList , Elision AssignmentRestElement 1

1. Let iteratorRecord be ? Getlterator(value).
2. Let status be IteratorDestructuringAssignmentEvaluation of AssignmentElementList with argument
iteratorRecord.
3. If status is an abrupt completion, then
a. If iteratorRecord.[[Donel]] is false, return ? IteratorClose(iteratorRecord, status).
b. Return Completion(status).
4. If Elision is present, then
a. Set status to the result of performing IteratorDestructuringAssignmentEvaluation of Elision with
iteratorRecord as the argument.
b. If status is an abrupt completion, then
i. Assert: iteratorRecord.[[Done]] is true.
ii. Return Completion(status).
5. If AssignmentRestElement is present, then
a. Set status to the result of performing IteratorDestructuringAssignmentEvaluation of
AssignmentRestElement with iteratorRecord as the argument.
6. If iteratorRecord.[[Done]] is false, return ? IteratorClose(iteratorRecord, status).
7. Return Completion(status).

ObjectAssignmentPattern : { AssignmentRestProperty }

1. Perform ? RequireObjectCoercible(value).

2. Let excludedNames be a new empty List.

3. Return the result of performing RestDestructuringAssignmentEvaluation of AssignmentRestProperty with value
and excludedNames as the arguments.

ObjectAssignmentPattern : { AssignmentPropertyList , AssignmentRestProperty }

1. Perform ? RequireObjectCoercible(value).

2. Let excludedNames be ? PropertyDestructuringAssignmentEvaluation of AssignmentPropertyList with argument
value.

3. Return the result of performing RestDestructuringAssignmentEvaluation of AssignmentRestProperty with
arguments value and excludedNames.

13.15.5.3 Runtime Semantics: PropertyDestructuringAssignmentEvaluation

With parameter value.

NOTE The following operations collect a list of all destructured property names.

AssignmentPropertyList : AssignmentPropertyList , AssignmentProperty
351



1. Let propertyNames be ? PropertyDestructuringAssignmentEvaluation of AssignmentPropertyList with argument
value.

2. Let nextNames be ? PropertyDestructuringAssignmentEvaluation of AssignmentProperty with argument value.

3. Append each item in nextNames to the end of propertyNames.

4. Return propertyNames.

AssignmentProperty : IdentifierReference Initializer

Let P be StringValue of IdentifierReference.

Let Iref be ? ResolveBinding(P).

Let v be ? GetV(value, P).

If Initializer. . is present and v is undefined, then

L

a. If IsAnonymousFunctionDefinition(Initializer) is true, then
i. Set v to the result of performing NamedEvaluation for Initializer with argument P.
b. Else,
i. Let defaultValue be the result of evaluating Initializer.
ii. Setv to ? GetValue(defaultValue).
5. Perform ? PutValue(lref, v).
6. Return a List whose sole element is P.

AssignmentProperty : PropertyName : AssignmentElement

1. Let name be the result of evaluating PropertyName.

2. ReturnIfAbrupt(name).

3. Perform ? KeyedDestructuringAssignmentEvaluation of AssignmentElement with value and name as the
arguments.

4. Return a List whose sole element is name.

13.15.5.4 Runtime Semantics: RestDestructuringAssignmentEvaluation

With parameters value and excludedNames.
AssignmentRestProperty : ... DestructuringAssignmentInrget

Let Iref be the result of evaluating DestructuringAssignmentTarget.
ReturnIfAbrupt(lref).

Let restObj be ! OrdinaryObjectCreate(%Object.prototype%).
Perform ? CopyDataProperties(restObj, value, excludedNames).
Return PutValue(lref, restObyj).

SRS -

13.15.5.5 Runtime Semantics: IteratorDestructuringAssignmentEvaluation

With parameter iteratorRecord.
AssignmentElementList : AssignmentElisionElement

1. Return the result of performing IteratorDestructuringAssignmentEvaluation of AssignmentElisionElement using
iteratorRecord as the argument.

AssignmentElementList : AssignmentElementList , AssignmentElisionElement

352



1. Perform ? IteratorDestructuringAssignmentEvaluation of AssignmentElementList using iteratorRecord as the

argument.
2. Return the result of performing IteratorDestructuringAssignmentEvaluation of AssignmentElisionElement using

iteratorRecord as the argument.
AssignmentElisionElement : AssignmentElement

1. Return the result of performing IteratorDestructuringAssignmentEvaluation of AssignmentElement with

iteratorRecord as the argument.
AssignmentElisionElement : Elision AssignmentElement

1. Perform ? IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as the argument.
2. Return the result of performing IteratorDestructuringAssignmentEvaluation of AssignmentElement with

iteratorRecord as the argument.
Elision : ,

1. If iteratorRecord.[[Done]] is false, then
a. Let next be IteratorStep(iteratorRecord).
b. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
c. ReturnIfAbrupt(next).
d. If next is false, set iteratorRecord.[[Done]] to true.

2. Return NormalCompletion(empty).
Elision : Elision ,

1. Perform ? IteratorDestructuringAssignmentEvaluation of Elision with iteratorRecord as the argument.
2. If iteratorRecord.[[Done]] is false, then

a. Let next be IteratorStep(iteratorRecord).

b. If next is an abrupt completion, set iteratorRecord.[[Done]] to true.

c¢. ReturnIfAbrupt(next).

d. If next is false, set iteratorRecord.[[Done]] to true.

3. Return NormalCompletion(empty).

AssignmentElement : DestructuringAssignmentTarget Initializer

1. If DestructuringAssignmentTarget is neither an ObjectLiteral nor an ArrayLiteral, then
a. Let Iref be the result of evaluating DestructuringAssignmentTarget.
b. ReturnlfAbrupt(lref).
2. If iteratorRecord.[[Done]] is false, then
a. Let next be IteratorStep(iteratorRecord).
If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
. ReturnIfAbrupt(next).
. If next is false, set iteratorRecord.[[Done]] to true.
Else,
i. Let value be IteratorValue(next).
ii. If value is an abrupt completion, set iteratorRecord.[[Done]] to true.

b oo

iii. ReturnIfAbrupt(value).
3. If iteratorRecord.[[Done]] is true, let value be undefined.
4. If Initializer is present and value is undefined, then

353



a. If IsAnonymousFunctionDefinition(Initializer) is true and IsIdentifierRef of
DestructuringAssignmentTarget is true, then
i. Let v be ? NamedEvaluation of Initializer with argument Iref.[[ReferencedNamel]].
b. Else,
i. Let defaultValue be the result of evaluating Initializer.
ii. Let v be ? GetValue(defaultValue).
5. Else, let v be value.
6. If DestructuringAssignmentTarget is an ObjectLiteral or an ArrayLiteral, then
a. Let nested AssignmentPattern be the AssignmentPattern that is covered by DestructuringAssignmentTarget.
b. Return the result of performing DestructuringAssignmentEvaluation of nested AssignmentPattern with v
as the argument.
7. Return ? PutValue(lref, v).

NOTE Left to right evaluation order is maintained by evaluating a DestructuringAssignmentTarget that is
not a destructuring pattern prior to accessing the iterator or evaluating the Initializer.

AssignmentRestElement : ... DestructuringAssignmentTarget

1. If DestructuringAssignmentTarget is neither an ObjectLiteral nor an ArrayLiteral, then
a. Let Iref be the result of evaluating DestructuringAssignmentTarget.
b. ReturnIfAbrupt(lref).
2. Let Abe ! ArrayCreate(0).
3. Let n be 0.
4. Repeat, while iteratorRecord.[[Done]] is false,
a. Let next be IteratorStep(iteratorRecord).
If next is an abrupt completion, set iteratorRecord.[[Done]] to true.
ReturnIfAbrupt(next).
If next is false, set iteratorRecord.[[Done]] to true.
Else,
i. Let nextValue be IteratorValue(next).

o &0 T

ii. If nextValue is an abrupt completion, set iteratorRecord.[[Done]] to true.
iii. ReturnIfAbrupt(nextValue).
iv. Perform ! CreateDataPropertyOrThrow(A, ! ToString(F(n)), nextValue).
v. Setnton+1.
5. If DestructuringAssignmentTarget is neither an ObjectLiteral nor an ArrayLiteral, then
a. Return ? PutValue(lref, A).
6. Let nested AssignmentPattern be the AssignmentPattern that is covered by DestructuringAssignmentTarget.
7. Return the result of performing DestructuringAssignmentEvaluation of nested AssignmentPattern with A as the
argument.

13.15.5.6 Runtime Semantics: KeyedDestructuringAssignmentEvaluation

With parameters value and propertyName.
AssignmentElement : DestructuringAssignmentTarget Initializer

1. If DestructuringAssignmentTarget is neither an ObjectLiteral nor an ArrayLiteral, then
a. Let Iref be the result of evaluating DestructuringAssignmentTarget.

354


file:///Users/ljharb/Dropbox/git/ljharb-ecma262.git/out/index.html#%F0%9D%94%BD

b. ReturnIfAbrupt(iref).
2. Let v be ? GetV(value, propertyName).
3. If Initializer is present and v is undefined, then
a. If IsAnonymousFunctionDefinition(Initializer) and IsIdentifierRef of DestructuringAssignmentTarget are
both true, then
i. Let rhsValue be ? NamedEvaluation of Initializer with argument Iref.[[ReferencedName]].
b. Else,
i. Let defaultValue be the result of evaluating Initializer.
ii. Let rhsValue be ? GetValue(defaultValue).
4. Else, let rhsValue be v.
5. If DestructuringAssignmentTarget is an ObjectLiteral or an ArrayLiteral, then
a. Let assignmentPattern be the AssignmentPattern that is covered by DestructuringAssignmentTarget.
b. Return the result of performing DestructuringAssignmentEvaluation of assignmentPattern with rhsValue
as the argument.
6. Return ? PutValue(lref, rhsValue).

13.16 Comma Operator ( , )

Syntax
Expression
AssignmentExpression
Expression , AssignmentExpression

13.16.1 Runtime Semantics: Evaluation
Expression : Expression , AssignmentExpression

1. Let Iref be the result of evaluating Expression.

2. Perform ? GetValue(/ref).

3. Let rref be the result of evaluating AssignmentExpression.
4. Return ? GetValue(rref).

NOTE GetValue must be called even though its value is not used because it may have observable side-
effects.

14 ECMAScript Language: Statements and Declarations

Syntax
Statement
BlockStatement
VariableStatement

355



EmptyStatement

ExpressionStatement
IfStatement
BreakableStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
LabelledStatement
ThrowStatement
TryStatement
DebuggerStatement

Declaration

HoistableDeclaration
ClassDeclaration

LexicalDeclaration

HoistableDeclaration

FunctionDeclaration
GeneratorDeclaration

AsyncFunctionDeclaration

AsyncGeneratorDeclaration

BreakableStatement

IterationStatement

SwitchStatement

14.1 Statement Semantics

14.1.1 Runtime Semantics: Evaluation

HoistableDeclaration :

GeneratorDeclaration

AsyncFunctionDeclaration

AsyncGeneratorDeclaration

1. Return NormalCompletion(empty).
HoistableDeclaration : FunctionDeclaration

1. Return the result of evaluating FunctionDeclaration.

BreakableStatement :

356



IterationStatement

SwitchStatement

1. Let newLabelSet be a new empty List.
2. Return the result of performing LabelledEvaluation of this BreakableStatement with argument newLabelSet.

14.2 Block

Syntax
BlockStatement
Block
Block
{ StatementList }
StatementList
StatementListItem
StatementList StatementListItem
StatementListItem
Statement
Declaration

14.2.1 Static Semantics: Early Errors
Block : { StatementList }

e Itis a Syntax Error if the LexicallyDeclaredNames of StatementList contains any duplicate entries.
e Itis a Syntax Error if any element of the LexicallyDeclaredNames of StatementList also occurs in the
VarDeclaredNames of StatementList.

14.2.2 Runtime Semantics: Evaluation
Block : { }

1. Return NormalCompletion(empty).
Block : { StatementList }

Let oldEnv be the running execution context's LexicalEnvironment.
Let blockEnv be NewDeclarativeEnvironment(oldEnv).

Perform BlockDeclarationInstantiation(StatementList, blockEnv).

Set the running execution context's LexicalEnvironment to blockEnov.
Let blockValue be the result of evaluating StatementList.

Set the running execution context's LexicalEnvironment to oldEnv.
Return blockValue.

NSO e

357



NOTE 1 No matter how control leaves the Block the LexicalEnvironment is always restored to its former
state.

StatementList : StatementList StatementListltem

1. Let sl be the result of evaluating StatementList.

2. ReturnIfAbrupt(sl).

3. Let s be the result of evaluating StatementListItem.
4. Return Completion(UpdateEmpty(s, s)).

NOTE 2 The value of a StatementList is the value of the last value-producing item in the StatementList. For
example, the following calls to the eval function all return the value 1:

eval
eval
eval

14.2.3 BlockDeclarationInstantiation ( code, env )

NOTE When a Block or CaseBlock is evaluated a new declarative Environment Record is created and
bindings for each block scoped variable, constant, function, or class declared in the block are

instantiated in the Environment Record.

The abstract operation BlockDeclarationInstantiation takes arguments code (a Parse Node) and env (an Environment
Record). code is the Parse Node corresponding to the body of the block. env is the Environment Record in which
bindings are to be created. It performs the following steps when called:

1. Assert: env is a declarative Environment Record.
2. Let declarations be the LexicallyScopedDeclarations of code.
3. For each element d of declarations, do
a. For each element dn of the BoundNames of d, do
i. If IsConstantDeclaration of d is true, then
1. Perform ! env.CreatelmmutableBinding(dn, true).
ii. Else,
1. Perform ! env.CreateMutableBinding(dn, false). NOTE: This step is replaced in section
B.3.3.6.
b. If d is a FunctionDeclaration, a GeneratorDeclaration, an AsyncFunctionDeclaration, or an
AsyncGeneratorDeclaration, then
i. Let fnn be the sole element of the BoundNames of d.
ii. Let fo be InstantiateFunctionObject of d with argument env.
iii. Perform env.InitializeBinding(f#, fo). NOTE: This step is replaced in section B.3.3.6.

14.3 Declarations and the Variable Statement

358



14.3.1 Let and Const Declarations

NOTE let and const declarations define variables that are scoped to the running execution context's
LexicalEnvironment. The variables are created when their containing Environment Record is
instantiated but may not be accessed in any way until the variable's LexicalBinding is evaluated. A
variable defined by a LexicalBinding with an Initializer is assigned the value of its Initializer's
AssignmentExpression when the LexicalBinding is evaluated, not when the variable is created. If a
LexicalBinding in a Let declaration does not have an Initializer the variable is assigned the value
undefined when the LexicalBinding is evaluated.

Syntax

LexicalDeclaration

LetOrConst BindingList ;

LetOrConst :
let
const
BindingList
LexicalBinding
BindingList , LexicalBinding

LexicalBinding
Bindingldentifier Initializer

BindingPattern Initializer
14.3.1.1 Static Semantics: Early Errors
LexicalDeclaration : LetOrConst BindingList ;

e Itis a Syntax Error if the BoundNames of BindingList contains "let".
e Itis a Syntax Error if the BoundNames of BindingList contains any duplicate entries.

LexicalBinding : Bindingldentifier Initializer
e Itis a Syntax Error if Initializer is not present and IsConstantDeclaration of the LexicalDeclaration containing this

LexicalBinding is true.

14.3.1.2 Runtime Semantics: Evaluation
LexicalDeclaration : LetOrConst BindingList ;

1. Let next be the result of evaluating BindingList.
2. ReturnlfAbrupt(next).
3. Return NormalCompletion(empty).

BindingList : BindingList , LexicalBinding
1. Let next be the result of evaluating BindingList.

359



2. ReturnIfAbrupt(next).
3. Return the result of evaluating LexicalBinding.

LexicalBinding : Bindingldentifier

1. Let Ihs be ResolveBinding(StringValue of Bindingldentifier).
2. Return InitializeReferencedBinding(/his, undefined).

NOTE A static semantics rule ensures that this form of LexicalBinding never occurs in a const
declaration.

LexicalBinding : Bindingldentifier Initializer

1. Let bindingld be StringValue of Bindingldentifier.
2. Let Ihs be ResolveBinding(bindingld).
3. If IsAnonymousFunctionDefinition(Initializer) is true, then
a. Let value be NamedEvaluation of Initializer with argument bindingld.
4. Else,
a. Let rhs be the result of evaluating Initializer.
b. Let value be ? GetValue(rhs).
5. Return InitializeReferencedBinding(lhs, value).

LexicalBinding : BindingPattern Initializer

1. Let rhs be the result of evaluating Initializer.

2. Let value be ? GetValue(rhs).

3. Let env be the running execution context's LexicalEnvironment.

4. Return the result of performing BindinglInitialization for BindingPattern using value and env as the arguments.

14.3.2 Variable Statement

NOTE A var statement declares variables that are scoped to the running execution context's
VariableEnvironment. Var variables are created when their containing Environment Record is
instantiated and are initialized to undefined when created. Within the scope of any
VariableEnvironment a common Bindingldentifier may appear in more than one
VariableDeclaration but those declarations collectively define only one variable. A variable defined
by a VariableDeclaration with an Initializer is assigned the value of its Initializer's
AssignmentExpression when the VariableDeclaration is executed, not when the variable is created.

Syntax

VariableStatement

var VariableDeclarationList ;

VariableDeclarationList
VariableDeclaration

VariableDeclarationList , VariableDeclaration

360



VariableDeclaration
Bindingldentifier Initializer

BindingPattern Initializer

14.3.2.1 Runtime Semantics: Evaluation
VariableStatement : var VariableDeclarationList ;

1. Let next be the result of evaluating VariableDeclarationList.
2. ReturnlfAbrupt(next).
3. Return NormalCompletion(empty).

VariableDeclarationList : VariableDeclarationList , VariableDeclaration

1. Let next be the result of evaluating VariableDeclarationList.
2. ReturnIfAbrupt(next).
3. Return the result of evaluating VariableDeclaration.

VariableDeclaration : Bindingldentifier
1. Return NormalCompletion(empty).
VariableDeclaration : Bindingldentifier Initializer

1. Let bindingld be StringValue of Bindingldentifier.
2. Let lhs be ? ResolveBinding(bindingld).
3. If IsAnonymousFunctionDefinition(Initializer) is true, then
a. Let value be NamedEvaluation of Initializer with argument bindingld.
4. Else,
a. Let rhis be the result of evaluating Initializer.
b. Let value be ? GetValue(rhs).
5. Return ? PutValue(lhs, value).

NOTE If a VariableDeclaration is nested within a with statement and the Bindingldentifier in the
VariableDeclaration is the same as a property name of the binding object of the with statement's
object Environment Record, then step 5 will assign value to the property instead of assigning to
the VariableEnvironment binding of the Identifier.

VariableDeclaration : BindingPattern Initializer

1. Let rhs be the result of evaluating Initializer.

2. Let rval be ? GetValue(rhs).

3. Return the result of performing Bindinglnitialization for BindingPattern passing rval and undefined as
arguments.

14.3.3 Destructuring Binding Patterns

Syntax
BindingPattern

361



ObjectBindingPattern
ArrayBindingPattern

ObjectBindingPattern

{1}
{ BindingRestProperty

{ BindingPropertyList
{ BindingPropertyList

ArrayBindingPattern
[ Elision BindingRestElement
[ BindingElementList
[ BindingElementList

BindingRestProperty
... Bindingldentifier

BindingPropertyList
BindingProperty
BindingPropertyList

BindingElementList
BindingElisionElement

BindingElementList

BindingElisionElement

Elision BindingElement

BindingProperty
SingleNameBinding
PropertyName

BindingElement
SingleNameBinding

}

}
, BindingRestProperty

]
, Elision BindingRestElement

, BindingProperty

, BindingElisionElement

: BindingElement

BindingPattern Initializer

SingleNameBinding
Bindingldentifier

BindingRestElement
... Bindingldentifier
... BindingPattern

Initializer

14.3.3.1 Runtime Semantics: PropertyBindinglInitialization

With parameters value and environment.

362



NOTE These collect a list of all bound property names rather than just empty completion.

BindingPropertyList : BindingPropertyList , BindingProperty

1. Let boundNames be ? PropertyBindinglnitialization of BindingPropertyList with arguments value and
environment.

2. Let nextNames be ? PropertyBindingInitialization of BindingProperty with arguments value and environment.

3. Append each item in nextNames to the end of boundNames.

4. Return boundNames.

BindingProperty : SingleNameBinding

1. Let name be the string that is the only element of BoundNames of SingleNameBinding.

2. Perform ? KeyedBindinglInitialization for SingleNameBinding using value, environment, and name as the
arguments.

3. Return a List whose sole element is name.

BindingProperty : PropertyName : BindingElement

1. Let P be the result of evaluating PropertyName.

2. ReturnIfAbrupt(P).

3. Perform ? KeyedBindinglnitialization of BindingElement with value, environment, and P as the arguments.
4. Return a List whose sole element is P.

14.3.3.2 Runtime Semantics: RestBindinglInitialization

With parameters value, environment, and excludedNames.
BindingRestProperty : ... Bindingldentifier

Let Ihs be ? ResolveBinding(StringValue of Bindingldentifier, environment).
Let restObj be ! OrdinaryObjectCreate(%ODbject.prototype%).

Perform ? CopyDataProperties(restObj, value, excludedNames).

If environment is undefined, return PutValue(lks, restObyj).

Return InitializeReferencedBinding(lhs, restObj).

SRS -

14.3.3.3 Runtime Semantics: KeyedBindinglInitialization

With parameters value, environment, and propertyName.

NOTE When undefined is passed for environment it indicates that a PutValue operation should be used
to assign the initialization value. This is the case for formal parameter lists of non-strict functions.
In that case the formal parameter bindings are preinitialized in order to deal with the possibility
of multiple parameters with the same name.

BindingElement : BindingPattern Initializer

1. Let v be ? GetV(value, propertyName).
2. If Initializer is present and v is undefined, then

363



a. Let defaultValue be the result of evaluating Initializer.
b. Set v to ? GetValue(defaultValue).
3. Return the result of performing Bindinglnitialization for BindingPattern passing v and environment as
arguments.

SingleNameBinding : Bindingldentifier Initializer

Let bindingld be StringValue of Bindingldentifier.
Let Ihs be ? ResolveBinding(bindingld, environment).
Let v be ? GetV(value, propertyName).

Ll e

If Initializer is present and v is undefined, then
a. If IsAnonymousFunctionDefinition(Initializer) is true, then
i. Set v to the result of performing NamedEvaluation for Initializer with argument bindingld.
b. Else,
i. Let defaultValue be the result of evaluating Initializer.
ii. Set v to ? GetValue(defaultValue).
5. If environment is undefined, return ? PutValue(lhs, v).
6. Return InitializeReferencedBinding(lhs, v).

14.4 Empty Statement
Syntax
EmptyStatement :

14.4.1 Runtime Semantics: Evaluation
EmptyStatement : ;

1. Return NormalCompletion(empty).

14.5 Expression Statement
Syntax

ExpressionStatement

[lookahead €& { {, function, async [no LineTerminator here] function, class, let [ }]
Expression ;

364



NOTE An ExpressionStatement cannot start with a U+007B (LEFT CURLY BRACKET) because that might
make it ambiguous with a Block. An ExpressionStatement cannot start with the function or
class keywords because that would make it ambiguous with a FunctionDeclaration, a
GeneratorDeclaration, or a ClassDeclaration. An ExpressionStatement cannot start with
async function because that would make it ambiguous with an AsyncFunctionDeclaration
or a AsyncGeneratorDeclaration. An ExpressionStatement cannot start with the two token sequence

let [ because that would make it ambiguous with a Let LexicalDeclaration whose first
LexicalBinding was an ArrayBindingPattern.

14.5.1 Runtime Semantics: Evaluation
ExpressionStatement : Expression ;

1. Let exprRef be the result of evaluating Expression.
2. Return ? GetValue(exprRef).

14.6 The 1f Statement

Syntax
IfStatement
if ( Expression ) Statement else
Statement
if ( Expression ) Statement [lookahead = else]
NOTE The lookahead-restriction [lookahead = el se] resolves the classic "dangling else" problem in the

usual way. That is, when the choice of associated 1 f is otherwise ambiguous, the else is

associated with the nearest (innermost) of the candidate 1 fs

14.6.1 Static Semantics: Early Errors
IfStatement :

if ( Expression ) Statement else Statement

if ( Expression ) Statement

e Itis a Syntax Error if IsLabelledFunction(Statement) is true.

NOTE It is only necessary to apply this rule if the extension specified in B.3.2 is implemented.

14.6.2 Runtime Semantics: Evaluation
IfStatement : if ( Expression ) Statement else Statement

1. Let exprRef be the result of evaluating Expressiorn.
2. Let exprValue be ! ToBoolean(? GetValue(exprRef)).
3. If exprValue is true, then

365



a. Let stmtCompletion be the result of evaluating the first Statement.
4. Else,

a. Let stmtCompletion be the result of evaluating the second Statement.
5. Return Completion(UpdateEmpty(stmtCompletion, undefined)).

IfStatement : if ( Expression ) Statement

1. Let exprRef be the result of evaluating Expression.
2. Let exprValue be ! ToBoolean(? GetValue(exprRef)).
3. If exprValue is false, then
a. Return NormalCompletion(undefined).
4. Else,
a. Let stmtCompletion be the result of evaluating Statement.
b. Return Completion(UpdateEmpty(stmtCompletion, undefined)).

14.7 Iteration Statements

Syntax
IterationStatement
DoWhileStatement
WhileStatement
ForStatement
ForInOfStatement

14.7.1 Semantics

14.7.1.1 LoopContinues ( completion, labelSet )

The abstract operation LoopContinues takes arguments completion and labelSet. It performs the following steps when
called:

If completion.[[Type]] is normal, return true.

If completion.[[Type]] is not continue, return false.

If completion.[[Target]] is empty, return true.
[

If completion.[[Target]] is an element of labelSet, return true.

Ok W=

Return false.

NOTE Within the Statement part of an IterationStatement a ContinueStatement may be used to begin a new

iteration.

14.7.1.2 Runtime Semantics: LoopEvaluation
With parameter labelSet.
IterationStatement : DoWhileStatement

366



1. Return ? DoWhileLoopEvaluation of DoWhileStatement with argument labelSet.
IterationStatement : WhileStatement

1. Return ? WhileLoopEvaluation of WhileStatement with argument labelSet.
IterationStatement : ForStatement

1. Return ? ForLoopEvaluation of ForStatement with argument labelSet.
IterationStatement : ForInOfStatement

1. Return ? ForInOfLoopEvaluation of ForInOfStatement with argument labelSet.

14.7.2 The do-wh1ile Statement

Syntax

DoWhileStatement

do Statement while ( Expression ) i

14.7.2.1 Static Semantics: Early Errors
DoWhileStatement : do Statement while ( Expression ) ;

e Itis a Syntax Error if IsLabelledFunction(Statement) is true.

NOTE It is only necessary to apply this rule if the extension specified in B.3.2 is implemented.

14.7.2.2 Runtime Semantics: DoWhileLoopEvaluation

With parameter labelSet.
DoWhileStatement : do Statement while ( Expression ) ;

1. Let V be undefined.
2. Repeat,
a. Let stmtResult be the result of evaluating Statement.
If LoopContinues(stmtResult, labelSet) is false, return Completion(UpdateEmpty(stmtResult, V)).
If stmtResult.[[Value]] is not empty, set V to stmtResult.[[Value]].
Let exprRef be the result of evaluating Expression.
Let exprValue be ? GetValue(exprRef).
If ! ToBoolean(exprValue) is false, return NormalCompletion(V).

-0 24 n T

14.7.3 The while Statement

Syntax

WhileStatement

while ( Expression ) Statement

367



14.7.3.1 Static Semantics: Early Errors
WhileStatement : while ( Expression ) Statement

e Itis a Syntax Error if IsLabelledFunction(Statement) is true.

NOTE It is only necessary to apply this rule if the extension specified in B.3.2 is implemented.

14.7.3.2 Runtime Semantics: WhileLoopEvaluation

With parameter labelSet.
WhileStatement : while ( Expression ) Statement

1. Let V be undefined.
2. Repeat,
a. Let exprRef be the result of evaluating Expression.
Let exprValue be ? GetValue(exprRef).
If ! ToBoolean(exprValue) is false, return NormalCompletion(V).
Let stmtResult be the result of evaluating Statement.
If LoopContinues(stmtResult, labelSet) is false, return Completion(UpdateEmpty(stmtResult, V)).
If stmtResult.[[Value]] is not empty, set V to stmtResult.[[Value]].

-~ 0 240 T

14.7.4 The for Statement

Syntax
ForStatement

for ( [lookahead = let [] Expression ; Expression
Expression ) Statement

for ( var VariableDeclarationList ; Expression ;
Expression ) Statement

for ( LexicalDeclaration Expression f
Expression ) Statement

14.7.4.1 Static Semantics: Early Errors
ForStatement :

for ( Expression ; Expression ; Expression ) Statement
for ( var VariableDeclarationList ; Expression ; Expression ) Statement
for ( LexicalDeclaration Expression ; Expression ) Statement

e Itis a Syntax Error if IsLabelledFunction(Statement) is true.
NOTE It is only necessary to apply this rule if the extension specified in B.3.2 is implemented.

ForStatement : for ( LexicalDeclaration Expression ; Expression ) Statement

368



e Itis a Syntax Error if any element of the BoundNames of LexicalDeclaration also occurs in the
VarDeclaredNames of Statement.

14.7.4.2 Runtime Semantics: ForLoopEvaluation

With parameter labelSet.

ForStatement : for ( Expression ; Expression ; Expression ) Statement

1. If the first Expression is present, then
a. Let exprRef be the result of evaluating the first Expression.
b. Perform ? GetValue(exprRef).
2. Return ? ForBodyEvaluation(the second Expression, the third Expression, Statement, « », labelSet).

ForStatement : for ( var VariableDeclarationList ; Expression ; Expression ) Statement

1. Let varDcl be the result of evaluating VariableDeclarationList.
2. ReturnlfAbrupt(varDcl).
3. Return ? ForBodyEvaluation(the first Expression, the second Expression, Statement, « », labelSet).

ForStatement : for ( LexicalDeclaration Expression ; Expression ) Statement

Let oldEnv be the running execution context's LexicalEnvironment.
Let loopEnv be NewDeclarativeEnvironment(oldEnv).

Let isConst be IsConstantDeclaration of Lexical Declaration.

Let boundNames be the BoundNames of LexicalDeclaration.

SUESICENS -

For each element dn of boundNames, do
a. If isConst is true, then
i. Perform ! loopEnv.CreatelmmutableBinding(dr, true).
b. Else,
i. Perform ! loopEnv.CreateMutableBinding(dn, false).
6. Set the running execution context's LexicalEnvironment to loopEnv.
7. Let forDcl be the result of evaluating LexicalDeclaration.
8. If forDcl is an abrupt completion, then
a. Set the running execution context's LexicalEnvironment to oldEnv.
b. Return Completion(forDcl).
9. If isConst is false, let perlterationLets be boundNames; otherwise let perlterationLets be « ».
10. Let bodyResult be ForBodyEvaluation(the first Expression, the second Expression, Statement, perlterationLets,
labelSet).
11. Set the running execution context's LexicalEnvironment to oldEnv.
12. Return Completion(bodyResult).

14.7.4.3 ForBodyEvaluation ( test, increment, stmt, perlterationBindings, labelSet )

The abstract operation ForBodyEvaluation takes arguments test, increment, stmt, perlterationBindings, and labelSet. It
performs the following steps when called:

1. Let V be undefined.
2. Perform ? CreatePerlterationEnvironment(perlterationBindings).
3. Repeat,

369



a. If test is not [empty], then
i. Let testRef be the result of evaluating fest.

ii. Let testValue be ? GetValue(testRef).

iii. If! ToBoolean(testValue) is false, return NormalCompletion(V).
Let result be the result of evaluating stmt.
If LoopContinues(result, labelSet) is false, return Completion(UpdateEmpty(result, V)).
If result.[[Value]] is not empty, set V to result.[[Value]].
Perform ? CreatePerlterationEnvironment(perIterationBindings).

-~ 0 2 n T

If increment is not [empty], then
i. Let incRef be the result of evaluating increment.
ii. Perform ? GetValue(incRef).

14.7.4.4 CreatePerlterationEnvironment ( perlterationBindings )

The abstract operation CreatePerIterationEnvironment takes argument perlterationBindings. It performs the following
steps when called:

1. If perlterationBindings has any elements, then

a. Let lastIterationEnv be the running execution context's LexicalEnvironment.
Let outer be lastIterationEnv.[[OuterEnv]].
Assert: outer is not null.

Let thislterationEnv be NewDeclarativeEnvironment(outer).

c 2o T

For each element bn of perlterationBindings, do
i. Perform ! thislterationEnv.CreateMutableBinding(bn, false).
ii. Let lastValue be ? lastIterationEnv.GetBindingValue(bn, true).
iii. Perform thislterationEnv. InitializeBinding(bn, lastValue).
f. Set the running execution context's LexicalEnvironment to thislterationEnv.
2. Return undefined.

14.7.5 The for-in, for-of, and for-await-of Statements

Syntax
ForInOfStatement

for ( [lookahead = let [] LeftHandSideExpression in Expression )
Statement

for ( var ForBinding in Expression )
Statement

for ( ForDeclaration in Expression )
Statement

for ( [lookahead & { let, async of }| LeftHandSideExpression of
AssignmentExpression ) Statement

for ( var ForBinding of AssignmentExpression )
Statement

for ( ForDeclaration of AssignmentExpression )
Statement

370



for await ( [lookahead = let] LeftHandSideExpression of

AssignmentExpression ) Statement
for await ( var ForBinding of AssignmentExpression )
Statement
for await ( ForDeclaration of AssignmentExpression )
Statement
ForDeclaration

LetOrConst ForBinding

ForBinding
Bindingldentifier
BindingPattern
NOTE This section is extended by Annex B.3.6.

14.7.5.1 Static Semantics: Early Errors
ForInOfStatement :

for ( LeftHandSideExpression in Expression ) Statement

for ( var ForBinding in Expression ) Statement

for ( ForDeclaration in Expression ) Statement

for ( LeftHandSideExpression of AssignmentExpression ) Statement
for ( var ForBinding of AssignmentExpression ) Statement

for ( ForDeclaration of AssignmentExpression ) Statement

for await ( LeftHandSideExpression of AssignmentExpression ) Statement
for await ( var ForBinding of AssignmentExpression ) Statement

for await ( ForDeclaration of AssignmentExpression ) Statement

e Itis a Syntax Error if IsLabelledFunction(Statement) is true.
NOTE It is only necessary to apply this rule if the extension specified in B.3.2 is implemented.

ForInOfStatement :
for ( LeftHandSideExpression in Expression ) Statement
for ( LeftHandSideExpression of AssignmentExpression ) Statement

for await ( LeftHandSideExpression of AssignmentExpression ) Statement
If LeftHandSideExpression is either an ObjectLiteral or an ArrayLiteral, the following Early Error rules are applied:

o Itis a Syntax Error if LeftHandSideExpression is not covering an AssignmentPattern.
e All Early Error rules for AssignmentPattern and its derived productions also apply to the AssignmentPattern that
is covered by LeftHandSideExpression.

If LeftHandSideExpression is neither an ObjectLiteral nor an ArrayLiteral, the following Early Error rule is applied:

e Itis a Syntax Error if AssignmentTargetType of LeftHandSideExpression is not simple.
371



ForInOfStatement :
for ( ForDeclaration in Expression ) Statement
for ( ForDeclaration of AssignmentExpression ) Statement

for await ( ForDeclaration of AssignmentExpression ) Statement

e Itis a Syntax Error if the BoundNames of ForDeclaration contains "let".
e Itis a Syntax Error if any element of the BoundNames of ForDeclaration also occurs in the VarDeclaredNames of
Statement.

e Itis a Syntax Error if the BoundNames of ForDeclaration contains any duplicate entries.

14.7.5.2 Static Semantics: IsDestructuring
MemberExpression : PrimaryExpression

1. If PrimaryExpression is either an ObjectLiteral or an ArrayLiteral, return true.
2. Return false.

MemberExpression :
MemberExpression [ Expression 1
MemberExpression . IdentifierName
MemberExpression TemplateLiteral
SuperProperty
MetaProperty
new MemberExpression Arguments
NewExpression :
new NewExpression
LeftHandSideExpression :
CallExpression

Optional Expression
1. Return false.
ForDeclaration : LetOrConst ForBinding
1. Return IsDestructuring of ForBinding.
ForBinding : Bindingldentifier
1. Return false.
ForBinding : BindingPattern

1. Return true.

NOTE This section is extended by Annex B.3.6.

14.7.5.3 Runtime Semantics: ForDeclarationBindinglnitialization

With parameters value and environment.

372



NOTE undefined is passed for environment to indicate that a PutValue operation should be used to
assign the initialization value. This is the case for var statements and the formal parameter lists
of some non-strict functions (see 10.2.10). In those cases a lexical binding is hoisted and
preinitialized prior to evaluation of its initializer.

ForDeclaration : LetOrConst ForBinding

1. Return the result of performing BindinglInitialization for ForBinding passing value and environment as the
arguments.

14.7.5.4 Runtime Semantics: ForDeclarationBindingInstantiation

With parameter environment.
ForDeclaration : LetOrConst ForBinding

1. Assert: environment is a declarative Environment Record.
2. For each element name of the BoundNames of ForBinding, do
a. If IsConstantDeclaration of LetOrConst is true, then
i. Perform ! environment.CreatelmmutableBinding(name, true).
b. Else,
i. Perform ! environment.CreateMutableBinding(name, false).

14.7.5.5 Runtime Semantics: ForInOfLoopEvaluation

With parameter labelSet.
ForInOfStatement : for ( LeftHandSideExpression in Expression ) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(« », Expression, enumerate).
2. Return ? Forln/OfBodyEvaluation(LeftHandSideExpression, Statement, keyResult, enumerate, assignment,
labelSet).

ForInOfStatement : for ( var ForBinding in Expression ) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(« », Expression, enumerate).
2. Return ? ForIn/OfBodyEvaluation(ForBinding, Statement, keyResult, enumerate, varBinding, labelSet).

ForInOfStatement : for ( ForDeclaration in Expression ) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(BoundNames of ForDeclaration, Expression, enumerate).
2. Return ? ForIn/OfBodyEvaluation(ForDeclaration, Statement, keyResult, enumerate, lexicalBinding, labelSet).

ForInOfStatement : for ( LeftHandSideExpression of AssignmentExpression ) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(« », AssignmentExpression, iterate).
2. Return ? Forln/OfBodyEvaluation(LeftHandSideExpression, Statement, keyResult, iterate, assignment, labelSet).

ForInOfStatement : for ( var ForBinding of AssignmentExpression ) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(« », AssignmentExpression, iterate).

373



2. Return ? ForIn/OfBodyEvaluation(ForBinding, Statement, keyResult, iterate, varBinding, labelSet).
ForInOfStatement : for ( ForDeclaration of AssignmentExpression ) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(BoundNames of ForDeclaration, AssignmentExpression, iterate).
2. Return ? Forln/OfBodyEvaluation(ForDeclaration, Statement, keyResult, iterate, lexicalBinding, labelSet).

ForInOfStatement : for await ( LeftHandSideExpression of AssignmentExpression ) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(« », AssignmentExpression, async-iterate).
2. Return ? ForIn/OfBodyEvaluation(LeftHandSideExpression, Statement, keyResult, iterate, assignment, labelSet,
async).

ForInOfStatement : for await ( var ForBinding of AssignmentExpression ) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(« », AssignmentExpression, async-iterate).
2. Return ? ForIn/OfBodyEvaluation(ForBinding, Statement, keyResult, iterate, varBinding, labelSet, async).

ForInOfStatement : for await ( ForDeclaration of AssignmentExpression ) Statement

1. Let keyResult be ? ForIn/OfHeadEvaluation(BoundNames of ForDeclaration, AssignmentExpression, async-
iterate).
2. Return ? Forln/OfBodyEvaluation(ForDeclaration, Statement, keyResult, iterate, lexicalBinding, labelSet, async).

NOTE This section is extended by Annex B.3.6.

14.7.5.6 ForIn/OfHeadEvaluation ( uninitializedBoundNames, expr, iterationKind )

The abstract operation ForIn/OfHeadEvaluation takes arguments uninitialized BoundNames, expr, and iterationKind
(either enumerate, iterate, or async-iterate). It performs the following steps when called:

1. Let oldEnv be the running execution context's LexicalEnvironment.
2. If uninitializedBoundNames is not an empty List, then

a. Assert: uninitializedBoundNames has no duplicate entries.

b. Let newEnv be NewDeclarativeEnvironment(oldEno).

c. For each String name of uninitializedBoundNames, do

i. Perform ! newEnv.CreateMutableBinding(name, false).

d. Set the running execution context's LexicalEnvironment to newEnov.
Let exprRef be the result of evaluating expr.
Set the running execution context's LexicalEnvironment to oldEnv.
Let exprValue be ? GetValue(exprRef).
If iterationKind is enumerate, then

a. If exprValue is undefined or null, then

ISR

i. Return Completion { [[Type]]: break, [[Value]]: empty, [[Target]]: empty }.
b. Let obj be ! ToObject(exprValue).
c. Let iterator be ? EnumerateObjectProperties(obj).
d. Let nextMethod be ! GetV (iterator, ""'next").
e. Return the Record { [[Iterator]]: iterator, [[NextMethod]]: nextMethod, [[Done]]: false }.

374



. Assert: iterationKind is iterate or async-iterate.
. If iterationKind is async-iterate, let iteratorHint be async.
. Else, let iteratorHint be sync.

Q. n T o

. Return ? Getlterator(exprValue, iteratorHint).

14.7.5.7 ForIn/OfBodyEvaluation ( lhs, stmt, iteratorRecord, iterationKind, IhsKind, labelSet [,
iteratorKind])

The abstract operation ForIn/OfBodyEvaluation takes arguments Ihs, stmt, iteratorRecord, iterationKind, [hsKind (either
assignment, varBinding or lexicalBinding), and labelSet and optional argument iteratorKind (either sync or async). It
performs the following steps when called:

If iteratorKind is not present, set iteratorKind to sync.

Let oldEnv be the running execution context's LexicalEnvironment.
Let V be undefined.

Let destructuring be IsDestructuring of Ihs.

SN S

If destructuring is true and if IhsKind is assignment, then

a. Assert: lhs is a LeftHandSideExpression.

b. Let assignmentPattern be the AssignmentPattern that is covered by Ihs.
6. Repeat,

a. Let nextResult be ? Call(iteratorRecord.[[NextMethod]], iteratorRecord.[[Iterator]]).

If iteratorKind is async, set nextResult to ? Await(nextResult).
If Type(nextResult) is not Object, throw a TypeError exception.
Let done be ? IteratorComplete(nextResult).
If done is true, return NormalCompletion(V).
Let nextValue be ? IteratorValue(nextResult).
If [hsKind is either assignment or varBinding, then

i. If destructuring is false, then

®” =0 & n T

1. Let [hsRef be the result of evaluating /hs. (It may be evaluated repeatedly.)
h. Else,
i. Assert: [hsKind is lexicalBinding.
ii. Assert: lhs is a ForDeclaration.
iii. Let iterationEnv be NewDeclarativeEnvironment(oldEnv).
iv. Perform ForDeclarationBindingInstantiation for lhis passing iterationEnv as the argument.
v. Set the running execution context's LexicalEnvironment to iterationEnv.
vi. If destructuring is false, then
1. Assert: [hs binds a single name.
2. Let IhsName be the sole element of BoundNames of lis.
3. Let lhsRef be ! ResolveBinding(lhsName).
i. If destructuring is false, then
i. If IhsRef is an abrupt completion, then
1. Let status be IhsRef.
ii. Else if [hsKind is lexicalBinding, then
1. Let status be InitializeReferencedBinding(lhsRef, nextValue).
iii. Else,
1. Let status be PutValue(lhsRef, nextValue).
j- Else,
i. If IhsKind is assignment, then

375



1. Let status be DestructuringAssignmentEvaluation of assignmentPattern with argument
nextValue.
ii. Else if [hsKind is varBinding, then
1. Assert: [hs is a ForBinding.
2. Let status be BindingInitialization of /s with arguments nextValue and undefined.
iii. Else,
1. Assert: [hsKind is lexicalBinding.
2. Assert: lhs is a ForDeclaration.
3. Let status be ForDeclarationBindingInitialization of /hs with arguments nextValue and
iterationEnv.
k. If status is an abrupt completion, then
i. Set the running execution context's LexicalEnvironment to oldEnv.
ii. If iteratorKind is async, return ? AsynclteratorClose(iteratorRecord, status).
iii. If iterationKind is enumerate, then
1. Return status.
iv. Else,
1. Assert: iterationKind is iterate.
2. Return ? IteratorClose(iteratorRecord, status).
1. Let result be the result of evaluating stmt.
m. Set the running execution context's LexicalEnvironment to oldEnv.
n. If LoopContinues(result, labelSet) is false, then
i. If iterationKind is enumerate, then
1. Return Completion(UpdateEmpty(result, V)).
ii. Else,
1. Assert: iterationKind is iterate.
2. Set status to UpdateEmpty(result, V).
3. If iteratorKind is async, return ? AsynclteratorClose(iteratorRecord, status).
4. Return ? IteratorClose(iteratorRecord, status).
o. If result.[[Value]] is not empty, set V to result.[[Value]].

14.7.5.8 Runtime Semantics: Evaluation
ForBinding : Bindingldentifier

1. Let bindingld be StringValue of Bindingldentifier.
2. Return ? ResolveBinding(bindingld).

14.7.5.9 EnumerateObjectProperties ( O )

The abstract operation EnumerateObjectProperties takes argument O. It performs the following steps when called:

1. Assert: Type(O) is Object.

2. Return an Iterator object (27.1.1.2) whose next method iterates over all the String-valued keys of enumerable
properties of O. The iterator object is never directly accessible to ECMAScript code. The mechanics and order of
enumerating the properties is not specified but must conform to the rules specified below.

The iterator's throw and return methods are null and are never invoked. The iterator's next method processes
object properties to determine whether the property key should be returned as an iterator value. Returned property
keys do not include keys that are Symbols. Properties of the target object may be deleted during enumeration. A

376



property that is deleted before it is processed by the iterator's next method is ignored. If new properties are added to
the target object during enumeration, the newly added properties are not guaranteed to be processed in the active

enumeration. A property name will be returned by the iterator's next method at most once in any enumeration.

Enumerating the properties of the target object includes enumerating properties of its prototype, and the prototype of
the prototype, and so on, recursively; but a property of a prototype is not processed if it has the same name as a
property that has already been processed by the iterator's next method. The values of [[Enumerable]] attributes are
not considered when determining if a property of a prototype object has already been processed. The enumerable
property names of prototype objects must be obtained by invoking EnumerateObjectProperties passing the prototype
object as the argument. EnumerateObjectProperties must obtain the own property keys of the target object by calling
its [[OwnPropertyKeys]] internal method. Property attributes of the target object must be obtained by calling its
[[GetOwnProperty]] internal method.

In addition, if neither O nor any object in its prototype chain is a Proxy exotic object, Integer-Indexed exotic object,
module namespace exotic object, or implementation provided exotic object, then the iterator must behave as would
the iterator given by CreateForInIterator(O) until one of the following occurs:

e the value of the [[Prototype]] internal slot of O or an object in its prototype chain changes,

e a property is removed from O or an object in its prototype chain,

e a property is added to an object in O's prototype chain, or

e the value of the [[Enumerable]] attribute of a property of O or an object in its prototype chain changes.

NOTE 1 ECMAScript implementations are not required to implement the algorithm in 14.7.5.10.2.1
directly. They may choose any implementation whose behaviour will not deviate from that
algorithm unless one of the constraints in the previous paragraph is violated.

The following is an informative definition of an ECMAScript generator function that conforms to
these rules:

EnumerateObjectProperties
Set
Reflect

Reflect

Reflect

377



NOTE 2 The list of exotic objects for which implementations are not required to match CreateForInIterator
was chosen because implementations historically differed in behaviour for those cases, and
agreed in all others.

14.7.5.10 For-In Iterator Objects

A For-In Iterator is an object that represents a specific iteration over some specific object. For-In Iterator objects are
never directly accessible to ECMAScript code; they exist solely to illustrate the behaviour of
EnumerateObjectProperties.

14.7.5.10.1 CreateForInIterator ( object)

The abstract operation CreateForInlterator takes argument object. It is used to create a For-In Iterator object which
iterates over the own and inherited enumerable string properties of object in a specific order. It performs the following
steps when called:

1. Assert: Type(object) is Object.

2. Let iterator be ! OrdinaryObjectCreate(% ForInIteratorPrototype%, « [[Object]], [[ObjectWasVisited]],
[[VisitedKeys]], [[RemainingKeys]] »).

Set iterator.[[Object]] to object.

Set iterator.[[ObjectWasVisited]] to false.

Set iterator.[[VisitedKeys]] to a new empty List.

Set iterator.[[RemainingKeys]] to a new empty List.

NSOl w

Return iterator.

14.7.5.10.2 The %ForInlteratorPrototype% Object

The % ForInlteratorPrototype% object:

e has properties that are inherited by all For-In Iterator Objects.

e is an ordinary object.

e has a [[Prototype]] internal slot whose value is %IteratorPrototype%.
e isnever directly accessible to ECMAScript code.

e has the following properties:

14.7.5.10.2.1 %ForInlteratorPrototype% . .next ()

Let O be the this value.

Assert: Type(O) is Object.

Assert: O has all of the internal slots of a For-In Iterator Instance (14.7.5.10.3).
Let object be O.[[Object]].

Let visited be O.[[VisitedKeys]].

Let remaining be O.[[RemainingKeys]].

NSO e

Repeat,
a. If O.[[ObjectWasVisited]] is false, then
i. Let keys be ? object.[[OwnPropertyKeys]]().
ii. For each element key of keys, do
1. If Type(key) is String, then
a. Append key to remaining.

378



iii. Set O.[[ObjectWasVisited]] to true.
b. Repeat, while remaining is not empty,
i. Let r be the first element of remaining.
ii. Remove the first element from remaining.
iii. If there does not exist an element v of visited such that SameValue(r, v) is true, then
1. Let desc be ? object.[[GetOwnProperty]](r).
2. If desc is not undefined, then
a. Append r to visited.
b. If desc.[[Enumerable]] is true, return CreatelterResultObject(r, false).
. Set object to ? object.[[GetPrototypeOf]]().
. Set O.[[Object]] to object.
. Set O.[[ObjectWasVisited]] to false.
. If object is null, return CreatelterResultObject(undefined, true).

- 0 & n

14.7.5.10.3 Properties of For-In Iterator Instances

For-In Iterator instances are ordinary objects that inherit properties from the %ForInlteratorPrototype% intrinsic
object. For-In Iterator instances are initially created with the internal slots listed in Table 38.

Table 38: Internal Slots of For-In Iterator Instances

Internal Slot Description

[[Object]] The Object value whose properties are being iterated.

[[ObjectWasVisited]] | true if the iterator has invoked [[OwnPropertyKeys]] on [[Object]], false otherwise.

[[VisitedKeys]] A list of String values which have been emitted by this iterator thus far.

[[RemainingKeys]] | A list of String values remaining to be emitted for the current object, before iterating the
properties of its prototype (if its prototype is not null).

14.8 The continue Statement
Syntax

ContinueStatement
continue ;

continue [no LineTerminator here] Labelldentifier ;

14.8.1 Static Semantics: Early Errors

ContinueStatement :
continue ;

continue Labelldentifier ;

e Itis a Syntax Error if this ContinueStatement is not nested, directly or indirectly (but not crossing function
boundaries), within an IterationStatement.

379



14.8.2 Runtime Semantics: Evaluation
ContinueStatement : continue ;

1. Return Completion { [[Type]]: continue, [[Value]]: empty, [[Target]]: empty }.
ContinueStatement : continue Labelldentifier ;

1. Let label be the StringValue of Labelldentifier.
2. Return Completion { [[Type]]: continue, [[Value]]: empty, [[Target]]: label }.

14.9 The break Statement
Syntax

BreakStatement
break ;

break [no LineTerminator here] Labelldentifier ;

14.9.1 Static Semantics: Early Errors

BreakStatement : break ;

e Itis a Syntax Error if this BreakStatement is not nested, directly or indirectly (but not crossing function
boundaries), within an IterationStatement or a SwitchStatement.

14.9.2 Runtime Semantics: Evaluation
BreakStatement : break ;

1. Return Completion { [[Type]]: break, [[Value]]: empty, [[Target]]: empty }.
BreakStatement : break Labelldentifier ;

1. Let label be the StringValue of Labelldentifier.
2. Return Completion { [[Type]]: break, [[Value]]: empty, [[Target]]: label }.

14.10 The return Statement
Syntax

ReturnStatement
return H

return [no LineTerminator here] Expression ;

380



NOTE A return statement causes a function to cease execution and, in most cases, returns a value to
the caller. If Expression is omitted, the return value is undefined. Otherwise, the return value is
the value of Expression. A return statement may not actually return a value to the caller
depending on surrounding context. For example, in a try block, a return statement's
completion record may be replaced with another completion record during evaluation of the
finally block.

14.10.1 Runtime Semantics: Evaluation
ReturnStatement : return ;

1. Return Completion { [[Type]]: return, [[Value]]: undefined, [[Target]]: empty }.
ReturnStatement : return Expression ;

1. Let exprRef be the result of evaluating Expression.

2. Let exprValue be ? GetValue(exprRef).

3. If ! GetGeneratorKind() is async, set exprValue to ? Await(exprValue).

4. Return Completion { [[Typel]]: return, [[Value]]: exprValue, [[Target]]: empty }.

14.11 The with Statement

Syntax
WithStatement
with ( Expression ) Statement
NOTE The with statement adds an object Environment Record for a computed object to the lexical

environment of the running execution context. It then executes a statement using this augmented
lexical environment. Finally, it restores the original lexical environment.

14.11.1 Static Semantics: Early Errors
WithStatement : with ( Expression ) Statement

e Itis a Syntax Error if the code that matches this production is contained in strict mode code.
e Itis a Syntax Error if IsLabelledFunction(Statement) is true.

NOTE It is only necessary to apply the second rule if the extension specified in B.3.2 is implemented.

14.11.2 Runtime Semantics: Evaluation
WithStatement : with ( Expression ) Statement

1. Let val be the result of evaluating Expression.
2. Let obj be ? ToObject(? GetValue(val)).

3. Let oldEnv be the running execution context's LexicalEnvironment.

381



Let newEnv be NewObjectEnvironment(obj, oldEnv).

Set the withEnvironment flag of newEnv to true.

Set the running execution context's LexicalEnvironment to newEnv.
Let C be the result of evaluating Statement.

Set the running execution context's LexicalEnvironment to oldEnv.

O X N U

Return Completion(UpdateEmpty(C, undefined)).

NOTE No matter how control leaves the embedded Statement, whether normally or by some form of
abrupt completion or exception, the LexicalEnvironment is always restored to its former state.

14.12 The switch Statement

Syntax

SwitchStatement

switch ( Expression ) CaseBlock
CaseBlock

{ CaseClauses }

{ CaseClauses DefaultClause

CaseClauses }

CaseClauses

CaseClause

CaseClauses CaseClause
CaseClause

case Expression : StatementList
DefaultClause

default : StatementList

14.12.1 Static Semantics: Early Errors

SwitchStatement : switch ( Expression ) CaseBlock

e Itis a Syntax Error if the LexicallyDeclaredNames of CaseBlock contains any duplicate entries.
e Itis a Syntax Error if any element of the LexicallyDeclaredNames of CaseBlock also occurs in the
VarDeclaredNames of CaseBlock.

14.12.2 Runtime Semantics: CaseBlockEvaluation
With parameter input.
CaseBlock : { }

1. Return NormalCompletion(undefined).
382



CaseBlock : { CaseClauses }

1. Let V be undefined.
2. Let A be the List of CaseClause items in CaseClauses, in source text order.
3. Let found be false.
4. For each CaseClause C of A, do
a. If found is false, then
i. Set found to ? CaseClauselsSelected(C, input).
b. If found is true, then
i. Let R be the result of evaluating C.
ii. If R.[[Value]] is not empty, set V to R.[[Value]].
iii. If R is an abrupt completion, return Completion(UpdateEmpty(R, V)).
5. Return NormalCompletion(V).

CaseBlock : { CaseClauses DefaultClause CaseClauses }

—_

. Let V be undefined.
. If the first CaseClauses is present, then

N

a. Let A be the List of CaseClause items in the first CaseClauses, in source text order.
3. Else,
a. Let Abe «».
4. Let found be false.
5. For each CaseClause C of A, do
a. If found is false, then
i. Set found to ? CaseClauselsSelected(C, input).
b. If found is true, then
i. Let R be the result of evaluating C.
ii. If R.[[Value]] is not empty, set V to R.[[Value]].
iii. If R is an abrupt completion, return Completion(UpdateEmpty(R, V)).
6. Let foundInB be false.
7. If the second CaseClauses is present, then
a. Let B be the List of CaseClause items in the second CaseClauses, in source text order.
8. Else,
a. Let B be «».
9. If found is false, then
a. For each CaseClause C of B, do
i. If foundInB is false, then
1. Set foundInB to ? CaseClauselsSelected(C, input).
ii. If foundInB is true, then
1. Let R be the result of evaluating CaseClause C.
2. If R.[[Value]] is not empty, set V to R.[[Value]].
3. If R is an abrupt completion, return Completion(UpdateEmpty(R, V)).
10. If foundInB is true, return NormalCompletion(V).
11. Let R be the result of evaluating DefaultClause.
12. If R.[[Value]] is not empty, set V to R.[[Value]].
13. If R is an abrupt completion, return Completion(UpdateEmpty(R, V)).
14. NOTE: The following is another complete iteration of the second CaseClauses.
15. For each CaseClause C of B, do

383



a. Let R be the result of evaluating CaseClause C.

b. If R.[[Value]] is not empty, set V to R.[[Value]].

c. If R is an abrupt completion, return Completion(UpdateEmpty(R, V)).
16. Return NormalCompletion(V).

14.12.3 CaseClauselsSelected ( C, input)

The abstract operation CaseClauselsSelected takes arguments C (a Parse Node for CaseClause) and input (an
ECMAScript language value). It determines whether C matches input. It performs the following steps when called:

1. Assert: C is an instance of the production CaseClause : case Expression : StatementList
2. Let exprRef be the result of evaluating the Expression of C.

3. Let clauseSelector be ? GetValue(exprRef).

4. Return the result of performing Strict Equality Comparison input === clauseSelector.

NOTE This operation does not execute C's StatementList (if any). The CaseBlock algorithm uses its return
value to determine which StatementList to start executing.

14.12.4 Runtime Semantics: Evaluation
SwitchStatement : switch ( Expression ) CaseBlock

Let exprRef be the result of evaluating Expression.

Let switchValue be ? GetValue(exprRef).

Let oldEnv be the running execution context's LexicalEnvironment.
Let blockEnv be NewDeclarativeEnvironment(oldEnv).

Perform BlockDeclarationInstantiation(CaseBlock, blockEnv).

Set the running execution context's LexicalEnvironment to blockEnov.
Let R be CaseBlockEvaluation of CaseBlock with argument switchValue.
Set the running execution context's LexicalEnvironment to oldEnv.
Return R.

O X N U=

NOTE No matter how control leaves the SwitchStatement the LexicalEnvironment is always restored to
its former state.

CaseClause : case Expression :

1. Return NormalCompletion(empty).
CaseClause : case Expression : StatementList

1. Return the result of evaluating StatementList.
DefaultClause : default :

1. Return NormalCompletion(empty).
DefaultClause : default : StatementList

1. Return the result of evaluating StatementList.
384



14.13 Labelled Statements

Syntax
LabelledStatement
Labelldentifier : LabelledItem
LabelledItem
Statement
FunctionDeclaration
NOTE A Statement may be prefixed by a label. Labelled statements are only used in conjunction with

labelled break and continue statements. ECMAScript has no goto statement. A Statement
can be part of a LabelledStatement, which itself can be part of a LabelledStatement, and so on. The
labels introduced this way are collectively referred to as the “current label set” when describing
the semantics of individual statements.

14.13.1 Static Semantics: Early Errors

LabelledItem : FunctionDeclaration

e Itis a Syntax Error if any source text matches this rule.

NOTE An alternative definition for this rule is provided in B.3.2.

14.13.2 Static Semantics: IsLabelledFunction ( stmt)

The abstract operation IsLabelledFunction takes argument stmt. It performs the following steps when called:

If stmt is not a LabelledStatement, return false.

Let item be the LabelledItem of stmt.

If item is LabelledItem : FunctionDeclaration , return true.
Let subStmt be the Statement of item.

Return IsLabelledFunction(subStmt).

SRS -

14.13.3 Runtime Semantics: Evaluation
LabelledStatement : Labelldentifier : Labelledltem

1. Let newLabelSet be a new empty List.
2. Return LabelledEvaluation of this LabelledStatement with argument newLabelSet.

14.13.4 Runtime Semantics: LabelledEvaluation
With parameter labelSet.

BreakableStatement : IterationStatement

385



1. Let stmtResult be LoopEvaluation of IterationStatement with argument labelSet.
2. If stmtResult.[[Type]] is break, then
a. If stmtResult.[[Target]] is empty, then

i. If stmtResult.[[Value]] is empty, set stmtResult to NormalCompletion(undefined).

ii. Else, set stmtResult to NormalCompletion(stmtResult.[[Value]]).
3. Return Completion(stmtResult).

BreakableStatement : SwitchStatement

1. Let stmtResult be the result of evaluating SwitchStatement.
2. If stmtResult.[[Type]] is break, then
a. If stmtResult.[[Target]] is empty, then

i. If stmtResult.[[Value]] is empty, set stmtResult to NormalCompletion(undefined).

ii. Else, set stmtResult to NormalCompletion(stmtResult.[[Value]]).
3. Return Completion(stmtResult).

NOTE 1 A BreakableStatement is one that can be exited via an unlabelled BreakStatement.

LabelledStatement : Labelldentifier : LabelledItem

Let label be the StringValue of Labelldentifier.

Append label as an element of labelSet.

Let stmtResult be LabelledEvaluation of LabelledItemn with argument labelSet.

If stmtResult.[[Type]] is break and SameValue(stmtResult.[[Target]], label) is true, then
a. Set stmtResult to NormalCompletion(stmtResult.[[Value]]).

5. Return Completion(stmtResult).

L e

LabelledItem : FunctionDeclaration
1. Return the result of evaluating FunctionDeclaration.

Statement :
BlockStatement
VariableStatement
EmptyStatement
ExpressionStatement
IfStatement
ContinueStatement
BreakStatement
ReturnStatement
WithStatement
ThrowStatement
TryStatement
DebuggerStatement

1. Return the result of evaluating Statement.

386



NOTE 2 The only two productions of Statement which have special semantics for LabelledEvaluation are
BreakableStatement and LabelledStatement.

14.14 The throw Statement
Syntax

ThrowStatement

throw [no LineTerminator here] Expression ;

14.14.1 Runtime Semantics: Evaluation
ThrowStatement : throw Expression ;

1. Let exprRef be the result of evaluating Expression.
2. Let exprValue be ? GetValue(exprRef).
3. Return ThrowCompletion(exprValue).

14.15 The try Statement

Syntax
TryStatement
try Block Catch
try Block Finally
try Block Catch Finally
Catch
catch ( CatchParameter ) Block
catch Block
Finally
finally Block
CatchParameter
Bindingldentifier
BindingPattern
NOTE The try statement encloses a block of code in which an exceptional condition can occur, such as

a runtime error or a throw statement. The catch clause provides the exception-handling code.
When a catch clause catches an exception, its CatchParameter is bound to that exception.

14.15.1 Static Semantics: Early Errors

387



Catch : catch ( CatchParameter ) Block

e Itis a Syntax Error if BoundNames of CatchParameter contains any duplicate elements.

e Itis a Syntax Error if any element of the BoundNames of CatchParameter also occurs in the
LexicallyDeclaredNames of Block.

e Itis a Syntax Error if any element of the BoundNames of CatchParameter also occurs in the VarDeclaredNames
of Block.

NOTE An alternative static semantics for this production is given in B.3.5.

14.15.2 Runtime Semantics: CatchClauseEvaluation
With parameter thrown Value.
Catch : catch ( CatchParameter ) Block

1. Let oldEnv be the running execution context's LexicalEnvironment.
2. Let catchEnv be NewDeclarativeEnvironment(oldEnv).
3. For each element ar¢gName of the BoundNames of CatchParameter, do
a. Perform ! catchEnv.CreateMutableBinding(argName, false).
4. Set the running execution context's LexicalEnvironment to catchEnv.
5. Let status be Bindinglnitialization of CatchParameter with arguments thrownValue and catchEnv.
6. If status is an abrupt completion, then
a. Set the running execution context's LexicalEnvironment to oldEnv.
b. Return Completion(status).
7. Let B be the result of evaluating Block.
8. Set the running execution context's LexicalEnvironment to oldEnv.

9. Return Completion(B).
Catch : catch Block
1. Return the result of evaluating Block.

NOTE No matter how control leaves the Block the LexicalEnvironment is always restored to its former
state.

14.15.3 Runtime Semantics: Evaluation
TryStatement : try Block Catch

1. Let B be the result of evaluating Block.

2. If B.[[Typel] is throw, let C be CatchClauseEvaluation of Catch with argument B.[[Value]].
3. Else, let C be B.

4. Return Completion(UpdateEmpty(C, undefined)).

TryStatement : try Block Finally

1. Let B be the result of evaluating Block.
2. Let F be the result of evaluating Finally.

388



3. If F.[[Type]] is normal, set F to B.
4. Return Completion(UpdateEmpty(F, undefined)).

TryStatement : try Block Catch Finally

Let B be the result of evaluating Block.

If B.[[Typel] is throw, let C be CatchClauseEvaluation of Catch with argument B.[[Value]].
Else, let C be B.

Let F be the result of evaluating Finally.

If F.[[Type]] is normal, set F to C.

Return Completion(UpdateEmpty(F, undefined)).

S e

14.16 The debugger Statement
Syntax

DebuggerStatement :
debugger ;

14.16.1 Runtime Semantics: Evaluation

NOTE Evaluating a DebuggerStatement may allow an implementation to cause a breakpoint when run
under a debugger. If a debugger is not present or active this statement has no observable effect.

DebuggerStatement : debugger ;

1. If an implementation-defined debugging facility is available and enabled, then
a. Perform an implementation-defined debugging action.
b. Let result be an implementation-defined Completion value.

2. Else,
a. Let result be NormalCompletion(empty).

3. Return result.

15 ECMAScript Language: Functions and Classes

NOTE Various ECMAScript language elements cause the creation of ECMAScript function objects (10.2).
Evaluation of such functions starts with the execution of their [[Call]] internal method (10.2.1).

15.1 Parameter Lists
Syntax

UniqueFormalParameters

389



FormalParameters

FormalParameters

[empty]
FunctionRestParameter

FormalParameterList
FormalParameterList ,

FormalParameterList , FunctionRestParameter

FormalPara