Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Science and policy characteristics of the Paris Agreement temperature goal

Abstract

The Paris Agreement sets a long-term temperature goal of holding the global average temperature increase to well below 2 °C, and pursuing efforts to limit this to 1.5 °C above pre-industrial levels. Here, we present an overview of science and policy aspects related to this goal and analyse the implications for mitigation pathways. We show examples of discernible differences in impacts between 1.5 °C and 2 °C warming. At the same time, most available low emission scenarios at least temporarily exceed the 1.5 °C limit before 2100. The legacy of temperature overshoots and the feasibility of limiting warming to 1.5 °C, or below, thus become central elements of a post-Paris science agenda. The near-term mitigation targets set by countries for the 2020–2030 period are insufficient to secure the achievement of the temperature goal. An increase in mitigation ambition for this period will determine the Agreement's effectiveness in achieving its temperature goal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Projected impacts at 1.5 °C and 2 °C GMT increase above pre-industrial levels for a selection of indicators and regions.
Figure 2: GMT projections for emission scenarios assessed by the IPCC54 and UNEP68.
Figure 3: Absolute contribution of bioenergy to total primary energy supply in literature scenarios with below 3 °C of warming relative to pre-industrial levels by 2100.
Figure 4: Characteristics of below 2 °C and 1.5 °C pathways.

Similar content being viewed by others

References

  1. United Nations Framework Convention on Climate Change (UNFCCC, 1992).

  2. Knutti, R., Rogelj, J., Sedláček, J. & Fischer, E. M. A scientific critique of the two-degree climate change target. Nature Geosci. 9, 13–18 (2015).

    Article  CAS  Google Scholar 

  3. Adoption of the Paris Agreement FCCC/CP/2015/10/Add.1 (UNFCCC, 2015).

  4. Hare, W. L., Cramer, W., Schaeffer, M., Battaglini, A. & Jaeger, C. C. Climate hotspots: key vulnerable regions, climate change and limits to warming. Reg. Environ. Change 11, 1–13 (2011).

    Article  Google Scholar 

  5. IPCC Climate Change 2001: Impacts, Adaptation, and Vulnerability (eds McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J. & White, K. S.) (Cambridge Univ. Press, 2001).

  6. Smith, J. B. et al. Assessing dangerous climate change through an update of the intergovernmental panel on climate change (IPCC) “reasons for concern”. Proc. Natl Acad. Sci. USA 106, 4133–4137 (2009).

    Article  CAS  Google Scholar 

  7. Oppenheimer, M. et al. in Climate Change: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1039–1099 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  8. IPCC Climate Change 2007: Synthesis Report (eds Pachauri, R. K. & Reisinger, A.) (Cambridge Univ. Press, 2007).

  9. Submissions from Parties FCCC/KP/AWG/2009/MISC.1/Add.1 (UNFCCC, 2009).

  10. The Copenhagen Accord FCCC/CP/2009/11/Add.1 (UNFCCC, 2009).

  11. The Cancun Agreements FCCC/CP/2010/7/Add.1 (UNFCCC, 2010).

  12. Report on the Structured Expert Dialogue on the 2013–2015 Review FCCC/SB/2015/INF.1 (UNFCCC, 2015).

  13. Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529, 477–483 (2016).

    Article  CAS  Google Scholar 

  14. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  15. IPCC Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (eds Field, C. B. et al.) (Cambridge Univ. Press, 2012).

  16. Seneviratne, S. I., Donat, M. G., Mueller, B. & Alexander, L. V. No pause in the increase of hot temperature extremes. Nature Clim. Change 4, 161–163 (2014).

    Article  Google Scholar 

  17. Fischer, E. M. & Knutti, R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nature Clim. Change 5, 560–564 (2015).

    Article  Google Scholar 

  18. Greve, P. et al. Global assessment of trends in wetting and drying over land. Nature Geosci. 7, 716–721 (2014).

    Article  CAS  Google Scholar 

  19. Westra, S., Alexander, L. V. & Zwiers, F. W. Global increasing trends in annual maximum daily precipitation. J. Clim. 26, 3904–3918 (2013).

    Article  Google Scholar 

  20. Lehmann, J., Coumou, D. & Frieler, K. Increased record-breaking precipitation events under global warming. Climatic Change 132, 501–515 (2015).

    Article  Google Scholar 

  21. Schleussner, C.-F. et al. Differential climate impacts for policy relevant limits to global warming: the case of 1.5 °C and 2 °C. Earth Syst. Dynam. 7, 327–351 (2016).

    Article  Google Scholar 

  22. Sedláček, J. & Knutti, R. Half of the world's population experience robust changes in the water cycle for a 2 °C warmer world. Environ. Res. Lett. 9, 044008 (2014).

    Article  Google Scholar 

  23. Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).

    Article  CAS  Google Scholar 

  24. Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2013).

    Article  CAS  Google Scholar 

  25. McGrath, J. M. & Lobell, D. B. Regional disparities in the CO2 fertilization effect and implications for crop yields. Environ. Res. Lett. 8, 014054 (2013).

    Article  CAS  Google Scholar 

  26. Tai, A. P. K., Martin, M. V. & Heald, C. L. Threat to future global food security from climate change and ozone air pollution. Nature Clim. Change 4, 817–821 (2014).

    Article  CAS  Google Scholar 

  27. Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nature Clim. Change 4, 287–291 (2014).

    Article  Google Scholar 

  28. Elliott, J. et al. Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proc. Natl Acad. Sci. USA 111, 3239–3244 (2013).

    Article  CAS  Google Scholar 

  29. Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Commun. 5, 3858 (2014).

    Article  CAS  Google Scholar 

  30. Deryng, D., Conway, D., Ramankutty, N., Price, J. & Warren, R. Global crop yield response to extreme heat stress under multiple climate change futures. Environ. Res. Lett. 9, 034011 (2014).

    Article  Google Scholar 

  31. Nelson, G. C. et al. Agriculture and climate change in global scenarios: why don't the models agree. Agric. Econ. 45, 85–101 (2014).

    Article  Google Scholar 

  32. Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).

    Article  CAS  Google Scholar 

  33. Asseng, S. et al. Rising temperatures reduce global wheat production. Nature Clim. Change 5, 143–147 (2015).

    Article  Google Scholar 

  34. Pörtner, H.-O. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (Field, C. B. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  35. Gattuso, J.-P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).

    Article  CAS  Google Scholar 

  36. Meissner, K. J., Lippmann, T. & Sen Gupta, A. Large-scale stress factors affecting coral reefs: open ocean sea surface temperature and surface seawater aragonite saturation over the next 400 years. Coral Reefs 31, 309–319 (2012).

    Article  Google Scholar 

  37. Frieler, K. et al. Limiting global warming to 2 °C is unlikely to save most coral reefs. Nature Clim. Change 3, 165–170 (2013).

    Article  Google Scholar 

  38. Hezel, P. J., Fichefet, T. & Massonnet, F. Modeled Arctic sea ice evolution through 2300 in CMIP5 extended RCPs. Cryosphere 8, 1195–1204 (2014).

    Article  Google Scholar 

  39. Burke, M., Hsiang, S. M. & Miguel, E. Global non-linear effect of temperature on economic production. Nature 527, 235–239 (2015).

    Article  CAS  Google Scholar 

  40. Mathesius, S., Hofmann, M., Caldeira, K. & Schellnhuber, H. J. Long-term response of oceans to CO2 removal from the atmosphere. Nature Clim. Change 5, 1107–1113 (2015).

    Article  CAS  Google Scholar 

  41. Schewe, J., Levermann, A. & Meinshausen, M. Climate change under a scenario near 1.5 °C of global warming: monsoon intensification, ocean warming and steric sea level rise. Earth Syst. Dynam. 2, 25–35 (2011).

    Article  Google Scholar 

  42. Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nature Clim. Change 6, 360–369 (2016).

    Article  Google Scholar 

  43. Schneider von Deimling, T. et al. Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosci. 9, 649–665 (2012).

    Article  CAS  Google Scholar 

  44. Levermann, A. et al. The multimillennial sea-level commitment of global warming. Proc. Natl Acad. Sci. USA 110, 13745–13750 (2013).

    Article  CAS  Google Scholar 

  45. Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015).

    Article  CAS  Google Scholar 

  46. Mace, M. J. Mitigation commitments under the Paris Agreement and the way forward. Clim. Law 6, 21–39 (2016).

    Article  Google Scholar 

  47. Decision IPCC/XLIII-7 (IPCC, 2016).

  48. Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (Edenhofer, O. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2014).

    Google Scholar 

  49. IPCC Climate Change 2014: Synthesis Report (Cambridge Univ. Press, 2014).

  50. Mastrandrea, M. D. et al. The IPCC AR5 guidance note on consistent treatment of uncertainties: a common approach across the working groups. Climatic Change 108, 675–691 (2011).

    Article  Google Scholar 

  51. Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nature Clim. Change 5, 519–527 (2015).

    Article  Google Scholar 

  52. Statement of the CVF Chair at the UNFCCC COP21 Ministerial Dialogue on the Long-Term Goal (Climate Vulnerable Forum, 2015); http://go.nature.com/29DRiRy

  53. Rogelj, J. et al. Zero emission targets as long-term global goals for climate protection. Environ. Res. Lett. 10, 105007 (2015).

    Article  CAS  Google Scholar 

  54. IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014)

  55. Rogelj, J. et al. Differences between carbon budget estimates unravelled. Nature Clim. Change 6, 245–252 (2016).

    Article  Google Scholar 

  56. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

    Article  CAS  Google Scholar 

  57. Fuss, S. et al. Betting on negative emissions. Nature Clim. Change 4, 850–853 (2014).

    Article  CAS  Google Scholar 

  58. Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nature Clim. Change 6, 42–50 (2015).

    Article  CAS  Google Scholar 

  59. Williamson, P. Scrutinize CO2 removal methods. Nature 530, 153–155 (2016).

    Article  CAS  Google Scholar 

  60. Obersteiner, M. et al. Managing climate risk. Science 294, 786–787 (2001).

    Article  CAS  Google Scholar 

  61. Kriegler, E. et al. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change 123, 353–367 (2014).

    Article  Google Scholar 

  62. Lobell, D. B. & Tebaldi, C. Getting caught with our plants down: the risks of a global crop yield slowdown from climate trends in the next two decades. Environ. Res. Lett. 9, 074003 (2014).

    Article  Google Scholar 

  63. Creutzig, F. et al. Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7, 916–944 (2014).

    Article  CAS  Google Scholar 

  64. Smith, P. et al. in Climate Change 2014: Mitigation of Climate Change (Edenhofer, O. et al.) Ch. 11 (IPCC, Cambridge Univ Press, 2014).

    Google Scholar 

  65. Havlik, P. et al. Global land-use implications of first and second generation biofuel targets. Energy Pol. 39, 5690–5702 (2011).

    Article  Google Scholar 

  66. Lotze-Campen, H. et al. Impacts of increased bioenergy demand on global food markets: an AgMIP economic model intercomparison. Agric. Econ. 45, 103–116 (2014).

    Article  Google Scholar 

  67. Riahi, K. et al. Locked into Copenhagen Pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Soc. Change 90A, 8–23 (2013).

    Google Scholar 

  68. The Emission Gap Report 2015: A UNEP Synthesis Report (UNEP, 2015).

  69. Rogelj, J., McCollum, D. L., O'Neill, B. C. & Riahi, K. 2020 emissions levels required to limit warming to below 2 °C. Nature Clim. Change 3, 405–412 (2013).

    Article  CAS  Google Scholar 

  70. Synthesis Report on the Aggregate Effect of the Intended Nationally Determined Contributions FCCC/CP/2015/7 (UNFCCC, 2015).

  71. Rogelj, J. et al. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 534, 631–639 (2016).

    Article  CAS  Google Scholar 

  72. Jaeger, C. C. & Jaeger, J. Three views of two degrees. Reg. Environ. Chang. 11, 15–26 (2011).

    Article  Google Scholar 

  73. Schellnhuber, H. J. Rahmstorf, S. & Winkelmann, R. Why the right climate target was agreed in Paris. Nature Clim. Change 6, 649–653 (2016).

    Article  Google Scholar 

  74. Rogelj, J. & Knutti, R. Geosciences after Paris. Nature Geosci. 9, 187–189 (2016).

    Article  CAS  Google Scholar 

  75. Mitchell, D. et al. Realizing the impacts of a 1.5 °C warmer world. Nature Clim. Change 6, 735–737 (2016).

    Article  Google Scholar 

  76. James, R. & Washington, R. Changes in African temperature and precipitation associated with degrees of global warming. Climatic Change 117, 859–872 (2013).

    Article  Google Scholar 

  77. Hallegatte, S. et al. Mapping the climate change challenge. Nature Clim. Change 6, 663–668 (2016).

    Article  Google Scholar 

  78. Chadwick, R. & Good, P. Understanding nonlinear tropical precipitation responses to CO2 forcing. Geophys. Res. Lett. 40, 4911–4915 (2013).

    Article  Google Scholar 

  79. Hawkins, E., Joshi, M. & Frame, D. Wetter then drier in some tropical areas. Nature Clim. Change 4, 646–647 (2014).

    Article  Google Scholar 

  80. Bouttes, N., Gregory, J. M. & Lowe, J. A. The reversibility of sea level rise. J. Clim. 26, 2502–2513 (2013).

    Article  Google Scholar 

  81. Schleussner, C.-F., Levermann, A. & Meinshausen, M. Probabilistic projections of the Atlantic overturning. Climatic Change 127, 579–586 (2014).

    Article  Google Scholar 

  82. Drijfhout, S. et al. Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl Acad. Sci. USA 112, 43 (2015).

    Article  CAS  Google Scholar 

  83. Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially underway for the Thwaites Glacier Basin, West Antarctica. Science 344, 735–738 (2014).

    Article  CAS  Google Scholar 

  84. Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith and Kohler glaciers, West Antarctica from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).

    Article  Google Scholar 

  85. Favier, L. et al. Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nature Clim. Change 4, 117–121 (2014).

    Article  Google Scholar 

  86. Feldmann, J. & Levermann, A. Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin. Proc. Natl Acad. Sci. USA 112, 14191–14196 (2015).

    Article  CAS  Google Scholar 

  87. Mengel, M. & Levermann, A. Ice plug prevents irreversible discharge from East Antarctica. Nature Clim. Change 4, 451–455 (2014).

    Article  Google Scholar 

  88. Spence, P. et al. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 41, 4601–4610 (2014).

    Article  Google Scholar 

  89. Hellmer, H. H., Kauker, F., Timmermann, R., Determann, J. & Rae, J. Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485, 225–228 (2012).

    Article  CAS  Google Scholar 

  90. Vuuren, D. P. et al. A new scenario framework for climate change research: scenario matrix architecture. Climatic Change 122, 373–386 (2014).

    Article  Google Scholar 

  91. Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).

    Article  CAS  Google Scholar 

  92. Lomax, G., Lenton, T. M., Adeosun, A. & Workman, M. Investing in negative emissions. Nature Clim. Change 5, 498–500 (2015).

    Article  Google Scholar 

  93. Meinshausen, M. et al. National post-2020 greenhouse gas targets and diversity-aware leadership. Nature Clim. Change 5, 1098–1106 (2015).

    Article  Google Scholar 

  94. Edenhofer, O. King Coal and the queen of subsidies. Science 349, 1286–1287 (2015).

    Article  CAS  Google Scholar 

  95. The Coal Gap: Planned Coal-Fired Power Plants Inconsistent with 2 °C and Threaten Achievement of INDCs (Climate Action Tracker, 2015).

  96. Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D. & Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525, 367–71 (2015).

    Article  CAS  Google Scholar 

  97. Rogelj, J. et al. Air-pollution emission ranges consistent with the representative concentration pathways. Nature Clim. Change 4, 245–252 (2014).

    Article  CAS  Google Scholar 

  98. Hulme, M. 1.5 °C and climate research after the Paris Agreement. Nature Clim. Change 6, 222–224 (2016).

    Article  Google Scholar 

  99. INDCs Lower Projected Warming to 2.7 °C: Significant Progress But Still Above 2 °C (Climate Action Tracker, 2015).

Download references

Acknowledgements

We acknowledge the work by IAM modellers that contributed to the IPCC AR5 Scenario Database and the World Climate Research Programme's Working Group on Coupled Modelling, which is responsible for CMIP. We thank the climate modelling groups for producing and making available their model output, and the International Institute for Applied System Analysis for hosting the IPCC AR5 Scenario Database. For CMIP, the US Department of Energy's Program for Climate Model Diagnosis and Intercomparison provided coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We would like to thank the modelling groups that participated in the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) and the Potsdam Institute for Climate Impact Research for hosting the database. The work was supported by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (11_II_093_Global_A_SIDS and LDCs), within the framework of the Leibniz Competition (SAW-2013-PIK-5), from EU FP7 project HELIX (grant no. FP7-603864-2) and by the German Federal Ministry of Education and Research (BMBF; grant no. 01LS1201A1). J.R. received funding from the EU's Horizon 2020 research and innovation programme under grant agreement no. 642147 (CD-LINKS).

Author information

Authors and Affiliations

Authors

Contributions

C.F.S, J.R., M.S. and W.H. led the writing of the paper with significant contributions from all authors. C.F.S, J.R., M.S. and W.H. designed the manuscript structure and content. C.F.S., J.R. and M.S. carried out the analysis presented and produced the figures.

Corresponding author

Correspondence to Carl-Friedrich Schleussner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 523 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schleussner, CF., Rogelj, J., Schaeffer, M. et al. Science and policy characteristics of the Paris Agreement temperature goal. Nature Clim Change 6, 827–835 (2016). https://doi.org/10.1038/nclimate3096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3096

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing