The Javee Virtual
Machine Specification
Java St 23 Edition

Tim Lindholm
Frank Yellin
Gilad Bracha
Alex Buckley
Daniel Smith

2024-08-21

Specification: JSR-398 Java SE 23
Version: 23

Status: Final Release

Release: September 2024

Copyright © 1997, 2024, Oracle America, Inc.
All rights reserved.

The Specification provided hereinis provided to you only under the Limited License Grant
included herein as Appendix A. Please see Appendix A, Limited License Grant.

Table of Contents

1 Introduction 1

11
12
13
14
15

A Bit of History 1

The JavaVirtual Machine 2
Organization of the Specification 3
Notation 4

Feedback 4

2 The Structure of the Java Virtual Machine 5

21
22
23

24
25

2.6

2.7
2.8
29

2.10
211

Thecl ass FileFormat 5

DataTypes 6

Primitive Typesand Values 6

231 Integra Typesand Values 7

2.3.2 Floating-Point Typesand Values 8
233 ThereturnAddress Typeand Values 9
234 Thebool ean Type 10

Reference Typesand Values 10

Run-Time Data Areas 11

251 Thepc Register 11

252 JavaVirtua Machine Stacks 11

253 Heap 12

254 Method Area 13

255 Run-Time Constant Pool 13

256 Native Method Stacks 14

Frames 15

26.1 Locd Variables 15

26.2 Operand Stacks 16

2.6.3 Dynamic Linking 17

264 Norma Method Invocation Completion 17
26.5 Abrupt Method Invocation Completion 18
Representation of Objects 18

Floating-Point Arithmetic 18

Specia Methods 22

29.1 Ingtance Initiadlization Methods 22
29.2 Classlnitialization Methods 22

29.3 Signature Polymorphic Methods 23
Exceptions 24

Instruction Set Summary 26

2111 Typesand theJavaVirtua Machine 27
2112 Load and Store Instructions 29

2.11.3 Arithmetic Instructions 30

The Javae Virtual Machine Specification

2114
2115
2116
2117
2118
2119

Type Conversion Instructions 31

Object Creation and Manipulation 33
Operand Stack Management Instructions 34
Control Transfer Instructions 34

Method Invocation and Return Instructions 34
Throwing Exceptions 35

2.11.10 Synchronization 35
212 ClassLibraries 36
2.13 Public Design, Private Implementation 37

3 Compiling for the Java Virtual Machine 39

31
3.2
33
34
35
3.6
3.7
3.8
39
3.10
311
3.12
3.13
3.14
3.15
3.16

Format of Examples 39

Use of Constants, Local Variables, and Control Constructs 40
Arithmetic 45

Accessing the Run-Time Constant Pool 46
More Control Examples 47

Receiving Arguments 50

Invoking Methods 51

Working with Class Instances 53

Arrays 55

Compiling Switches 57

Operations on the Operand Stack 59
Throwing and Handling Exceptions 59
Compilingfinally 63

Synchronization 66

Annotations 67

Modules 68

4 Thecl ass FileFormat 71
Thed assFi | e Structure 72

4.1
4.2

4.3

4.4

Names 79

421 Binary Classand Interface Names 79

4.2.2 Unqualified Names 79

4.2.3 Module and Package Names 79

Descriptors 80

431 Grammar Notation 80

4.3.2 Field Descriptors 81

433 Method Descriptors 82

The Constant Pool 83

441 TheCONSTANT O ass_i nf o Structure 86

4.4.2 The CONSTANT Fi el dr ef _i nf o, CONSTANT_Met hodr ef _i nf o, and
CONSTANT _| nt er f aceMet hodr ef _i nf o Structures 87

443 TheCONSTANT String_info Structure 88

4.4.4 The CONSTANT I nt eger _i nf o and CONSTANT_Fl oat _i nfo
Structures 88

445 The CONSTANT Long_i nf o and CONSTANT Doubl e_i nf o

Structures 90

4.5
4.6
4.7

4.8
4.9

4.4.6
4.4.7
448
449
4.4.10

4411
4412

The Javae Virtual Machine Specification

The CONSTANT _NaneAndType_i nf o Structure 91
The CONSTANT _Ut f 8_i nf o Structure 92

The CONSTANT_Met hodHandl e_i nf o Structure 94
The CONSTANT _Met hodType_i nf o Structure 96
The CONSTANT_Dynani c_i nf o and

CONSTANT _| nvokeDynani ¢_i nf o Structures 96
The CONSTANT _Mvdul e_i nf o Structure 97

The CONSTANT_Package_i nf o Structure 98

Fields 99
Methods 101
Attributes 105

4.7.1
4.7.2
4.7.3
4.7.4
4.7.5
4.7.6
4.7.7
4.7.8
4.7.9

4.7.10
4.7.11
4.7.12
4.7.13
4.7.14
4.7.15
4.7.16

4.7.17
4.7.18
4.7.19
4.7.20

4.7.21
4.7.22
4.7.23
4.7.24
4.7.25
4.7.26
4.7.27
4.7.28
4.7.29
4.7.30
4.7.31

Defining and Naming New Attributes 112

The Const ant Val ue Attribute 113

The Code Attribute 114

The St ackMapTabl e Attribute 117

The Except i ons Attribute 125

Thel nner d asses Attribute 126

The Encl osi ngMet hod Attribute 128

The Synt het i ¢ Attribute 130

The Si gnat ur e Attribute 131

4.79.1 Signatures 132

The Sour ceFi | e Attribute 136

The Sour ceDebugExt ensi on Attribute 137

The Li neNunber Tabl e Attribute 138

TheLocal Vari abl eTabl e Attribute 139

TheLocal Vari abl eTypeTabl e Attribute 141

The Depr ecat ed Attribute 142

The Runt i meVi si bl eAnnot at i ons Attribute 143
4.7.16.1 Theel enent _val ue structure 145

The Runti el nvi si bl eAnnot at i ons Attribute 148
The Runti meVi si bl ePar anet er Annot at i ons Attribute 149
The Runt i mel nvi si bl ePar amet er Annot at i ons Attribute 151
TheRunt i meVi si bl eTypeAnnot at i ons Attribute 152
4.7.20.1 Thetarget_infounion 158

4.7.20.2 Thetype_pat h structure 163

The Runt i mel nvi si bl eTypeAnnot at i ons Attribute 169
The Annot ati onDef aul t Attribute 170

The Boot st r apMet hods Attribute 171

The Met hodPar aret er s Attribute 172

The Modul e Attribute 174

The Mbdul ePackages Attribute 181

The Modul eMai nCl ass Attribute 182

The Nest Host Attribute 183

The Nest Menber s Attribute 183

The Recor d Attribute 185

The Per i tt edSubcl asses Attribute 186

Format Checking 188
Constraints on Java Virtual Machine Code 188

The Javae Virtual Machine Specification

4.10

491
492

Static Constraints 189
Structural Constraints 192

Verification of cl ass Files 196

410.1

4.10.2

Verification by Type Checking 198

4.10.1.1 Accessorsfor JavaVirtual Machine Artifacts 200

4.10.1.2 Veification Type System 204

4.10.1.3 Instruction Representation 208

410.1.4 Stack Map Frames and Type Transitions 211

4.10.1.5 Type Checking Abstract and Native Methods 215

4.10.1.6 Type Checking Methods with Code 218

4.10.1.7 Type Checking Load and Store Instructions 226

4.10.1.8 Type Checking for pr ot ect ed Members 228

4.10.1.9 Type Checking Instructions 231

Verification by Type Inference 351

4.10.2.1 TheProcess of Verification by Type Inference 351

4.10.2.2 The Bytecode Verifier 351

4.10.2.3 Vauesof Typesl ong and doubl e 354

4.10.2.4 Instance Initialization Methods and Newly Created
Objects 355

410.25 Exceptionsandfinally 356

4.11 Limitations of the JavaVirtual Machine 358

5 Loading, Linking, and Initializing 361

The Run-Time Constant Pool 361
Java Virtua Machine Startup 364
Creation and Loading 365

51
5.2
53

54

55

Vi

531
532
533
534
535
5.3.6
Linking
54.1
54.2
54.3

544
545
54.6

Loading Using the Bootstrap Class Loader 367

Loading Using a User-defined Class Loader 368

Creating Array Classes 369

Loading Constraints 370

Deriving aClass from acl ass File Representation 371

Modulesand Layers 375

377

Verification 378

Preparation 378

Resolution 379

5431 Classand Interface Resolution 381

5432 Field Resolution 381

54.33 Method Resolution 382

5434 Interface Method Resolution 384

54.35 Method Type and Method Handle Resolution 386

54.36 Dynamically-Computed Constant and Call Site
Resolution 390

Access Control 395

Method Overriding 397

Method Selection 398

Initialization 399

The Javae Virtual Machine Specification

5.6 Binding Native Method Implementations 402
5.7 JavaVirtua Machine Termination 402

6 TheJava Virtual Machine Instruction Set 405

6.1 Assumptions: The Meaning of "Must" 405
6.2 Reserved Opcodes 406
6.3 Virtual Machine Errors 406
6.4 Format of Instruction Descriptions 407
mnemonic 408
6.5 Instructions 410
aaload 411
aastore 412
aconst_null 413
aload 414
aload <n> 415
anewarray 416
areturn 417
arraylength 418
astore 419
astore <n> 420
athrow 421
baload 423
bastore 424
bipush 425
caload 426
castore 427
checkcast 428
d2f 431
d2i 432
d2l 433
dadd 434
daload 436
dastore 437
dcmp<op> 438
dconst_<d> 440
ddiv 441
dload 443
dload <n> 444
dmul 445
dneg 446
drem 447
dreturn 449
dstore 450
dstore <n> 451
dsub 452
dup 453
dup x1 454

Vii

viii

The Javae Virtual Machine Specification

dup_x2 455
dup2 456
dup2 x1 457
dup2 x2 458
f2d 460

f2i 461

f2l 462

fadd 463
faload 465
fastore 466
fcmp<op> 467
fconst_ <f> 469
fdiv 470

fload 472
fload <n> 473
fmul 474

fneg 475

frem 476
freturn 478
fstore 479
fstore <n> 480
fsub 481
getfield 482
getstatic 483
goto 485
goto_w 486
i2b 487

i2c 488

i2d 489

i2f 490

i2l 491

i2s 492

iadd 493
iaload 494
iand 495
iastore 496
iconst_<i> 497
idiv 498

if acmp<cond> 499
if_icmp<cond> 500
if<cond> 502
ifnonnull 504
ifnull 505

iinc 506

iload 507
iload_<n> 508
imul 509

ineg 510

The Javae Virtual Machine Specification

instanceof 511
invokedynamic 513
invokeinterface 515
invokespecial 519
invokestatic 524
invokevirtual 527
ior 534

irem 535

ireturn 536

ishl 538

ishr 539

istore 540
istore <n> 541
isub 542

iushr 543

ixor 544

jsr 545

jsr_w 546

12d 547

|2f 548

12i 549

ladd 550

laload 551

land 552

lastore 553

lcmp 554
Iconst_<I> 555
Idc 556

Idc_ w 558
Idc2 w 560

Idiv 562

lload 563
lload_<n> 564
Imul 565

Ineg 566
lookupswitch 567
lor 569

Irem 570

Ireturn 571

Ishl 572

Ishr 573

Istore 574
Istore <n> 575
Isub 576

lushr 577

Ixor 578
monitorenter 579
monitorexit 581

The Javae Virtual Machine Specification

multianewarray 583
new 585
newarray 587
nop 589

pop 590

pop2 591
putfield 592
putstatic 594
ret 596

return 597
saload 598
sastore 599
sipush 600
swap 601
tableswitch 602
wide 604

7 Opcode Mnemonics by Opcode 607
A Limited License Grant 611

CHAPTER 1

| ntroduction

1.1 A Bit of History

The Javaer programming language isageneral -purpose, concurrent, object-oriented
language. Its syntax is similar to C and C++, but it omits many of the features that
make C and C++ complex, confusing, and unsafe. The Java platform was initially
developed to address the problems of building software for networked consumer
devices. It was designed to support multiple host architectures and to allow secure
delivery of software components. To meet these requirements, compiled code had
to survive transport across networks, operate on any client, and assure the client
that it was safe to run.

The popularization of the World Wide Web made these attributes much more
interesting. Web browsers enabled millions of people to surf the Net and access
media-rich content in simple ways. At last there was a medium where what you
saw and heard was essentially the same regardless of the machine you were using
and whether it was connected to afast network or a slow modem.

Web enthusiasts soon discovered that the content supported by the Web's HTML
document format was too limited. HTML extensions, such as forms, only
highlighted those limitations, while making it clear that no browser could include
al the features users wanted. Extensibility was the answer.

The HotJava browser first showcased the interesting properties of the Java
programming language and platform by making it possible to embed programs
inside HTML pages. Programs are transparently downloaded into the browser
aong with the HTML pages in which they appear. Before being accepted by the
browser, programs are carefully checked to make sure they are safe. Like HTML
pages, compiled programs are network- and host-independent. The programs
behave the same way regardless of where they come from or what kind of machine
they are being loaded into and run on.

1.2

The Java Virtual Machine INTRODUCTION

A Web browser incorporating the Java platform is no longer limited to a
predetermined set of capabilities. Visitors to Web pages incorporating dynamic
content can be assured that their machines cannot be damaged by that content.
Programmers can write a program once, and it will run on any machine supplying
aJava run-time environment.

1.2 TheJava Virtual Machine

The Java Virtual Machine is the cornerstone of the Java platform. It is the
component of the technology responsible for its hardware- and operating system-
independence, the small size of its compiled code, and its ability to protect users
from malicious programs.

The JavaVirtual Machineis an abstract computing machine. Likeareal computing
machine, it hasan instruction set and mani pul ates variousmemory areasat runtime.
It is reasonably common to implement a programming language using a virtua
machine; the best-known virtual machine may be the P-Code machine of UCSD
Pascal.

The first prototype implementation of the Java Virtual Machine, done at Sun
Microsystems, Inc., emulated the Java Virtual Machine instruction set in software
hosted by a handheld device that resembled a contemporary Personal Digital
Assistant (PDA). Oracle's current implementations emulate the Java Virtua
Machine on mobile, desktop and server devices, but the Java Virtual Machine
does not assume any particular implementation technology, host hardware, or
host operating system. It is not inherently interpreted, but can just as well be
implemented by compiling its instruction set to that of asilicon CPU. It may also
be implemented in microcode or directly in silicon.

The Java Virtual Machine knows nothing of the Java programming language, only
of a particular binary format, the cl ass file format. A cl ass file contains Java
Virtual Machine instructions (or bytecodes) and a symbol table, as well as other
ancillary information.

For the sake of security, the Java Virtual Machine imposes strong syntactic and
structural constraints on the code in a cl ass file. However, any language with
functionality that can be expressed in terms of avalid cl ass file can be hosted by
the Java Virtual Machine. Attracted by a generally available, machine-independent
platform, implementors of other languages can turn to the Java Virtual Machine as
adelivery vehicle for their languages.

INTRODUCTION Organization of the Specification

The Java Virtual Machine specified here is compatible with the Java SE 23
platform, and supports the Java programming language specified in The Java
Language Specification, Java SE 23 Edition.

1.3 Organization of the Specification

Chapter 2 gives an overview of the Java Virtual Machine architecture.

Chapter 3 introduces compilation of code written in the Java programming
language into the instruction set of the Java Virtual Machine.

Chapter 4 specifies the cl ass file format, the hardware- and operating system-
independent binary format used to represent compiled classes and interfaces.

Chapter 5 gpecifies the start-up of the Java Virtual Machine and the loading,
linking, and initialization of classes and interfaces.

Chapter 6 specifies the instruction set of the Java Virtual Machine, presenting the
instructions in alphabetical order of opcode mnemonics.

Chapter 7 gives a table of Java Virtual Machine opcode mnemonics indexed by
opcode value.

In the Second Edition of The Java® Virtual Machine Specification, Chapter 2
gave an overview of the Java programming language that was intended to support
the specification of the Java Virtual Machine but was not itself a part of the
specification. In The Java Virtual Machine Specification, Java SE 23 Edition, the
reader is referred to The Java Language Specification, Java SE 23 Edition for
information about the Java programming language.

In the Second Edition of The Javae Virtual Machine Specification, Chapter 8
detailed thelow-level actionsthat explained theinteraction of JavaVirtual Machine
threads with a shared main memory. In The Java Virtual Machine Specification,
Java SE 23 Edition, the reader is referred to Chapter 17 of The Java Language
Foecification, Java SE 23 Edition for information about threads and locks. Chapter
17 reflects The Java Memory Model and Thread Specification produced by the JISR
133 Expert Group.

13

14

Notation INTRODUCTION

1.4 Notation

Throughout this specification, we refer to classes and interfaces drawn from the
Java SE Platform API. Whenever we refer to a class or interface (other than those
declared in an example) using asingle identifier N, the intended reference isto the
class or interface named N in the package j ava. | ang. We use the fully qualified
name for classes or interfaces from packages other than j ava. | ang.

Whenever we refer to a class or interface that is declared in the package j ava or
any of its subpackages, the intended reference isto that class or interface asloaded
by the bootstrap class loader (85.3.1).

Whenever we refer to a subpackage of a package named j ava, the intended
referenceis to that subpackage as determined by the bootstrap class loader.

A cross-reference within this specification is shown as (8x.y). Occasionally, we
refer to concepts in the The Java Language Specification, Java SE 23 Edition via
cross-references of the form (JLS 8x.y).

The use of fontsin this specification is as follows:

 Afixed width fontisused for Java Virtual Machine data types, exceptions,
errors, cl ass file structures, Prolog code, and Java code fragments.

* Italic is used for Java Virtual Machine "assembly language”, its opcodes and
operands, as well asitemsin the Java Virtual Machine's run-time data areas. It
is aso used to introduce new terms and simply for emphasis.

Non-normative text, designed to clarify the normative text of this specification, is
givenin smaller, indented text.

Thisis non-normative text. It provides intuition, rationale, advice, examples, etc.

1.5 Feedback

Readers are invited to report technical errors and ambiguitiesin The Javae Virtual
Machine Specificationtoj | s-j vis- spec- comrent s@pen;j dk. or g.

Questions concerning the generation and manipulation of cl ass filesby j avac (the
reference compiler for the Java programming language) may be sent to conpi | er -
dev@penj dk. or g.

CHAPTER2

The Structure of the Java
Virtual Machine

T HIS document specifies an abstract machine. It does not describe any particular
implementation of the Java Virtual Machine.

To implement the Java Virtual Machine correctly, you need only be able to
read the cl ass file format and correctly perform the operations specified therein.
Implementation detailsthat are not part of the Java Virtual Machine's specification
would unnecessarily constrain the creativity of implementors. For example, the
memory layout of run-time data areas, the garbage-collection algorithm used, and
any internal optimization of the Java Virtual Machine instructions (for example,
trangdlating them into machine code) are | eft to the discretion of the implementor.

All references to Unicode in this specification are given with respect to The
Unicode Sandard, Version 15.1.0, available at ht t ps: / / www. uni code. or g/ .

2.1 Thecl ass File Format

Compiled code to be executed by the Java Virtual Machine is represented using
a hardware- and operating system-independent binary format, typically (but not
necessarily) stored in afile, known asthecl ass fileformat. Thecl ass file format
precisely defines the representation of a class or interface, including details such
as byte ordering that might be taken for granted in a platform-specific object file
format.

Chapter 4, "Thecl ass File Format", coversthecl ass file format in detail.

https://www.unicode.org/

22

Data Types THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

2.2 DataTypes

Like the Java programming language, the Java Virtual Machine operates on two
kinds of types: primitivetypes and referencetypes. Thereare, correspondingly, two
kinds of values that can be stored in variables, passed as arguments, returned by
methods, and operated upon: primitive values and reference values.

The Java Virtual Machine expects that nearly al type checking is done prior
to run time, typically by a compiler, and does not have to be done by the Java
Virtual Machine itself. Values of primitive types need not be tagged or otherwise
be inspectable to determine their types at run time, or to be distinguished from
values of reference types. Instead, the instruction set of the Java Virtual Machine
distinguishes its operand types using instructions intended to operate on values of
specific types. For instance, iadd, ladd, fadd, and dadd are all JavaVirtual Machine
instructions that add two numeric values and produce numeric results, but each is
specidized for itsoperand type: i nt , | ong, f | oat , and doubl e, respectively. For a
summary of type support in the Java Virtual Machine instruction set, see 82.11.1.

The Java Virtual Machine contains explicit support for objects. An object is
either a dynamically allocated class instance or an array. A reference to an
object is considered to have Java Virtual Machine type r ef er ence. References
are polymorphic: a single reference may also be a value of multiple class types,
interface types, or array types. Values of type ref erence can be thought of as
pointers to objects. More than one reference to an object may exist. Objects are
always operated on, passed, and tested via values of typer ef er ence.

2.3 Primitive Typesand Values

The primitive data types supported by the Java Virtual Machine are the numeric
types, the bool ean type (82.3.4), and ther et ur nAddr ess type (8§2.3.3).

The numeric types consist of theintegral types(82.3.1) and the floating-point types
(82.3.2).

Theintegral types are:

* byte, whose values are 8-bit signed two's-complement integers, and whose
default valueis zero

* short, whose values are 16-bit signed two's-complement integers, and whose
default value is zero

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Primitive Types and Values

* int, whose values are 32-bit signed two's-complement integers, and whose
default value is zero

* | ong, whose values are 64-bit signed two's-complement integers, and whose
default valueis zero

» char, whose values are 16-hit unsigned integers representing Unicode code
pointsin the Basic Multilingual Plane, encoded with UTF-16, and whose default
valueisthe null code point (' \ u0000')

The floating-point types are:

* f1oat,whosevaluesexactly correspond to the values representable in the 32-bit
|EEE 754 binary32 format, and whose default value is positive zero

* doubl e, whose values exactly correspond to the values of the 64-bit IEEE 754
binary64 format, and whose default value is positive zero

The values of the bool ean type encode the truth valuest r ue and f al se, and the
default valueisf al se.

The First Edition of The Java® Virtual Machine Specification did not consider bool ean
to be a Java Virtual Machine type. However, bool ean values do have limited support in
the Java Virtual Machine. The Second Edition of The Javae Virtual Machine Specification
clarified the issue by treating bool ean asatype.

The values of ther et ur nAddr ess type are pointers to the opcodes of Java Virtua
Machine instructions. Of the primitive types, only ther et ur nAddr ess type is not
directly associated with a Java programming language type.

231 Integral Typesand Values

The values of theintegral types of the Java Virtual Machine are:

* For byt e, from-128 to 127 (-27 to 2’ - 1), inclusive

* For short, from -32768 to 32767 (-215 to 21°- 1), inclusive

« Fori nt, from -2147483648 to 2147483647 (-2** to 2*! - 1), inclusive

« For | ong, from -9223372036854775808 to 9223372036854775807 (-2% to 2%
- 1), inclusive

e For char, from 0 to 65535 inclusive

2.3

2.3

Primitive Types and Values THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

2.3.2 Floating-Point Typesand Values

The floating-point typesaref | oat and doubl e, which are conceptually associated
with the 32-bit binary32 and 64-bit binary64 floating-point formats for IEEE 754
values and operations, as specified in the IEEE 754 Standard (JLS §1.7).

In Java SE 15 and later, the Java Virtual Machine uses the 2019 version of the |IEEE 754
Standard. Prior to Java SE 15, the Java Virtual Machine used the 1985 version of the IEEE
754 Standard, where the binary32 format was known as the single format and the binary64
format was known as the double format.

|EEE 754 includes not only positive and negative numbersthat consist of asign and
magnitude, but also positive and negative zeros, positive and negative infinities,
and specia Not-a-Number values (hereafter abbreviated NaN). A NaN value is
used to represent the result of certain invalid operations such as dividing zero by
zero. NaN constants of both f 1 oat and doubl e type are predefined as Fl oat . NaN
and Doubl e. NaN.

The finite nonzero values of afloating-point type can all be expressed in the form
sm@2E N*D where:

e sis+lor-1,

* misapositive integer less than 2N,

« eisaninteger between Epin = -(2K°%-2) and Emax = 2€%-1, inclusive, and
* Nand K are parameters that depend on the type.

Some values can be represented in this form in more than one way. For example,
supposing that avalue v of afloating-point type might be represented in thisform
using certain values for s, m, and e, then if it happened that m were even and e
were less than 25, one could halve m and increase e by 1 to produce a second
representation for the same valuev.

A representation in this form is called normalized if m = 2N otherwise the
representation is said to be subnormal. If avalue of afloating-point type cannot be
represented in such a way that m = 2N then the value is said to be a subnormal
value, because its magnitude is below the magnitude of the smallest normalized
value.

The constraints on the parameters N and K (and on the derived parameters Ei, and
Ermax) fOr 1 oat and doubl e are summarized in Table 2.3.2-A.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Primitive Types and Values

Table 2.3.2-A. Floating-point parameters

Parameter f1 oat doubl e
N 24 53

K 8 11

Errex +127 +1023
Emin -126 -1022

Except for NaN, floating-point values are ordered. When arranged from smallest
to largest, they are negative infinity, negative finite nonzero values, positive and
negative zero, positive finite nonzero values, and positive infinity.

|EEE 754 allows multipledistinct NaN valuesfor each of itsbinary32 and binary64
floating-point formats. However, the Java SE Platform generally treats NaN values
of a given floating-point type as though collapsed into a single canonica value,
and hence this specification normally refers to an arbitrary NaN as though to a
canonical value.

Under IEEE 754, a floating-point operation with non-NaN arguments may generate
a NaN result. IEEE 754 specifies a set of NaN bit patterns, but does not mandate
which particular NaN bit pattern is used to represent a NaN result; this is left to the
hardware architecture. A programmer can create NaNs with different bit patterns to
encode, for example, retrospective diagnostic information. These NaN values can be
created withtheFl oat . i nt Bi t sToFl oat andDoubl e. | ongBi t sToDoubl e methodsfor
f1 oat and doubl e, respectively. Conversely, to inspect the bit patterns of NaN values,
the Fl oat . f| oat ToRawl nt Bi t s and Doubl e. doubl eToRawLongBi t s methods can be
used for f | oat and doubl e, respectively.

Positive zero and negative zero compare equal, but there are other operations that
can distinguish them; for example, dividing 1. 0 by 0. 0 produces positive infinity,
but dividing 1. 0 by - 0. 0 produces negative infinity.

NaN isunordered, so numerical comparisons and testsfor numerical equality have
thevaluef al se if either or both of their operands are NaN. In particular, atest for
numerical equality of avalue against itself has the valuef al se if and only if the
valueis NaN. A test for numerical inequality hasthe valuet r ue if either operand
isNaN.

2.3.3 ThereturnAddress Typeand Values

Ther et ur nAddr ess typeis used by the Java Virtual Machine'sjsr, ret, and jsr_w
instructions (§jsr, 8ret, §jsr_w). Thevaluesof ther et ur nAddr ess typeare pointers
to the opcodes of Java Virtual Machine instructions. Unlike the numeric primitive

2.3

24

10

Reference Types and Values THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

types, the ret urnAddr ess type does not correspond to any Java programming
language type and cannot be modified by the running program.

2.34 Thebool ean Type

Although the Java Virtual Machine defines a bool ean type, it only provides
very limited support for it. There are no Java Virtual Machine instructions solely
dedicated to operations on bool ean values. Instead, expressions in the Java
programming language that operate on bool ean values are compiled to use values
of the Java Virtual Machinei nt datatype.

The Java Virtual Machine does directly support bool ean arrays. Its newarray
instruction (8newarray) enables creation of bool ean arrays. Arrays of type
bool ean are accessed and modified using the byt e array instructions baload and
bastore (8baload, 8bastore).

In Oracle's Java Virtua Machine implementation, bool ean arrays in the Java
programming language are encoded as Java Virtual Machine byt e arrays, using 8 bits per
bool ean element.

The JavaVirtual Machine encodesbool ean array componentsusing 1 to represent
true and 0 torepresent f al se. Where Javaprogramming language bool ean values
are mapped by compilersto values of JavaVirtual Machinetypei nt , the compilers
must use the same encoding.

2.4 Reference Typesand Values

There are three kinds of r ef er ence types: class types, array types, and interface
types. Their values are referencesto dynamically created classinstances, arrays, or
class instances or arrays that implement interfaces, respectively.

An array type consists of a component type with asingle dimension (whose length
isnot given by thetype). The component type of an array type may itself bean array
type. If, starting from any array type, one considers its component type, and then
(if that isalso an array type) the component type of that type, and so on, eventually
one must reach acomponent typethat isnot an array type; thisis called the element
type of the array type. The element type of an array type is necessarily either a
primitive type, or aclasstype, or an interface type.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Run-Time Data Areas

A ref erence value may also bethe special null reference, areferenceto no object,
which will be denoted here by nul I . Thenul I reference initially has no run-time
type, but may be cast to any type. The default value of ar ef er ence typeisnul | .

This specification does not mandate a concrete value encoding nul | .

2.5 Run-Time Data Areas

The Java Virtual Machine defines various run-time data areas that are used during
execution of a program. Some of these data areas are created on Java Virtual
M achine start-up and are destroyed only when the Java Virtual Machineterminates.
Other data areas are per thread. Per-thread data areas are created when athread is
created and destroyed when the thread terminates.

25.1 Thepc Register

The Java Virtual Machine can support many threads of execution at once (JLS
817). Each Java Virtual Machine thread hasits own pc (program counter) register.
At any point, each Java Virtual Machine thread is executing the code of a single
method, namely the current method (82.6) for that thread. If that method is not
nat i ve, thepc register containsthe address of the JavaVirtual Machineinstruction
currently being executed. If the method currently being executed by the thread is
nati ve, the value of the Java Virtual Machine's pc register is undefined. The Java
Virtua Machine's pc register iswide enough to hold ar et ur nAddr ess or anative
pointer on the specific platform.

2.5.2 JavaVirtual Machine Stacks

Each JavaVirtual Machinethread hasaprivate Java Virtual Machine stack, created
at the same time as the thread. A Java Virtual Machine stack stores frames (8§2.6).
A JavaVirtual Machine stack is analogous to the stack of a conventional language
such as C: it holds local variables and partial results, and plays a part in method
invocation and return. Becausethe Java Virtual Machine stack isnever manipul ated
directly except to push and pop frames, frames may be heap allocated. The memory
for aJava Virtua Machine stack does not need to be contiguous.

In the First Edition of The Javae Virtual Machine Specification, the Java Virtua Machine
stack was known as the Java stack.

25

11

25

12

Run-Time Data Areas THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

This specification permits Java Virtual Machine stacks either to be of afixed size
or to dynamically expand and contract as required by the computation. If the Java
Virtual Machine stacks are of afixed size, the size of each Java Virtual Machine
stack may be chosen independently when that stack is created.

A Java Virtua Machine implementation may provide the programmer or the user control
over theinitial size of Java Virtual Machine stacks, as well as, in the case of dynamically
expanding or contracting Java Virtual Machine stacks, control over the maximum and
minimum sizes.

The following exceptional conditions are associated with Java Virtua Machine
stacks:

« If the computation in athread requires alarger Java Virtual Machine stack than
is permitted, the Java Virtual Machine throws a St ackOver f | owEr r or .

* If Java Virtual Machine stacks can be dynamically expanded, and expansion is
attempted but insufficient memory can be made available to effect the expansion,
or if insufficient memory can be made available to create the initia Java
Virtua Machine stack for a new thread, the Java Virtual Machine throws an
Qut O Menor yError.

253 Heap

The JavaVirtual Machine hasaheap that is shared among al JavaVirtual Machine
threads. The heap is the run-time data area from which memory for all class
instances and arraysis allocated.

The heap is created on virtual machine start-up. Heap storage for objects is
reclaimed by an automatic storage management system (known as a garbage
collector); objects are never explicitly deallocated. The Java Virtua Machine
assumes no particular type of automatic storage management system, and the
storage management technique may be chosen according to the implementor's
system requirements. The heap may be of a fixed size or may be expanded as
required by the computation and may be contracted if a larger heap becomes
unnecessary. The memory for the heap does not need to be contiguous.

A Java Virtua Machine implementation may provide the programmer or the user control
over the initial size of the heap, as well as, if the heap can be dynamically expanded or
contracted, control over the maximum and minimum heap size.

The following exceptional condition is associated with the heap:

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Run-Time Data Areas

* If a computation requires more heap than can be made available by the
automatic storage management system, the Java Virtual Machine throws an
Qut O Menor yError .

254 Method Area

The Java Virtual Machine has a method area that is shared among all Java
Virtual Machine threads. The method area is analogous to the storage area for
compiled code of a conventional language or analogous to the "text" segment in
an operating system process. It stores per-class structures such as the run-time
constant pool, field and method data, and the code for methods and constructors,
including the special methods used in class and interface initialization and in
instance initialization (82.9).

The method areais created on virtual machine start-up. Although the method area
is logically part of the heap, simple implementations may choose not to either
garbage collect or compact it. This specification does not mandate the location of
the method area or the policies used to manage compiled code. The method area
may be of afixed size or may be expanded as required by the computation and may
be contracted if a larger method area becomes unnecessary. The memory for the
method area does not need to be contiguous.

A Java Virtua Machine implementation may provide the programmer or the user control
over theinitial size of themethod area, aswell as, in the case of avarying-size method area,
control over the maximum and minimum method area size.

The following exceptional condition is associated with the method area:

« If memory in the method area cannot be made available to satisfy an allocation
request, the Java Virtual Machine throws an cut O Menor yEr r or .

255 Run-Time Constant Pool

A run-time constant pool is a per-class or per-interface run-time representation
of the constant _pool table in acl ass file (84.4). It contains several kinds of
constants, ranging from numeric literalsknown at compile-timeto method and field
references that must be resolved at run-time. The run-time constant pool serves a
function similar to that of asymbol tablefor aconventional programming language,
although it contains awider range of data than atypical symbol table.

Each run-time constant pool is alocated from the Java Virtual Machine's method
area (82.5.4). The run-time constant pool for a class or interface is constructed
when the class or interface is created (85.3) by the Java Virtual Machine.

25

13

25

14

Run-Time Data Areas THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

Thefollowing exceptional condition is associated with the construction of the run-
time constant pool for a class or interface:

» When creating a class or interface, if the construction of the run-time constant
pool requires more memory than can be made available in the method area of the
Java Virtual Machine, the Java Virtua Machine throws an cut Of Menor yEr r or .

See 85 (Loading, Linking, and Initializing) for information about the construction of the
run-time constant pool.

25.6 Native Method Stacks

An implementation of the Java Virtual Machine may use conventional stacks,
colloquially called "C stacks,” to support nat i ve methods (methods written in a
language other than the Java programming language). Native method stacks may
also be used by the implementation of an interpreter for the Java Virtual Machine's
instruction set in a language such as C. Java Virtua Machine implementations
that cannot load nat i ve methods and that do not themselves rely on conventional
stacks need not supply native method stacks. If supplied, native method stacks are
typically alocated per thread when each thread is created.

This specification permits native method stacks either to be of a fixed size or to
dynamically expand and contract as required by the computation. If the native
method stacks are of a fixed size, the size of each native method stack may be
chosen independently when that stack is created.

A Java Virtua Machine implementation may provide the programmer or the user control
over theinitial size of the native method stacks, aswell as, in the case of varying-size native
method stacks, control over the maximum and minimum method stack sizes.

The following exceptional conditions are associated with native method stacks:

* If the computation in a thread requires a larger native method stack than is
permitted, the Java Virtual Machine throws a St ackOver f 1 owEr r or .

« If native method stacks can be dynamically expanded and native method stack
expansion is attempted but insufficient memory can be made available, or if
insufficient memory can be made available to create the initial native method
stack for anew thread, the Java Virtual Machine throws an cut O Menor yError .

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Frames

2.6 Frames

A frame is used to store data and partial results, as well as to perform dynamic
linking, return values for methods, and dispatch exceptions.

A new frameis created each time a method isinvoked. A frameis destroyed when
its method invocation completes, whether that completion is normal or abrupt (it
throwsan uncaught exception). Framesareallocated fromthe JavaVirtual Machine
stack (82.5.2) of the thread creating the frame. Each frame has its own array of
local variables (82.6.1), its own operand stack (§2.6.2), and areference to the run-
time constant pool (82.5.5) of the class of the current method.

A frame may be extended with additional implementation-specific information, such as
debugging information.

The sizes of the local variable array and the operand stack are determined at
compile-time and are supplied along with the code for the method associated with
the frame (84.7.3). Thus the size of the frame data structure depends only on the
implementation of the Java Virtual Machine, and the memory for these structures
can be alocated simultaneously on method invocation.

Only oneframe, theframefor the executing method, isactive at any pointinagiven
thread of control. This frame isreferred to as the current frame, and its method is
known as the current method. The class in which the current method is defined is
the current class. Operations on local variables and the operand stack are typically
with reference to the current frame.

A frame ceases to be current if its method invokes another method or if its method
completes. When amethod isinvoked, anew frameis created and becomes current
when control transfers to the new method. On method return, the current frame
passes back the result of its method invocation, if any, to the previous frame. The
current frame is then discarded as the previous frame becomes the current one.

Notethat aframe created by athreadislocal to that thread and cannot be referenced
by any other thread.

2.6.1 Local Variables

Each frame (82.6) contains an array of variables known asitslocal variables. The
length of the local variable array of a frame is determined at compile-time and
supplied in the binary representation of aclass or interface along with the code for
the method associated with the frame (84.7.3).

2.6

15

2.6

16

Frames THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

A single local variable can hold a value of type int, float, reference, Or
ret ur nAddr ess. A pair of local variables can hold avalue of typel ong or doubl e.

Local variables are addressed by indexing. The index of the first local variable is
zero. Aninteger isconsidered to be an index into thelocal variablearray if and only
if that integer is between zero and one less than the size of the local variable array.

A value of type | ong or type doubl e occupies two consecutive local variables.
Such avalue may only be addressed using the lesser index. For example, avalue of
typedoubl e stored in the local variable array at index n actually occupiesthelocal
variables with indices n and n+1; however, the local variable at index n+1 cannot
be loaded from. It can be stored into. However, doing so invalidates the contents
of local variablen.

The Java Virtual Machine does not require n to be even. Inintuitive terms, values
of types| ong and doubl e need not be 64-hit aligned in the local variables array.
Implementors are free to decide the appropriate way to represent such values using
the two local variables reserved for the value.

The Java Virtua Machine uses loca variables to pass parameters on method
invocation. On class method invocation, any parameters are passed in consecutive
local variables starting from local variable 0. On instance method invocation,
local variable O is always used to pass a reference to the object on which the
instance method is being invoked (t hi s in the Java programming language). Any
parameters are subsequently passed in consecutive local variables starting from
local variable 1.

2.6.2 Operand Stacks

Each frame (82.6) contains a last-in-first-out (LIFO) stack known as its operand
stack. The maximum depth of the operand stack of a frame is determined at
compile-time and is supplied along with the code for the method associated with
the frame (84.7.3).

Whereit is clear by context, we will sometimes refer to the operand stack of the
current frame as simply the operand stack.

The operand stack is empty when the frame that contains it is created. The
Java Virtual Machine supplies instructions to load constants or values from local
variables or fields onto the operand stack. Other Java Virtual Machine instructions
take operands from the operand stack, operate on them, and push the result back
onto the operand stack. The operand stack is aso used to prepare parametersto be
passed to methods and to receive method results.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Frames

For example, theiadd instruction (8iadd) addstwo i nt valuestogether. It requires
that thei nt valuesto be added be the top two values of the operand stack, pushed
there by previousinstructions. Both of thei nt values are popped from the operand
stack. They are added, and their sum is pushed back onto the operand stack.
Subcomputations may be nested on the operand stack, resulting in values that can
be used by the encompassing computation.

Each entry on the operand stack can hold avalue of any JavaVirtual Machinetype,
including avalue of typel ong or type doubl e.

Vaues from the operand stack must be operated upon in ways appropriate to their
types. It isnot possible, for example, to pushtwoi nt valuesand subsequently treat
them as al ong or to push two f | cat values and subsequently add them with an
iadd instruction. A small number of Java Virtual Machine instructions (the dup
instructions (8dup) and swap (8swap)) operate on run-time dataareas asraw values
without regard to their specific types; these instructions are defined in such away
that they cannot be used to modify or break up individual values. Theserestrictions
on operand stack manipulation are enforced through cl ass fileverification (84.10).

At any point in time, an operand stack has an associated depth, where a value of
type | ong or doubl e contributes two units to the depth and a value of any other
type contributes one unit.

2.6.3 Dynamic Linking

Each frame (82.6) contains a reference to the run-time constant pool (82.5.5) for
the type of the current method to support dynamic linking of the method code.
The cl ass file code for a method refers to methods to be invoked and variables
to be accessed via symbolic references. Dynamic linking translates these symbolic
method references into concrete method references, loading classes as necessary to
resolve as-yet-undefined symbols, and transl ates variabl e accessesinto appropriate
offsetsin storage structures associated with the run-time location of thesevariables.

Thislate binding of the methods and variables makes changes in other classes that
amethod useslesslikely to break this code.

2.6.4 Normal Method Invocation Completion

A method invocation completes normally if that invocation does not cause an
exception (8§2.10) to bethrown, either directly from the Java Virtual Machine or as
aresult of executing an explicit t hr ow statement. If the invocation of the current
method completes normally, then avalue may be returned to the invoking method.
This occurs when the invoked method executes one of the return instructions

2.6

17

2.7

18

Representation of Objects THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

(82.11.8), the choice of which must be appropriate for the type of the value being
returned (if any).

The current frame (82.6) is used in this case to restore the state of the invoker,
including its local variables and operand stack, with the program counter of the
invoker appropriately incremented to skip past the method invocation instruction.
Execution then continues normally in the invoking method's frame with the
returned value (if any) pushed onto the operand stack of that frame.

2.6.5 Abrupt Method Invocation Completion

A method invocation completes abruptly if execution of a Java Virtua Machine
instruction within the method causes the Java Virtual Machine to throw an
exception (82.10), and that exception is not handled within the method. Execution
of an athrow instruction (8athrow) also causes an exception to be explicitly thrown
and, if the exception is not caught by the current method, resultsin abrupt method
invocation completion. A method invocation that completes abruptly never returns
avaueto itsinvoker.

2.7 Representation of Objects

The Java Virtual Machine does not mandate any particular internal structure for
objects.

In some of Oracle's implementations of the Java Virtual Machine, a reference to a class
instance is a pointer to a handle that isitself a pair of pointers: one to a table containing
the methods of the object and a pointer to the O ass object that represents the type of the
object, and the other to the memory allocated from the heap for the object data.

2.8 Floating-Point Arithmetic

The Java Virtua Machine incorporates a subset of the floating-point arithmetic
specified in the IEEE 754 Standard (JLS §1.7).

In Java SE 15 and later, the Java Virtual Machine uses the 2019 version of the |EEE 754
Standard. Prior to Java SE 15, the Java Virtual Machine used the 1985 version of the |IEEE
754 Standard, where the binary32 format was known as the single format and the binary64
format was known as the double format.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Floating-Point Arithmetic

Many of the Java Virtual Machine instructions for arithmetic (82.11.3) and
type conversion (82.11.4) work with floating-point numbers. These instructions
typically correspond to IEEE 754 operations (Table 2.8-A), except for certain
instructions described below.

Table 2.8-A. Correspondence with |EEE 754 oper ations

Instruction |EEE 754 operation

dcmp<op> (8dcmp<op>), fcmp<op> compareQuietLess, compareQuietl essEqual,

(8fcmp<op>) compareQuietGreater,
compareQuietGreaterEqual,
compareQuietEqual, compareQuietNotEqual

dadd (8dadd), fadd (&fadd) addition

dsub (8dsub), fsub (8fsub) subtraction

dmul (&dmul), fmul (&fmul) multiplication

ddiv (8ddiv), fdiv (8fdiv) division

dneg (8dneg), fneg (&fneg) negate

i2d (8i2d), i2f (8i2f), 12d (812d), I2f (812f) convertFromint

d2i (8d2i), d2I (8d2l), f2i (&f2i), f2I (&f2l) convertTolntegerTowardZero

d2f (8d2f), f2d (&f2d) convertFormat

The key differences between the floating-point arithmetic supported by the Java
Virtua Machine and the |EEE 754 Standard are:

» Thefloating-point remainder instructions drem (8drem) and frem (&frem) do not
correspond to the |EEE 754 remainder operation. The instructions are based on
an implied division using the round toward zero rounding policy; the IEEE 754
remainder is instead based on an implied division using the round to nearest
rounding policy. (Rounding policies are discussed below.)

 The floating-point negate instructions dneg (8dneg) and fneg (8fneg) do not
correspond precisely to the |IEEE 754 negate operation. In particular, the
instructions do not require the sign bit of a NaN operand to be inverted.

» The floating-point instructions of the Java Virtual Machine do not throw
exceptions, trap, or otherwise signal the IEEE 754 exceptional conditions of
invalid operation, division by zero, overflow, underflow, or inexact.

» The Java Virtua Machine does not support |EEE 754 signaling floating-point
comparisons, and has no signaling NaN value.

2.8

19

2.8

20

Floating-Point Arithmetic THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

» |IEEE 754 includes rounding-direction attributes that do not correspond to a
rounding policy inthe JavaVirtual Machine. The JavaVirtual Machine does not
provide any meansto change the rounding policy used by a given floating-point
instruction.

» The JavaVirtual Machine does not support the binary32 extended and binary64
extended floating-point formats defined by IEEE 754. Neither extended range
nor extended precision beyond those specified for the f1 oat and doubl e types
may be used when operating on or storing floating-point values.

Some | EEE 754 operations without corresponding instructionsin the Java Virtual Machine
are provided via methods in the Math and Strict Mat h classes, including the sqrt
method for the IEEE 754 squareRoot operation, the f ma method for the IEEE 754
fusedM ultiplyAdd operation, and thel EEEr enai nder method for the | EEE 754 remainder
operation.

The Java Virtual Machine requires support of IEEE 754 subnormal floating-point
numbers and gradual underflow, which make it easier to prove desirable properties
of particular numerical algorithms.

Floating-point arithmetic is an approximation to real arithmetic. Whilethereare an
infinite number of real numbers, aparticular floating-point format only has afinite
number of values. In the Java Virtual Machine, a rounding policy is a function
used to map from a real number to a floating-point value in a given format. For
real numbers in the representable range of a floating-point format, a continuous
segment of the real number lineis mapped to asinglefloating-point value. Therea
number whose valueis numerically equal to afloating-point valueis mapped to that
floating-point value; for example, the real number 1.5 is mapped to the floating-
point value 1.5 in agiven format. The Java Virtual Machine defines two rounding
policies, asfollows:

» The round to nearest rounding policy applies to al floating-point instructions
except for (i) conversion to an integer value and (ii) remainder. Under the round
to nearest rounding policy, inexact results must be rounded to the representable
value nearest to the infinitely precise result; if the two nearest representable
values are equally near, then the value whose least significant bit is zero is
chosen.

The round to nearest rounding policy corresponds to the default rounding-
direction attribute for binary arithmetic in IEEE 754, roundTiesToEven.

The roundTiesToEven rounding-direction attribute was known as the "round to nearest”
rounding mode in the 1985 version of the IEEE 754 Standard. The rounding policy in
the Java Virtual Machine is named after this rounding mode.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Floating-Point Arithmetic

» The round toward zero rounding policy appliesto (i) conversion of a floating-
point value to an integer value by the d2i, d2l, f2i, and f2| instructions (8d2i,
8d2l, 8§f2i, §f2l), and (ii) the floating-point remainder instructions dremand frem
(&drem, &frem). Under the round toward zero rounding policy, inexact results
are rounded to the nearest representable value that is not greater in magnitude
thantheinfinitely preciseresult. For conversion to integer, the round toward zero
rounding policy is equivalent to truncation where fractional significand bits are
discarded.

The round toward zero rounding policy corresponds to the roundTowardZero
rounding-direction attribute for binary arithmetic in IEEE 754.

The roundTowardZero rounding-direction attribute was known as the "round toward
zero" rounding mode in the 1985 version of the | EEE 754 Standard. The rounding policy
in the Java Virtual Machine is named after this rounding mode.

The Java Virtual Machine requires that every floating-point instruction rounds
its floating-point result to the result precision. The rounding policy used by each
instruction is either round to nearest or round toward zero, as specified above.

Java 1.0 and 1.1 required strict evaluation of floating-point expressions. Strict evaluation
means that each f | oat operand corresponds to a value representable in the IEEE 754
binary32 format, each doubl e operand corresponds to a value representable in the |EEE
754 binary64 format, and each floating-point operator with a corresponding |EEE 754
operation matches the |EEE 754 result for the same operands.

Strict evaluation provides predictable results, but caused performance problems in the
Java Virtual Machine implementations for some processor families common in the Java
1.0/1.1 era. Consequently, in Java 1.2 through Java SE 16, the Java SE Platform allowed
a Java Virtua Machine implementation to have one or two value sets associated with
each floating-point type. The f | oat type was associated with the float value set and the
float-extended-exponent value set, while the doubl e type was associated with the double
value set and the double-extended-exponent value set. The float value set corresponded
to the values representable in the IEEE 754 binary32 format; the float-extended-exponent
value set had the same number of precision bits but larger exponent range. Similarly, the
double value set corresponded to the values representable in the | EEE 754 binary64 format;
the double-extended-exponent value set had the same number of precision bits but larger
exponent range. Allowing use of the extended-exponent value sets by default ameliorated
the performance problems on some processor families.

For compatibility, Javal.2 allowed acl ass fileto forbid animplementation from using the
extended-exponent value sets. A cl ass file expressed this by setting the ACC_STRI CT flag
on the declaration of a method. ACC_STRI CT constrained the floating-point semantics of
the method'sinstructionsto use thefloat value set for f | oat operands and the double value
set for doubl e operands, ensuring the results of such instructions were fully predictable.
Methods flagged as ACC_STRI CT thus had the same floating-point semantics as specified
inJaval0and 1.1.

2.8

21

29

22

Special Methods THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

In Java SE 17 and later, the Java SE Platform aways requires strict evaluation of
floating-point expressions. Newer members of the processor familiesthat had performance
problems implementing strict evaluation no longer have that difficulty. This specification
no longer associates f | oat and doubl e with the four value sets described above, and
the ACC_STRI CT flag no longer affects the evaluation of floating-point operations. For
compatibility, the bit pattern assigned to denote ACC_STRI CT inacl ass file whose major
version number is 46-60 is unassigned (that is, does not denote any flag) in acl ass file
whose magjor version number is greater than 60 (84.6). Future versions of the Java Virtua
Machine may assign a different meaning to the bit pattern in future cl ass files.

2.9 Special Methods

2.9.1 InstanceInitialization Methods

A class has zero or more instance initialization methods, each typically
corresponding to a constructor written in the Java programming language.

A method is an instance initialization method if all of the following are true:
* Itisdefined in aclass (not an interface).

* It hasthe special name<i ni t >.

* Itisvoid (84.3.3).

In a class, any non-voi d method named <i ni t > is not an instance initialization
method. In an interface, any method named <i ni t > isnot an instance initialization
method. Such methods cannot be invoked by any Java Virtual Machine instruction
(84.4.2, 84.9.2) and are rejected by format checking (84.6, §4.8).

The declaration and use of an instance initialization method is constrained by
the Java Virtual Machine. For the declaration, the method's access_fl ags item
and code array are constrained (84.6, 84.9.2). For a use, an instance initialization
method may be invoked only by the invokespecial instruction on an uninitialized
classinstance (84.10.1.9).

Because the name <i ni t > is not a valid identifier in the Java programming language, it
cannot be used directly in a program written in the Java programming language.
2.9.2 ClasslInitialization M ethods

A class or interface has at most one class or interface initialization method and is
initialized by the Java Virtual Machine invoking that method (85.5).

A method isaclassor interfaceinitialization method if al of thefollowing aretrue:

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Special Methods

* It hasthe special name <cl i ni t >.
* Itisvoid (84.3.3).

e In aclass file whose version number is 51.0 or above, the method has its
ACC_STATI C flag set and takes no arguments (84.6).

The requirement for ACC_STATI C was introduced in Java SE 7, and for taking no
argumentsin Java SE 9. In aclass file whose version number is 50.0 or bel ow, a method
named <cl i ni t > that isvoi d is considered the class or interface initialization method
regardless of the setting of its ACC_STATI Cflag or whether it takes arguments.

Other methods named <clinit> in a class file are not class or interface
initialization methods. They are never invoked by the Java Virtual Machine itself,

cannot be invoked by any Java Virtual Machine instruction (84.9.1), and are
rejected by format checking (84.6, §4.8).

Because the name <cl i ni t > isnot avalid identifier in the Java programming language, it
cannot be used directly in a program written in the Java programming language.

2.9.3 Signature Polymorphic M ethods

A method is signature polymorphic if al of the following are true:

e It is declared in the java.lang.invoke. MethodHandle class or the
j ava. | ang. i nvoke. Var Handl e class.

* It hasasingle formal parameter of type j ect[] .
* It hasthe ACC_VARARGS and ACC_NATI VE flags set.

The Java Virtua Machine gives specia treatment to signature polymorphic
methods in the invokevirtual instruction (8invokevirtual), in order to effect
invocation of a method handle or to effect access to a variable referenced by an
instance of j ava. | ang. i nvoke. Var Handl e.

A method handle is a dynamically strongly typed and directly executable
referenceto an underlying method, constructor, field, or similar low-level operation
(85.4.3.5), with optional transformations of argumentsor return values. Aninstance
of j ava. | ang. i nvoke. Var Handl e is a dynamically strongly typed reference to a
variable or family of variables, including st ati c fields, non-st ati ¢ fields, array
elements, or components of an off-heap data structure. Seethej ava. | ang. i nvoke
package in the Java SE Platform API for more information.

29

23

2.10

24

Exceptions THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

2.10 Exceptions

An exception in the Java Virtual Machineisrepresented by an instance of the class
Thr owabl e or one of its subclasses. Throwing an exception resultsin an immediate
nonlocal transfer of control from the point where the exception was thrown.

M ost exceptions occur synchronously asaresult of an action by thethread inwhich
they occur. An asynchronous exception, by contrast, can potentially occur at any
point in the execution of aprogram. The JavaVirtual Machine throws an exception
for one of three reasons:

» An athrow instruction (8athrow) was executed.

« An abnormal execution condition was synchronously detected by the Java
Virtual Machine. These exceptions are not thrown at an arbitrary point in the
program, but only synchronously after execution of an instruction that either:

— Specifies the exception as a possible result, such as:

> When the instruction embodies an operation that violates the semantics of
the Java programming language, for example indexing outside the bounds
of an array.

> When an error occursin loading or linking part of the program.

— Causes some limit on aresource to be exceeded, for example when too much
memory is used.

» An asynchronous exception occurred because an interna error occurred in the
Java Virtual Machine implementation (86.3).

A Java Virtual Machine implementation may permit a small but bounded amount
of execution to occur before an asynchronous exception is thrown. This delay is
permitted to allow optimized code to detect and throw these exceptions at points
where it is practical to handle them while obeying the semantics of the Java
programming language.

A simple implementation might poll for asynchronous exceptions at the point of each
control transfer instruction. Since a program has a finite size, this provides a bound
on the total delay in detecting an asynchronous exception. Since no asynchronous
exception will occur between control transfers, the code generator has some flexibility
to reorder computation between control transfers for greater performance. The paper
Polling Efficiently on Stock Hardware by Marc Feeley, Proc. 1993 Conference on
Functional Programming and Computer Architecture, Copenhagen, Denmark, pp. 179—
187, isrecommended as further reading.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Exceptions

Exceptions thrown by the Java Virtual Machine are precise: when the transfer of
control takes place, al effects of the instructions executed before the point from
which the exception isthrown must appear to have taken place. No instructionsthat
occur after the point from which the exception is thrown may appear to have been
evaluated. If optimized code has speculatively executed some of the instructions
which follow the point at which the exception occurs, such code must be prepared
to hide this speculative execution from the user-visible state of the program.

Each method in the Java Virtua Machine may be associated with zero or more
exception handlers. An exception handler specifiesthe range of offsetsinto the Java
Virtua Machine code implementing the method for which the exception handler
is active, describes the type of exception that the exception handler is able to
handle, and specifies the location of the code that is to handle that exception. An
exception matches an exception handler if the offset of the instruction that caused
the exception isin the range of offsets of the exception handler and the exception
type is the same class as or a subclass of the class of exception that the exception
handler handles. When an exception is thrown, the Java Virtual Machine searches
for a matching exception handler in the current method. If a matching exception
handler is found, the system branches to the exception handling code specified by
the matched handler.

If no such exception handler is found in the current method, the current method
invocation completes abruptly (82.6.5). On abrupt completion, the operand stack
and local variables of the current method invocation are discarded, and its frame
is popped, reinstating the frame of the invoking method. The exception is then
rethrown in the context of the invoker's frame and so on, continuing up the method
invocation chain. If no suitable exception handler is found before the top of the
method invocation chain is reached, the execution of the thread in which the
exception wasthrown isterminated. Before termination of the thread, the uncaught
exception is handled according to the following rules:

« If thethread has an uncaught exception handler set, then that handler is executed.

» Otherwise, the method uncaught Except i on isinvoked for the Thr eadGr oup that
istheparent of thethread. If the Thr eadG oup anditsparent Thr eadGr oupsdo not
override uncaught Except i on, then the default handler's uncaught Excepti on
method is invoked.

The order in which the exception handlers of a method are searched for amatch is
important. Withinacl ass file, the exception handlersfor each method are stored in
atable (84.7.3). At runtime, when an exceptionisthrown, the JavaVirtual Machine
searches the exception handlers of the current method in the order that they appear

2.10

25

211

26

Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

in the corresponding exception handler table in the cl ass file, starting from the
beginning of that table.

Note that the Java Virtual Machine does not enforce nesting of or any ordering
of the exception table entries of a method. The exception handling semantics of
the Java programming language are implemented only through cooperation with
the compiler (83.12). When cl ass files are generated by some other means, the
defined search procedure ensures that all Java Virtual Machine implementations
will behave consistently.

2.11 Instruction Set Summary

A Java Virtual Machine instruction consists of a one-byte opcode specifying
the operation to be performed, followed by zero or more operands supplying
arguments or data that are used by the operation. Many instructions have no
operands and consist only of an opcode.

Ignoring exceptions, the inner loop of a Java Virtual Machine interpreter is
effectively

do {
atom cal ly calculate pc and fetch opcode at pc;
if (operands) fetch operands;
execute the action for the opcode;

} while (there is nore to do);

The number and size of the operands are determined by the opcode. If an operand
ismorethan one byte in size, then it is stored in big-endian order - high-order byte
first. For example, an unsigned 16-bit index into the local variablesis stored astwo
unsigned bytes, bytel and byte2, such that its valueis (bytel << 8) | byte2.

The bytecode instruction stream is only single-byte aligned. The two exceptions
are the lookupswitch and tableswitch instructions (8lookupswitch, Stableswitch),
which are padded to force internal alignment of some of their operands on 4-byte
boundaries.

Thedecisionto limit the JavaVirtual Machine opcode to abyte and to forgo data alignment
within compiled code reflects aconscious biasin favor of compactness, possibly at the cost
of some performance in naive implementations. A one-byte opcode a so limits the size of
the instruction set. Not assuming data alignment means that immediate data larger than a
byte must be constructed from bytes at run time on many machines.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary

2111 Typesand the Java Virtual Machine

Most of the instructions in the Java Virtual Machine instruction set encode type
information about the operations they perform. For instance, the iload instruction
(8iload) loads the contents of a local variable, which must be an i nt, onto the
operand stack. Thefload instruction (&fload) doesthe samewithaf | oat value. The
two instructions may have identical implementations, but have distinct opcodes.

For the majority of typed instructions, the instruction type is represented explicitly
in the opcode mnemonic by aletter: i for ani nt operation, | for | ong, sfor short,
b for byte, c for char, f for fl oat, d for doubl e, and a for r ef erence. Some
instructions for which the type is unambiguous do not have a type letter in their
mnemonic. For instance, arraylength always operates on an object that isan array.
Some instructions, such as goto, an unconditional control transfer, do not operate
on typed operands.

Given the Java Virtua Machine's one-byte opcode size, encoding types into
opcodes places pressure onthe design of itsinstruction set. If each typed instruction
supported al of the Java Virtual Machin€e's run-time data types, there would be
more instructions than could be represented in a byte. Instead, the instruction set
of the Java Virtual Machine provides a reduced level of type support for certain
operations. In other words, the instruction set is intentionally not orthogonal.
Separate instructions can be used to convert between unsupported and supported
data types as necessary.

Table 2.11.1-A summarizes the type support in the instruction set of the Java
Virtual Machine. A specificinstruction, with typeinformation, isbuilt by replacing
the T in the instruction template in the opcode column by the letter in the type
column. If the type column for some instruction template and type is blank, then
no instruction exists supporting that type of operation. For instance, thereis aload
instruction for typei nt , iload, but there is no load instruction for type byt e.

Note that most instructions in Table 2.11.1-A do not have forms for the integra
types byt e, char, and short . None have forms for the bool ean type. Whenever
values of types byte and short are loaded onto the operand stack, they are
implicitly converted by sign extension to values of typei nt . Similarly, whenever
values of types bool ean and char are loaded onto the operand stack, they are
implicitly converted by zero extension to values of typei nt . Thus, most operations
onvaluesoriginally stored in variables of typesbool ean, byt e, char ,andshort are
correctly performed by instructions operating on values of computational typei nt .

211

27

211

28

Instruction Set Summary

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

Table2.11.1-A. Type support in the Java Virtual Machineinstruction set

opcode byte |short |int long |float |doubl elchar ref erence
Tipush bipush |sipush

Tconst iconst Iconst |fconst |dconst aconst
Tload iload lload |fload dload aload
Tstore istore Istore |fstore |dstore astore
Tinc iinc

Taload baload |saload |iaload laload |(faload |daload |caload |aaload
Tastore bastore |sastore |iastore lastore |fastore |dastore |castore |aastore
Tadd iadd ladd fadd dadd

Tsub isub Isub fsub dsub

Tmul imul Imul frnul dmul

Tdiv idiv Idiv fdiv ddiv

Trem irem Irem frem drem

Tneg ineg Ineg fneg dneg

Tshl ishl Ishl

Tshr ishr Ishr

Tushr iushr lushr

Tand iand land

Tor ior lor

Txor ixor Ixor

i2T i2b i2s i2 i2f i2d

12T 12i 12f 12d

f2T f2i f2l fad

a2t dzi a2l d2f

Temp lcmp

Templ fcmpl dempl

Tempg fcmpg |dempg

if_TcmpOP if_icmpOP if_acmpOP
Treturn ireturn Ireturn |(freturn |dreturn areturn

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary

The mapping between Java Virtual Machine storage types and Java Virtua
Machine computational typesis summarized by Table 2.11.1-B.

Certain Java Virtua Machine instructions such as pop and swap operate on the
operand stack without regard to type; however, such instructions are constrained
to use only on values of certain categories of computational types, also given in
Table2.11.1-B.

Table2.11.1-B. Storage and Computational typesin the Java Virtual Machine

Storagetype Computational type Category
bool ean i nt 1
byt e i nt 1
char i nt 1
short i nt 1
i nt i nt 1
fl oat fl oat 1
reference reference 1
ret ur nAddr ess ret ur nAddr ess 1
| ong | ong 2
doubl e doubl e 2

2.11.2 Load and Storelnstructions

Theload and store instructions transfer values between the local variables (82.6.1)
and the operand stack (8§2.6.2) of aJava Virtual Machine frame (82.6):

* Load a loca variable onto the operand stack: iload, iload <n>, lload,
lload <n>, fload, fload <n>, dload, dload_<n>, aload, aload <n>.

 Store a value from the operand stack into a local variable: istore, istore <n>,
Istore, Istore_<n>, fstore, fstore_<n>, dstore, dstore_<n>, astore, astore <n>.

» Load a constant on to the operand stack: bipush, sipush, Idc, Idc_w, 1dc2_w,
aconst_null, iconst_ml, iconst_<i>, lconst_<I>, fconst_<f>, dconst_<d>.

» Gain accessto morelocal variablesusing awider index, or to alarger immediate
operand: wide.

Instructions that access fields of objects and elements of arrays (§2.11.5) aso
transfer data to and from the operand stack.

211

29

211

30

Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

Instruction mnemonics shown above with trailing letters between angle brackets
(for instance, iload_<n>) denote families of instructions (with membersiload_0,
iload 1, iload 2, and iload_3 in the case of iload <n>). Such families of
instructionsare specializations of an additional genericinstruction (iload) that takes
one operand. For the specialized instructions, the operand isimplicit and does not
need to be stored or fetched. The semantics are otherwise the same (iload_0 means
the same thing as iload with the operand 0). The letter between the angle brackets
specifies the type of the implicit operand for that family of instructions: for <n>,
anonnegative integer; for <i>, anint ; for <I>, al ong; for <f>, afl oat ; and for
<d>, adoubl e.

This notation for instruction families is used throughout this specification.

2.11.3 Arithmetic Instructions

The arithmetic instructions compute a result that is typicaly a function of two
values on the operand stack, pushing the result back on the operand stack. There
aretwo main kinds of arithmetic instructions: those operating on integer values and
those operating on floating-point values. Within each of these kinds, the arithmetic
instructions are specialized to Java Virtua Machine numeric types. There is no
direct support for integer arithmetic on values of the byt e, short, and char types
(82.11.1), or for values of the bool ean type; those operations are handled by
instructions operating on type i nt. Integer and floating-point instructions also
differ intheir behavior on overflow and divide-by-zero. The arithmetic instructions
are asfollows:

* Add: iadd, ladd, fadd, dadd.

* Subtract: isub, Isub, fsub, dsub.

o Multiply: imul, Imul, fmul, dmul.

« Divide: idiv, Idiv, fdiv, ddiv.

* Remainder: irem, Irem, frem, drem.

» Negate: ineg, Ineg, fneg, dneg.

* Shift: ishl, ishr, iushr, Ishl, Ishr, lushr.
» Bitwise OR: ior, lor.

» Bitwise AND: iand, land.

» Bitwise exclusive OR: ixor, Ixor.

» Loca variable increment: iinc.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary

 Comparison: dcmpg, dempl, fempg, fempl, lcmp.

The semantics of the Java programming language operators on integer and floating-
point values (JLS 84.2.2, JLS 84.2.4) are directly supported by the semantics of
the Java Virtual Machine instruction set.

The Java Virtual Machine does not indicate overflow during operations on integer
datatypes. The only integer operations that can throw an exception are the integer
divide instructions (idiv and |div) and the integer remainder instructions (iremand
Irem), which throw an Ari t hnet i cExcept i on if the divisor is zero.

The Java Virtua Machine does not indicate overflow or underflow during
operations on floating-point data types. That is, floating-point instructions never
cause the Java Virtual Machine to throw a run-time exception (not to be confused
with an |EEE 754 floating-point exception). An operation that overflows produces
a signed infinity; an operation that underflows produces a subnormal value or a
signed zero; an operation that has no unique mathematically defined result produces
NaN. All numeric operations with NaN as an operand produce NaN as a result.

Comparisons on values of type | ong (Icmp) perform a signed comparison.

Comparisons on values of floating-point types (dcmpg, dempl, fcmpg, fempl) are
performed using | EEE 754 nonsignaling comparisons.

2114 TypeConversion Instructions

The type conversion instructions allow conversion between Java Virtual Machine
numeric types. These may be used to implement explicit conversionsin user code
or to mitigate the lack of orthogonality in the instruction set of the Java Virtual
Machine.

The Java Virtual Machine directly supports the following widening numeric
conversions:

* int tolong, fl oat, Or doubl e
* |ongtofl oat Or doubl e
e float tOdoubl e

Thewidening numeric conversioninstructionsarei2l, i2f, i2d, 12f, 12d, and f2d. The
mnemonics for these opcodes are straightforward given the naming conventions
for typed instructions and the punning use of 2 to mean "to." For instance, thei2d
instruction convertsani nt valueto adoubl e.

211

31

211

32

Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

Most widening numeric conversions do not lose information about the overall
magnitude of anumeric value. Indeed, conversionswidening fromi nt tol ong and
i nt to doubl e do not lose any information at all; the numeric value is preserved
exactly. Conversions widening from f 1 oat to doubl e also preserve the numeric
value exactly.

Conversionsfromint tofl oat, or from| ong tofl oat, or from | ong to doubl e,
may lose precision, that is, may lose some of the least significant bits of the value;
theresulting floating-point valueisacorrectly rounded version of theinteger value,
using the round to nearest rounding policy (82.8).

Despite the fact that loss of precision may occur, widening numeric conversions
never cause the Java Virtua Machine to throw a run-time exception (not to be
confused with an |EEE 754 floating-point exception).

A widening numeric conversion of ani nt toal ong sSimply sign-extendsthe two's-
complement representation of thei nt value to fill the wider format. A widening
numeric conversion of achar to an integral type zero-extends the representation
of the char valueto fill the wider format.

Note that widening numeric conversions do not exist from integral types byt e,
char, and short totypeint. Asnoted in §2.11.1, values of type byt e, char, and
short areinternally widened to typei nt , making these conversionsimplicit.

The Java Virtual Machine also directly supports the following narrowing numeric
CONVersions:

* int tobyte, short, Or char

* long toint

e float tOint Orlong

e doubl e toint, | ong, Or f1 oat

The narrowing numeric conversion instructions are i2b, i2c, i2s, 12i, f2i, f2I, d2i,
d2l, and d2f. A narrowing numeric conversion can result in a value of different
sign, adifferent order of magnitude, or both; it may thereby lose precision.

A narrowing numeric conversion of anint or | ong to an integral type T simply
discards all but the n lowest-order bits, where n is the number of bits used to
represent type T. This may cause the resulting value not to have the same sign as
the input value.

In a narrowing numeric conversion of a floating-point value to an integral type T,
where T iseither i nt or | ong, the floating-point value is converted as follows:

« If thefloating-point valueisNaN, theresult of the conversionisani nt orl ong 0.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary

» Otherwise, if the floating-point value is not an infinity, the floating-point value
is rounded to an integer value v using the round toward zero rounding policy
(82.8). There are two cases:

— If Tisl ong and thisinteger value can be represented asal ong, then the result
isthel ong value v.

— If Tisof typeint and this integer value can be represented as an i nt, then
theresultisthei nt valuev.

e Otherwise:

— Either the value must be too small (a negative value of large magnitude or
negative infinity), and the result isthe smallest representabl e value of typei nt
or | ong.

— Or the value must be too large (a positive value of large magnitude or positive
infinity), and the result is the largest representable value of typei nt or | ong.

A narrowing numeric conversion from doubl e to f1 oat behaves in accordance
with |EEE 754. Theresult is correctly rounded using the round to nearest rounding
policy (82.8). A value too small to be represented as a f1 oat is converted to a
positive or negative zero of type f | oat ; a value too large to be represented as a
float is converted to a positive or negative infinity. A doubl e NaN is aways
convertedto afl oat NaN.

Despitethefact that overflow, underflow, or [oss of precision may occur, narrowing
conversions among humeric types never cause the JavaVirtual Machineto throw a
run-time exception (not to be confused with an | EEE 754 fl oati ng-point exception).

2.11.5 Object Creation and Manipulation

Although both class instances and arrays are objects, the Java Virtual Machine
creates and manipulates class instances and arrays using distinct sets of
instructions:

» Create anew classinstance: new.
» Create anew array: newarray, anewarray, multianewarray.

» Access fields of classes (static fields, known as class variables) and fields
of class instances (non-st ati ¢ fields, known as instance variables): getstatic,
putstatic, getfield, putfield.

 Load an array component onto the operand stack: bal oad, caload, saload, iaload,
|aload, faload, daload, aaload.

211

33

211

Instruction Set Summary THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

» Store a value from the operand stack as an array component: bastore, castore,
sastore, iastore, lastore, fastore, dastore, aastore.

*» Get the length of array: arraylength.

» Check properties of classinstances or arrays: instanceof, checkcast.

2.11.6 Operand Stack Management Instructions

A number of instructions are provided for the direct manipulation of the operand
stack: pop, pop2, dup, dup2, dup_x1, dup2_x1, dup_x2, dup2_x2, swap.

2.11.7 Control Transfer Instructions

The contral transfer instructions conditionally or unconditionally cause the Java
Virtua Machine to continue execution with an instruction other than the one
following the control transfer instruction. They are:

» Conditional branch: ifeq, ifne, iflt, ifle, ifgt, ifge, ifnull, ifnonnull, if icmpeq,
if_icmpne, if_icmplt, if_icmple, if_icmpgt if_icmpge, if_acmpeq, if_acmpne.

» Compound conditional branch: tableswitch, lookupswitch.
» Unconditional branch: goto, goto_w, jsr, jsr_w, ret.

The Java Virtual Machine has distinct sets of instructions that conditionally
branch on comparison with data of i nt and r ef er ence types. It aso has distinct
conditional branch instructions that test for the null reference and thus it is not
required to specify a concrete value for nul | (82.4).

Conditional branches on comparisons between data of types bool ean, byte,
char, and short are performed using i nt comparison instructions (8§2.11.1). A
conditional branch on a comparison between data of types| ong, f | oat , Or doubl e
is initiated using an instruction that compares the data and produces an i nt
result of the comparison (82.11.3). A subsequent i nt comparison instruction tests
this result and effects the conditional branch. Because of its emphasis on i nt
comparisons, the Java Virtual Machine provides arich complement of conditional
branch instructions for typei nt .

Alli nt conditional control transfer instructions perform signed comparisons.

2.11.8 Method Invocation and Return I nstructions

The following five instructions invoke methods:

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Instruction Set Summary

* invokevirtual invokes an instance method of an object, dispatching on the
(virtual) type of the object.

 invokeinterface invokes an interface method, searching the methods
implemented by the particular run-time object to find the appropriate method.

* invokespecial invokes an instance method requiring specia handling, either an
instance initialization method (82.9.1) or a method of the current class or its
supertypes.

* invokestatic invokes a class (st at i ¢) method in anamed class.

* invokedynamic invokes the method which is the target of the call site object
bound to the invokedynamic instruction. The call site object was bound to a
specific lexical occurrence of the invokedynamic instruction by the Java Virtua
Machine as a result of running a bootstrap method before the first execution of
the instruction. Therefore, each occurrence of an invokedynamic instruction has
aunique linkage state, unlike the other instructions which invoke methods.

The method return instructions, which are distinguished by return type, areireturn
(used for return types bool ean, byte, char, short, and i nt), lreturn, freturn,
dreturn, and areturn. In addition, the return instruction is used to return from
methods declared to be void, instance initialization methods, and class or interface
initialization methods.

2.11.9 Throwing Exceptions

An exception isthrown programmatically using the athrow instruction. Exceptions
can also be thrown by various Java Virtual Machine instructions if they detect an
abnormal condition.

2.11.10 Synchronization

TheJavaVirtual Machine supports synchronization of both methods and sequences
of instructions within amethod by a single synchronization construct: the monitor.

Method-level synchronizationisperformedimplicitly, aspart of method invocation
and return (82.11.8). A synchroni zed method is distinguished in the run-time
constant pool's net hod_i nfo structure (84.6) by the ACC_SYNCHRONI ZED flag,
which is checked by the method invocation instructions. When invoking a method
for which ACC_SYNCHRONI ZED i s set, the executing thread enters a monitor, invokes
the method itself, and exits the monitor whether the method invocation completes
normally or abruptly. During the time the executing thread owns the monitor,
no other thread may enter it. If an exception is thrown during invocation of

211

35

212

36

Class Libraries THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

the synchroni zed method and the synchr oni zed method does not handle the
exception, the monitor for the method is automatically exited before the exception
is rethrown out of the synchr oni zed method.

Synchronization of sequences of instructions is typically used to encode the
synchr oni zed block of the Javaprogramming language. The JavaVirtual Machine
supplies the monitorenter and monitorexit instructions to support such language
constructs. Proper implementation of synchr oni zed blocks requires cooperation
from a compiler targeting the Java Virtual Machine (83.14).

Structured locking is the situation when, during a method invocation, every exit
on a given monitor matches a preceding entry on that monitor. Since there is
no assurance that all code submitted to the Java Virtual Machine will perform
structured locking, implementations of the Java Virtual Machine are permitted but
not required to enforce both of the following two rules guaranteeing structured
locking. Let T be athread and M be a monitor. Then:

1. The number of monitor entries performed by T on M during a method
invocation must equal the number of monitor exits performed by T on M during
the method invocation whether the method invocation completes normally or
abruptly.

2. At no point during a method invocation may the number of monitor exits
performed by T on M since the method invocation exceed the number of
monitor entries performed by T on M since the method invocation.

Note that the monitor entry and exit automatically performed by the Java Virtua
Machine when invoking a synchr oni zed method are considered to occur during
the calling method's invocation.

2.12 ClassLibraries

The Java Virtual Machine must provide sufficient support for the implementation
of the classlibraries of the Java SE Platform. Some of the classes in these libraries
cannot be implemented without the cooperation of the Java Virtual Machine.

Classes that might require specia support from the Java Virtual Machine include
those that support:

» Reflection, such asthe classesin the packagej ava. | ang. ref | ect and the class
Cl ass.

THE STRUCTURE OF THE JAVA VIRTUAL MACHINE Public Design, Private Implementation

» Loading and creation of a class or interface. The most obvious example is the
classd assLoader .

* Linking andinitialization of aclassor interface. The example classes cited above
fall into this category as well.

* Security, such as the classes in the package j ava. security and other classes
such as Securi t ymManager .

» Multithreading, such asthe class Thr ead.
» Wesk references, such as the classesin the packagej ava. | ang. ref .

Thelist above is meant to beillustrative rather than comprehensive. An exhaustive
list of these classes or of the functionality they provide is beyond the scope of
this specification. See the specifications of the Java SE Platform classlibraries for
details.

2.13 Public Design, Private | mplementation

Thus far this specification has sketched the public view of the Java Virtua
Machine: thecl ass fileformat and the instruction set. These components are vita
to the hardware-, operating system-, and implementati on-independence of the Java
Virtua Machine. The implementor may prefer to think of them as a means to
securely communicate fragments of programs between hosts each implementing
the Java SE Platform, rather than as a blueprint to be followed exactly.

It is important to understand where the line between the public design and the
private implementation lies. A Java Virtual Machine implementation must be
able to read cl ass files and must exactly implement the semantics of the Java
Virtual Machine code therein. One way of doing this is to take this document
as a gspecification and to implement that specification literally. But it is aso
perfectly feasible and desirable for the implementor to modify or optimize the
implementation within the constraints of thisspecification. Solong asthecl ass file
format can be read and the semantics of its code are maintained, the implementor
may implement these semantics in any way. What is "under the hood" is the
implementor's business, as long as the correct externa interface is carefully
maintained.

There are some exceptions: debuggers, profilers, and just-in-time code generators can each
reguire access to elements of the Java Virtual Machine that are normally considered to
be “under the hood.” Where appropriate, Oracle works with other Java Virtual Machine

213

37

2.13

38

Public Design, Private Implementation THE STRUCTURE OF THE JAVA VIRTUAL MACHINE

implementors and with tool vendors to develop common interfaces to the Java Virtual
Machine for use by such tools, and to promote those interfaces across the industry.

The implementor can use this flexibility to tailor Java Virtua Machine
implementations for high performance, low memory use, or portability. What
makes sense in a given implementation depends on the goals of that
implementation. The range of implementation options includes the following:

» Trandlating Java Virtual Machine code at |oad-time or during execution into the
instruction set of another virtual machine.

» Trandating Java Virtual Machine code at |oad-time or during execution into the
native instruction set of the host CPU (sometimes referred to as just-in-time, or
JIT, code generation).

Theexistence of aprecisaly defined virtual machine and object file format need not
significantly restrict the creativity of theimplementor. The JavaVirtual Machineis
designed to support many different implementations, providing new and interesting
solutions while retaining compatibility between implementations.

CHAPTER3

Compiling for the Java
Virtual Machine

T HE JavaVirtual Machine machineisdesigned to support the Java programming
language. Oracle's JDK software contains a compiler from source code written
in the Java programming language to the instruction set of the Java Virtua
Machine, and a run-time system that implements the Java Virtual Machine itself.
Understanding how one compiler utilizes the Java Virtual Machine is useful to the
prospective compiler writer, aswell asto one trying to understand the Java Virtual
Machine itself. The numbered sections in this chapter are not normative.

Notethat theterm "compiler” is sometimes used when referring to atranslator from
the instruction set of the Java Virtual Machine to the instruction set of a specific
CPU. Oneexample of such atrand ator isajust-in-time (JIT) code generator, which
generates platform-specific instructions only after Java Virtual Machine code has
been loaded. This chapter does not address i ssues associated with code generation,
only those associated with compiling source code written in the Java programming
language to Java Virtual Machine instructions.

3.1 Format of Examples

This chapter consists mainly of examples of source code together with annotated
listings of the Java Virtual Machine code that the j avac compiler in Oracle’ s IDK
release 1.0.2 generates for the examples. The Java Virtual Machine codeiswritten
in the informal “virtual machine assembly language” output by Oracl€e's j avap
utility, distributed with the JDK release. Y ou can usej avap to generate additional
examples of compiled methods.

39

3.2

40

Use of Constants, Local Variables, and Control Constructs COMPILING FOR THE JAVA
VIRTUAL MACHINE

The format of the examples should be familiar to anyone who has read assembly
code. Each instruction takes the form:

<i ndex> <opcode> [<operandl> [<operand2>...]] [<conment >]

The <i ndex> istheindex of the opcode of the instruction in the array that contains
the bytes of Java Virtual Machine code for this method. Alternatively, the <i ndex>
may be thought of as abyte offset from the beginning of the method. The <opcode>
is the mnemonic for the instruction's opcode, and the zero or more <oper andN>
are the operands of the instruction. The optional <conment > isgiven in end-of-line
comment syntax:

8 bi push 100 /1 Push int constant 100

Some of the material in the commentsis emitted by j avap; the rest is supplied by
the authors. The <i ndex> prefacing each instruction may be used as the target of
a control transfer instruction. For instance, agot o 8 instruction transfers control
to theinstruction at index 8. Note that the actual operands of Java Virtual Machine
control transfer instructions are offsets from the addresses of the opcodes of those
instructions; these operands are displayed by j avap (and are shown in this chapter)
as more easily read offsetsinto their methods.

We preface an operand representing a run-time constant pool index with a hash
sign and follow theinstruction by acomment identifying the run-time constant pool
item referenced, asin:

10 Ildc #1 /1 Push float constant 100.0
or:
9 i nvokevirtual #4 /1 Method Exanpl e.addTwo(I1)]I

For the purposes of this chapter, we do not worry about specifying details such as
operand sizes.

3.2 Useof Constants, Local Variables, and Control Constructs

JavaVirtual Machine code exhibits a set of general characteristicsimposed by the
JavaVirtual Machine's design and use of types. In the first example we encounter
many of these, and we consider them in some detail.

The spi n method simply spins around an empty for loop 100 times:

void spin() {

COMPILING FOR THE JAVA VIRTUAL MACHINE Use of Constants, Local Variables, and
Control Constructs

int i;
for (i =0; i < 100; i++) {
; /1 Loop body is enpty
}
}

A compiler might compile spi n to:

0 iconst_0O /1 Push int constant 0O

1 istore_1 /1 Store into local variable 1 (i=0)

2 goto 8 /1 First tinme through don't increnent

5 iinc 11 /1 Increnent local variable 1 by 1 (i++)
8 iload_1 /] Push |ocal variable 1 (i)

9 bi push 100 /1 Push int constant 100

11 if_icmplt 5 /1l Conpare and loop if less than (i < 100)
14 return /] Return void when done

The Java Virtual Machine is stack-oriented, with most operations taking one or
more operands from the operand stack of the Java Virtual Machine's current frame
or pushing results back onto the operand stack. A new frame is created each time
a method is invoked, and with it is created a new operand stack and set of local
variables for use by that method (82.6). At any one point of the computation, there
are thus likely to be many frames and equally many operand stacks per thread of
control, corresponding to many nested method invocations. Only the operand stack
in the current frame is active.

The instruction set of the Java Virtual Machine distinguishes operand types by
using distinct bytecodes for operations on its various data types. The method
spi n operates only on values of type i nt. The instructions in its compiled code
chosen to operate on typed data (iconst_0, istore 1, iinc, iload_1, if_icmplt) areall
specialized for typei nt .

The two constants in spi n, 0 and 100, are pushed onto the operand stack using
two different instructions. The o is pushed using an iconst_0 instruction, one of the
family of iconst_<i> instructions. The 100 is pushed using a bipush instruction,
which fetches the value it pushes as an immediate operand.

The Java Virtual Machine frequently takes advantage of the likelihood of certain
operands (i nt constants -1, 0, 1, 2, 3, 4 and 5 in the case of the iconst_<i>
instructions) by making those operands implicit in the opcode. Because the
iconst_0 instruction knows it is going to push ani nt 0, iconst_0 does not need to
store an operand to tell it what value to push, nor doesit need to fetch or decode an
operand. Compiling the push of 0 as bipush 0 would have been correct, but would
have made the compiled code for spi n one byte longer. A ssimple virtual machine
would have also spent additional time fetching and decoding the explicit operand

3.2

41

3.2

42

Use of Constants, Local Variables, and Control Constructs COMPILING FOR THE JAVA
VIRTUAL MACHINE

each time around the loop. Use of implicit operands makes compiled code more
compact and efficient.

Theint i inspinisstored asJavaVirtua Machinelocal variable 1. Because most
JavaVirtua Machineinstructions operate on values popped from the operand stack
rather than directly on local variables, instructions that transfer values between
local variables and the operand stack are common in code compiled for the Java
Virtual Machine. These operations also have special support in the instruction
set. In spi n, values are transferred to and from local variables using the istore 1
and iload_1 instructions, each of which implicitly operates on local variable 1.
Theistore_1 instruction pops ani nt from the operand stack and storesit in local
variable 1. Theiload 1 instruction pushes the value in local variable 1 on to the
operand stack.

The use (and reuse) of local variablesis the responsihility of the compiler writer.
The specialized load and store instructions should encourage the compiler writer
to reuse local variables as much as is feasible. The resulting code is faster, more
compact, and uses less space in the frame.

Certain very frequent operations on local variables are catered to specialy by
the Java Virtua Machine. The iinc instruction increments the contents of a local
variable by a one-byte signed value. The iinc instruction in spi n increments the
first local variable (itsfirst operand) by 1 (its second operand). Theiinc instruction
is very handy when implementing looping constructs.

Thef or loop of spi n isaccomplished mainly by these instructions:

5 iinc 11 /1 Increnent local variable 1 by 1 (i++)
8 iload_1 /] Push local variable 1 (i)

9 bi push 100 /1 Push int constant 100

11 if_icmplt 5 /1 Conpare and loop if less than (i < 100)

The bipush instruction pushes the value 100 onto the operand stack as an i nt,
then the if_icmplt instruction pops that value off the operand stack and compares
it against i. If the comparison succeeds (the variable i is less than 100), control
is transferred to index 5 and the next iteration of the f or loop begins. Otherwise,
control passes to the instruction following the if_icmplt.

If the spi n example had used a data type other than i nt for the loop counter,
the compiled code would necessarily change to reflect the different data type. For
instance, if instead of ani nt the spi n example uses adoubl e, as shown:

voi d dspin() {
doubl e i;
for (i =0.0; i <100.0; i++) {
; /1 Loop body is enpty

COMPILING FOR THE JAVA VIRTUAL MACHINE Use of Constants, Local Variables, and 32
Control Constructs

}
the compiled codeis:

Met hod voi d dspin()

0 dconst _0 /1 Push doubl e constant 0.0

1 dstore_1 /1l Store into local variables 1 and 2

2 goto 9 /1 First tine through don't increnent

5 dl oad_1 /1 Push local variables 1 and 2

6 dconst _1 /1 Push double constant 1.0

7 dadd /'l Add; there is no dinc instruction

8 dstore_1 /1 Store result in local variables 1 and 2
9 dl oad_1 /1 Push |l ocal variables 1 and 2

10 ldc2_w #4 /1 Push doubl e constant 100.0

13 dcnpg /] There is no if_dcnplt instruction

14 iflt 5 /| Conpare and loop if less than (i < 100.0)
17 return /] Return void when done

The instructions that operate on typed data are now specialized for type doubl e.
(Theldc2_w instruction will be discussed later in this chapter.)

Recall that doubl e values occupy two local variables, although they are only
accessed using the lesser index of the two local variables. Thisis also the case for
values of typel ong. Again for example,

doubl e doubl eLocal s(doubl e d1, double d2) {
return dl + d2;

}

becomes
Met hod doubl e doubl eLocal s(doubl e, doubl €)
0 dl oad_1 /1 First argument in local variables 1 and 2
1 dl oad_3 /1 Second argunent in local variables 3 and 4
2 dadd
3 dreturn

Note that local variables of the local variable pairs used to store doubl e valuesin
doubl eLocal s must never be manipulated individually.

The JavaVirtual Machine's opcode size of 1 byteresultsin its compiled code being
very compact. However, 1-byte opcodes al'so mean that the Java Virtual Machine
instruction set must stay small. As a compromise, the Java Virtua Machine does
not provide equal support for al data types: it is not completely orthogonal
(Table 2.11.1-A).

For example, the comparison of values of typei nt inthef or statement of example
spi n can be implemented using a single if_icmplt instruction; however, there is

43

3.2

Use of Constants, Local Variables, and Control Constructs COMPILING FOR THE JAVA
VIRTUAL MACHINE

no single instruction in the Java Virtua Machine instruction set that performs a
conditional branch on values of type doubl e. Thus, dspi n must implement its
comparison of values of type doubl e using a dcmpg instruction followed by an iflt
instruction.

The Java Virtual Machine provides the most direct support for data of typeint.
This is partly in anticipation of efficient implementations of the Java Virtua
Machine's operand stacks and local variable arrays. It is aso motivated by the
frequency of i nt datain typical programs. Other integral types have less direct
support. There are no byt e, char, or short versions of the store, load, or add
instructions, for instance. Here is the spi n example written using ashort :

void sspin() {
short i;
for (i =0; i < 100; i++) {
; /1 Loop body is enpty
}

}

It must be compiled for the Java Virtual Machine, as follows, using instructions
operating on another type, most likely i nt, converting between short and i nt
valuesasnecessary to ensurethat theresults of operationsonshor t datastay within
the appropriate range:

Met hod voi d sspin()
0 iconst_0O

1 istore_1

2 goto 10

5 iload_1 /1 The short is treated as though an int
6 iconst_1

7 i add

8 i2s /] Truncate int to short

9 istore_1

10 iload_1

11 bipush 100

13 if_icnplt 5

16 return

The lack of direct support for byt e, char, and short types in the Java Virtua
Machine is not particularly painful, because values of those types are internally
promotedtoi nt (byte andshort aresign-extendedtoi nt,char iszero-extended).
Operationson byt e, char, and shor t data can thusbe doneusingi nt instructions.
The only additional cost isthat of truncating the values of i nt operationsto valid
ranges.

COMPILING FOR THE JAVA VIRTUAL MACHINE Arithmetic

Thel ong and floating-point types have an intermediate level of support in the Java
Virtual Machine, lacking only the full complement of conditional control transfer
instructions.

3.3 Arithmetic

The Java Virtual Machine generally does arithmetic on its operand stack. (The
exception is the iinc instruction, which directly increments the value of a local
variable.) For instance, the al i gn2gr ai n method aligns an i nt value to a given
power of 2:

int align2grain(int i, int grain) {
return ((i + grain-1) & ~(grain-1));
}

Operands for arithmetic operations are popped from the operand stack, and
the results of operations are pushed back onto the operand stack. Results of
arithmetic subcomputati ons can thus be made availabl e as operands of their nesting
computation. For instance, the calculation of ~(grain-1) is handled by these
instructions:

5 iload_2 /1 Push grain

6 iconst_1 /1 Push int constant 1
7 i sub /1 Subtract; push result
8 iconst_ml /1 Push int constant -1
9 i xor /1 Do XOR;, push result

First gr ai n- 1 is calculated using the contents of local variable 2 and an immediate
i nt value1. These operandsare popped from the operand stack and their difference
pushed back onto the operand stack. The difference is thusimmediately available
for use as one operand of theixor instruction. (Recall that ~x == - 12x.) Similarly,
the result of the ixor instruction becomes an operand for the subsequent iand
instruction.

The code for the entire method follows:

Met hod int align2grain(int,int)
iload 1

iload_2

i add

iconst 1

i sub

iload_2

iconst 1

i sub

~NOoO O WNEFLO

3.3

45

3.4

46

Accessing the Run-Time Constant Pool COMPILING FOR THE JAVA VIRTUAL MACHINE

8 iconst_ml
9 i xor

10 iand

11 ireturn

3.4 Accessing the Run-Time Constant Pool

Many numeric constants, as well as objects, fields, and methods, are accessed
via the run-time constant pool of the current class. Object access is considered
later (83.8). Data of typesint, | ong, fl oat, and doubl e, as well as references
to instances of class string, are managed using the Idc, Idc_w, and ldc2_w
instructions.

The Idc and Idc_w instructions are used to access values in the run-time constant
pool (including instances of class St ri ng) of types other than doubl e and | ong.
Theldc_w instruction is used in place of Idc only when thereis alarge number of
run-time constant pool items and a larger index is needed to access an item. The
Idc2_w instruction is used to access all values of types doubl e and | ong; thereis
no non-wide variant.

Integral constants of types byte, char, or short, as well as smal i nt values,
may be compiled using the bipush, sipush, or iconst_<i> instructions (83.2).
Certain small floating-point constants may be compiled using the fconst_<f> and
dconst_<d> instructions.

Inall of these cases, compilation is straightforward. For instance, the constantsfor:

voi d useManyNureric() {
int i = 100;
int j = 1000000;
long I'1 1;
long |2 Oxffffffff;
double d = 2. 2;
...do sone cal cul ations..

}
are set up asfollows:

Met hod voi d useManyNuneric()

0 bi push 100 /1 Push small int constant with bipush

2 istore_1

3 I dc #1 /1 Push large int constant (1000000) with |dc
5 istore_2

6 I const _1 /1l Atiny long value uses small fast lconst_1
7 | store_3

8

I dc2_w #6 /1 Push long Oxffffffff (that is, an int -1)

COMPILING FOR THE JAVA VIRTUAL MACHINE More Control Examples

/1 Any | ong constant value can be pushed with |dc2_w
11 Istore 5
13 ldc2_w #8 /1 Push doubl e constant 2.200000

/1 Uncommon doubl e val ues are al so pushed with |dc2_w
16 dstore 7
...do those cal cul ations. .

3.5 MoreControl Examples

Compilation of f or statements was shown in an earlier section (83.2). Most of the
Java programming language's other control constructs (i f - t hen- el se, do, whi | e,
br eak, and cont i nue) are al'so compiled in the obvious ways. The compilation of
swi t ch statementsis handled in a separate section (83.10), as are the compilation
of exceptions (83.12) and the compilation of fi nal | y clauses (83.13).

As afurther example, awhi | e loop is compiled in an obvious way, although the
specific control transfer instructions made available by the Java Virtual Machine
vary by datatype. Asusual, thereis more support for dataof typei nt , for example:

void whilelnt() {
int i =o0;
while (i < 100) {
i ++;
}

}
is compiled to:

Met hod void whilelnt()
iconst_0O
istore_1
goto 8
iinc 11
iload_1
bi push 100
1 if_icnplt 5
4 return

PP OOUOINEFLO

Note that the test of the while statement (implemented using the if icmplt
instruction) is at the bottom of the Java Virtual Machine code for the loop. (This
was also the case in the spi n examples earlier.) The test being at the bottom of the
loop forcesthe use of agoto instruction to get to thetest prior to thefirst iteration of
the loop. If that test fails, and the loop body is never entered, this extrainstruction
is wasted. However, whi | e loops are typically used when their body is expected
to be run, often for many iterations. For subsequent iterations, putting the test at

35

47

3.5

48

More Control Examples COMPILING FOR THE JAVA VIRTUAL MACHINE

the bottom of the loop saves a Java Virtual Machine instruction each time around
the loop: if the test were at the top of the loop, the loop body would need atrailing
goto instruction to get back to the top.

Control constructs involving other data types are compiled in similar ways, but
must use the instructions available for those data types. This leads to somewhat
|ess efficient code because more Java Virtual Machine instructions are needed, for
example:

voi d whil eDoubl e() {
double i = 0.0;
while (i < 100.1) {
i ++;
}

}

is compiled to:
Met hod voi d whi | eDoubl e()
0 dconst _0
1 dstore_1
2 goto 9
5 dl oad_1
6 dconst _1
7 dadd
8 dstore_1
9 dl oad_1
10 ldc2_w #4 /1l Push doubl e constant 100.1
13 dcnpg /1 To conpare and branch we have to use..
14 iflt 5 /1 ...two instructions

17 return

Each floating-point type has two comparison instructions: fcmpl and fcmpg for type
fl oat, and dcmpl and dempg for type doubl e. The variants differ only in their
treatment of NaN. NaN is unordered (8§2.3.2), so al floating-point comparisons
fail if either of their operands is NaN. The compiler chooses the variant of the
comparison instruction for the appropriate type that produces the same result
whether the comparison fails on non-NaN values or encounters a NaN. For
instance:

int | essThan100(double d) {
if (d < 100.0) {
return 1;
} else {
return -1;
}

}

compilesto:

COMPILING FOR THE JAVA VIRTUAL MACHINE More Control Examples

Met hod int | essThanl100(doubl e)

0 dl oad_1

1 ldc2_w #4 /] Push doubl e constant 100.0

4 dcnpg // Push 1 if dis NaN or d > 100.0;
/'l push 0 if d == 100.0

5 ifge 10 /1 Branch on 0 or 1

8 iconst 1

9 ireturn

10 iconst_ml
11 ireturn

If d isnot NaN and islessthan 100. 0, the decmpg instruction pushesani nt -1 onto
the operand stack, and the ifge instruction does not branch. Whether d is greater
than 100. 0 or is NaN, the dcmpg instruction pushes an i nt 1 onto the operand
stack, and the ifge branches. If d is equal to 100. 0, the dcmpg instruction pushes
anint 0 onto the operand stack, and the ifge branches.

The dempl instruction achieves the same effect if the comparison is reversed:

int greaterThanl100(double d) {
if (d > 100.0) {

return 1;
} else {
return -1,
}
}
becomes:
Met hod i nt greater Than100(doubl e)
0 dl oad_1
1 ldc2_w #4 /1 Push doubl e constant 100.0
4 dcnpl // Push -1 if dis NaN or d < 100.0;
/1 push 0 if d == 100.0
5 ifle 10 /1 Branch on 0 or -1
8 iconst_1
9 ireturn

10 iconst_nl
11 ireturn

Once again, whether the comparison fails on a non-NaN value or because it is
passed a NaN, the dempl instruction pushes an i nt value onto the operand stack
that causes the ifle to branch. If both of the dcmp instructions did not exist, one of
the example methods would have had to do more work to detect NaN.

35

49

3.6

50

Receiving Arguments COMPILING FOR THE JAVA VIRTUAL MACHINE

3.6 Receiving Arguments

If n arguments are passed to an instance method, they are received, by convention,
inthelocal variablesnumbered 1 through n of the frame created for the new method
invocation. Theargumentsarereceived in the order they were passed. For example:

int addTwo(int i, int j) {
return i + j;
}
compilesto:
Met hod int addTwo(int,int)
0 iload_1 /] Push value of local variable 1 (i)
1 iload_2 /1 Push value of |ocal variable 2 (j)
2 i add /1 Add; leave int result on operand stack
3 ireturn /] Return int result

By convention, an instance method is passed ar ef er ence to itsinstance in local
variable 0. In the Java programming language the instance is accessible via the
t hi s keyword.

Class (stati ¢) methods do not have an instance, so for them this use of local
variable 0 isunnecessary. A class method starts using local variables at index O. If
theaddTwo method were aclass method, its argumentswould be passed in asimilar
way to thefirst version:

static int addTwoStatic(int i, int j) {
return i + j;
}

compilesto:

Met hod int addTwoStatic(int,int)
0 iload_O

1 iload 1
2 i add

3 ireturn

The only difference is that the method arguments appear starting in local variable
O rather than 1.

COMPILING FOR THE JAVA VIRTUAL MACHINE Invoking Methods

3.7 Invoking Methods

The normal method invocation for a instance method dispatches on the run-
time type of the object. (They are virtual, in C++ terms.) Such an invocation is
implemented using the invokevirtual instruction, which takes as its argument an
index to arun-time constant pool entry giving the internal form of the binary name
of the classtype of the object, the name of the method to invoke, and that method's
descriptor (84.3.3). To invoke the addTwo method, defined earlier as an instance
method, we might write:

int add12and13() {
return addTwo(12, 13);
}
This compilesto:

Met hod int addl2and13()

0 al oad_0 /1 Push local variable 0 (this)

1 bi push 12 /1 Push int constant 12

3 bi push 13 /1 Push int constant 13

5 i nvokevirtual #4 /1 Method Exanpl e.addtwo(I11)]I

8 ireturn /1 Return int on top of operand stack

/1 it is the int result of addTwo()

Theinvocation is set up by first pushing ar ef er ence to the current instance, t hi s,
on to the operand stack. The method invocation's arguments, i nt values12 and 13,
are then pushed. When the frame for the addTwo method is created, the arguments
passed to the method become the initial values of the new frame's local variables.
That is, ther ef er ence for t hi s and the two arguments, pushed onto the operand
stack by the invoker, will become the initial values of local variables O, 1, and 2
of the invoked method.

Finally, addTwo is invoked. When it returns, itsi nt return value is pushed onto
the operand stack of the frame of the invoker, the add12and13 method. The return
valueisthus put in place to beimmediately returned to the invoker of add12and13.

The return from add12and13 is handled by the ireturn instruction of add12and13.
The ireturn instruction takes the i nt value returned by addTwo, on the operand
stack of the current frame, and pushes it onto the operand stack of the frame of
the invoker. It then returns control to the invoker, making the invoker's frame
current. The Java Virtual Machine provides distinct return instructions for many of
its numeric and r ef er ence datatypes, aswell as areturn instruction for methods
with no return value. The same set of return instructions is used for all varieties
of method invocations.

3.7

51

3.7

52

Invoking Methods COMPILING FOR THE JAVA VIRTUAL MACHINE

The operand of the invokevirtual instruction (in the example, the run-time constant
pool index #4) is not the offset of the method in the class instance. The compiler
does not know the internal layout of aclassinstance. Instead, it generates symbolic
references to the methods of an instance, which are stored in the run-time constant
pool. Those run-time constant pool items are resolved at run-time to determine
the actual method location. The same is true for al other Java Virtual Machine
instructions that access class instances.

Invoking addTwoSt at i ¢, aclass (st ati ¢) variant of addTwo, is similar, as shown:

int add12and13() {
return addTwoStatic(12, 13);
}

although a different Java Virtual Machine method invocation instruction is used:

Met hod int addl12and13()

0 bi push 12

2 bi push 13

4 i nvokestatic #3 /1 Method Exanpl e. addTwoStatic(l1)]
7 ireturn

Compiling an invocation of aclass (st at i ¢) method is very much like compiling
an invocation of an instance method, except t hi s isnot passed by theinvoker. The
method argumentswill thus be received beginning with local variable 0 (83.6). The
invokestatic instruction is always used to invoke class methods.

The invokespecial instruction must be used to invoke instance initialization
methods (83.8). It is also used when invoking methods in the superclass (super).
For instance, given classes Near and Far declared as:
class Near {
int it;
int getltNear() {
return it;
}

cl ass Far extends Near {
int getltFar() {
return super.getltNear();
}

}
The method Far . get I t Far (which invokes a superclass method) becomes:

Met hod int getltFar()

0 al oad_0
1 i nvokespeci al #4 /1 Method Near.getltNear()I
4 ireturn

COMPILING FOR THE JAVA VIRTUAL MACHINE Working with Class Instances

Note that methods called using the invokespecial instruction always passt hi s to
theinvoked method asitsfirst argument. Asusual, itisreceived inlocal variableO.

Toinvokethetarget of amethod handle, acompiler must form amethod descriptor
that records the actual argument and return types. A compiler may not perform
method invocation conversions on the arguments; instead, it must push them on
the stack according to their own unconverted types. The compiler arranges for
areference to the method handle object to be pushed on the stack before the
arguments, asusual. The compiler emitsan invokevirtual instruction that references
adescriptor which describesthe argument and return types. By special arrangement
with method resolution (85.4.3.3), an invokevirtual instruction which invokes
the i nvokeExact or i nvoke methods of j ava. | ang. i nvoke. Met hodHand! e will
always link, provided the method descriptor is syntactically well-formed and the
types named in the descriptor can be resolved.

3.8 Working with Class I nstances

JavaVirtual Machine class instances are created using the Java Virtual Machine's
new instruction. Recall that at the level of the Java Virtual Machine, a constructor
appears as a method with the compiler-supplied name <i ni t>. This specialy
named method is known as the instance initialization method (82.9). Multiple
instance initialization methods, corresponding to multiple constructors, may exist
for agiven class. Oncethe classinstance has been created and itsinstance variables,
including those of the class and all of its superclasses, have been initialized to
their default values, an instance initialization method of the new class instance is
invoked. For example:

oj ect create() {
return new Cbject();
}

compilesto:
Met hod j ava. |l ang. Obj ect create()
0 new #1 /1 dass java.l ang. Obj ect
3 dup
4 invokespecial #4 /1 Method java.lang. bject.<init>()V
7 areturn

Class instances are passed and returned (as ref erence types) very much like
numeric values, although typer ef er ence hasits own complement of instructions,
for example:

3.8

53

3.8 Working with Class Instances COMPILING FOR THE JAVA VIRTUAL MACHINE

int i; // An instance vari abl e
MyQoj exanpl e() {

M/Qoj o = new MyQj ();

return silly(o);

}
W] silly(MQoj o) {
if (o!=null) {
return o;
} else {
return o;
}

}
becomes:

Met hod MyObj exanpl e()

new #2 /1 dass MyOQbj

dup

i nvokespeci al #5 /1 Method MyQoj . <init>()V

astore_1

al oad_0

al oad_1

i nvokevirtual #4 /1 Method Exanple.silly(LMQoj;)LMWOj;
areturn

PPRPOONP_WO

w o

Met hod MyObj silly(M/Obj)
al oad_1

ifnull 6

al oad_1

areturn

al oad_1

areturn

~NOoO Ol O

The fields of a class instance (instance variables) are accessed using the getfield
and putfield instructions. If i isaninstance variableof typei nt , themethodsset I t
and get I t , defined as:

void setlt(int value) {
i = val ue;

}
int getlt() {

return i;
}
become:
Met hod void setlt(int)
0 al oad_0
1 iload 1
2 putfield #4 /1 Field Exanple.i
5 return

COMPILING FOR THE JAVA VIRTUAL MACHINE Arrays

Met hod int getlt()

0 al oad_0
1 getfield #4 /1 Field Exanple.i |
4 ireturn

Aswith the operands of method invocation instructions, the operands of the putfield
and getfield instructions (the run-time constant pool index #4) are not the offsets
of the fields in the class instance. The compiler generates symbolic references to
the fields of an instance, which are stored in the run-time constant pool. Those run-
time constant pool items are resolved at run-time to determine the location of the
field within the referenced object.

3.9 Arrays

Java Virtual Machine arrays are also objects. Arrays are created and manipulated
using a distinct set of instructions. The newarray instruction is used to create an
array of anumeric type. The code:

void createBuffer() {
int buffer[];
int bufsz = 100;
int value = 12;
buffer = new int[bufsz];
buffer[10] = val ue;
val ue = buffer[11];

}
might be compiled to:

Met hod void createBuffer()

0 bi push 100 /1 Push int constant 100 (bufsz)

2 istore_2 /'l Store bufsz in local variable 2
3 bi push 12 /1 Push int constant 12 (val ue)

5 istore_3 /1 Store value in local variable 3
6 iload_2 /1 Push bufsz...

7 newarray int /1 ...and create newint array of that |length
9 astore_1 /1 Store new array in buffer

10 aload_1 /] Push buffer

11 bipush 10 /1 Push int constant 10

13 iload_3 /1 Push val ue

14 iastore /1 Store value at buffer[10]

15 aload_1 /1 Push buffer

16 bipush 11 /1 Push int constant 11

18 ial oad /] Push value at buffer[11]...

19 istore_ 3 /1l ...and store it in value

20 return

3.9

55

3.9

56

Arrays COMPILING FOR THE JAVA VIRTUAL MACHINE

The anewarray instruction is used to create a one-dimensional array of object
references, for example:

voi d createThreadArray() ({
Thread threads[];
int count = 10;
threads = new Thread[count];
t hreads[0] = new Thread();

}
becomes:
Met hod void createThreadArray()
0 bi push 10 /1 Push int constant 10
2 istore_2 /1 Initialize count to that
3 iload_2 /1 Push count, used by anewarray
4 anewarray class #1 // Create new array of class Thread
7 astore_1 /1 Store new array in threads
8 al oad_1 /1 Push val ue of threads
9 iconst_O /! Push int constant O
10 new #1 /'l Create instance of class Thread
13 dup /1 Make duplicate reference...
14 invokespecial #5 /1 ...for Thread's constructor
/1 Method java.lang. Thread.<init>()V
17 aastore /1 Store new Thread in array at O
18 return

The anewarray instruction can aso be used to create the first dimension of a
multidimensional array. Alternatively, the multianewarray instruction can be used
to create severa dimensions at once. For example, the three-dimensional array:

int[][]1[] create3DArray() {
int grid][][];
grid = new int[10][5][];
return grid;

}
is created by:
Method int create3DArray()[]1[]1[]
0 bi push 10 /] Push int 10 (dinension one)
2 iconst_5 /1 Push int 5 (di mension two)

3 mul tianewarray #1 dim#2 // Cass [[[|, a three-dinensional
/1 int array; only create the
/1 first two di nensions

7 astore_1 /] Store new array. ..
8 al oad_1 /] ...then prepare to return it
9 areturn

The first operand of the multianewarray instruction is the run-time constant pool
index to the array classtypeto be created. The second isthe number of dimensions

COMPILING FOR THE JAVA VIRTUAL MACHINE Compiling Switches

of that array typeto actually create. The multianewarray instruction can be used to
create al the dimensions of the type, as the code for cr eat e3DAr r ay shows. Note
that the multidimensional array is just an object and so is loaded and returned by
anaload_1 and areturninstruction, respectively. For information about array class
names, see 84.4.1.

All arrays have associated lengths, which are accessed via the arraylength
instruction.

3.10 Compiling Switches

Compilation of switch statements uses the tableswitch and lookupswitch
instructions. The tableswitch instruction is used when the cases of the swi t ch can
be efficiently represented as indices into a table of target offsets. The def aul t
target of theswi t ch isusedif the value of the expression of theswi t ch fallsoutside
the range of valid indices. For instance:

int chooseNear(int i) {
switch (i) {

case 0: return

case 1: return

case 2: return ;

default: return -1;

)

1

NP

}
}
compilesto:

Met hod i nt chooseNear (i nt)
0 iload_1 /'l Push local variable 1 (argunent i)
1 tableswitch O to 2: // Valid indices are 0 through 2

0: 28 // 1f i is O, continue at 28

1: 30 /1 1f i is 1, continue at 30

2: 32 /1 1f i is 2, continue at 32

defaul t: 34 // Otherwi se, continue at 34
28 iconst_0 /1 i was 0; push int constant O...
29 ireturn /1 ...and return it
30 iconst_1 /1 i was 1; push int constant 1...
31 ireturn /1 ...and return it
32 iconst_2 /1 i was 2; push int constant 2...
33 ireturn /1l ...and return it
34 iconst_nl /1 otherw se push int constant -1...
35 ireturn /1 ...and return it

TheJavaVirtual Machine'stableswitch and lookupswitch instructions operate only
on i nt data. Because operations on byt e, char, or short vaues are internally

3.10

57

3.10

58

Compiling Switches COMPILING FOR THE JAVA VIRTUAL MACHINE

promoted to i nt, aswi t ch whose expression evaluates to one of those types is
compiled as though it evaluated to typei nt . If the chooseNear method had been
written using type shor t , the same Java Virtual Machine instructions would have
been generated as when using typei nt . Other numeric types must be narrowed to
typeint foruseinaswitch.

Wherethe casesof theswi t ch are sparse, thetabl e representation of thetableswitch
instruction becomesinefficient intermsof space. Thelookupswitch instruction may
be used instead. Thelookupswitchinstruction pairsi nt keys(thevaluesof thecase
labels) with target offsets in atable. When alookupswitch instruction is executed,
the value of the expression of theswi t ch iscompared against the keysin the table.
If one of the keys matches the value of the expression, execution continues at the
associated target offset. If no key matches, execution continues at the def aul t

target. For instance, the compiled code for:

int chooseFar(int i) {

switch (i) {
case -100: return -1
case 0: return O;
case 100: return 1;
defaul t: return -1

}
looks just like the code for chooseNear , except for the lookupswitch instruction:

Met hod int chooseFar (int)

0 iload 1
1 | ookupswi tch 3:
-100: 36
0: 38
100: 40
default: 42

36 iconst_m
37 ireturn
38 iconst_0
39 ireturn
40 iconst_1
41 ireturn
42 iconst_ml
43 ireturn

The Java Virtual Machine specifies that the table of the lookupswitch instruction
must be sorted by key so that implementati ons may use searches more efficient than
alinear scan. Even so, thelookupswitch instruction must search itskeysfor amatch
rather than simply perform a bounds check and index into atable like tableswitch.
Thus, a tableswitch instruction is probably more efficient than a lookupswitch
where space considerations permit a choice.

COMPILING FOR THE JAVA VIRTUAL MACHINE Operations on the Operand Stack

3.11 Operationson the Operand Stack

The Java Virtual Machine has a large complement of instructions that manipulate
the contents of the operand stack as untyped values. These are useful because of
the Java Virtual Machine's reliance on deft manipulation of its operand stack. For
instance:

public | ong nextlndex() {
return i ndex++;

}
private long index = O;
is compiled to:
Met hod | ong next | ndex()
0 al oad_0 /1 Push this
1 dup /1 Make a copy of it

2 getfield #4 /1 One of the copies of this is consuned
/'l pushing long field index,
/| above the original this

5 dup2_x1 /1 The long on top of the operand stack is
/] inserted into the operand stack bel ow t he
/1 original this

6 I const _1 /1 Push long constant 1

7 | add /1 The index value is incremented...

8 putfield #4 /1 ...and the result stored in the field
11 Ireturn /1 The original value of index is on top of

/'l the operand stack, ready to be returned

Note that the Java Virtual Machine never allows its operand stack manipulation
instructions to modify or break up individual values on the operand stack.

3.12 Throwing and Handling Exceptions

Exceptions are thrown from programs using the t hr ow keyword. Its compilation
issmple:
voi d cantBeZero(int i) throws TestExc {

if (i == 0)
t hrow new Test Exc();
}

becomes:

311

59

3.12

60

Throwing and Handling Exceptions COMPILING FOR THE JAVA VIRTUAL MACHINE

Met hod voi d cant BeZero(i nt)

0 iload_1 /1 Push argument 1 (i)

1 ifne 12 /1 If i==0, allocate instance and throw
4 new #1 /1l Create instance of TestExc

7 dup /1 One reference goes to its constructor
8 i nvokespeci al #7 /1 Method TestExc.<init>()V

11 athrow /1 Second reference is thrown

12 return /1 Never get here if we threw Test Exc

Compilation of t ry-cat ch constructsis straightforward. For example:

voi d catchOne() {
try {
tryltQut();
} catch (TestExc e) {
handl eExc(e);

}
}
iscompiled as:
Met hod voi d cat chOne()
0 al oad_0 /1 Beginning of try block
1 i nvokevi rtual #6 /1 Method Exanple.tryltQut()V
4 return /1 End of try block; normal return
5 astore_1 /1 Store thrown value in local var 1
6 al oad_0 /1 Push this
7 al oad_1 /1 Push thrown val ue
8 i nvokevi rtual #5 /'l 1 nvoke handl er method:
/| Exanpl e. handl eExc(LTest Exc;)V
11 return /1 Return after handling TestExc
Exception table:
From To Tar get Type
0 4 5 Cl ass Test Exc

Looking more closely, thet ry block iscompiled just asit would beif thet ry were
not present:

Met hod voi d catchOne()

0 al oad_0 /1 Beginning of try block
1 i nvokevi rtual #6 /1 Method Exanple.tryltQut()V
4 return /1 End of try block; normal return

If no exceptionisthrown during the execution of thet r y block, it behavesasthough
thetry werenot there: t ryl t Qut isinvoked and cat chOne returns.

Following the try block is the Java Virtual Machine code that implements the
singlecat ch clause:

5 astore_1 /1 Store thrown value in local var 1
6 al oad_0 /1 Push this

COMPILING FOR THE JAVA VIRTUAL MACHINE Throwing and Handling Exceptions 3.12

7 al oad_1 /1l Push thrown val ue
8 i nvokevi rtual #5 /'l 1 nvoke handl er method:

/'l Exanpl e. handl eExc(LTest Exc;)V
11 return /1 Return after handling TestExc
Exception table:
From To Tar get Type
0 4 5 Cl ass Test Exc

The invocation of handl eExc, the contents of the cat ch clause, is aso compiled
like anormal method invocation. However, the presence of acat ch clause causes
the compiler to generate an exception table entry (82.10, 84.7.3). The exception
tablefor thecat chone method has one entry corresponding to the one argument (an
instance of class Test Exc) that the cat ch clause of cat chone can handle. If some
value that is an instance of Test Exc isthrown during execution of the instructions
between indices 0 and 4 in cat chOne, control is transferred to the Java Virtual
Machine code at index 5, which implements the block of the cat ch clause. If the
value that is thrown is not an instance of Test Exc, the cat ch clause of cat chOne
cannot handleit. Instead, the value is rethrown to the invoker of cat chOne.

A try may have multiple cat ch clauses:

voi d catchTwo() {

try {
tryltQut();

} catch (TestExcl e) {
handl eExc(e);

} catch (TestExc2 e) {
handl eExc(e);

}

}

Multiplecat ch clausesof agivent ry statement are compiled by simply appending
the JavaVirtual Machine code for each cat ch clause one after the other and adding
entries to the exception table, as shown:

Met hod void cat chTwo()

0 al oad_0 /1 Begin try bl ock

1 i nvokevi rtual #5 /1 Method Exanple.tryltQut()V

4 return /1 End of try block; normal return

5 astore_1 /1 Beginning of handler for TestExcl;
/1 Store thrown value in local var 1

6 al oad_0 /1 Push this

7 al oad_1 /1l Push thrown val ue

8 i nvokevi rtual #7 /'l 1 nvoke handl er method:
/| Exanpl e. handl eExc(LTest Excl;)V

11 return /1 Return after handling TestExcl

12 astore_1 /1 Beginning of handler for TestExc2;
/1 Store thrown value in local var 1

13 aload O /1 Push this

61

3.12

62

Throwing and Handling Exceptions COMPILING FOR THE JAVA VIRTUAL MACHINE

14 aload_1 /1l Push thrown val ue
15 invokevirtual #7 /'l 1 nvoke handl er method:
/| Exanpl e. handl eExc(LTest Exc2;)V
18 return /1 Return after handling TestExc2
Exception table:
From To Tar get Type
0 4 5 O ass Test Excl
0 4 12 Cl ass Test Exc2

If during the execution of thet r y clause (betweenindices 0 and 4) avalueisthrown
that matches the parameter of one or more of the cat ch clauses (the value is an
instance of one or more of the parameters), the first (innermost) such cat ch clause
isselected. Control istransferred to the Java Virtual Machine code for the block of
that cat ch clause. If the value thrown does not match the parameter of any of the
cat ch clauses of cat chTwo, the Java Virtual Machine rethrows the value without
invoking code in any cat ch clause of cat chTwo.

Nested t ry-cat ch statements are compiled very much like atry statement with
multiple cat ch clauses:

voi d nestedCatch() {

try {

try {
tryltQut();

} catch (TestExcl e) {
handl eExc1(e);

}
} catch (TestExc2 e) {
handl eExc2(e);

}
}
becomes:
Met hod voi d nest edCat ch()
0 al oad_0 /1 Begin try block
1 i nvokevi rtual #8 /1 Method Exanple.tryltQut()V
4 return /1 End of try block; normal return
5 astore_1 /1 Beginning of handler for TestExcl;
/1 Store thrown value in local var 1
6 al oad_0 /1 Push this
7 al oad_1 /1 Push thrown val ue
8 i nvokevi rtual #7 /1 I nvoke handl er net hod:
/1 Exanpl e. handl eExc1(LTest Excl;)V
11 return /1 Return after handling TestExcl
12 astore_1 /1 Beginning of handler for TestExc2;
/1 Store thrown value in local var 1
13 aload_0O /1 Push this
14 aload_1 /1l Push thrown val ue
15 invokevirtual #6 /'l 1 nvoke handl er method:

/| Exanpl e. handl eExc2(LTest Exc2;)V

COMPILING FOR THE JAVA VIRTUAL MACHINE Compiling final Iy
18 return /1 Return after handling TestExc2
Exception table:

From To Tar get Type
0 4 5 Cl ass TestExcl
0 12 12 Cl ass Test Exc2

The nesting of cat ch clauses is represented only in the exception table. The Java
Virtual Machine does not enforce nesting of or any ordering of the exception table
entries (82.10). However, becauset r y-cat ch constructs are structured, a compiler
can alwaysorder the entries of the exception handler table such that, for any thrown
exception and any program counter valuein that method, thefirst exception handler
that matches the thrown exception corresponds to the innermost matching cat ch
clause.

For instance, if the invocation of tryltcaut (at index 1) threw an instance of
Test Exc1, it would be handled by the cat ch clause that invokeshandl eExc1. This
is so even though the exception occurs within the bounds of the outer cat ch clause
(catching Test Exc2) and even though that outer cat ch clause might otherwise have
been able to handle the thrown value.

As asubtle point, note that the range of acat ch clauseisinclusive on the "from"
end and exclusive on the "to" end (84.7.3). Thus, the exception table entry for the
cat ch clause catching Test Exc1 does not cover the return instruction at offset 4.
However, the exception table entry for the cat ch clause catching Test Exc2 does
cover the return instruction at offset 11. Return instructions within nested cat ch
clauses are included in the range of instructions covered by nesting cat ch clauses.

3.13 Compilingfinally

(This section assumes a compiler generates cl ass files with version number 50.0
or below, so that the jsr instruction may be used. See also 84.10.2.5.)

Compilation of atry-final |y statement is similar to that of t ry-cat ch. Prior to
transferring control outside the t ry statement, whether that transfer is normal or
abrupt, because an exception has been thrown, the final | y clause must first be
executed. For this simple example:

void tryFinally() {

try {
tryltQut();

} finally {
wraplt Up();

3.13

63

3.13

Compiling final Iy COMPILING FOR THE JAVA VIRTUAL MACHINE

the compiled codeis:

Met hod void tryFinally()

0 al oad_0 /1 Beginning of try block

1 i nvokevi rtual #6 /1 Method Exanple.tryltQut()V

4 jsr 14 /1 Call finally block

7 return /1 End of try bl ock

8 astore_1 /1 Beginning of handler for any throw
9 jsr 14 /1 Call finally block

12 aload_1 /1 Push thrown val ue

13 athrow /1 ...and rethrow value to the invoker
14 astore_2 /1 Beginning of finally block

15 aload_0O /1 Push this

16 invokevirtual #5 /1 Method Exanple.wapltUp()V

19 ret 2 /1 Return fromfinally block
Exception table:

From To Tar get Type

0 4 8 any

There are four ways for control to pass outside of the t ry statement: by falling
through the bottom of that block, by returning, by executing abr eak or cont i nue
statement, or by raising an exception. If tryltout returns without raising an
exception, control is transferred to the fi nal 1y block using a jsr instruction. The
jsr 14 instruction at index 4 makes a"subroutine call" to the code for thefi nal I y
block at index 14 (the final | y block is compiled as an embedded subroutine).
When the final I y block completes, the ret 2 instruction returns control to the
instruction following the jsr instruction at index 4.

In more detail, the subroutine call works as follows: The jsr instruction pushes
the address of the following instruction (return at index 7) onto the operand stack
before jumping. The astore 2 instruction that is the jump target stores the address
on the operand stack into local variable 2. The code for the final Iy block (in
this casethe aload_0 and invokevirtual instructions) isrun. Assuming execution of
that code completes normally, the ret instruction retrieves the address from local
variable 2 and resumes execution at that address. Thereturninstruction isexecuted,
andtryFinal |y returns normally.

A try statement with afinal Iy clause is compiled to have a special exception
handler, one that can handle any exception thrown within the t ry statement. If
tryltout throwsan exception, the exception tablefor t ryFi nal | y is searched for
an appropriate exception handler. The special handler is found, causing execution
to continue at index 8. The astore 1 instruction at index 8 stores the thrown value
into local variable 1. The following jsr instruction does a subroutine call to the
code for the final Iy block. Assuming that code returns normally, the aload 1
instruction at index 12 pushes the thrown value back onto the operand stack, and
the following athrow instruction rethrows the value.

COMPILING FOR THE JAVA VIRTUAL MACHINE Compiling final Iy 3.13

Compiling at ry statement with both acat ch clauseand afi nal | y clauseis more
complex:

void tryCatchFinally() {
try {
tryltQut();
} catch (TestExc e) {
handl eExc(e);

} finally {
wrapl t Up();
}
becomes:

Met hod void tryCatchFinally()

0 al oad_0 /1 Beginning of try block

1 i nvokevirtual #4 /1 Method Exanple.tryltQut()V

4 goto 16 /1 Jump to finally block

7 astore_3 /1 Begi nning of handl er for TestExc;
/1 Store thrown value in |ocal var 3

8 al oad_0 /1 Push this

9 al oad_3 /1 Push thrown val ue

10 invokevirtual #6 /'l 1 nvoke handl er method:
/| Exanpl e. handl eExc(LTest Exc;)V

13 goto 16 /1 This goto is unnecessary, but was
/1 generated by javac in JDK 1.0.2

16 jsr 26 /1 Call finally bl ock

19 return /! Return after handling TestExc

20 astore_1 /1 Begi nning of handl er for exceptions
/1 other than TestExc, or exceptions
/1 thrown while handling TestExc

21 jsr 26 /1 Call finally bl ock

24 aload_1 /1 Push thrown val ue. ..

25 athrow /1 ...and rethrow value to the invoker

26 astore_2 /1 Beginning of finally block

27 aload_0 /1 Push this

28 invokevirtual #5 /1 Method Exanpl e.wapltUp()V

31 ret 2 /1 Return fromfinally block

Exception table:

From To Tar get Type

0 4 7 Cl ass Test Exc

0 16 20 any

If the try statement completes normally, the goto instruction at index 4 jumps
to the subroutine call for the final Iy block at index 16. The fi nal | y block at
index 26 is executed, control returns to the return instruction at index 19, and
tryCat chFi nal | y returns normally.

If tryltout throws an instance of Test Exc, the first (innermost) applicable
exception handler in the exception table is chosen to handle the exception. The

65

314

66

Synchronization COMPILING FOR THE JAVA VIRTUAL MACHINE

code for that exception handler, beginning at index 7, passes the thrown value to
handl eExc and on its return makes the same subroutine call to thefi nal I y block
at index 26 as in the normal case. If an exception is not thrown by handl eExc,
t ryCat chFi nal | y returns normally.

If t ryl t aut throwsavauethat isnot aninstance of Test Exc or if handl eExc itself
throws an exception, the condition is handled by the second entry in the exception
table, which handles any value thrown between indices 0 and 16. That exception
handler transfers control to index 20, where the thrown valueisfirst storedinlocal
variable 1. Thecodefor thefi nal | y block at index 26 iscalled asasubroutine. If it
returns, the thrown value isretrieved from local variable 1 and rethrown using the
athrowinstruction. If anew valueisthrown during execution of thef i nal | y clause,
thefinal 'y clause aborts, and t ryCat chFi nal | y returns abruptly, throwing the
new valueto itsinvoker.

3.14 Synchronization

Synchronization in the Java Virtual Machineisimplemented by monitor entry and
exit, either explicitly (by use of the monitorenter and monitorexit instructions) or
implicitly (by the method invocation and return instructions).

For code written in the Java programming language, perhaps the most common
form of synchronizationisthesynchr oni zed method. A synchr oni zed method is
not normally implemented using monitorenter and monitorexit. Rather, it issimply
distinguished in the run-time constant pool by the ACC_SYNCHRONI ZED flag, which
is checked by the method invocation instructions (8§2.11.10).

The monitorenter and monitorexit instructions enable the compilation of
synchr oni zed statements. For example:

voi d onl yMe(Foo f) {

synchroni zed(f) {
doSonet hi ng();
}

}

is compiled to:
Met hod voi d onl yMe(Foo)
0 al oad_1 /1 Push f
1 dup /1 Duplicate it on the stack
2 astore_2 /1 Store duplicate in local variable 2
3 noni t orent er /1 Enter the nonitor associated with f
4 al oad_0 /1 Holding the nonitor, pass this and...

COMPILING FOR THE JAVA VIRTUAL MACHINE Annotations

5 i nvokevi rtual #5 /1 ...call Exanple.doSonething()V

8 al oad_2 /1 Push local variable 2 (f)

9 noni t orexit // Exit the monitor associated with f
10 goto 18 /1 Complete the method normally

13 astore_3 /1 In case of any throw, end up here
14 al oad_2 /1 Push local variable 2 (f)

15 nonitorexit /!l Be sure to exit the nonitor!

16 aload_3 /1 Push thrown val ue...

17 athrow /1 ...and rethrow value to the invoker
18 return /! Return in the normal case
Exception table:

From To Tar get Type

4 10 13 any

13 16 13 any

The compiler ensures that at any method invocation completion, a monitorexit
instruction will have been executed for each monitorenter instruction executed
since the method invocation. This is the case whether the method invocation
completes normally (82.6.4) or abruptly (82.6.5). To enforce proper pairing
of monitorenter and monitorexit instructions on abrupt method invocation
completion, the compiler generates exception handlers (82.10) that will match
any exception and whose associated code executes the necessary monitorexit
instructions.

3.15 Annotations

The representation of annotations in cl ass files is described in 84.7.16-84.7.22.
These sections make it clear how to represent annotations on declarations of
classes, interfaces, fields, methods, method parameters, and type parameters, as
well as annotations on types used in those declarations. Annotations on package
declarations require additional rules, given here.

When the compiler encounters an annotated package declaration that must be made
available a run time, it emitsacl ass file with the following properties:

* The class file represents an interface, that is, the ACC | NTERFACE and
ACC_ABSTRACT flags of the A assFi | e structure are set (84.1).

* If thecl ass fileversion number islessthan 50.0, thenthe AcC_SYNTHETI Cflagis
unset; if thecl ass file version number is50.0 or above, then the ACC_SYNTHETI C
flagis set.

» Theinterface has package access (JLS §6.6.1).

3.15

67

3.16

68

Modules COMPILING FOR THE JAVA VIRTUAL MACHINE

» The interface's name is the internal form (84.2.1) of package- nane. package-
i nfo.

» Theinterface has no superinterfaces.

» The interface's only members are those implied by The Java Language
Soecification, Java SE 23 Edition (JLS §9.2).

e The annotations on the package declaration are stored as
Runt i meVi si bl eAnnot ati ons and Runti el nvi si bl eAnnot ati ons attributes
intheat tri but es table of thed assFi | e structure.

3.16 Modules

A compilation unit that contains a module declaration (JLS 87.7) is compiled to a
cl ass filethat contains a Modul e attribute.

By convention, the name of a compilation unit that contains a module
declarationisnodul e-i nf 0. j ava, echoingthepackage- i nf o. j ava conventionfor
a compilation unit that contains solely a package declaration. Consequently, by
convention, the name for the compiled form of a module declaration is nodul e-
i nfo.class.

A flag in the access_flags item of the d assFile structure, ACC MODULE
(0x8000), indicates that this cl ass file declares a module. ACC_MODULE plays a
similar role to ACC_ANNOTATI ON (0x2000) and AcC_ENuM (0x4000) in flagging this
cl ass file as "not an ordinary class'. ACC_MODULE does not describe accessibility
of aclassor interface.

The Mdul e attribute is explicit about the module's dependences; there are no
implicit r equi r es directives at the d assFi | e level. If therequi res_count item
is zero, then the Java SE Platform does not infer the existence of ar equi r es table
nor any particular entry therein. j ava. base is the only module in which a zero
requi res_count is legal, because it is the primordial module. For every other
module, the Mdul e attribute must have ar equi res table of at least length one,
because every other module dependsonj ava. base. If acompilation unit contains
a module declaration (except j ava. base) that does not state its dependence on
j ava. base explicitly, then a compiler must emit an entry for j ava. base in the
requi res table and flag it as ACC_MANDATED to denote that it was implicitly
declared.

For encapsulation, the Mbdul e attributeisexplicit about the packages exported and
opened by anormal module; therearenoimplicit expor t s or opens directivesat the

COMPILING FOR THE JAVA VIRTUAL MACHINE Modules 3.16

d assFi | e level for anormal module. If theexports_count item or opens_count
item is zero, then the Java SE Platform does not infer the existence of an exports
table or opens table, nor any particular entry therein. On the other hand, for an open
module, the Modul e attributeisimplicit about the packages opened by the module.

All packages of an open module are opened to all other modules, even though the
opens_count itemiszero.

The Modul e attribute is explicit about the module's consumption and provision of
services, thereare no implicit uses or provi des directivesat thed assFi | e level.

69

CHAPTER |

Thecl ass File Format

THIS chapter describes the cl ass file format of the Java Virtual Machine. Each
cl ass file contains the definition of asingle class, interface, or module. Although
a class, interface, or module need not have an external representation literally
contained in afile (for instance, because the class is generated by a class loader),
wewill colloquialy refer to any valid representation of aclass, interface, or module
asbeinginthecl ass file format.

A class file consists of a stream of 8-bit bytes. 16-bit and 32-bit quantities
are constructed by reading in two and four consecutive 8-bit bytes, respectively.
Multibyte data items are always stored in big-endian order, where the high bytes
come first. This chapter defines the data types u1, u2, and u4 to represent an
unsigned one-, two-, or four-byte quantity, respectively.

In the Java SE Platform API, the class file format is supported by
interfaces java.io.Datalnput and java.io.DataCQutput and classes such as
java.io.Datal nput Streamand j ava. i o. Dat aCut put St r eam For example, values
of the types ul, u2, and u4 may be read by methods such as r eadUnsi gnedByt e,
r eadUnsi gnedShort, andr eadl nt of theinterfacej ava. i 0. Dat al nput .

This chapter presents the cl ass file format using pseudostructures written in a
C-like structure notation. To avoid confusion with the fields of classes and class
instances, etc., the contents of the structures describing the cl ass file format are
referred to as items. Successive items are stored in the cl ass file sequentialy,
without padding or alignment.

Tables, consisting of zero or more variable-sized items, are used in severa cl ass
file structures. Although we use C-like array syntax to refer to table items, the fact
that tables are streams of varying-sized structures means that it is not possible to
tranglate atable index directly to a byte offset into the table.

Wherewerefer to adatastructureasan array, it consists of zero or more contiguous
fixed-sized items and can be indexed like an array.

71

The d assFi | e Sructure THE cLAss FILE FORMAT

Reference to an ASCII character in this chapter should be interpreted to mean the
Unicode code point corresponding to the ASCII character.

4.1 Thed assFil e Structure

A cl ass file consists of asingle d assFi | e structure:

ClassFile {
ud magi c;
u2 m nor _ver si on;
u2 maj or _ver si on;
u2 const ant _pool _count;
cp_info const ant _pool [const ant _pool _count-1];
u2 access_fl ags;
u2 this_cl ass;
u2 super _cl ass;
u2 i nterfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 met hods_count ;
nmet hod_i nf o met hods[met hods_count] ;
u2 attri butes_count;

attribute_info attributes[attributes_count];

}

Theitemsinthe d assFi | e structure are as follows:

magi ¢
The magi ¢ item supplies the magic number identifying the cl ass file format;
it has the value 0x CAFEBABE.

m nor _versi on, maj or_version
The values of the mi nor_versi on and maj or _ver si on items are the minor
and major version numbers of thiscl ass file. Together, a major and a minor
version number determine the version of thecl ass fileformat. If acl ass file

has major version number Mand minor version number m we denotetheversion
of itscl ass file format asMm

A Java Virtual Machine implementation which conforms to Java SE N must
support exactly the major versions of the cl ass file format specified in the
fourth column of Table 4.1-A, "Supported majors'. The notation A .. B means
major versions A through B, inclusive of both A and B. The third column,
"Major", shows the major version introduced by each Java SE release, that
is, the first release that could have accepted a cl ass file containing that

THE cLAsS FILE FORMAT

The d assFi | e Sructure

maj or _ver si on item. For very early releases, the JDK versionisshown instead
of the Java SE release.

Table4.1-A. cl ass fileformat major versions

JavaSE Released Major Supported majors
102 May 1996 45 45

11 February 1997 45 45

12 December 1998 46 45 .. 46
13 May 2000 47 45 .. 47
14 February 2002 48 45..48
5.0 September 2004 49 45..49
6 December 2006 50 45 ..50
7 July 2011 51 45 .51
8 March 2014 52 45 ..52
9 September 2017 53 45 .53
10 March 2018 54 45 .54
11 September 2018 55 45 ..55
12 March 2019 56 45 .. 56
13 September 2019 57 45 ..57
14 March 2020 58 45 ..58
15 September 2020 59 45..59
16 March 2021 60 45..60
17 September 2021 61 45..61
18 March 2022 62 45 .. 62
19 September 2022 63 45..63
20 March 2023 64 45..64
21 September 2023 65 45..65
22 March 2024 66 45 .. 66
23 September 2024 67 45 ..67

For acl ass file whose mej or _versi on is 56 or above, the mi nor _versi on
must be 0 or 65535.

41

73

41

74

The d assFi | e Sructure THE cLAss FILE FORMAT

For a cl ass file whose naj or _versi on is between 45 and 55 inclusive, the
mi nor _ver si on may be any value.

A historical perspectiveiswarranted on JDK support for cl ass file format versions. JDK
1.0.2 supported versions 45.0 through 45.3 inclusive. JDK 1.1 supported versions 45.0
through 45.65535 inclusive. When JDK 1.2 introduced support for major version 46, the
only minor version supported under that major version was 0. Later JDK's continued the
practice of introducing support for a new major version (47, 48, etc) but supporting only
a minor version of 0 under the new major version. Finally, the introduction of preview
features in Java SE 12 (see below) motivated a standard role for the minor version of the
cl ass fileformat, so JDK 12 supported minor versions of 0 and 65535 under major version
56. Subsequent JDK s introduce support for N.O and N.65535 where N is the corresponding
major version of the implemented Java SE Platform. For example, JDK 13 supports 57.0
and 57.65535.

The Java SE Platform may define preview features. A Java Virtual Machine
implementation which conforms to Java SE N (N = 12) must support al the
preview features of Java SE N, and none of the preview features of any other
Java SE release. The implementation must by default disable the supported
preview features, and must provide away to enable al of them, and must not
provide away to enable only some of them.

A cl ass fileis said to depend on the preview features of Java SE N (N = 12) if
it hasamaj or _ver si on that correspondsto Java SE N (according to Table 4.1-
A) and ani nor _ver si on of 65535.

A JavaVirtual Machine implementation which conformsto Java SE N (N> 12)
must behave as follows:

» Acl ass filethat dependson the preview features of Java SE Nmay beloaded
only when the preview features of Java SE N are enabled.

» Acl ass filethat depends on the preview features of another Java SE release
must never be loaded.

* A cl ass file that does not depend on the preview features of any Java SE
release may be loaded regardless of whether the preview features of Java SE
N are enabled.

constant _pool _count

The value of the const ant _pool _count itemisequal to the number of entries
in the const ant _pool table plus one. A const ant _pool index is considered
valid if it is greater than zero and less than const ant _pool _count , with the
exception for constants of type | ong and doubl e noted in §4.4.5.

THE cLAss FILE FORMAT The d assFi | e Sructure

const ant _pool []
The const ant _pool isatable of structures (84.4) representing various string
constants, class and interface names, field names, and other constants that are
referred to within the d assFi | e structure and its substructures. The format of
each const ant _pool table entry isindicated by itsfirst "tag" byte.

Theconst ant _pool tableisindexed from 1to const ant _pool _count - 1.

access_fl ags

The value of the access_f 1 ags item isamask of flags used to denote access
permissions to and properties of this class or interface. The interpretation of
each flag, when set, is specified in Table 4.1-B.

Table 4.1-B. Class access and property modifiers

Flag Name Value Interpretation

ACC_PUBLI C 0x0001 Declared publ i c; may be accessed from outside its
package.

ACC FI NAL 0x0010 Declared f i nal ; no subclasses allowed.

ACC_SUPER 0x0020 Treat superclass methods specially when invoked by
the invokespecial instruction.

ACC | NTERFACE 0x0200 Isan interface, not aclass.

ACC _ABSTRACT 0x0400 Declared abst r act ; must not be instantiated.

ACC_SYNTHETI C 0x1000 Declared synthetic; not present in the source code.

ACC_ANNCTATI ON 0x2000 Declared as an annotation interface.

ACC_ENUM 0x4000 Declared as an enumclass.

ACC_MODULE 0x8000 Isamodule, not aclass or interface.

TheAcc_MOoDULE flag indicatesthat thiscl ass file definesamodule, not aclass
or interface. If the AcC_MODULE flag is set, then special rulesapply tothecl ass
filewhich are given at the end of this section. If the AcC_MoDULE flag is not set,
then therulesimmediately below the current paragraph apply to thecl ass file.

An interface is distinguished by the ACC | NTERFACE flag being set. If the
ACC_| NTERFACE flag is not set, thiscl ass file defines a class, not an interface
or module.

If the ACC_| NTERFACE flag is set, the ACC_ABSTRACT flag must also be set, and
the ACC_FI NAL, ACC_SUPER, ACC_ENUM and ACC_MODULE flags set must not be
set.

41

76

The d assFi | e Sructure THE cLAss FILE FORMAT

If the ACC_I NTERFACE flag is not set, any of the other flagsin Table 4.1-B may
be set except ACC_ANNOTATI ON and ACC_MODULE. However, such acl ass file
must not have both its ACC_FI NAL and ACC_ABSTRACT flags set (JLS §8.1.1.2).

The ACC_SUPER flag indicates which of two alternative semantics is to be
expressed by the invokespecial instruction (8invokespecial) if it appears in
this class or interface. Compilers to the instruction set of the Java Virtual
Machine should set the ACC_SUPER flag. In Java SE 8 and above, the Java
Virtual Machine considers the AcC_SUPER flag to be set in every cl ass file,
regardless of the actual value of the flag in the cl ass file and the version of
thecl ass file.

The ACC_SUPER flag exists for backward compatibility with code compiled by older
compilers for the Java programming language. Prior to JDK 1.0.2, the compiler generated
access_f | ags inwhich the flag now representing ACC_SUPER had no assigned meaning,
and Oracle's Java Virtual Machine implementation ignored the flag if it was set.

TheAcc_SYNTHETI Cflag indicatesthat this class or interface was generated by
acompiler and does not appear in source code.

An annotation interface (JLS §9.6) must have its ACC_ANNOTATI ON flag set. If
the ACC_ANNCTATI ON flag is set, the ACC_I NTERFACE flag must also be set.

The aAcc_ENumflag indicates that this class or its superclass is declared as an
enum class (JLS 88.9).

All bitsof theaccess_f | ags item not assigned in Table 4.1-B arereserved for
future use. They should be set to zero in generated cl ass files and should be
ignored by Java Virtual Machine implementations.

this _class

The value of the this class item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ol ass_i nf o structure (84.4.1) representing the class or interface
defined by thiscl ass file.

super _cl ass

For a class, the value of the super cl ass item either must be zero or
must be a valid index into the constant pool table. If the value of the
super _cl ass item is nonzero, the const ant _pool entry at that index must
be a CONSTANT_dl ass_i nf o structure representing the direct superclass of the
class defined by this cl ass file. Neither the direct superclass nor any of its
superclasses may have the ACC_FI NAL flag setintheaccess_f 1 ags item of its
Cl assFi | e structure.

THE cLAss FILE FORMAT The d assFi | e Sructure

If thevalue of thesuper _cl ass itemiszero, thenthiscl ass filemust represent
the class bj ect , the only class or interface without a direct superclass.

For an interface, the value of the super _cl ass item must always be a valid
index into the const ant _pool table. The const ant _pool entry at that index
must be a CONSTANT_dl ass_i nf o structure representing the class vj ect .

i nterfaces_count

The value of the interfaces_count item gives the number of direct
superinterfaces of this class or interface type.

interfaces[]

Each value in the interfaces array must be a valid index into
the constant_pool table. The constant_pool entry a each vaue
of interfaces[i], where O < i < interfaces_count, must be a
CONSTANT_d ass_i nf o structure representing an interface that is a direct
superinterface of this class or interface type, in the left-to-right order given in
the source for the type.

fiel ds_count

The value of the fiel ds_count item gives the number of field_info
structuresinthefi el ds table. Theti el d_i nf o structures represent all fields,
both class variables and instance variables, declared by this class or interface

type.

fields[]
Each valueinthefi el ds table must be ati el d_i nf o structure (84.5) giving
a complete description of afield in this class or interface. The fi el ds table
includes only those fields that are declared by this class or interface. It does
not include items representing fields that are inherited from superclasses or
superinterfaces.

nmet hods_count

The value of the net hods_count item gives the number of net hod_i nfo
structuresin the met hods table.

net hods[]

Each valueinthenet hods table must beanet hod_i nf o structure (84.6) giving
a complete description of a method in this class or interface. If neither of the
ACC_NATI VE and ACC_ABSTRACT flags are set in the access_f I ags item of a
met hod_i nf o structure, the Java Virtual Machine instructions implementing
the method are also supplied.

41

77

41 The d assFi | e Sructure THE cLAss FILE FORMAT

The net hod_i nfo structures represent all methods declared by this class
or interface type, including instance methods, class methods, instance
initialization methods (82.9.1), and any class or interface initialization method
(82.9.2). The net hods table does not include items representing methods that
are inherited from superclasses or superinterfaces.

attributes_count
Thevalue of theatt ri but es_count item givesthe number of attributesin the
attribut es table of thisclass.

attributes[]
Each value of the attri but es table must be an attri bute_i nf o structure
(84.7).

The attributes defined by this specification as appearing in the attri but es
table of ad assFi | e structure arelisted in Table 4.7-C.

Therules concerning attributes defined to appear inthe at t ri but es table of a
C assFi | e structure are given in 84.7.

The rules concerning non-predefined attributes in the at t ri but es table of a
C assFi | e structure are givenin 84.7.1.

If the AcC_MODULE flag is set in the access_f | ags item, then no other flag in the
access_f |l ags item may be set, and the following rules apply to the rest of the
d assFi | e structure:

* maj or _version, m nor _versi on: = 53.0 (i.e., Java SE 9 and above)
* this_class: nodul e-info
* super_class,interfaces_count,fiel ds_count, net hods_count : zero

e attributes: One Mdule attribute must be present. Except
for Modul e, Modul ePackages, Modul eMai nd ass, I nner Cl asses,
Sour ceFi |l e, Sour ceDebugExt ensi on, Runti nmeVisi bl eAnnot ati ons, and
Runt i mel nvi si bl eAnnot at i ons, none of the pre-defined attributes (84.7) may

appear.

78

THE cLASS FILE FORMAT Names

4.2 Names

4.2.1 Binary Classand Interface Names

Class and interface names that appear in cl ass file structures are aways
represented in a fully quaified form known as binary names (JLS §13.1).
Such names are always represented as CONSTANT_Ut f 8_i nf o structures (84.4.7)
and thus may be drawn, where not further constrained, from the entire
Unicode codespace. Class and interface names are referenced from those
CONSTANT_NanmeAndType_i nf o structures (84.4.6) which have such names as part
of their descriptor (84.3), and from all CONSTANT_d ass_i nf o structures (84.4.1).

For historical reasons, the syntax of binary names that appear in cl ass file
structures differsfrom the syntax of binary names documented in JLS 813.1. Inthis
internal form, the ASCII periods (.) that normally separate the identifiers which
make up the binary name are replaced by ASCII forward slashes (/). Theidentifiers
themselves must be unqualified names (84.2.2).

For example, the normal binary name of class Thread is j ava. | ang. Thread. In the
internal form used in descriptorsin thecl ass file format, areference to the name of class
Thr ead is implemented using a CONSTANT_Ut f 8_i nf o structure representing the string
javall ang/ Thr ead.

4.2.2 Unqualified Names

Names of methods, fields, local variables, and formal parameters are stored as
unqualified names. An unqualified name must contain at least one Unicode code
point and must not contain any of the ASCII characters. ; [/ (thatis, period or
semicolon or left square bracket or forward slash).

Method names are further constrained so that, with the exception of the special
method names <i ni t> and <clinit> (82.9), they must not contain the ASCII
characters < or > (that is, left angle bracket or right angle bracket).

Note that no method invocation instruction may reference <clinit>, and only the
invokespecial instruction (8invokespecial) may reference <i ni t >.

4.2.3 Module and Package Names

Module names referenced from the Mdule attribute are stored in
CONSTANT _Mbdul e_info structures in the constant pool (84.4.11). A
CONSTANT_Mbdul e_i nf o Structure wraps a CONSTANT Ut f 8_i nf o structure that
denotes the module name. Module names are not encoded in "internal form" like

4.2

79

4.3

80

Descriptors THE cLASS FILE FORMAT

classand interface names, that is, the ASCII periods(.) that separate theidentifiers
in amodule name are not replaced by ASCII forward slashes (/).

Module names may be drawn from the entire Unicode codespace, subject to the
following constraints:

» A module name must not contain any code point intherange'\ u0000'to "\ u001F'
inclusive.

» The ASCII backslash (\) is reserved for use as an escape character in module
names. It must not appear in a module name unlessiit is followed by an ASCII
backslash, an ASCII colon (:), or an ASCII at-sign (@. The ASCII character
sequence\\ may be used to encode a backslash in a module name.

» The ASCII colon (:) and at-sign (@ arereserved for future use in module names.
They must not appear in module names unless they are escaped. The ASCII
character sequences\ : and\ @may be used to encode a colon and an at-signin
amodule name.

Package names referenced from the Module attribute are stored in
CONSTANT_Package_i nfo structures in the constant pool (84.4.12). A
CONSTANT_Package_i nf o structure wraps a CONSTANT_Ut f 8_i nf o structure that
represents a package name encoded in internal form.

4.3 Descriptors

A descriptor isastring representing the type of afield or method. Descriptors are
representedinthecl ass fileformat using modified UTF-8 strings (84.4.7) and thus
may be drawn, where not further constrained, from the entire Unicode codespace.

4.3.1 Grammar Notation

Descriptorsare specified using agrammar. Thegrammar isaset of productionsthat
describe how sequences of characters can form syntactically correct descriptors of
various kinds. Termina symbols of the grammar are shown infi xed wi dt h font,
and should be interpreted as ASCII characters. Nonterminal symbols are shown
in italic type. The definition of a nonterminal is introduced by the name of the
nonterminal being defined, followed by acolon. Oneor more alternative definitions
for the nonterminal then follow on succeeding lines.

The syntax {x} on the right-hand side of a production denotes zero or more
occurrences of x.

THE cLAss FILE FORMAT Descriptors

The phrase (one of) on the right-hand side of a production signifiesthat each of the
terminal symbols on the following line or lines is an alternative definition.

4.3.2 Field Descriptors

A field descriptor representsthe type of afield, parameter, local variable, or value.

FieldDescriptor:
FieldType

FieldType:
BaseType
ClassType
ArrayType

BaseType:
(one of)
BCDFI JSZ

ClassType:
L ClassName;

ArrayType:
[ComponentType

ComponentType:
FieldType

ClassName represents a binary class or interface name encoded in internal form
(84.2.2).

A field descriptor mentions a class or interface name if the name appears
as a ClassName in the descriptor. This includes a ClassName nested in the
ComponentType of an ArrayType.

The interpretation of field descriptors astypesis shown in Table 4.3-A. See §2.2,
§2.3, and 8§2.4 for the meaning of these types.

A field descriptor representing an array type is valid only if it represents a type
with 255 or fewer dimensions.

4.3

81

4.3

82

Descriptors THE cLASS FILE FORMAT

Table4.3-A. Interpretation of field descriptors

FieldTypeterm Type

B byte

C char

D doubl e

F fl oat

I i nt

J | ong

L ClassName; Named class or interface type
S short

z bool ean

[ComponentType Array of given component type

Thefield descriptor of an instance variable of typei nt issimply I .

Thefield descriptor of aninstancevariable of typeQbj ect isLj ava/ | ang/ Qbj ect ; . Note
that the internal form of the binary name for class Obj ect isused.

The field descriptor of an instance variable of the multidimensional array type doubl e[]
(101 is[[[D.

4.3.3 Method Descriptors

A method descriptor contains zero or more parameter descriptors, representing the
types of parametersthat the method takes, and areturn descriptor, representing the
type of the value (if any) that the method returns.

MethodDescriptor:
({ParameterDescriptor}) ReturnDescriptor

Parameter Descriptor:
FieldType

ReturnDescriptor:
FieldType
VoidDescriptor

THE cLAss FILE FORMAT The Constant Pool 4.4

VoidDescriptor:
Y

The character v indicates that the method returns no value (its result isvoi d).

A method descriptor mentions a class or interface name if the name appears as a
ClassName in the FieldType of a parameter descriptor or return descriptor.

The method descriptor for the method:

Object m(int i, double d, Thread t) {...}
is:

(1 DLj ava/ | ang/ Thread;) Lj ava/ | ang/ Qbj ect ;

Note that the internal forms of the binary names of Thr ead and Obj ect are used.

A method descriptor is valid only if it represents method parameters with a total
length of 255 or less, where that length includes the contribution for t hi s in the
case of instance or interface method invocations. The total length is calculated by
summing the contributions of the individual parameters, where a parameter of type
| ong Or doubl e contributes two units to the length and a parameter of any other
type contributes one unit.

A method descriptor is the same whether the method it describesis a class method
or an instance method. Although an instance method is passed t hi s, a reference
to the object on which the method is being invoked, in addition to its intended
arguments, that fact is not reflected in the method descriptor. Thereferencetot hi s
ispassed implicitly by the Java Virtual Machineinstructionswhich invokeinstance
methods (82.6.1, §4.11).

4.4 The Constant Pool

Java Virtual Machine instructions do not rely on the run-time layout of classes,
interfaces, class instances, or arrays. Instead, instructions refer to symbolic
information in the const ant _pool table.

All const ant _pool table entries have the following general format:
cp_info {

ul tag;
ul info[];

83

4.4

The Constant Pool THE cLAss FILE FORMAT

Each entry in the const ant _pool table must begin with a 1-byte tag indicating
the kind of constant denoted by the entry. There are 17 kinds of constant, listed
in Table 4.4-A with their corresponding tags, and ordered by their section number
in this chapter. Each tag byte must be followed by two or more bytes giving
information about the specific constant. The format of the additional information
depends on the tag byte, that is, the content of thei nf o array varies with the value
of t ag.

Table4.4-A. Constant pool tags (by section)

Constant Kind Tag Section
CONSTANT_Cl ass 7 84.4.1
CONSTANT_Fi el dr ef 9 84.4.2
CONSTANT_Met hodr ef 10 84.4.2
CONSTANT _I nt er f aceMet hodr ef 11 84.4.2

8§4.4.3
CONSTANT_I nt eger 84.4.4

CONSTANT_Stri ng 8
3

CONSTANT_FI oat 4 84.4.4
5
6

CONSTANT_Long 84.4.5
CONSTANT_Doubl e §4.45
CONSTANT_NaneAndType 12 84.4.6
CONSTANT_Ut f 8 1 §4.4.7
CONSTANT_Met hodHandl e 15 84.4.8
CONSTANT_Met hodType 16 84.4.9
CONSTANT_Dynani ¢ 17 §4.4.10
CONSTANT _| nvokeDynani ¢ 18 84.4.10
CONSTANT_Mbddul e 19 84411
CONSTANT_Package 20 84.4.12

Inacl ass file whose version number isv, each entry in the const ant _pool table
must have atag that wasfirst defined in version v or earlier of thecl ass fileformat
(84.1). That is, each entry must denote a kind of constant that is approved for use
inthecl ass file. Table 4.4-B lists each tag with the first version of thecl ass file
format in which it was defined. Also shown isthe version of the Java SE Platform
which introduced that version of thecl ass file format.

THE cLAss FILE FORMAT The Constant Pool

Table 4.4-B. Constant pool tags (by tag)

Constant Kind Tag cl ass fileformat Java SE
CONSTANT_Ut f 8 1 453 1.0.2
CONSTANT_I nt eger 3 45.3 102
CONSTANT_Fl oat 4 453 1.0.2
CONSTANT_Long 5 453 1.02
CONSTANT_Doubl e 6 453 1.0.2
CONSTANT_Cl ass 7 45.3 102
CONSTANT_St ri ng 8 45.3 102
CONSTANT_Fi el dr ef 9 453 102
CONSTANT_Met hodr ef 10 45.3 102
CONSTANT _I nt er f aceMet hodr ef 11 453 1.0.2
CONSTANT_NaneAndType 12 453 1.0.2
CONSTANT_Met hodHandl e 15 51.0 7
CONSTANT_Met hodType 16 51.0 7
CONSTANT_Dynani ¢ 17 55.0 11
CONSTANT_I nvokeDynarmi ¢ 18 51.0 7
CONSTANT_Modul e 19 53.0 9
CONSTANT_Package 20 53.0 9

Some entries in the const ant _pool table are loadable because they represent
entitiesthat can be pushed onto the stack at run timeto enable further computation.
Inacl ass file whose version number isv, an entry in the const ant _pool tableis
loadableif it has atag that wasfirst deemed to be loadable in version v or earlier of
thecl ass fileformat. Table 4.4-C lists each tag with thefirst version of thecl ass
fileformat in which it was deemed to be loadable. Also shown isthe version of the
Java SE Platform which introduced that version of the cl ass file format.

In every case except CONSTANT_dl ass, atag was first deemed to be loadable in the same
version of thecl ass file format that first defined the tag.

4.4

85

4.4 The Constant Pool THE cLAss FILE FORMAT

Table 4.4-C. L oadable constant pool tags

Constant Kind Tag cl ass fileformat Java SE
CONSTANT_I nt eger 3 45.3 102
CONSTANT_FI oat 4 45.3 102
CONSTANT_Long 5 453 1.02
CONSTANT_Doubl e 6 453 1.0.2
CONSTANT_dl ass 7 49.0 5.0
CONSTANT_Stri ng 8 453 1.0.2
CONSTANT_Met hodHandl e 15 51.0 7
CONSTANT_Met hodType 16 51.0 7
CONSTANT_Dynani ¢ 17 55.0 11

441 The CONSTANT d ass_i nfo Structure
The CONSTANT_d ass_i nf o structure is used to represent a class or an interface:

CONSTANT_Cd ass_info {
ul tag;
u2 namre_i ndex;

}

The items of the CONSTANT _Cl ass_i nf o structure are as follows:

tag
Thet ag item has the value CONSTANT_d ass (7).

nanme_i ndex

The vaue of the nane_index item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing a valid binary class or
interface name encoded in interna form (84.2.1).

Because arrays are objects, the opcodes anewarray and multianewarray - but
not the opcode new - can reference array "classes' via CONSTANT_d ass_i nfo
structuresintheconst ant _pool table. For such array classes, the name of the class
is the descriptor of the array type (84.3.2).

For example, the class name representing the two-dimensional array typei nt [1[1 is[[!,
while the class name representing the type Thr ead[] iS[Lj ava/ | ang/ Thr ead; .

86

THE cLAss FILE FORMAT The Constant Pool

An array type descriptor isvalid only if it represents 255 or fewer dimensions.

4.4.2 The CONSTANT Fi el dref i nf o, CONSTANT Met hodr ef _i nf o, and
CONSTANT _I nt er f aceMet hodr ef _i nf o Structures

Fields, methods, and interface methods are represented by similar structures:

CONSTANT_Fi el dref _info {
ul tag;
u2 cl ass_i ndex;
u2 nane_and_t ype_i ndex;

}
CONSTANT_Met hodref _info {
ul tag;
u2 cl ass_i ndex;
u2 nane_and_t ype_i ndex;
}
CONSTANT _I nterfaceMet hodref _info {
ul tag;
u2 cl ass_i ndex;
u2 nane_and_t ype_i ndex;
}

The items of these structures are as follows:

tag

The tag item of a CONSTANT Fiel dref_info structure has the value
CONSTANT_Fi el dref (9).

The tag item of a CONSTANT Met hodref info structure has the vaue
CONSTANT_Met hodr ef (10).

The tag item of a CONSTANT I nt er f aceMet hodr ef _i nf o structure has the
value CONSTANT I nt er f aceMet hodr ef (11).

cl ass_i ndex

The value of the class_index item must be a vaid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_d ass_i nf o structure (84.4.1) representing aclass or interface type
that has the field or method as a member.

IN aCONSTANT_Fi el dr ef _i nf o structure, thecl ass_i ndex item may be either
aclasstype or an interface type.

In a CONSTANT_Met hodr ef _i nf o structure, thecl ass_i ndex item should be a
classtype, not an interface type.

4.4

87

4.4

88

The Constant Pool THE cLAss FILE FORMAT

INn a CONSTANT | nt er f aceMet hodr ef _i nf o Structure, the cl ass_i ndex item
should be an interface type, not a class type.

name_and_t ype_i ndex
The value of the name_and_type_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a

CONSTANT_NameAndType_i nf o structure (84.4.6). This const ant _pool entry
indicates the name and descriptor of the field or method.

In a CONSTANT_Fi el dref _i nf o structure, the indicated descriptor must be a
field descriptor (84.3.2). Otherwise, the indicated descriptor must be amethod
descriptor (84.3.3).

If the name of the method in a CONSTANT_Met hodr ef _i nf o structure begins
with a '<' (\uo03c'), then the name must be the specia name <init>,
representing an instanceinitialization method (82.9.1). The return type of such
amethod must bevoi d.

4.4.3 The CONSTANT String_i nfo Structure

The CONSTANT_St ri ng_i nf o structure is used to represent constant objects of the
typestring:

CONSTANT_String_info {
ul tag;
u2 string_i ndex;

}

The items of the CONSTANT_St ri ng_i nf o structure are as follows:

tag
Thet ag item has the value CONSTANT_St ri ng (8).

string_i ndex
The value of the string_index item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a

CONSTANT_Ut f 8_i nf o structure (84.4.7) representing the sequence of Unicode
code points to which the st ri ng object isto beinitialized.

4.4.4 The CONSTANT | nteger _i nf o and CONSTANT_Fl oat _i nf o Structures

The CONSTANT_I nt eger _i nf o and CONSTANT_Fl oat _i nf o Structures represent 4-
byte numeric (i nt and f | oat) constants:

THE cLAss FILE FORMAT The Constant Pool

CONSTANT_I nteger_info {

ul tag;
ud bytes;
}
CONSTANT_Fl oat _info {
ul tag;
ud bytes;
}

The items of these structures are as follows:

tag

The tag item of the CONSTANT Integer_info structure has the value
CONSTANT_I nt eger (3).

The tag item of the CONSTANT Float_info structure has the vaue
CONSTANT_Fl oat (4).

byt es

Thebyt es item of the CONSTANT _I nt eger _i nf o structure representsthe value
of thei nt constant. The bytes of the value are stored in big-endian (high byte
first) order.

Thebyt es item of the CONSTANT_FI oat _i nf o structure representsthe val ue of
the f I oat constant in IEEE 754 binary32 floating-point format (82.3.2). The
bytes of the item are stored in big-endian (high byte first) order.

The value represented by the CONSTANT_FI oat _i nf o structure is determined
asfollows. The bytes of the value are first converted into ani nt constant bits.
Then:

* If bitsis0x7f 800000, thef | oat value will be positive infinity.
* |f bitsisoxf f 800000, thef | oat value will be negative infinity.

* If bits is in the range 0x7f 800001 through ox7fffffff or in the range
oxf f 800001 through oxffffffff,thefl oat valuewill be NaN.

* Inall other cases, let s, e, and mbe three values that might be computed from
bits:

int s = ((bits > 31) ==0) ?1: -1;
int e = ((bits >> 23) & Oxff);
int m= (e ==0) ?

(bits & OX7FFfff) << 1 :
(bits & Ox7fffff) | 0x800000;

4.4

89

4.4

90

The Constant Pool THE cLAss FILE FORMAT

Then thefl oat value equals the result of the mathematical expressions - m
28- 150.

445 The CONSTANT Long_i nf o and CONSTANT Doubl e_i nf o Structures

The CONSTANT _Long_i nf o and CONSTANT_Doubl e_i nf o represent 8-byte numeric
(1 ong and doubl e) constants:

CONSTANT_Long_i nfo {
ul tag;
ud4 hi gh_bytes;
ud | ow byt es;

}

CONSTANT_Doubl e_i nfo {
ul tag;
ud4 hi gh_bytes;
ud | ow byt es;

}

All 8-byte constants take up two entriesin the const ant _pool table of thecl ass
file. If a CONSTANT_Long_i nf o OF CONSTANT _Doubl e_i nf o structure is the entry
a index nin the const ant _pool table, then the next usable entry in the table is
located at index n+2. Theconst ant _pool index n+1 must bevalid but isconsidered
unusable.

In retrospect, making 8-byte constants take two constant pool entries was a poor choice.
The items of these structures are as follows:

t ag
The tag item of the CONSTANT Long info structure has the value
CONSTANT_Long (5).

The tag item of the CONSTANT Doubl e_info structure has the value
CONSTANT_Doubl e (6).

hi gh_bytes, |ow_ bytes

The unsigned hi gh_byt es and | ow_byt es items of the CONSTANT _Long_i nf o
structure together represent the value of the | ong constant

((long) high_bytes << 32) + |ow bytes

wherethe bytes of each of hi gh_byt es and | ow_byt es are stored in big-endian
(high bytefirst) order.

THE cLAss FILE FORMAT The Constant Pool

The high_bytes and | ow bytes items of the CONSTANT Double_info
structure together represent the doubl e value in IEEE 754 binary64 floating-
point format (82.3.2). The bytes of each item are stored in big-endian (high
byte first) order.

The value represented by the CONSTANT_Doubl e_i nf o structure is determined
asfollows. Thehi gh_byt es and | ow byt es items are converted into thel ong
constant bits, which isequal to

((long) high_bytes << 32) + |ow_bytes
Then:
* If bitsis0ox7f f 0000000000000L, the doubl e value will be positive infinity.
o If bitsisoxf f f 0000000000000L, the doubl e value will be negative infinity.

* If bitsisintherangeox7f f 0000000000001L through Ox7f ffffffffffffffL
or in the range 0xf f f 0000000000001L through oxffffffffffifffffL, the
double value will be NaN.

* Inall other cases, let s, e, and mbe three values that might be computed from
bits:

int s ((bits >>63) ==0) ?2 1: -1;
int e (int)((bits >> 52) & Ox7fflL);
long m= (e == 0) ?
(bits & OxfffffffffffffL) << 1 :
(bits & OxfffffffffffffL) | 0x10000000000000L;

Then the floating-point value equals the doubl e value of the mathematical
expressions - m . 281075,

446 The CONSTANT NarmeAndType_i nf o Structure

The CONSTANT_NaneAndType_i nf o structureisused to represent afield or method,
without indicating which class or interface type it belongs to:

CONSTANT_NameAndType_i nfo {
ul tag;
u2 nane_i ndex;
u2 descriptor_index;

}

The items of the CONSTANT NarmeAndType_i nf o structure are as follows:

t ag

Thet ag item has the value CONSTANT_NaneAndType (12).

4.4

91

4.4

92

The Constant Pool THE cLAss FILE FORMAT

name_i ndex

The vaue of the nane_index item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing either avalid unqualified
name denoting afield or method (84.2.2), or the special method name <i ni t >
(82.9.2).

descri pt or _i ndex

The value of the descri ptor_i ndex item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing a valid field descriptor
or method descriptor (84.3.2, §4.3.3).

447 The CONSTANT Ut f8_ i nfo Structure
The CONSTANT_Ut f 8_i nf o structure is used to represent constant string values:

CONSTANT_Utf8 info {
ul tag;
u2 | ength;
ul bytes[length];

The items of the CONSTANT Ut f 8_i nf o structure are as follows:

t ag
Thet ag item has the value CONSTANT_Ut 8 (1).
I ength
Thevalue of thel engt h item givesthe number of bytesinthebyt es array (not
the length of the resulting string).
byt es[]
Thebyt es array contains the bytes of the string.

No byte may have the value (byt e) 0.
No byte may liein therange (byt e) 0xf 0 t0 (byt e) Oxf f .

String content is encoded in modified UTF-8. Modified UTF-8 strings are encoded
so that code point sequences that contain only non-null ASCII characters can be
represented using only 1 byte per code point, but al code points in the Unicode
codespace can berepresented. Modified UTF-8 stringsare not null-terminated. The
encoding is asfollows:

THE cLAss FILE FORMAT The Constant Pool

» Code pointsin the range "\ u0001' to '\ u0o07F' are represented by a single byte:

0 bits 6-0

The 7 bits of data in the byte give the value of the code point represented.

The null code point (\ u0000") and code points in the range "\ u0080' to "\ u07FF'
are represented by a pair of bytesx andy :

X: 1 1 0 bits 10-6

y: 1 0 bits 5-0

The two bytes represent the code point with the value:

((x & Ox1f) << 6) + (y & Ox3f)

Code points in the range "\ u0800' to "\ uFFFF' are represented by 3 bytes x, vy,
andz :

X: 1 1 1 0 bits 15-12
y: 1 0 bits 11-6
Z: 1 0 bits 5-0

The three bytes represent the code point with the value:

((x & Oxf) << 12) + ((y & Ox3f) << 6) + (z & 0Ox3f)

Characters with code points above U+FFFF (so-called supplementary
characters) are represented by separately encoding the two surrogate code units
of their UTF-16 representation. Each of the surrogate code unitsisrepresented by

4.4

93

4.4

94

The Constant Pool THE cLAss FILE FORMAT

three bytes. This means supplementary characters are represented by six bytes,
u,v,w,x,y,andz :

u: 1 1 1 0 1 1 0 1
V! 1 0 1 0 (bits 20-16)-1

W. 1 0 bits 15-10

X: 1 1 1 0 1 1 0 1
y: 1 0 1 1 bits 9-6

z: 1 0 bits 5-0

The six bytes represent the code point with the value:

0x10000 + ((v & OxOf) << 16) + ((w & Ox3f) << 10) +
((y & Ox0f) << 6) + (z & 0Ox3f)

The bytes of multibyte characters are stored in the ¢l ass file in big-endian (high
byte first) order.

There are two differences between this format and the "standard" UTF-8 format.
First, the null character (char) 0 isencoded using the 2-byte format rather than the
1-byte format, so that modified UTF-8 strings never have embedded nulls. Second,
only the 1-byte, 2-byte, and 3-byte formats of standard UTF-8 are used. The Java
Virtual Machine does not recognize the four-byte format of standard UTF-8; it uses
its own two-times-three-byte format instead.

For more information regarding the standard UTF-8 format, see Section 3.9 Unicode
Encoding Forms of The Unicode Sandard, Version 15.1.0.

4.4.8 The CONSTANT Met hodHandl e_i nf o Structure

The CONSTANT_Met hodHandl e_i nf o structureisused to represent amethod handle:

CONSTANT_Met hodHandl e_i nfo {
ul tag;
ul reference ki nd;
u2 reference_index;

}
The items of the CONSTANT_Met hodHandl e_i nf o structure are the following:

t ag
Thet ag item has the value CONSTANT_Met hodHandl e (15).

THE cLAss FILE FORMAT The Constant Pool

reference_kind
The value of the reference_ki nd item must be in the range 1 to 9. The
value denotes the kind of this method handle, which characterizesits bytecode
behavior (85.4.3.5).

reference_i ndex

The value of the reference_index item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be as
follows:

If the value of the reference_kind item is 1 (REF_getField), 2
(REF_get Static), 3 (REF_putField), or 4 (REF_put Static), then the
constant _pool entry at that index must be a CONSTANT_Fi el dref _info
structure (84.4.2) representing a field for which a method handle is to be
Created.

If the value of the ref erence_ki nd item is 5 (REF_i nvokeVirtual) or 8
(REF_new nvokeSpeci al), thentheconst ant _pool entry at that index must
be a CONSTANT_Met hodr ef _i nf o structure (84.4.2) representing a class's
method or constructor (82.9.1) for which a method handle is to be created.

If the value of the reference_kind item is 6 (REF_invokeStatic)
or 7 (REF_invokeSpecial), then if the class file version number
is less than 52.0, the constant _pool entry at that index must be
a CONSTANT_Met hodref _i nfo structure representing a classs method
for which a method handle is to be created; if the class file
version number is 52.0 or above, the constant_pool entry at that
index must be either a CONSTANT Met hodref info structure or a
CONSTANT_| nt er f aceMet hodref _i nfo structure (84.4.2) representing a
class's or interface's method for which a method handle is to be created.

If the value of the reference_kind item is 9 (REF_i nvokel nterf ace),
then the constant_pool entry a that index must be a
CONSTANT_| nt er f aceMet hodr ef _i nf o structure representing an interface's
method for which a method handle isto be created.

If the value of the reference_kind item is 5 (REF_i nvokeVirtual), 6
(REF_i nvokeSt ati ¢), 7 (REF_i nvokeSpeci al), or 9 (REF_i nvokel nt er f ace),
the name of the method represented by a CONSTANT_Met hodr ef _i nf o structure
Or a CONSTANT | nt er f aceMet hodr ef _i nf o Structure must not be <i ni t > or
<clinit>.

If thevalueis8 (REF_new nvokeSpeci al), the name of the method represented
by a CONSTANT_Met hodr ef _i nf o structure must be <i ni t >.

4.4

95

4.4

96

The Constant Pool THE cLAss FILE FORMAT

4.49 The CONSTANT_Met hodType_i nf o Structure
The CONSTANT_Met hodType_i nf o structure is used to represent a method type:

CONSTANT_Met hodType_i nfo {
ul tag;
u2 descriptor_index;

}

The items of the CONSTANT _Met hodType_i nf o structure are as follows;

tag
Thet ag item has the value CONSTANT_Met hod Ty pe (16).

descri pt or _i ndex

The value of the descri ptor_i ndex item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f8_i nfo structure (84.4.7) representing a method descriptor
(84.3.3).

4410 The CONSTANT Dynami c_i nf o and CONSTANT _| nvokeDynami c_i nfo
Structures

Most structures in the constant _pool table represent entities directly, by
combining names, descriptors, and values recorded statically in the table.
In contrast, the CONSTANT Dynami ¢_i nfo and CONSTANT | nvokeDynani c_i nfo
structures represent entities indirectly, by pointing to code which computes an
entity dynamically. The code, called a bootstrap method, is invoked by the Java
Virtua Machine during resolution of symbolic references derived from these
structures(85.1, 85.4.3.6). Each structure specifiesabootstrap method aswell asan
auxiliary name and type that characterize the entity to be computed. In more detail:

» The CONSTANT Dynani c_i nfo structure is used to represent a dynamically-
computed constant, an arbitrary value that is produced by invocation of a
bootstrap method in the course of an Idc instruction (8ldc), among others. The
auxiliary type specified by the structure constrains the type of the dynamically-
computed constant.

» The CONSTANT_InvokeDynamic_info structure is used to represent a
dynamically-computed call site, an instance of j ava. |l ang. i nvoke. Cal | Site
that is produced by invocation of a bootstrap method in the course of an
invokedynamic instruction (8invokedynamic). The auxiliary type specified by the
structure constrains the method type of the dynamically-computed call site.

THE cLAss FILE FORMAT The Constant Pool

CONSTANT_Dynami c_i nfo {
ul tag;
u2 bootstrap_nethod_attr_index;
u2 nanme_and_t ype_i ndex;

}

CONSTANT_I nvokeDynami c_i nfo {
ul tag;
u2 bootstrap_nethod_attr_index;
u2 name_and_t ype_i ndex;

}

The items of these structures are as follows:

t ag

The tag item of a CONSTANT Dynamic_info Structure has the vaue
CONSTANT_Dynani ¢ (17).

The tag item of a CONSTANT | nvokeDynani c_i nf o structure has the value
CONSTANT _I nvokeDynami ¢ (18).

boot strap_net hod_attr _i ndex

The value of the boot st rap_net hod_attr _i ndex item must be a valid index
into the boot st r ap_net hods array of the bootstrap method table of thiscl ass
file (84.7.23).

CONSTANT_Dynani c_i nf o structures are unique in that they are syntactically allowed to
refer to themselves via the bootstrap method table. Rather than mandating that such cycles
are detected when classes are loaded (a potentially expensive check), we permit cycles
initially but mandate a failure at resolution (85.4.3.6).

nanme_and_t ype_i ndex

The value of the name_and_type_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_NanmeAndType_i nf o structure (84.4.6). This const ant _pool entry
indicates a name and descriptor.

INaCONSTANT _Dynani c_i nf o structure, theindicated descriptor must beafield
descriptor (84.3.2).

In a CONSTANT_I nvokeDynari ¢_i nf o structure, the indicated descriptor must
be a method descriptor (84.3.3).

4411 The CONSTANT Mbdul e_i nf o Structure

The CONSTANT_Modul e_i nf o structure is used to represent a module;

4.4

98

The Constant Pool THE cLAss FILE FORMAT

CONSTANT_Mbddul e_i nfo {
ul tag;
u2 nane_i ndex;

}

The items of the CONSTANT _Modul e_i nf o structure are as follows:

t ag
Thet ag item has the value CONSTANT_Mbdul e (19).

name_i ndex

The vaue of the nane_index item must be a vaid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing a valid module name
(84.2.3).

A CONSTANT_Modul e_i nf o structure is permitted only in the constant pool of
acl ass file that declares a module, that is, a d assFi | e structure where the
access_flags item has the Acc_MoDULE flag set. In al other cl ass files, a
CONSTANT_Modul e_i nf o structureisillegal.

4.4.12 The CONSTANT Package_i nf o Structure

The CONSTANT_Package_i nf o structureis used to represent a package exported or
opened by amodule:

CONSTANT_Package_i nfo {
ul tag;
u2 nane_i ndex;

}

The items of the CONSTANT _Package_i nf o structure are as follows:

t ag
Thet ag item has the value CONSTANT_Package (20).

name_i ndex

The value of the nane_index item must be a valid index into the
constant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing a valid package name
encoded in internal form (84.2.3).

A CONSTANT_Package_i nf o structure is permitted only in the constant pool of
a cl ass file that declares a module, that is, a d assFi |l e structure where the

THE cLAss FILE FORMAT Fields 4.5

access_flags item has the AcC_ MDULE flag set. In all other cl ass files, a
CONSTANT_Package_i nf o structureisillegal.

4.5 Fields

Each field is described by afi el d_i nf o structure.
No two fieldsin onecl ass file may have the same name and descriptor (84.3.2).

The structure has the following format:

field_info {
u2 access_fl ags;
u2 nane_i ndex;
u2 descri pt or _i ndex;
u2 attri butes_count;

attribute_info attributes[attributes_count];

}

Theitemsof thefi el d_i nf o structure are as follows:

access_fl ags

The value of the access_f 1 ags item isamask of flags used to denote access
permission to and properties of thisfield. Theinterpretation of each flag, when
set, is specified in Table 4.5-A.

99

4.5 Fields THE cLAss FILE FORMAT

Table 4.5-A. Field access and property flags

Flag Name Value Interpretation

ACC _PUBLI C 0x0001 Declared publ i c; may be accessed from outside its
package.

ACC_PRI VATE 0x0002 Declared private; accessible only within the
defining class and other classes bel onging to the same
nest (85.4.4).

ACC_PROTECTED 0x0004 Declared protected; may be accessed within
subclasses.

ACC STATI C 0x0008 Declared st atii c.

ACC_FI NAL 0x0010 Declared fi nal ; never directly assigned to after
object construction (JLS §17.5).

ACC VOLATI LE 0x0040 Declared vol at i | e; cannot be cached.

ACC_TRANSI ENT 0x0080 Declared transi ent; not written or read by a
persistent object manager.

ACC_SYNTHETI C 0x1000 Declared synthetic; not present in the source code.

ACC_ENUM 0x4000 Declared as an element of an enumclass.

Fields of classes may set any of the flags in Table 4.5-A. However, each
field of a class may have at most one of its ACC_PUBLI C, ACC_PRI VATE, and
ACC_PROTECTED flags set (JLS 88.3.1), and must not have both its ACC_FI NAL
and AcC_VOLATI LE flags set (LS §8.3.1.4).

Fields of interfaces must have their ACC_PUBLI C, ACC_STATI C, and ACC_FI NAL
flags set; they may have their ACC_SYNTHETI C flag set and must not have any
of the other flagsin Table 4.5-A set (JLS §9.3).

The acc_SYNTHETI Cflag indicates that this field was generated by a compiler
and does not appear in source code.

The Acc_ENumflag indicates that this field is used to hold an element of an
enum class (JLS 8§8.9).

All bitsof theaccess_f | ags item not assigned in Table 4.5-A arereserved for
future use. They should be set to zero in generated cl ass files and should be
ignored by Java Virtual Machine implementations.

name_i ndex

The vaue of the nane_index item must be a vaid index into the
const ant _pool table. The constant _pool entry at that index must be a

100

THE cLAss FILE FORMAT Methods 4.6

CONSTANT_Ut f 8_i nf o structure (84.4.7) which represents a valid unqualified
name denoting afield (84.2.2).

descri pt or _i ndex

The value of the descriptor_i ndex item must be a valid index into the
constant _pool table. The constant _pool entry at that index must be
a CONSTANT_Ut f8_i nfo structure (84.4.7) which represents a valid field
descriptor (84.3.2).

attributes_count

The value of the at t ri but es_count item indicates the number of additiona
attributes of thisfield.

attributes[]

Each value of the attri but es table must be an attri bute_i nfo Structure
(84.7).

A field can have any number of optional attributes associated with it.

The attributes defined by this specification as appearing in the attri but es
tableof afi el d_i nf o structure arelisted in Table 4.7-C.

The rules concerning attributes defined to appear inthe at t ri but es table of a
fiel d_i nf o structure are givenin 84.7.

The rules concerning non-predefined attributes in the at t ri but es table of a
fiel d_i nf o structure are given in 84.7.1.

4.6 Methods

Each method, including each instance initialization method (82.9.1) and the class
or interfaceinitialization method (82.9.2), isdescribed by anet hod_i nf o structure.

No two methodsin onecl ass filemay have the same name and descriptor (84.3.3).
The structure has the following format:

net hod_i nfo {

u2 access_fl ags;

u2 nanme_i ndex;

u2 descri pt or _i ndex;
u2 attributes_count;

attribute_info attributes[attributes_count];

}

The items of the net hod_i nf o structure are as follows:

101

4.6

102

Methods THE cLASS FILE FORMAT

access_fl ags

The value of the access_f 1 ags item isamask of flags used to denote access
permission to and properties of this method. The interpretation of each flag,
when set, is specified in Table 4.6-A.

Table 4.6-A. Method access and property flags

Flag Name Value Interpretation

ACC _PUBLI C 0x0001 Declared publ i c; may be accessed from outside its
package.

ACC_PRI VATE 0x0002 Declared private; accessible only within the
defining class and other classes belonging to the same
nest (85.4.4).

ACC_PROTECTED 0x0004 Declared protected; may be accessed within
subclasses.

ACC STATI C 0x0008 Declared st ati c.

ACC_FI NAL 0x0010 Declared f i nal ; must not be overridden (85.4.5).

ACC_SYNCHRONI ZED 0x0020 Declared synchr oni zed; invocation is wrapped
by a monitor use.

ACC_BRI DGE 0x0040 A bridge method, generated by the compiler.

ACC_VARARGS 0x0080 Declared with variable number of arguments.

ACC_NATI VE 0x0100 Declared nat i ve; implemented in alanguage other
than the Java programming language.

ACC_ABSTRACT 0x0400 Declared abstract; no implementation is
provided.

ACC_STRI CT 0x0800 In acl ass file whose major version number is at

least 46 and at most 60: Declared st ri ct f p.

ACC_SYNTHETI C 0x1000 Declared synthetic; not present in the source code.

The value 0x0800 is interpreted as the ACC_STRI CT flag only in acl ass file
whose major version number is at least 46 and at most 60. For methodsin such
acl ass file, the rules below determine whether the ACC_STRI CT flag may be
set in combination with other flags. (Setting the ACC_STRI CT flag constrained
a method's floating-point instructions in Java SE 1.2 through 16 (82.8).) For
methodsin acl ass file whose mgjor version number islessthan 46 or greater
than 60, the value 0x0800 is not interpreted as the ACC_STRI CT flag, but rather
isunassigned; it isnot meaningful to "set the AcC_STRI CT flag" insuch acl ass
file.

THE cLAss FILE FORMAT Methods 4.6

Methods of classes may have any of the flags in Table 4.6-A set. However,
each method of aclass may have at most one of itSACC_PUBLI C, ACC_PRI VATE,
and ACC_PROTECTED flags set (JLS §8.4.3).

Methods of interfaces may have any of the flags in Table 4.6-A set except
ACC_PROTECTED, ACC_FI NAL, ACC_SYNCHRONI ZED, and ACC_NATI VE (JLS 89.4).
In acl ass file whose version number is less than 52.0, each method of an
interface must have its ACC_PUBLI C and ACC_ABSTRACT flags set; in acl ass
file whose version number is 52.0 or above, each method of an interface must
have exactly one of its ACC_PUBLI C and ACC_PRI VATE flags set.

If a method of a class or interface has its ACC_ABSTRACT flag set, it must not
have any of itSACC_PRI VATE, ACC_STATI C, ACC_FI NAL, ACC_SYNCHRONI ZED, Of
ACC_NATI VE flags set, nor (in acl ass file whose magjor version number is at
least 46 and at most 60) have its ACC_STRI CT flag set.

An instance initialization method (82.9.1) may have at most one of its
ACC_PUBLI C, ACC_PRI VATE, and ACC_PROTECTED flags set, and may also have
itS ACC_VARARGS and ACC_SYNTHETI C flags set, and may aso (in acl ass file
whose magjor version number is at least 46 and at most 60) haveitsACC_STRI CT
flag set, but must not have any of the other flagsin Table 4.6-A set.

Inacl ass filewhose version number is 51.0 or above, a method whose name
is<clinit>must haveits ACC_STATI Cflag set.

A class or interface initialization method (82.9.2) is called implicitly by the
Java Virtual Machine. The value of itsaccess_f 1 ags item isignored except
for the setting of the AcC_STATI cflag and (inacl ass filewhose major version
number is at least 46 and at most 60) the AcC_STRI CT flag, and the method is
exempt from the preceding rules about legal combinations of flags.

The Acc BRI DGE flag is used to indicate a bridge method generated by a
compiler for the Java programming language.

The ACC_VARARGS flag indicates that this method takes a variable number of
arguments at the source code level. A method declared to take a variable
number of arguments must be compiled with the ACC_VARARGS flag set to 1.
All other methods must be compiled with the ACC_VARARGS flag set to 0.

The acc_sYNTHETI C flag indicates that this method was generated by a
compiler and does not appear in source code, unless it is one of the methods
named in 84.7.8.

All bits of the access_f 1 ags item not assigned in Table 4.6-A are reserved
for future use. (This includes the hit corresponding to 0x0800 in acl ass file

103

4.6 Methods THE cLAss FILE FORMAT

whose magjor version number is less than 46 or greater than 60.) They should
be set to zero in generated cl ass files and should be ignored by Java Virtual
Machine implementations.

name_i ndex

The value of the nane_index item must be a vaid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing either avalid unqualified
name denoting a method (84.2.2), or (if this method is in a class rather than
an interface) the special method name <i ni t >, or the special method name
<clinit>.

descri pt or _i ndex

The value of the descriptor_i ndex item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be
a CONSTANT_Utf8_info structure representing a valid method descriptor
(84.3.3). Furthermore:

* If this method is in a class rather than an interface, and the name of the
method is <i ni t >, then the descriptor must denote avoi d method.

* If the name of the method is <cl i ni t >, then the descriptor must denote a
voi d method, and, in acl ass file whose version number is 51.0 or above,
amethod that takes no arguments.

A future edition of this specification may require that the last parameter descriptor of the
method descriptor is an array type if the ACC_VARARGS flag is set in the access_f | ags
item.

attributes_count

The value of the at t ri but es_count item indicates the number of additional
attributes of this method.

attributes[]

Each value of the attri but es table must be an attri bute_i nfo structure
(84.7).

A method can have any number of optional attributes associated with it.

The attributes defined by this specification as appearing in the attri but es
table of anet hod_i nf o structure are listed in Table 4.7-C.

The rules concerning attributes defined to appear intheat t ri but es table of a
met hod_i nf o structure are given in 84.7.

104

THE cLAss FILE FORMAT Attributes

The rules concerning non-predefined attributes in the at t ri but es table of a
met hod_i nf o structure are given in 84.7.1.

4.7 Attributes

Attributes are used in the dassFile, field_info, nethod_info,
Code_attribute,andrecord_conponent _i nf o structuresof thecl ass fileformat
(84.1, 84.5, §84.6, 84.7.3, §4.7.30).

All attributes have the following general format:

attribute_info {
u2 attribute_name_i ndex;
u4 attribute_l ength;
ul info[attribute_length];

}

For al attributes, the attribute_nane_i ndex item must be a valid unsigned
16-bit index into the constant pool of the class. The constant _pool entry
at attribute_nanme_i ndex must be a CONSTANT Ut f8_i nfo structure (84.4.7)
representing the name of the attribute. The value of the attri bute_I engt h item
indicates the length of the subsequent information in bytes. The length does
not include the initial six bytes that contain the attri but e_nanme_i ndex and
attribute_| ength items.

30 attributes are predefined by this specification. They are listed three times, for
ease of navigation:

o Table 4.7-A is ordered by the attributes' section numbers in this chapter. Each
attribute is shown with the first version of thecl ass file format in which it was
defined. Also shown is the version of the Java SE Platform which introduced
that version of thecl ass file format (84.1).

» Table4.7-B isordered by thefirst version of thecl ass file format in which each
attribute was defined.

» Table 4.7-C is ordered by the location in acl ass file where each attribute is
defined to appear.

Within the context of their useinthisspecification, thatis,intheat t ri but es tables
of the cl ass file structures in which they appear, the names of these predefined
attributes are reserved.

4.7

105

4.7

106

Attributes THE cLAss FILE FORMAT

Any conditions on the presence of a predefined attribute in an attri but es table
are specified explicitly in the section which describesthe attribute. If no conditions
are specified, then the attribute may appear any number of timesinanattri but es

table.

The predefined attributes are categorized into three groups according to their
purpose:

1. Seven attributes are critical to correct interpretation of the cl ass file by the
Java Virtual Machine:

Const ant Val ue
Code

St ackMapTabl e
Boot st r apMet hods
Nest Host

Nest Merber s

Perm tt edSubcl asses

In a cl ass file whose version number is v, each of these attributes must
be recognized and correctly read by an implementation of the Java Virtual
Machineif the implementation supportsversion v of thecl ass fileformat, and
the attribute was first defined in version v or earlier of the cl ass file format,
and the attribute appears in alocation where it is defined to appear.

2. Ten attributes are not critical to correct interpretation of the cl ass file by the
Java Virtual Machine, but are either critical to correct interpretation of the

THE cLASS FILE FORMAT Attributes 4.7

cl ass file by the classlibraries of the Java SE Platform, or are useful for tools
(in which case the section that specifies an attribute describesit as "optional"):

* Exceptions

* | nnerdC asses

* Encl osi ngMet hod

* Synthetic

* Sighature

* Record

* SourceFile

* Li neNunber Tabl e

* Local Vari abl eTabl e

* Local Vari abl eTypeTabl e

In a cl ass file whose version number is v, each of these attributes must
be recognized and correctly read by an implementation of the Java Virtual
Machineif theimplementation supportsversionv of thecl ass fileformat, and
the attribute was first defined in version v or earlier of the cl ass file format,
and the attribute appearsin alocation where it is defined to appear.

3. Thirteen attributes are not critical to correct interpretation of the cl ass file
by the Java Virtual Machine, but contain metadata about the cl ass filethat is
either exposed by the classlibraries of the Java SE Platform, or made available

107

4.7

108

Attributes THE cLAss FILE FORMAT

by tools (in which case the section that specifies an attribute describes it as
"optiona"):

Sour ceDebugExt ensi on

Depr ecat ed

Runti neVi si bl eAnnot at i ons

Runt i mel nvi si bl eAnnot ati ons

Runt i meVi si bl ePar anmet er Annot at i ons
Runt i mel nvi si bl ePar amet er Annot ati ons
Runti meVi si bl eTypeAnnot ati ons

Runt i nmel nvi si bl eTypeAnnot ati ons
Annot at i onDef aul t

Met hodPar anet er s

Modul e

Modul ePackages

Modul eMai nCl ass

An implementation of the Java Virtual Machine may use the information that
these attributes contain, or otherwise must silently ignore these attributes.

THE cLASS FILE FORMAT

Attributes

Table4.7-A. Predefined cl ass file attributes (by section)

Attribute Section cl ass file Java SE
Const ant Val ue 84.7.2 453 1.0.2
Code §4.7.3 453 102
St ackMapTabl e 84.7.4 50.0 6
Excepti ons 84.75 45.3 1.0.2
I nner d asses §4.7.6 45.3 11
Encl osi nghet hod 84.7.7 49.0 5.0
Synt heti c 8§4.7.8 45.3 11
Si gnat ure 84.7.9 49.0 5.0
Sour ceFil e §4.7.10 453 1.02
Sour ceDebugExt ensi on 84.7.11 49.0 5.0
Li neNunber Tabl e 84.7.12 453 1.0.2
Local Vari abl eTabl e 84.7.13 453 1.0.2
Local Vari abl eTypeTabl e 84.7.14 49.0 5.0
Depr ecat ed 84.7.15 45.3 11
Runt i neVi si bl eAnnot ati ons 84.7.16 49.0 5.0
Runti mel nvi si bl eAnnot ati ons 8§4.7.17 49.0 5.0
Runt i meVi si bl ePar anmet er Annot at i ons §4.7.18 49.0 5.0
Runt i mel nvi si bl ePar anet er Annot ati ons §4.7.19 49.0 5.0
Runt i meVi si bl eTypeAnnot ati ons §4.7.20 52.0 8
Runt i el nvi si bl eTypeAnnot ati ons §4.7.21 52.0 8
Annot at i onDef aul t 84.7.22 49.0 5.0
Boot st r apMet hods 84.7.23 51.0 7
Met hodPar anet er s 84.7.24 52.0 8
Modul e 8§4.7.25 53.0 9
Mbdul ePackages 84.7.26 53.0 9
Modul eMai nCl ass 8§4.7.27 53.0 9
Nest Host §4.7.28 55.0 11
Nest Menber s 84.7.29 55.0 11
Record §4.7.30 60.0 16
Perm tt edSubcl asses 84.7.31 61.0 17

4.7

109

4.7 Attributes THE cLASs FILE FORMAT

Table 4.7-B. Predefined ci ass file attributes (by cl ass file for mat)

Attribute cl ass file JavaSE Section
Const ant Val ue 453 102 §4.7.2
Code 45.3 102 84.7.3
Excepti ons 45.3 1.0.2 84.75
SourceFil e 453 1.0.2 §4.7.10
Li neNunber Tabl e 45.3 1.0.2 §4.7.12
Local Vari abl eTabl e 453 1.02 §4.7.13
I nner d asses 45.3 11 84.7.6
Synt heti c 45.3 11 §4.7.8
Depr ecat ed 45.3 11 §4.7.15
Encl osi ngMet hod 49.0 5.0 84.7.7
Si gnat ure 49.0 5.0 84.7.9
Sour ceDebugExt ensi on 49.0 5.0 §4.7.11
Local Vari abl eTypeTabl e 49.0 5.0 8§4.7.14
Runt i neVi si bl eAnnot at i ons 49.0 5.0 §4.7.16
Runt i mel nvi si bl eAnnot at i ons 49.0 5.0 8§4.7.17
Runt i neVi si bl ePar anet er Annot at i ons 49.0 5.0 §4.7.18
Runt i mel nvi si bl ePar anet er Annot ati ons 49.0 5.0 84.7.19
Annot at i onDef aul t 49.0 5.0 §4.7.22
St ackMapTabl e 50.0 6 84.74
Boot st r apMet hods 51.0 7 §4.7.23
Runt i meVi si bl eTypeAnnot ati ons 52.0 8 §4.7.20
Runt i el nvi si bl eTypeAnnot ati ons 52.0 8 §4.7.21
Met hodPar anet er s 52.0 8 §4.7.24
Modul e 53.0 9 84.7.25
Mbdul ePackages 53.0 9 §4.7.26
Modul eMai nCl ass 53.0 9 84.7.27
Nest Host 55.0 11 84.7.28
Nest Menber s 55.0 11 §4.7.29
Record 60.0 16 84.7.30
110 Perm tt edSubcl asses 61.0 17 §4.7.31

THE cLASS FILE FORMAT Attributes 4.7

Table4.7-C. Predefined cl ass file attributes (by location)

Attribute L ocation cl ass file
Sour ceFi |l e ClassFile 453
I nner Cl asses ClassFile 45.3
Encl osi ngMet hod ClassFile 49.0
Sour ceDebugExt ensi on ClassFile 49.0
Boot st rapMet hods ClassFile 51.0
Modul e, Modul ePackages, Modul eMai nCl ass C assFil e 53.0
Nest Host , Nest Menber s Cl assFil e 55.0
Record ClassFile 60.0
Perm tt edSubcl asses ClassFile 61.0
Const ant Val ue field_ info 453
Code met hod_i nfo 453
Excepti ons met hod_i nfo 453
Runt i meVi si bl ePar anet er Annot ati ons, met hod_i nfo 49.0
Runt i nel nvi si bl ePar anet er Annot at i ons

Annot at i onDef aul t met hod_i nfo 49.0
Met hodPar anet er s met hod_i nfo 52.0

111

4.7

112

Attributes

THE cLASs FILE FORMAT

Table 4.7-C (cont.). Predefined cl ass file attributes (by location)

field_info,
met hod_i nf o,

Attribute L ocation cl ass file
Synthetic Cl assFi l e, 45.3
field_info,
met hod_i nfo
Depr ecat ed Cl assFi l e, 453
field_info,
met hod_i nfo
Si gnature Cl assFil e, 49.0

record_conponent _i nfo

Runt i neVi si bl eAnnot at i ons,
Runti nel nvi si bl eAnnot ati ons

Cl assFi | e,
field_info,
met hod_i nf o,

49.0

record_conponent _i nfo

Li neNunber Tabl e Code 453
Local Vari abl eTabl e Code 453
Local Vari abl eTypeTabl e Code 49.0
St ackMapTabl e Code 50.0
Runt i meVi si bl eTypeAnnot at i ons, Cl assFil e, 52.0

Runt i nel nvi si bl eTypeAnnot ati ons field_info,

met hod_i nfo, Code,

record_conponent _i nfo

4.7.1 Defining and Naming New Attributes

Compilers are permitted to define and emit cl ass files containing new attributes
in the attributes tables of class file structures, field_info Structures,
met hod_i nfo structures, and Code attributes (84.7.3). Java Virtua Machine
implementations are permitted to recognize and use new attributes found in
these attributes tables. However, any attribute not defined as part of this
specification must not affect the semantics of thecl ass file. JavaVirtual Machine
implementations are required to silently ignore attributes they do not recognize.

For instance, defining a new attribute to support vendor-specific debugging is
permitted. Because Java Virtual Machine implementations are required to ignore

THE cLAss FILE FORMAT Attributes

attributesthey do not recognize, cl ass filesintended for that particular JavaVirtual
Machine implementation will be usable by other implementations even if those
implementations cannot make use of the additional debugging information that the
cl ass files contain.

JavaVirtual Machineimplementationsare specifically prohibited from throwing an
exception or otherwiserefusingto usecl ass filessimply because of the presence of
some new attribute. Of course, tools operating oncl ass filesmay not run correctly
if given cl ass filesthat do not contain all the attributes they require.

Two attributes that are intended to be distinct, but that happen to use the same
attribute name and are of the same length, will conflict on implementations that
recognize either attribute. Attributes defined other than in this specification should
have names chosen according to the package naming convention described in The
Java Language Specification, Java SE 23 Edition (JL S 86.1).

Future versions of this specification may define additional attributes.

47.2 The Const ant Val ue Attribute

The Const ant Val ue attributeisafixed-length attributeinthe at t ri but es table of
afiel d_i nf o structure (84.5). A Const ant Val ue attribute represents the value of
aconstant expression (JLS §15.28), and is used as follows:

 If theAcC STATI Cflagintheaccess_f | ags item of thefi el d_i nf o Structureis
set, then the field represented by thef i el d_i nf o structure is assigned the value
represented by its Const ant Val ue attribute as part of the initialization of the
class or interface declaring the field (85.5). This occurs prior to the invocation
of the class or interface initialization method of that class or interface (82.9.2).

» Otherwise, the Java Virtual Machine must silently ignore the attribute.

There may be at most one Const ant Val ue attribute in the att ri but es table of a
fi el d_i nf o structure.

The Const ant Val ue attribute has the following format:

Constant Val ue_attribute {
u2 attribute_name_i ndex;
u4 attribute_l ength;
u2 constantval ue_i ndex;

}

The items of the Const ant Val ue_at t ri but e structure are as follows:

4.7

113

4.7

114

Attributes THE cLAss FILE FORMAT

attribute_name_i ndex

The value of the attribute_name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f 8_i nfo structure (84.4.7) representing the string
"Const ant Val ue".

attribute_l ength
Thevaueof theattri but e_| engt h item must be two.
const ant val ue_i ndex

The value of the const ant val ue_i ndex item must be a valid index into the
const ant _pool table. The const ant _pool entry at that index gives the value
represented by this attribute. The const ant _pool entry must be of a type
appropriate to the field, as specified in Table 4.7.2-A.

Table4.7.2-A. Constant value attribute types

Field Type Entry Type

i nt,short,char,byte,bool ean CONSTANT_I nt eger
fl oat CONSTANT_FI oat

| ong CONSTANT_Long
doubl e CONSTANT_Doubl e
String CONSTANT_Stri ng

47.3 Thecode Attribute

The code attribute is a variable-length attribute in the attributes table of
a nethod_i nfo structure (84.6). A Code attribute contains the Java Virtua
Machineinstructions and auxiliary information for amethod, including an instance
initialization method and a class or interface initialization method (82.9.1, §2.9.2).

If the method is either native or abstract, and is not a class or interface
initialization method, thenitsmet hod_i nf o structure must not have aCode attribute
initsattri but es table. Otherwise, its met hod_i nf o structure must have exactly
one Code attributeinitsattri but es table.

The Code attribute has the following format:

THE cLASS FILE FORMAT Attributes 4.7

Code_attribute {
u2 attribute_nane_i ndex;
ud attribute_l ength;
u2 max_st ack;
u2 max_| ocal s;
ud code_l engt h;
ul code[code_Il ength];
u2 exception_table_l ength;
{ u2 start_pc;
u2 end_pc;
u2 handl er _pc;
u2 catch_type;
} exception_tabl e[exception_table_|ength];
u2 attributes_count;
attribute_info attributes[attributes_count];

}

Theitems of the Code_at t ri but e structure are as follows:

attri bute_nane_i ndex
The value of the attribute_nanme_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing the string "Code".
attribute_l ength
Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding theinitial six bytes.
max_st ack
The value of the max_st ack item gives the maximum depth of the operand
stack of this method (82.6.2) at any point during execution of the method.
max_| ocal s

The value of the max_I ocal s item gives the number of local variables in
the local variable array allocated upon invocation of this method (82.6.1),
including the local variables used to pass parameters to the method on its
invocation.

The greatest local variable index for a value of type I ong or double is
max_l ocal s - 2. The greatest local variable index for a value of any other
typeismax_l ocal s - 1.

code_l ength

Thevaueof thecode_lI engt h item givesthe number of bytesinthecode array
for this method.

115

4.7

116

Attributes THE cLAss FILE FORMAT

The value of code_I engt h must be greater than zero (as the code array must
not be empty) and less than 65536.

code[]

The code array gives the actual bytes of Java Virtual Machine code that
implement the method.

When the code array is read into memory on a byte-addressable machine, if
thefirst byte of the array is aigned on a 4-byte boundary, the tableswitch and
lookupswitch 32-bit offsets will be 4-byte aligned. (Refer to the descriptions
of those instructions for more information on the consequences of code array
alignment.)

The detailed constraints on the contents of the code array are extensive and are
given in a separate section (84.9).

exception_table_l ength

The value of the excepti on_t abl e_| engt h item gives the number of entries
intheexception_t abl e array.

exception_table[]

Each entry in the excepti on_t abl e array describes one exception handler in
the code array. The order of the handlers in the exception_tabl e array is
significant (82.10).

Each excepti on_t abl e entry contains the following four items:

start_pc, end_pc

Thevaluesof thetwoitemsst art _pc andend_pc indicatetherangesinthe
code array at which the exception handler isactive. Thevalueof start _pc
must be avalid index into the code array of the opcode of an instruction.
Thevalue of end_pc either must be avalid index into the code array of the
opcode of aninstruction or must be equal tocode_I engt h, thelength of the
code array. Thevalue of st art _pc must be less than the value of end_pc.

Thestart _pc isinclusive and end_pc is exclusive; that is, the exception
handler must be active while the program counter is within the interval
[start_pc, end_pc).

The fact that end_pc is exclusive is a historical mistake in the design of the Java
Virtual Machine: if the Java Virtual Machine code for amethod is exactly 65535 bytes
long and ends with an instruction that is 1 byte long, then that instruction cannot be
protected by an exception handler. A compiler writer can work around this bug by
limiting the maximum size of the generated JavaVirtual Machine codefor any method,
instanceinitialization method, or static initializer (the size of any code array) to 65534
bytes.

THE cLAss FILE FORMAT Attributes

handl er _pc

The value of the handl er _pc item indicates the start of the exception
handler. The value of the item must be a valid index into the code array
and must be the index of the opcode of an instruction.

catch_type

If the value of the cat ch_t ype item is nonzero, it must be a valid index
into the const ant _pool table. The const ant _pool entry at that index
must be a CONSTANT_dl ass_i nf o structure (84.4.1) representing aclass of
exceptionsthat thisexception handler isdesignated to catch. The exception
handler will be called only if the thrown exception is an instance of the
given class or one of its subclasses.

The verifier checksthat the classis Thr owabl e or asubclass of Thr owabl e (84.9.2).

If thevalue of thecat ch_t ype itemiszero, thisexception handler iscalled
for al exceptions.

Thisisused to implement fi nal | y (83.13).

attributes_count

Thevalueof theattri but es_count itemindicatesthe number of attributes of
the Code attribute.

attributes[]

Each value of the attri but es table must be an attri bute_i nf o structure
(84.7).

A Code attribute can have any number of optional attributes associated with it.

The attributes defined by this specification as appearing in the attri butes
table of aCode attribute are listed in Table 4.7-C.

The rules concerning attributes defined to appear in the at tri but es table of
aCode attribute are given in 84.7.

The rules concerning non-predefined attributes in the at t ri but es table of a
Code attribute are givenin 84.7.1.

474 ThestackMapTabl e Attribute

The st ackMapTabl e attributeisavariable-length attributeintheat t ri but es table
of acCode attribute (84.7.3). A St ackMapTabl e attribute is used during the process
of verification by type checking (84.10.1).

4.7

117

4.7

118

Attributes THE cLAss FILE FORMAT

There may be at most one St ackMapTabl e attribute in the at t ri but es table of a
Code attribute.

Inacl ass filewhose version number is50.0 or above, if amethod's Code attribute
does not have a st ackMapTabl e attribute, it has an implicit stack map attribute
(84.10.1). This implicit stack map attribute is equivalent to a St ackMapTabl e
attribute with nunber _of _ent ri es equal to zero.

The st ackMapTabl e attribute has the following format:

St ackMapTabl e_attribute {

u2 attribut e_nane_i ndex;
u4 attribute_| ength;
u2 nurmber _of _entri es;

stack_map_frame entries[nunber_of _entries];

}

Theitems of the St ackMapTabl e_at t ri but e structure are as follows:

attri bute_nane_i ndex

The value of the attribute _name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f8_i nfo structure (84.4.7) representing the string
"St ackMapTabl e".

attribute_l ength

Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding theinitial six bytes.

nunber _of _entries

The value of the nunber_of _entries item gives the number of
stack_map_frane entriesintheentri es table.

entries[]

Each entry intheent ri es table describes one stack map frame of the method.
The order of the stack map framesin theent ri es tableis significant.

A stack map frame specifies (either explicitly or implicitly) the bytecode offset at
which it applies, and the verification types of local variables and operand stack
entries for that offset.

Each stack map frame described in theent ri es table relies on the previous frame
for some of its semantics. The first stack map frame of a method is implicit,
and computed from the method descriptor by the type checker (84.10.1.6). The
stack_nap_frame structure at entri es[0] therefore describes the second stack
map frame of the method.

THE cLAss FILE FORMAT Attributes

The bytecode offset at which a stack map frame appliesis calculated by taking the
value of f set _del t a specified in the frame (either explicitly or implicitly), and
adding of fset _delta + 1 to the bytecode offset of the previous frame, unless
the previous frame is the initial frame of the method. In that case, the bytecode
offset at which the stack map frame applies is the value of f set _del t a specified
in the frame.

By using an offset delta rather than storing the actual bytecode offset, we ensure, by
definition, that stack map frames are in the correctly sorted order. Furthermore, by
consistently using the formulaof f set _del ta + 1 for al explicit frames (as opposed to
theimplicit first frame), we guarantee the absence of duplicates.

We say that an instruction in the bytecode has a corresponding stack map frame if
the instruction starts at offset i in the code array of a Code attribute, and the Code
attribute hasa st ackMapTabl e attributewhoseent ri es array contains astack map
frame that applies at bytecode offset i.

A verification type specifiesthetype of either oneor two locations, wherealocation
iseither asingle local variable or asingle operand stack entry. A verification type
is represented by a discriminated union, veri fi cati on_type_i nf o, that consists
of aone-byte tag, indicating which item of the union isin use, followed by zero or
more bytes, giving more information about the tag.

union verification_type_info {
Top_vari abl e_i nf o;
I nteger _vari abl e_i nf o;
Fl oat _vari abl e_i nf o;
Long_vari abl e_i nf o;
Doubl e_vari abl e_i nf o;
Nul | _vari abl e_i nf o;
UninitializedThis_vari abl e_i nfo;
oj ect _vari abl e_i nf o;
Uninitialized_ variable_info;

}

A verification type that specifies one location in the local variable array
or in the operand stack is represented by the following items of the
verification_type_ info union:

 The Top_variable_info item indicates that the local variable has the
verification typet op.

Top_variable_info {
ul tag = ITEM Top; /* 0 */
}

4.7

119

4.7

120

Attributes THE cLAss FILE FORMAT

* Thel nteger vari abl e_i nf o itemindicatesthat thelocation hastheverification
typeint.

Integer_variable_info {
ul tag = ITEM Integer; /* 1 */
}

» TheFl oat _vari abl e_i nf o item indicates that the location has the verification
typefl oat .

Fl oat _variable_info {
ul tag = I TEM Float; /* 2 */
}

e The Nul | _vari abl e_i nf o type indicates that the location has the verification
typenul I .

Nul | _variable_info {
ul tag = ITEM Null; /* 5 */
}

e The UninitializedThis_variabl e_i nfo item indicates that the location has
the verification type uni ni ti al i zedThi s.

UninitializedThis_variable_info {
ul tag = ITEM UninitializedThis; /* 6 */
}

» Thebj ect _vari abl e_i nf o item indicates that the location has the verification
type which is the class represented by the CONSTANT_C ass_i nfo structure
(84.4.1) found inthe const ant _pool table at the index given by cpool _i ndex.

bj ect _variable_info {
ul tag = I TEM Qbject; /* 7 */
u2 cpool _i ndex;

}

e The Uninitialized variable_info item indicates that the location has the
verificationtypeuni ni ti al i zed(Of f set) . TheOf f set itemindicatesthe offset,
inthecode array of the Code attributethat containsthisst ackMapTabl e attribute,
of the new instruction (8new) that created the object being stored in the location.

Uninitialized_variable_info {
ul tag = ITEM Uninitialized; /* 8 */
u2 of fset;

}

A verification type that specifies two locations in the local variable array
or in the operand stack is represented by the following items of the
verification_type_info union:

THE cLASS FILE FORMAT Attributes 4.7

* The Long_vari abl e_i nf o item indicates that the first of two locations has the
verification typel ong.

Long_variable_info {
ul tag = I TEM Long; /* 4 */
}

» TheDoubl e_vari abl e_i nf o item indicatesthat thefirst of two locations hasthe
verification type doubl e.

Doubl e_variable_info {
ul tag = | TEM Doubl e; /* 3 */
}

e The Long_variable_info and Doubl e_variabl e_info items indicate the
verification type of the second of two locations as follows:

— |If thefirst of the two locationsis alocal variable, then:
> It must not be the local variable with the highest index.
> The next higher numbered local variable has the verification typet op.
— If thefirst of the two locations is an operand stack entry, then:
> It must not be the topmost location of the operand stack.
> The next location closer to the top of the operand stack has the verification
typet op.

A stack map frame is represented by a discriminated union, st ack_map_f r ane,
which consists of a one-byte tag, indicating which item of the union is in use,
followed by zero or more bytes, giving more information about the tag.

uni on stack_map_frame {
sanme_franeg;
same_l ocal s_1_stack_item frane;
same_l ocal s_1_stack_item franme_extended;
chop_frane;
sanme_f rane_ext ended;
append_frane;
full _frame;

}

The tag indicates the frame type of the stack map frame:

* Theframetypesane_f r ane isrepresented by tagsintherange[0-63]. Thisframe
type indicates that the frame has exactly the samelocal variables as the previous

121

4.7 Attributes THE cLASs FILE FORMAT

frame and that the operand stack isempty. Theof f set _del t a valuefor theframe
isthe value of the tag item, f r ame_t ype.

sane_franme {
ul frane_type = SAME; /* 0-63 */
}

» The frame type sane_| ocal s_1_st ack_i tem frane is represented by tags in
therange[64, 127]. Thisframetypeindicatesthat the frame has exactly the same
local variables as the previous frame and that the operand stack has one entry.
The of f set _del t a value for the frame is given by the formulafranme_type -
64. The verification type of the one stack entry appears after the frame type.

sane_l ocal s_1 stack_itemframe {
ul frane_type = SAME_LOCALS 1_STACK I TEM [/* 64-127 */
verification_type_info stack[1];

}
e Tagsintherange [128-246] are reserved for future use.

» The frame type sane_l ocal s_1_st ack_i t em frame_ext ended is represented
by the tag 247. This frame type indicates that the frame has exactly the same
local variables as the previous frame and that the operand stack has one entry.
The of f set _del t a value for the frame is given explicitly, unlike in the frame
typesane_| ocal s_1_stack_i t em fr ane. The verification type of the one stack
entry appears after of f set _del t a.

sane_l ocal s_1 _stack_item frame_extended {
ul frame_type = SAME_LOCALS 1_STACK_| TEM EXTENDED, /* 247 */
u2 offset_delta;
verification_type_info stack[1];

}

» Theframetypechop_f rane is represented by tags in the range [248-250]. This
frame type indicates that the frame has the same local variables as the previous
frame except that the last k local variables are absent, and that the operand stack
is empty. The value of k is given by the formula 251 - frame_type. The
of f set _del t a value for the frameis given explicitly.

chop_frane {
ul frane_type = CHOP; /* 248-250 */
u2 of fset_delta;

}

Assume the verification types of local variables in the previous frame are
given by local s, an array structured as in the ful | _franme frame type. If
| ocal s[M 1] in the previous frame represented local variable X and | ocal s[M
represented local variable v, then the effect of removing one local variable is

122

THE cLASS FILE FORMAT Attributes 4.7

that | ocal s[M 1] in the new frame represents local variable X and | ocal s[M
is undefined.

It isan error if kis larger than the number of local variablesin | ocal s for the
previous frame, that is, if the number of local variables in the new frame would
be less than zero.

» Theframetypesane_frame_ext ended isrepresented by thetag 251. Thisframe
typeindicates that the frame has exactly the same local variables as the previous
frame and that the operand stack isempty. Theof f set _del t a valuefor theframe
is given explicitly, unlike in the frame type sane_f r ane.

sanme_frane_ext ended {
ul frane_type = SAME_FRAME_EXTENDED; /* 251 */
u2 of fset_delta;

}

» Theframetypeappend_f r ame isrepresented by tagsintherange[252-254]. This
frame type indicates that the frame has the same locals as the previous frame
except that k additional locals are defined, and that the operand stack is empty.
The value of kisgiven by theformulaframe_type - 251. Theoffset_delta
value for the frame is given explicitly.

append_frame {
ul frane_type = APPEND; /* 252-254 */
u2 of fset_delta;
verification_type_info |ocal s[frane_type - 251];

}

The Oth entry in 1 ocal s represents the verification type of the first additional
local variable. If 1 ocal s[M represents local variable N, then:

—local s M+1] represents local variable N+1 if locals[M is one
of Top_variable_info, Integer_variable_info, Fl oat_vari abl e_i nf o,
Nul | _vari abl e_i nfo, UninitializedThis_variable_info,
bj ect _variable_ info,0rUninitialized variable_ info;and

— local s M+1] represents local variable N+2 if locals[M is either
Long_vari abl e_i nf o Or Doubl e_vari abl e_i nf o.

It is an error if, for any index i, | ocal s[i] represents alocal variable whose
index is greater than the maximum number of local variables for the method.

123

4.7

124

Attributes THE cLAss FILE FORMAT

» Theframetypeful | _frane is represented by the tag 255. The of f set _del ta

value for the frame is given explicitly.

full _frame {
ul frane_type = FULL_FRAME;, /* 255 */
u2 of fset_delta;
u2 nunber_of | ocal s;
verification_type_info |ocal s[hunber_of _| ocal s];
u2 nunber _of _stack_itenmns;
verification_type_info stack[nunber_of _stack_itens];

}

The Oth entry in | ocal s represents the verification type of local variable 0. If
I ocal s[M representslocal variable N, then:

— local s M+1] represents local variable N+1 if locals[M is one
of Top_variabl e_info, Integer_variable_info, Fl oat_vari abl e_i nf o,
Nul | _vari abl e_i nf o, UninitializedThis_variabl e_i nfo,
(bj ect _variable_info,0rUninitialized variable_ info;and

— local s M+1] represents local variable N+2 if locals[M is either
Long_vari abl e_i nf o OF Doubl e_vari abl e_i nf o.

It is an error if, for any index i, | ocal s[i] represents alocal variable whose
index is greater than the maximum number of local variables for the method.

The Oth entry in st ack represents the verification type of the bottom of the
operand stack, and subsequent entriesin st ack represent the verification types
of stack entries closer to the top of the operand stack. We refer to the bottom of
the operand stack as stack entry 0, and to subsequent entries of the operand stack
asstack entry 1, 2, etc. If st ack[M represents stack entry N, then:

— stack[Mr1] represents stack entry N+1 if stack[M is one of
Top_variable_info, Integer_variable_info, Float_variable_info,
Nul | _vari abl e_i nfo, UninitializedThis_variable_info,
bj ect _variable_ info,0rUninitialized variable_ info;and

— stack[Mr1] represents stack entry N2 if stack[M is either
Long_vari abl e_i nf o Or Doubl e_vari abl e_i nf o.

Itisan error if, for any index i, stack[i] represents a stack entry whose index
is greater than the maximum operand stack size for the method.

THE cLASS FILE FORMAT Attributes 4.7

475 TheExceptions Attribute

TheExcept i ons attributeisavariable-length attributeintheat t ri but es tableof a
nmet hod_i nf o structure (84.6). The Except i ons attribute indicates which checked
exceptions a method may throw.

There may be at most one Excepti ons attribute in the attri butes table of a
met hod_i nf o structure.

The Except i ons attribute has the following format:

Exceptions_attribute {

}

u2 attribute_nane_i ndex;

ud attribute_l ength;

u2 nunber _of _excepti ons;

u2 exception_index_t abl e[nunber _of _exceptions];

Theitems of the Excepti ons_att ri but e structure are as follows:

attribute_nane_i ndex
Thevalue of the attri but e_name_i ndex item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be the
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing the string "Except i ons".

attribute_l ength

Thevaueof theattri but e_I engt h item indicates the length of the attribute,
excluding theinitial six bytes.

nurmber _of _excepti ons

Thevalue of thenunber _of _except i ons item indicates the number of entries
intheexcepti on_i ndex_t abl e.

exception_i ndex_tabl e[]
Each value in the excepti on_i ndex_t abl e array must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ol ass_i nf o structure (84.4.1) representing a class type that this
method is declared to throw.

A method should throw an exception only if at least one of the following three criteriais
met;

¢ Theexception isan instance of Runt i meExcept i on or one of its subclasses.

* The exception isan instance of Er r or or one of its subclasses.

e The exception is an instance of one of the exception classes specified in the

except i on_i ndex_t abl e just described, or one of their subclasses.

125

4.7

126

Attributes THE cLAss FILE FORMAT

These requirements are not enforced in the Java Virtual Machine; they are enforced only
at compiletime.

476 Thelnnerd asses Attribute

Thel nner d asses attribute is avariable-length attribute inthe at t ri but es table
of ad assFi | e structure (84.1).

If the constant pool of a class or interfface C contains a least one
CONSTANT_d ass_i nf o entry (84.4.1) which represents a class or interface that is
not amember of apackage, then there must be exactly onel nner d asses attribute
intheattri but es table of the d assFi | e structure for C.

Thel nner d asses attribute has the following format:

InnerCl asses_attribute {

u2 attribute_name_i ndex;

ud attribute_| ength;

u2 nunber _of _cl asses;

{ u2 inner_class_info_index;
u2 outer_class_info_index;
u2 i nner_nane_i ndex;
u2 inner_class_access_fl ags;

} cl asses[nunber _of _cl asses];

}

Theitemsof thel nner d asses_at tri but e structure are as follows:

attribute_name_i ndex
The value of the attribute_name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f8_i nfo structure (84.4.7) representing the string
"I nner d asses".

attribute_|l ength
Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.

number _of _cl asses
The value of the number _of _cl asses item indicates the number of entriesin
thecl asses array.

cl asses[]
Every CONSTANT_Cl ass_info entry in the constant_pool table which
representsaclassor interface Cthat isnot a package member must have exactly
one corresponding entry inthe cl asses array.

THE cLASS FILE FORMAT Attributes 4.7

If aclass or interface has membersthat are classes or interfaces, itsconst ant _pool table
(and henceits| nner d asses attribute) must refer to each such member (JLS §13.1), even
if that member is not otherwise mentioned by the class.

In addition, the const ant _pool table of every nested class and nested interface must
refer to its enclosing class, so altogether, every nested class and nested interface will have
I nner asses information for each enclosing class and for each of its own nested classes
and interfaces.

Each entry inthe cl asses array contains the following four items:

inner_class_info_index

Thevaueof thei nner _cl ass_i nf o_i ndex itemmust beavalidindex into
theconst ant _pool table. Theconst ant _pool entry at that index must be
A CONSTANT Ol ass_i nf o structure representing C.

outer_class_info_index

If cisnot amember of aclass or an interface - that is, if Cis atop-level
classor interface (JLS 87.6) or alocal class (JLS §14.3) or an anonymous
class (JLS 815.9.5) - then the value of theout er _cl ass_i nf o_i ndex item
must be zero.

Otherwise, thevalueof theout er _cl ass_i nf o_i ndex itemmust beavalid
index into the const ant _pool table, and the entry at that index must be
a CONSTANT_d ass_i nf o structure representing the class or interface of
which ¢ is a member. The value of the out er _cl ass_i nfo_i ndex item
must not equal the the value of thei nner _cl ass_i nf o_i ndex item.

i nner _nane_i ndex

If cisanonymous (JLS 815.9.5), the value of thei nner _name_i ndex item
must be zero.

Otherwise, the value of thei nner _nane_i ndex item must be avalid index
into the const ant _pool table, and the entry at that index must be a
CONSTANT_Ut f 8_i nf o structurethat representsthe original simple name of
C, as given in the source code from which thiscl ass file was compiled.

i nner_cl ass_access_fl ags

Thevalueof thei nner _cl ass_access_f 1 ags itemisamask of flags used
to denote access permissions to and properties of class or interface C as
declared in the source code from which thiscl ass file was compiled. Itis
used by a compiler to recover the origina information when source code
isnot available. The flags are specified in Table 4.7.6-A.

127

4.7

128

Attributes

THE cLASs FILE FORMAT

Table4.7.6-A. Nested class access and property flags

Flag Name Value Interpretation

ACC _PUBLI C 0x0001 Marked or implicitly publ i ¢ in source.
ACC_PRI VATE 0x0002 Marked pri vat e in source.
ACC_PROTECTED 0x0004 Marked pr ot ect ed in source.
ACC_STATI C 0x0008 Marked or implicitly st at i ¢ in source.
ACC_FI NAL 0x0010 Marked or implicitly f i nal in source.
ACC_| NTERFACE 0x0200 Wasani nt er f ace in source.
ACC_ABSTRACT 0x0400 Marked or implicitly abst r act in source.
ACC_SYNTHETI C 0x1000 Declared synthetic; not present in the source code.
ACC_ANNOTATI ON 0x2000 Declared as an annotation interface.
ACC_ENUM 0x4000 Declared as an enumclass.

All bits of the inner_class_access_flags item not assigned in
Table 4.7.6-A are reserved for future use. They should be set to zero in
generated cl ass files and should be ignored by Java Virtual Machine

implementations.

If a class file has a verson number that is 51.0 or above, and
has an Innerd asses aftribute in its attributes table, then for dl
entries in the classes array of the Innerd asses attribute, the value
of the outer class_info_index item must be zero if the value of the

i nner _name_i ndex item is zero.

Oracle's Java Virtua Machine implementation does not check the consistency of an
I nner Cl asses attribute against acl ass file representing a class or interface referenced

by the attribute.

4.7.7 TheEncl osi ngMet hod Attribute

TheEncl osi ngMet hod attribute is afixed-length attributeinthe at t ri but es table
of ad assFi | e structure (84.1). A class must have an Encl osi ngMet hod attribute
if and only if it represents a local class or an anonymous class (JLS 814.3, JLS

§15.9.5).

There may be at most one Encl osi ngMet hod attribute in the at t ri but es table of

ad assFi | e structure.

The Encl osi ngMet hod attribute has the following format:

THE cLAss FILE FORMAT Attributes

Encl osi ngMet hod_attri bute {
u2 attribute_nane_i ndex;
ud attribute_l ength;
u2 cl ass_i ndex;
u2 met hod_i ndex;

}

The items of the Encl osi ngMet hod_at t ri but e structure are as follows:

attribute_nane_i ndex

The value of the attribute_name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f8_i nfo structure (84.4.7) representing the string
"Encl osi ngMet hod".

attribute_|l ength
Thevaueof theattri bute_| engt h item must be four.

cl ass_i ndex

The vaue of the class_index item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_d ass_i nf o structure (84.4.1) representing the innermost class that
encloses the declaration of the current class.

nmet hod_i ndex

If the current class is not immediately enclosed by a method or constructor,
then the value of the met hod_i ndex item must be zero.

In particular, met hod_i ndex must be zero if the current class was immediately enclosed
in source code by an instance initializer, static initializer, instance variable initiaizer, or
classvariableinitiaizer. (Thefirst two concern both local classes and anonymous classes,
while the last two concern anonymous classes declared on the right hand side of a field
assignment.)

Otherwise, the value of the net hod_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_NanmeAndType_i nf o structure (84.4.6) representing the name and
type of amethod in the class referenced by the cl ass_i ndex attribute above.

It is the responsibility of a Java compiler to ensure that the method identified via the
met hod_i ndex isindeed the closest lexically enclosing method of the class that contains
this Encl osi ngMet hod attribute.

4.7

129

4.7

130

Attributes THE cLAss FILE FORMAT

4.7.8 Thesynthetic Attribute

The synt heti ¢ attribute is a fixed-length attribute in the attri but es table of
ad assFile, field_info, or method_i nf o structure (84.1, 84.5, 84.6). A class
member that does not appear in the source code must be marked using aSynt het i ¢
attribute, or else it must have its ACC_SYNTHETI C flag set. The only exceptions
to this requirement are compiler-generated members which are not considered
implementation artifacts, namely:

* an instance initialization method representing a default constructor of the Java
programming language (§2.9.1)

 aclassor interface initialization method (§2.9.2)

* the implicitly declared members of enum and record classes (JLS §8.9.3, LS
§8.10.3)

The Synt heti ¢ attribute was introduced in JDK 1.1 to support nested classes and
interfaces.

Itisalimitation of thecl ass file format that only formal parameters and modules
can be flagged as ACC_MANDATED (84.7.24, 84.7.25) to indicate that, despite being
compiler-generated, they are not considered implementation artifacts. Thereis no
way to flag other compiler-generated constructs so that they too are not considered
implementation artifacts (JLS §13.1). Thislimitation means that reflective APIs of
the Java SE Platform may not accurately indicate the "mandated” status of such
constructs.

The synt het i ¢ attribute has the following format:

Synthetic_attribute {
u2 attribute_name_i ndex;
u4 attribute_l ength;

}

Theitemsof the Synt heti c_at tri but e structure are as follows:

attribute_name_i ndex
The value of the attribute_nanme_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing the string "Synt het i c".
attribute_|l ength
Thevaueof theattri bute_| engt h item must be zero.

THE cLAss FILE FORMAT Attributes

4.7.9 Thesignature Attribute

The si gnat ure attribute is a fixed-length attribute in the attri but es table of
adassFile, field_ info, nmethod_info, Or record_conponent _i nf o structure
(84.1, 84.5, 84.6, 84.7.30). A Si gnat ur e attribute storesasignature (84.7.9.1) for a
class, interface, constructor, method, field, or record component whose declaration
in the Java programming language uses type variables or parameterized types.
See The Java Language Specification, Java SE 23 Edition for details about these
constructs.

There may be at most one Si gnat ure attribute in the attribut es table of a
Cl assFile,field_info,method_info,Orrecord_conponent _i nf o Structure.

The si gnat ur e attribute has the following format:

Signature_attribute {
u2 attribute_name_i ndex;
ud attribute_| ength;
u2 signature_index;

}

Theitems of the Si gnat ure_at t ri but e structure are as follows:

attribute_nane_i ndex

The value of the attribut e_name_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing the string "'si gnat ure".

attribute_l ength
Thevaueof theattribute_I engt h item must be two.

si gnat ur e_i ndex

The value of the signature_index item must be a valid index into the
constant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing a class signature if this
Si gnat ure attribute is an attribute of a d assFile structure; a method
signatureif thissi gnat ur e attributeisan attribute of anet hod_i nf o structure;
or afield signature otherwise.

Oracle's Java Virtua Machine implementation does not check the well-formedness
of Signature attributes during class loading or linking. Instead, Signature
attributes are checked by methods of the Java SE Platform class libraries which
expose generic signatures of classes, interfaces, constructors, methods, and fields.
Examples include get GenericSuperclass in Oass and toGenericString in
java.l ang.refl ect. Execut abl e.

4.7

131

4.7

132

Attributes THE cLAss FILE FORMAT

4.7.9.1 Sgnatures

Sgnatures encode declarations written in the Java programming language that use
types outside the type system of the Java Virtual Machine. They support reflection
and debugging, as well as compilation when only cl ass files are available.

A Javacompiler must emit asignature for any class, interface, constructor, method,
field, or record component whose declaration uses type variables or parameterized
types. Specifically, a Java compiler must emit:

» A class signature for any class or interface declaration which is either generic,
or has a parameterized type as a superclass or superinterface, or both.

» A method signature for any method or constructor declaration which is either
generic, or hasatypevariable or parameterized type asthereturn type or aformal
parameter type, or has a type variable in at hr ows clause, or any combination
thereof.

If thet hr ows clause of amethod or constructor declaration does not involvetype
variables, then a compiler may treat the declaration as having not hr ows clause
for the purpose of emitting a method signature.

» A field signature for any field, forma parameter, local variable, or record
component declaration whose type uses atype variable or a parameterized type.

Signatures are specified using a grammar which follows the notation of 84.3.1. In
addition to that notation:

* The syntax [X] on the right-hand side of a production denotes zero or one
occurrences of x. That is, x isan optional symbol. The alternative which contains
the optional symbol actually definestwo alternatives: one that omits the optional
symbol and one that includesiit.

» A very long right-hand side may be continued on a second line by clearly
indenting the second line.

The grammar includes the terminal symbol Identifier to denote the name of atype,
field, method, formal parameter, local variable, or type variable, as generated by
a Java compiler. Such a name must not contain any of the ASCII characters .

i [/ <>: (that is, the characters forbidden in method names (84.2.2) and also
colon) but may contain characters that must not appear in an identifier in the Java
programming language (JLS 83.8).

Signatures rely on a hierarchy of nonterminals known as type signatures:

THE cLAss FILE FORMAT Attributes

» A Java type signature represents either a reference type or a primitive type of
the Java programming language.

JavaTypeSignature:
ReferenceTypeSgnature
BaseType

The following production from 84.3.2 is repeated here for convenience:

BaseType:
(one of)
BCDFI JSZ

A reference type signature represents a reference type of the Java programming
language, that is, aclass or interface type, atype variable, or an array type.

A class type signature represents a (possibly parameterized) class or interface
type. A class type signature must be formulated such that it can be reliably

4.7

133

4.7 Attributes THE cLASs FILE FORMAT

mapped to the binary name of the class it denotes, in internal form (84.2.1), by
erasing any type arguments and converting each . character to a$ character.

A type variable signature represents a type variable.

An array type signature represents one dimension of an array type.

ReferenceTypeSgnature:
ClassTypeSgnature
TypeVariableSgnature
ArrayTypeSgnature

ClassTypeSgnature:
L [PackageSpecifier]
SmpleClassTypeSgnature { ClassTypeS gnatureSuffix} ;

PackageSpecifier:
Identifier / {PackageSpecifier}

SmpleClassTypeSgnature:
Identifier [TypeArguments]

TypeArguments.
< TypeArgument { TypeArgument} >

TypeArgument:
[Wildcardindicator] ReferenceTypeSgnature

*

Wildcardindicator:

+

ClassTypeS gnatureSuffix:
. SmpleClassTypeSgnature

TypeVariableSgnature:
T Identifier ;

ArrayTypeSgnature:
[JavaTypeSignature

A class signature encodes type information about a (possibly generic) class or
interface declaration. It describes any type parameters of the class or interface,

134

THE cLAss FILE FORMAT Attributes

and lists its (possibly parameterized) direct superclass and direct superinterfaces,
if any. A type parameter is described by its name, followed by any class bound and
interface bounds.

ClassSgnature:
[TypeParameters] SuperclassSgnature { SuperinterfaceSgnature}

TypeParameters:
< TypeParameter {TypeParameter} >

TypeParameter:
Identifier ClassBound {InterfaceBound}

ClassBound:
. [ReferenceTypeSgnature]

InterfaceBound:
. ReferenceTypeSgnature

SuperclassSgnature:
ClassTypeSgnature

SuperinterfaceSgnature:
ClassTypeSgnature

A method signature encodes type information about a (possibly generic) method
declaration. It describes any type parameters of the method; the (possibly
parameterized) types of any formal parameters; the (possibly parameterized) return
type, if any; and thetypes of any exceptionsdeclared in the method'st hr ows clause.

MethodSgnature:
[TypeParameters] ({JavaTypeSgnature}) Result {ThrowsSgnature}

Resuilt:
JavaTypeSgnature
VoidDescriptor

ThrowsSgnature:
~ ClassTypeSgnature
~ TypeVariableSgnature

The following production from 8§4.3.3 is repeated here for convenience:

4.7

135

4.7

136

Attributes THE cLAss FILE FORMAT

VoidDescriptor:
\Y,

A method signature encoded by the Si gnat ur e attribute may not correspond exactly to
the method descriptor in the met hod_i nf o structure (84.3.3). In particular, there is no
assurance that the number of formal parameter types in the method signature is the same
as the number of parameter descriptors in the method descriptor. The numbers are the
same for most methods, but certain constructors in the Java programming language have
an implicitly declared parameter which a compiler represents with a parameter descriptor
but may omit from the method signature. See the note in §4.7.18 for a similar situation
involving parameter annotations.

A field signature encodes the (possibly parameterized) type of a field, formal
parameter, local variable, or record component declaration.

FieldSgnature:
ReferenceTypeSignature

4710 TheSourceFil e Attribute

The Sour ceFi | e attribute is an optional fixed-length attribute in the at t ri but es
table of ad assFi | e structure (84.1).

There may be at most one Sour ceFi | e attribute in the attributes table of a
d assFi | e structure.

The Sour ceFi | e attribute has the following format:

SourceFile_attribute {
u2 attribute_nane_i ndex;
ud attribute_l ength;
u2 sourcefile_index;

}

Theitems of the Sour ceFi | e_at t ri but e structure are as follows:

attri bute_nane_i ndex
The value of the attribute_nane_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing the string " Sour ceFi | e".
attribute_|l ength
Thevaueof theattri but e_| engt h item must be two.

THE cLAss FILE FORMAT Attributes

sourcefil e_i ndex

The value of the sourcefile_index item must be a valid index into the
const ant _pool table. The constant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure representing a string.

The string referenced by thesour cef i | e_i ndex itemwill beinterpreted asindicating the
name of the source file from which thiscl ass file was compiled. It will not be interpreted
asindicating the name of adirectory containing thefile or an absol ute path namefor thefile;
such platform-specific additional information must be supplied by the run-time interpreter
or development tool at the time the file nameis actually used.

4.7.11 The Sour ceDebugExt ensi on Attribute

The Sour ceDebugExt ensi on attribute is an optional attribute in the at tri but es
table of ad assFi | e structure (84.1).

There may be at most one Sour ceDebugExt ensi on attribute in the attri but es
table of ad assFi | e structure.

The Sour ceDebugExt ensi on attribute has the following format:

Sour ceDebugExt ensi on_attribute {
u2 attribute_nane_i ndex;
ud attribute_|l ength;
ul debug_extension[attribute_l ength];

}

The items of the Sour ceDebugExt ensi on_at t ri but e Structure are as follows:

attri bute_nane_i ndex

The value of the attribute name_index item must be a vaid index
into the constant_pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f8_i nfo structure (84.4.7) representing the string
"Sour ceDebugExt ensi on".

attribute_l ength
Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding theinitial six bytes.

debug_ext ensi on[]

Thedebug_ext ensi on array holds extended debugging information which has
no semantic effect on the Java Virtual Machine. Theinformationisrepresented
using a modified UTF-8 string (84.4.7) with no terminating zero byte.

Note that the debug_ext ensi on array may denote a string longer than that which can be
represented with an instance of class St ri ng.

4.7

137

4.7

138

Attributes THE cLAss FILE FORMAT

4.7.12 TheLi neNunber Tabl e Attribute

The Li neNunber Tabl e attribute is an optional variable-length attribute in the
attributes table of a Code attribute (84.7.3). It may be used by debuggers to
determine which part of the code array corresponds to a given line number in the
original sourcefile.

If multiple Li neNunber Tabl e attributes are present in the at t ri but es table of a
Code attribute, then they may appear in any order.

There may be more than one Li neNunber Tabl e attribute per line of a source file
intheattribut es table of a Code attribute. That is, Li neNunber Tabl e attributes
may together represent a given line of a source file, and need not be one-to-one
with source lines.

The Li neNunber Tabl e attribute has the following format:

Li neNunber Tabl e_attri bute {
u2 attribute_name_i ndex;
ud attribute_l ength;
u2 |ine_nunber_table_|l ength;
{ u2 start_pc;
u2 |ine_nunber;
} line_nunber_table[line_nunber_table_|ength];

}

The items of the Li neNunber Tabl e_at t ri but e structure are as follows:

attribute_name_i ndex

The value of the attribute_name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f 8_i nfo structure (84.4.7) representing the string
"Li neNunber Tabl e".

attribute_l ength
Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.

I'i ne_nunber _table_|l ength
The value of the | i ne_nunber _tabl e_| engt h item indicates the number of
entriesinthel i ne_nunber _t abl e array.

i ne_nunber _tabl e[]

Each entry in the I'i ne_nunber _t abl e array indicates that the line number
in the original source file changes at a given point in the code array. Each
I'i ne_number _t abl e entry must contain the following two items:

THE cLAss FILE FORMAT Attributes

start_pc

The vaue of the st art _pc item must be avalid index into the code array
of this code attribute. The item indicates the index into the code array at
which the code for anew line in the original source file begins.

l'i ne_nunber

The value of thel i ne_nunber item gives the corresponding line number
in the original sourcefile.

4713 ThelLocal Vari abl eTabl e Attribute

The Local Vari abl eTabl e attribute is an optional variable-length attribute in the
attributes table of a Code attribute (84.7.3). It may be used by debuggers to
determine the value of agiven local variable during the execution of a method.

If multiple Local Vvari abl eTabl e attributes are present inthe at t ri but es table of
aCode attribute, then they may appear in any order.

There may be no more than one Local Var i abl eTabl e attribute per local variable
intheat tri but es table of aCode attribute.

The Local Vari abl eTabl e attribute has the following format:

Local Vari abl eTabl e_attribute {
u2 attribute_nane_i ndex;
ud attribute_l ength;
u2 |l ocal _variabl e_tabl e_I engt h;
{ u2 start_pc;
u2 | ength;
u2 name_i ndex;
u2 descriptor_index;
u2 i ndex;
} local _variable_table[local _variable_table_|ength];

}

Theitemsof the Local Vari abl eTabl e_at t ri but e structure are as follows:

attri bute_nane_i ndex

The value of the attribute name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f8_i nfo structure (84.4.7) representing the string
"Local Vari abl eTabl e".

attribute_l ength

Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding theinitial six bytes.

4.7

139

4.7

140

Attributes THE cLAss FILE FORMAT

| ocal _vari abl e_tabl e_|l ength

The value of the | ocal _vari abl e_t abl e_| engt h item indicates the number
of entriesinthel ocal _vari abl e_t abl e array.

I ocal _variabl e_tabl e[]

Eachentryinthel ocal _vari abl e_t abl e array indicatesarange of code array
offsets within which alocal variable has a value, and indicates the index into
thelocal variable array of the current frame at which that local variable can be
found. Each entry must contain the following five items:

start_pc, length

The vaue of the st art _pc item must be avalid index into the code array
of this Code attribute and must be the index of the opcode of an instruction.

Thevaueofstart _pc + | engt h must either beavalidindex intothecode
array of this Code attribute and be the index of the opcade of an instruction,
or it must be the first index beyond the end of that code array.

Thestart_pc and | engt h items indicate that the given local variable has
avalue at indicesinto the code array intheinterval [start _pc, start _pc
+ | ength), that is, between start _pc inclusiveand start_pc + | ength
exclusive.

name_i ndex

The value of the narme_i ndex item must be a valid index into the
const ant _pool table. Theconst ant _pool entry at that index must contain
a CONSTANT_Ut f 8_i nf o structure representing a valid unqualified name
denoting alocal variable (84.2.2).

descri pt or _i ndex

The value of the descri pt or _i ndex item must be a valid index into the
const ant _pool table. Theconst ant _pool entry at that index must contain
a CONSTANT_Ut f 8_i nf o structure representing a field descriptor which
encodes the type of alocal variable in the source program (84.3.2).

i ndex

The value of the i ndex item must be a valid index into the local variable
array of the current frame. The given local variableisat i ndex inthelocal
variable array of the current frame.

If thegivenlocal variableisof typedoubl e or | ong, it occupiesbothi ndex
andi ndex + 1.

THE cLAss FILE FORMAT Attributes

4.7.14 ThelLocal Vari abl eTypeTabl e Attribute

The Local Vvari abl eTypeTabl e attributeis an optional variable-length attribute in
theattri but es table of a Code attribute (84.7.3). It may be used by debuggers to
determine the value of agiven local variable during the execution of a method.

If multiple Local Vari abl eTypeTabl e attributes are present in the attri but es
table of agiven code attribute, then they may appear in any order.

There may be no more than one Local Vari abl eTypeTabl e attribute per local
variableintheat t ri but es table of aCode attribute.

The Local Vari abl eTypeTabl e attribute differs from the Local Vari abl eTabl e
attribute (84.7.13) in that it provides signature information rather than descriptor
information. Thisdifferenceisonly significant for variableswhosetype usesatypevariable
or parameterized type. Such variables will appear in both tables, while variables of other
types will appear only in Local Vari abl eTabl e.

The Local Vari abl eTypeTabl e attribute has the following format:

Local Vari abl eTypeTabl e_attribute {
u2 attribute_name_i ndex;
ud attribute_| ength;
u2 |l ocal _variable_type_table_| ength;
{ u2 start_pc;
u2 | ength;
u2 nane_i ndex;
u2 signature_index;
u2 i ndex;

} local variable_type_table[local _variable_type table_|length];

}

Theitems of the Local Vari abl eTypeTabl e_att ri but e structure are as follows:

attribute_nane_i ndex

The value of the attribute_name_index item must be a valid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f8_i nfo structure (84.4.7) representing the string
"Local Vari abl eTypeTabl e".

attribute_|l ength
Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.

| ocal _variable_type_table_length

The value of the I ocal _vari abl e_type_tabl e_l engt h item indicates the
number of entriesinthel ocal _vari abl e_t ype_t abl e array.

4.7

141

4.7 Attributes THE cLASs FILE FORMAT

| ocal _variabl e_type_tabl e[]

Eachentryinthel ocal _vari abl e_t ype_t abl e array indicatesarangeof code
array offsets within which alocal variable has avalue, and indicates the index
into the local variable array of the current frame at which that local variable
can be found. Each entry must contain the following five items:

start_pc, length

The vaue of the st art _pc item must be avalid index into the code array
of this Code attribute and must be theindex of the opcode of an instruction.

Thevalueof start _pc + | engt h must either beavalidindex intothecode
array of thisCode attribute and be the index of the opcode of an instruction,
or it must be the first index beyond the end of that code array.

Thestart_pc and | engt h items indicate that the given local variable has
avalue at indicesinto the code array intheinterval [start _pc, start _pc
+ |l ength), that is, between start _pc inclusiveand start_pc + | ength
exclusive.

name_i ndex
The value of the nanme_i ndex item must be a valid index into the
const ant _pool table. Theconst ant _pool entry at that index must contain
a CONSTANT_Ut f 8_i nf o structure representing a valid unqualified name
denoting alocal variable (84.2.2).

si gnhat ur e_i ndex

The value of the si gnat ure_i ndex item must be a valid index into the
const ant _pool table. Theconst ant _pool entry at that index must contain
a CONSTANT_Ut f8_i nfo structure representing a field signature which
encodes the type of alocal variable in the source program (84.7.9.1).

i ndex

The value of the i ndex item must be a valid index into the local variable
array of the current frame. The given local variableisat i ndex inthelocal
variable array of the current frame.

If thegivenlocal variableisof typedoubl e or | ong, it occupiesbothi ndex
andi ndex + 1.

4.7.15 TheDeprecated Attribute

The Depr ecat ed attribute is an optional fixed-length attribute in the at t ri but es
tableof ad assFil e, fiel d_i nfo, Or met hod_i nf o structure (84.1, 84.5, §4.6). A

142

THE cLAss FILE FORMAT Attributes

class, interface, method, or field may be marked using a Depr ecat ed attribute to
indicate that the class, interface, method, or field has been superseded.

A run-time interpreter or tool that readsthe cl ass file format, such as a compiler,
can use this marking to advise the user that a superseded class, interface, method,
or field is being referred to. The presence of a Depr ecat ed attribute does not alter
the semantics of a class or interface.

The Depr ecat ed attribute has the following format:

Deprecated_attribute {
u2 attribute_name_i ndex;
ud attribute_| ength;

}

Theitems of the Depr ecat ed_at t ri but e structure are as follows:

attribute_name_i ndex

The value of the attribute_nanme_i ndex item must be a valid index into
the const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7) representing the string "Depr ecat ed".

attribute_l ength
Thevaueof theattri bute_| engt h item must be zero.

4716 TheRuntinmeVisi bl eAnnot ati ons Attribute

The RuntineVisibl eAnnotations attribute is a variable-length attribute
in the attributes table of a dassFile, field_ info, method_info,
or record_conponent _info structure (84.1, 845, 84.6, 84.7.30). The
Runti neVi si bl eAnnot at i ons attribute stores run-time visible annotations on the
declaration of the corresponding class, field, method, or record component.

There may be a most one RuntineVisibl eAnnotations attribute in
the attributes table of a dassFile, field_info, nethod_info, Of
recor d_conponent _i nf o structure.

TheRunt i meVi si bl eAnnot at i ons attribute has the following format:

Runti meVi si bl eAnnot ations_attribute {

u2 attri bute_nane_index;
ud attribute_| ength;
u2 num annot at i ons;

annot ati on annot at i ons[num annot ati ons] ;

4.7

143

4.7 Attributes THE cLASs FILE FORMAT

The items of the RuntineVisibl eAnnotations_attribute Structure are as
follows:

attri bute_nane_i ndex

The value of the attribute _name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f8_i nfo structure (84.4.7) representing the string
"Runt i meVi si bl eAnnot ati ons".

attribute_l ength

Thevaueof theattri bute_| engt h item indicates the length of the attribute,
excluding theinitial six bytes.

num annot ati ons

The vaue of the num annot at i ons item gives the number of run-time visible
annotations represented by the structure.

annot at i onsJ[]

Each entry in the annot ati ons table represents a single run-time visible
annotation on a declaration. The annot ati on structure has the following
format:

annotation {
u2 type_i ndex;
u2 num el emrent _val ue_pai rs;
{ u2 el ement _name_i ndex;
el ement _val ue val ue;
} el ement _val ue_pairs[num el enent _val ue_pairs];

}

Theitems of the annot at i on structure are as follows:

t ype_i ndex
The value of the type_index item must be a valid index into the
const ant _pool table. The const ant _pool entry at that index must be
a CONSTANT_Ut f 8_i nf o structure (84.4.7) representing a field descriptor

(84.3.2). Thefield descriptor denotesthetype of the annotation represented
by thisannot at i on structure.

num el enent _val ue_pairs

The value of the num el enent _val ue_pai rs item gives the number of
element-value pairs of the annotation represented by this annot ati on
structure.

144

THE cLASS FILE FORMAT Attributes 4.7

el ement _val ue_pairs[]

Eachvalueof theel ement _val ue_pai r s tablerepresentsasingle element-
value pair inthe annotation represented by thisannot at i on structure. Each
el enent _val ue_pai r s entry contains the following two items:

el enent _nane_i ndex

Thevalue of theel enent _name_i ndex item must beavalid index into
theconst ant _pool table. Theconst ant _pool entry at that index must
be a CONSTANT_ut f 8_i nfo structure (84.4.7). The const ant _pool
entry denotes the name of the element of the element-value pair
represented by thisel enent _val ue_pai rs entry.

In other words, the entry denotes an element of the annotation interface specified
by t ype_i ndex.

val ue

The value of theval ue item represents the value of the element-value
pair represented by thisel ement _val ue_pai rs entry.

4.7.16.1 Theel ement _val ue structure

Theel ement _val ue structureisadiscriminated union representing the value of an
element-value pair. It has the following format:

el ement _val ue {
ul tag;
uni on {
u2 const_val ue_i ndex;

{ u2 type_nane_i ndex;
u2 const_name_i ndex;
} enum const _val ue;

u2 class_info_index;
annot ati on annot ati on_val ue;

{ u2 num val ues;
el ement _val ue val ues[num val ues];
} array_val ue;
} val ue;

}

The t ag item uses a single ASCII character to indicate the type of the value of
the element-value pair. This determines which item of the val ue union isin use.
Table4.7.16.1-A showsthe valid charactersfor thet ag item, the typeindicated by

145

4.7 Attributes THE cLASs FILE FORMAT

each character, and theitem used in theval ue union for each character. Thetable's
fourth column is used in the description below of one item of the val ue union.

Table4.7.16.1-A. Interpretation of t ag values astypes

tag Item Type val ue Item Constant Type

B byte const _val ue_i ndex CONSTANT_I nt eger
C char const _val ue_i ndex CONSTANT_I nt eger
D doubl e const _val ue_i ndex CONSTANT_Doubl e
F fl oat const _val ue_i ndex CONSTANT_FI oat

I i nt const _val ue_i ndex CONSTANT _I nt eger
J | ong const _val ue_i ndex CONSTANT_Long

S short const _val ue_i ndex CONSTANT_I nt eger
z bool ean const _val ue_i ndex CONSTANT_I nt eger
S String const _val ue_i ndex CONSTANT_Ut f 8

e Enum class enum const _val ue Not applicable

c Cl ass cl ass_i nfo_i ndex Not applicable

@ Annotation interface annot at i on_val ue Not applicable

[Array type array_val ue Not applicable

The value item represents the value of an element-value pair. Theitemisaunion,
whose own items are as follows:

const _val ue_i ndex
The const _val ue_i ndex item denotes a constant of either a primitive type or
thetype st ri ng asthe value of this element-value pair.

The value of the const _val ue_i ndex item must be a valid index into the
const ant _pool table. Theconst ant _pool entry at that index must be of atype
appropriatetothet ag item, as specified inthe fourth column of Table4.7.16.1-
A.

enum const _val ue
The enum const _val ue item denotes an enum constant as the value of this
element-value pair.

Theenum const _val ue item consists of the following two items:

146

THE cLAss FILE FORMAT Attributes

t ype_name_i ndex

The value of the t ype_name_i ndex item must be a valid index into the
const ant _pool table. The const ant _pool entry at that index must be
a CONSTANT_Ut f 8_i nf o structure (84.4.7) representing a field descriptor
(84.3.2). The const ant _pool entry gives the internal form of the binary
name of the type of the enum constant represented by thisel enent _val ue
structure (84.2.1).

const _name_i ndex

The value of the const _nane_i ndex item must be avalid index into the
const ant _pool table. The const ant _pool entry at that index must be a
CONSTANT_Ut f 8_i nf o structure (84.4.7). The const ant _pool entry gives
the simple name of the enum constant represented by thisel ement _val ue
structure.

cl ass_i nfo_i ndex

Thecl ass_i nf o_i ndex item denotesaclassliteral asthevalue of thiselement-
value pair.

Thecl ass_i nfo_i ndex item must be a valid index into the const ant _pool

table. Theconst ant _pool entry at that index must be a CONSTANT_Ut f 8_i nf o
structure (84.4.7) representing a return descriptor (84.3.3). The return
descriptor gives the type corresponding to the class litera represented by this
el enent _val ue structure. Types correspond to class literals as follows:

For a class litera C. cl ass, where C is the name of a class, interface,
or array type, the corresponding type is C. The return descriptor in the
const ant _pool will be aClassType or an ArrayType.

For a class literal p. cl ass, where p is the name of a primitive type, the
corresponding typeisp. Thereturn descriptor in the const ant _pool will be
aBaseType character.

For aclass literal voi d. cl ass, the corresponding type is voi d. The return
descriptor in the const ant _pool will be V.

For example, the class literal Qbj ect . cl ass corresponds to the type Qbj ect, so the
const ant _pool entry isLjava/l ang/ Qbj ect ; , whereas the class literal i nt . cl ass
corresponds to the typei nt , so the const ant _pool entryisl .

The class literal voi d. cl ass corresponds to voi d, so the constant _pool entry
is V, whereas the class litera Voi d. cl ass corresponds to the type Voi d, so the
const ant _pool entryisLj ava/ | ang/ Voi d; .

4.7

147

4.7

148

Attributes THE cLAss FILE FORMAT

annot ati on_val ue

Theannot at i on_val ue item denotesa"nested" annotation asthe value of this
element-value pair.

Thevalue of theannot at i on_val ue itemisanannot at i on structure (84.7.16)
that gives the annotation represented by thisel enent _val ue structure.

array_val ue
Thear ray_val ue item denotesan array asthe value of thiselement-value pair.

Thearray_val ue item consists of the following two items:

num val ues

The value of the num val ues item gives the number of elements in the
array represented by thisel enent _val ue structure.

val ues[]

Eachvaueintheval ues tablegivesthe corresponding element of thearray
represented by thisel enent _val ue structure.

47.17 TheRunti nel nvi si bl eAnnot ati ons Attribute

The Runti nel nvi si bl eAnnot ati ons attribute is a variable-length attribute
in the attributes table of a dassFile, field_ info, nethod_info,
or record_conponent _info structure (84.1, 84.5, 84.6, 84.7.30). The
Runt i nel nvi si bl eAnnot at i ons attribute stores run-time invisible annotations on
the declaration of the corresponding class, method, field, or record component.

There may be a most one Runtinel nvisibl eAnnot ations attribute in
the attributes table of a CdassFile, field_ info, method_ info, oOf
recor d_conponent _i nf o structure.

The Runtinelnvi si bl eAnnot ati ons atribute is smilar to the
Runti neVi si bl eAnnot ati ons aéttribute (84.7.16), except that the annotations
represented by aRunt i nel nvi si bl eAnnot at i ons attribute must not be made available
for return by reflective APIs, unless the Java Virtual Machine has been instructed to retain
these annotations via some implementation-specific mechanism such as a command line
flag. In the absence of such instructions, the Java Virtual Machine ignores this attribute.

The Runt i mel nvi si bl eAnnot at i ons attribute has the following format:

THE cLAss FILE FORMAT Attributes

Runti mel nvi si bl eAnnot ations_attribute {

u2 attribute_nane_i ndex;
ud attribute_| ength;
u2 num annot at i ons;

annot ati on annot ati ons[num annot ati ons];

}

The items of the Runti nel nvi si bl eAnnot ations_attri bute Structure are as
follows:

attribute_name_i ndex

The value of the attribute_name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f 8_i nfo structure (84.4.7) representing the string
"Runt i el nvi si bl eAnnot ati ons".

attribute_l ength
Thevaueof theattri but e_I engt h item indicates the length of the attribute,
excluding the initial six bytes.

num annot ati ons
Thevalue of thenum annot at i ons item givesthe number of run-timeinvisible
annotations represented by the structure.

annot ati onsf[]

Each entry in the annot ati ons table represents a single run-time invisible
annotation on adeclaration. The annot at i on structure is specified in 84.7.16.

4718 TheRunti neVisi bl ePar amet er Annot at i ons Attribute

The RuntimeVi si bl ePar anet er Annot ati ons atribute is a variable-length
attribute in the attributes table of the nethod_info structure (84.6).
The Runti meVi si bl ePar anet er Annot at i ons attribute stores run-time visible
annotations on the declarations of formal parameters of the corresponding method.

There may be at most one Runt i neVi si bl ePar anet er Annot at i ons attribute in
theat tri but es table of anet hod_i nf o Structure.

TheRunt i meVi si bl ePar armet er Annot at i ons attribute has the following format:

4.7

149

4.7

150

Attributes THE cLAss FILE FORMAT

Runt i meVi si bl ePar anet er Annot ati ons_attribute {
u2 attribute_nane_i ndex;
ud attribute_l ength;
ul num paraneters;
{ u2 num annot at i ons;
annot ati on annot ati ons[num annot ati ons];
} paraneter_annot ati ons[num par aneters];

The items of the Runti meVi si bl ePar aret er Annot ati ons_attri but e Structure
are asfollows:

attri bute_nane_i ndex

The value of the attribute _name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f8_i nfo structure (84.4.7) representing the string
"Runt i meVi si bl ePar anet er Annot at i ons".

attribute_l ength

Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding theinitial six bytes.

num par amet er s

The value of the num par anet er s item gives the number of run-time visible
parameter annotations represented by this structure.

Thereis no assurance that this number is the same as the number of parameter descriptors
in the method descriptor.

par anet er _annot ati ons[]

Each entry in the paranet er _annot ati ons table represents all of the run-
time visible annotations on the declaration of a single formal parameter. Each
par anet er _annot at i ons entry contains the following two items:

num annot at i ons
The value of the num annot ati ons item indicates the number of run-
time visible annotations on the declaration of the formal parameter
corresponding to the par anet er _annot at i ons entry.

annot at i onsJ[]

Each entry in the annot at i ons table represents a single run-time visible
annotation on the declaration of the formal parameter corresponding to the
par amet er _annot at i ons entry. The annot at i on structure is specified in
84.7.16.

THE cLAss FILE FORMAT Attributes

Thei'thentry inthepar anet er _annot at i ons table may, but isnot required to,
correspond to the i'th parameter descriptor in the method descriptor (84.3.3).

For example, a compiler may choose to create entries in the table corresponding only to
those parameter descriptors which represent explicitly declared parametersin source code.
In the Java programming language, a constructor of an inner class is specified to have
an implicitly declared parameter before its explicitly declared parameters (JLS §8.8.1), so
the corresponding <i ni t > method in acl ass file has a parameter descriptor representing
the implicitly declared parameter before any parameter descriptors representing explicitly
declared parameters. If the first explicitly declared parameter is annotated in source
code, then a compiler may create par amet er _annot ati ons[0] to store annotations
corresponding to the second parameter descriptor.

4719 TheRunti nel nvi si bl ePar anet er Annot at i ons Attribute

The Runti mel nvi si bl ePar amet er Annot ati ons attribute is a variable-length
atribute in the attributes table of a nethod_info structure (84.6). The
Runt i mel nvi si bl ePar anet er Annot ati ons attribute stores run-time invisible
annotations on the declarations of formal parameters of the corresponding method.

There may be at most one Runt i nel nvi si bl ePar anet er Annot at i ons attributein
theattri but es table of anet hod_i nf o structure.

The Runtinel nvi si bl ePar anet er Annot ati ons atribute is similar to the
Runt i meVi si bl ePar anet er Annot ati ons attribute (84.7.18), except that the
annotations represented by a Runti mel nvi si bl ePar amet er Annot ati ons attribute
must not be made available for return by reflective APIs, unless the Java Virtual Machine
has specifically been instructed to retain these annotations via some implementation-
specific mechanism such as a command line flag. In the absence of such instructions, the
Java Virtual Machine ignores this attribute.

The Runti el nvi si bl ePar anet er Annot ati ons attribute has the following
format:

Runt i nmel nvi si bl ePar arret er Annot ations_attribute {
u2 attribute_name_i ndex;
u4 attribute_l ength;
ul num paraneters;
{ u2 num annot at i ons;
annot ati on annot ati ons[num annot ati ons];
} paraneter_annotati ons[num paraneters];

Theitemsof theRunt i nel nvi si bl ePar anet er Annot ati ons_at t ri but e structure
are asfollows:

4.7

151

4.7

152

Attributes THE cLAss FILE FORMAT

attribute_name_i ndex

The value of the attribute_name_index item must be a vaid index
into the constant _pool table. The constant _pool entry at that index
must be a CONSTANT_Ut f 8_i nfo structure (84.4.7) representing the string
"Runt i mel nvi si bl ePar arret er Annot at i ons".

attribute_l ength
Thevaueof theattri bute_l engt h item indicates the length of the attribute,
excluding the initial six bytes.

num _par anmeters

Thevalue of the num par anet er s item gives the number of run-timeinvisible
parameter annotations represented by this structure.

Thereis no assurance that this number is the same as the number of parameter descriptors
in the method descriptor.

par anmet er _annot ati ons[]

Each entry in the par anet e