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CHAPTER 1

| ntroduction

T HE Javee programming language is a general-purpose, concurrent, class
based, object-oriented language. It is designed to be simple enough that many
programmers can achieve fluency inthelanguage. The Javaprogramming language
isrelated to C and C++ but isorganized rather differently, with anumber of aspects
of C and C++ omitted and afew ideas from other languagesincluded. It isintended
to be a production language, not a research language, and so, as C. A. R. Hoare
suggested in his classic paper on language design, the design has avoided including
new and untested features.

The Javaprogramming languageis strongly and statically typed. This specification
clearly distinguishes between the compile-time errorsthat can and must be detected
at compile time, and those that occur at run time. Compile time normally consists
of translating programs into a machine-independent byte code representation.
Run-time activities include loading and linking of the classes needed to execute
a program, optional machine code generation and dynamic optimization of the
program, and actual program execution.

The Java programming language is arelatively high-level language, in that details
of the machine representation are not available through the language. It includes
automatic storage management, typically using a garbage collector, to avoid
the safety problems of explicit dealocation (as in C's free or C++'s del et e).
High-performance garbage-collected implementations can have bounded pausesto
support systems programming and real-time applications. The language does not
include any unsafe constructs, such asarray accesseswithout index checking, since
such unsafe constructs would cause a program to behave in an unspecified way.

The Java programming language is normally compiled to the bytecode instruction
set and binary format defined in The Java Virtual Machine Specification, Java SE
15 Edition.
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Organization of the Specification INTRODUCTION

1.1 Organization of the Specification

Chapter 2 describes grammars and the notation used to present the lexical and
syntactic grammars for the language.

Chapter 3 describesthe lexical structure of the Java programming language, which
is based on C and C++. The language is written in the Unicode character set. It
supports the writing of Unicode characters on systems that support only ASCII.

Chapter 4 describes types, values, and variables. Types are subdivided into
primitive types and reference types.

The primitive types are defined to be the same on all machines and in al
implementations, and are various sizes of two's-complement integers, |EEE 754
floating-point numbers, abool ean type, and aUnicode character char type. Values
of the primitive types do not share state.

Reference types are the class types, the interface types, and the array types. The
reference types are implemented by dynamicaly created objects that are either
instances of classes or arrays. Many referencesto each object can exist. All objects
(including arrays) support the methods of the class j ect , which is the (single)
root of the class hierarchy. A predefined st ri ng class supports Unicode character
strings. Classes exist for wrapping primitive values inside of objects. In many
cases, wrapping and unwrapping is performed automatically by the compiler (in
which case, wrapping is called boxing, and unwrapping is called unboxing). Class
and interface declarations may be generic, that is, they may be parameterized by
other reference types. Such declarations may then be invoked with specific type
arguments.

Variables are typed storage locations. A variable of a primitive type holds avalue
of that exact primitive type. A variable of aclass type can hold a null reference or
areference to an object whose type is that class type or any subclass of that class
type. A variable of an interface type can hold a null reference or areferenceto an
instance of any classthat implements theinterface. A variable of an array type can
hold anull reference or areferenceto an array. A variable of classtype Obj ect can
hold a null reference or areference to any object, whether class instance or array.

Chapter 5 describes conversions and numeric promotions. Conversions change the
compile-time type and, sometimes, the value of an expression. These conversions
include the boxing and unboxing conversions between primitive types and
reference types. Numeric promotions are used to convert the operands of anumeric
operator to a common type where an operation can be performed. There are no
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loopholesinthelanguage; castson referencetypesare checked at runtimeto ensure
type safety.

Chapter 6 describes declarations and names, and how to determine what names
mean (that is, which declaration a name denotes). The Java programming language
does not require classes and interfaces, or their members, to be declared before
they are used. Declaration order issignificant only for local variables, local classes,
and the order of field initializers in a class or interface. Recommended naming
conventions that make for more readable programs are described here.

Chapter 7 describes the structure of a program, which is organized into packages.
The members of a package are classes, interfaces, and subpackages. Packages,
and consequently their members, have names in a hierarchical name space; the
Internet domain name system can usually be used to form unique package names.
Compilation units contain declarations of the classes and interfaces that are
members of a given package, and may import classes and interfaces from other
packages to give them short names.

Packages may be grouped into modules that serve as building blocks in the
construction of very large programs. The declaration of a module specifies which
other modules (and thus packages, and thus classes and interfaces) arerequired in
order to compile and run code in its own packages.

The Java programming language supports limitations on external access to the
members of packages, classes, and interfaces. The members of a package may be
accessible solely by other members in the same package, or by members in other
packages of the same module, or by members of packages in different modules.
Similar constraints apply to the members of classes and interfaces.

Chapter 8 describes classes. The members of classes are classes, interfaces, fields
(variables) and methods. Classvariablesexist once per class. Class methods operate
without reference to a specific object. Instance variables are dynamically created
in objects that are instances of classes. Instance methods are invoked on instances
of classes; such instances become the current object t hi s during their execution,
supporting the object-oriented programming style.

Classes support singleinheritance, in which each classhasasingle superclass. Each
class inherits members from its superclass, and ultimately from the class j ect .
Variablesof aclasstype can reference an instance of that class or of any subclass of
that class, allowing new types to be used with existing methods, polymorphically.

Classes support concurrent programming with synchr oni zed methods. Methods
declare the checked exceptions that can arise from their execution, which allows
compile-time checking to ensure that exceptiona conditions are handled. Objects

11
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candeclareaf i nal i ze method that will beinvoked beforethe objectsarediscarded
by the garbage collector, allowing the objects to clean up their state.

For simplicity, the language has neither declaration "headers' separate from the
implementation of a class nor separate type and class hierarchies.

A special form of classes, enums, support the definition of small sets of valuesand
their manipulation in atype safe manner. Unlike enumerations in other languages,
enums are objects and may have their own methods.

Chapter 9 describes interfaces. The members of interfaces are classes, interfaces,
constant fields, and methods. Classes that are otherwise unrelated can implement
the same interface. A variable of an interface type can contain a reference to any
object that implements the interface.

Classes and interfaces support multiple inheritance from interfaces. A class that
implements one or more interfaces may inherit instance methods from both its
superclass and its superinterfaces.

Annotation types are speciaized interfaces used to annotate declarations. Such
annotations are not permitted to affect the semantics of programs in the Java
programming language in any way. However, they provide useful input to various
tools.

Chapter 10 describes arrays. Array accesses include bounds checking. Arrays are
dynamically created objects and may be assigned to variables of type j ect . The
language supports arrays of arrays, rather than multidimensional arrays.

Chapter 11 describes exceptions, which are nonresuming and fully integrated with
the language semantics and concurrency mechanisms. There are three kinds of
exceptions: checked exceptions, run-time exceptions, and errors. The compiler
ensures that checked exceptions are properly handled by requiring that a method
or constructor can result in a checked exception only if the method or constructor
declaresit. This provides compile-time checking that exception handlers exist, and
aids programming in the large. Most user-defined exceptions should be checked
exceptions. Invalid operationsin the program detected by the JavaVirtual Machine
result in run-time exceptions, such as Nul | Poi nt er Except i on. Errorsresult from
failures detected by the Java Virtua Machine, such as cut Of Meror yEr r or . Most
simple programs do not try to handle errors.

Chapter 12 describes activities that occur during execution of a program. A
program is normaly stored as binary files representing compiled classes and
interfaces. These binary files can be loaded into a Java Virtual Machine, linked to
other classes and interfaces, and initialized.
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After initialization, class methods and class variables may be used. Some classes
may be instantiated to create new objects of the class type. Objects that are class
instances also contain an instance of each superclass of the class, and object
creation involves recursive creation of these superclass instances.

When an object is no longer referenced, it may be reclaimed by the garbage
collector. If an object declaresafinalizer, thefinalizer is executed before the object
is reclaimed to give the object a last chance to clean up resources that would not
otherwise be released. When a classis no longer needed, it may be unloaded.

Chapter 13 describes binary compatibility, specifying the impact of changes to
typeson other typesthat use the changed types but have not been recompiled. These
considerationsare of interest to devel opers of typesthat areto bewidely distributed,
in a continuing series of versions, often through the Internet. Good program
development environments automatically recompile dependent code whenever a
type is changed, so most programmers need not be concerned about these details.

Chapter 14 describes blocks and statements, which are based on C and C++.
The language has no got o statement, but includes labeled br eak and cont i nue
statements. Unlike C, the Java programming language requires bool ean (Or
Bool ean) expressions in control-flow statements, and does not convert types to
bool ean implicitly (except through unboxing), in the hope of catching more errors
at compile time. A synchroni zed statement provides basic object-level monitor
locking. A t ry statement canincludecat ch and f i nal I y clausesto protect against
non-local control transfers.

Chapter 15 describes expressions. This document fully specifies the (apparent)
order of evaluation of expressions, for increased determinism and portability.
Overloaded methods and constructors are resolved at compile time by picking the
most specific method or constructor from those which are applicable.

Chapter 16 describes the precise way in which the language ensures that
local variables are definitely set before use. While all other variables are
automatically initialized to a default value, the Java programming language does
not automatically initialize local variablesin order to avoid masking programming
errors.

Chapter 17 describes the semantics of threads and locks, which are based on
the monitor-based concurrency originally introduced with the Mesa programming
language. The Java programming language specifies a memory model for shared-
memory multiprocessors that supports high-performance implementations.

Chapter 18 describesavariety of typeinference algorithms used to test applicability
of generic methods and to infer types in a generic method invocation.

11
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Chapter 19 presents a syntactic grammar for the language.

1.2 Example Programs

Most of the example programs given in the text are ready to be executed and are
similar in form to:

cl ass Test {
public static void main(String[] args) {
for (int i =0; i < args.length; i++)
Systemout.print(i == 0 ? args[i] : " " + args[i]);
Systemout. printlin();

}

Onamachinewith the Oracle JDK installed, thisclass, storedinthefileTest . j ava,
can be compiled and executed by giving the commands:

javac Test.java
java Test Hello, world.

producing the output:

Hel | o, worl d.

1.3 Notation

Throughout this specification we refer to classes and interfaces drawn from the
Java SE Platform API. Whenever we refer to aclass or interface (other than those
declared in an example) using asingle identifier N, the intended reference isto the
class or interface named N in the packagej ava. | ang. We use the canonical name
(86.7) for classes or interfaces from packages other than j ava. I ang.

Non-normative information, designed to clarify the specification, is given in
smaller, indented text.

Thisis non-normative information. It provides intuition, rationale, advice, examples, etc.

The type system of the Java programming language occasionally relies on the
notion of a substitution. The notation [ F1: =T, .. ., Fn: =Tn] denotes substitution
of FF byT forl<i<n.
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1.4 Relationship to Predefined Classes and I nterfaces

As noted above, this specification often refers to classes of the Java SE
Platform API. In particular, some classes have a specia relationship with
the Java programming language. Examples include classes such as bj ect,
C ass, d asslLoader, String, Thread, and the classes and interfaces in package
java. |l ang. refl ect , among others. This specification constrains the behavior of
such classes and interfaces, but does not provide acompl ete specification for them.
The reader is referred to the Java SE Platform API documentation.

Consequently, this specification does not describe reflection in any detail.
Many linguistic constructs have analogs in the Core Reflection API
(java.l ang.refl ect) and the Language Moddl APl (j avax. | ang. nodel ), but
these are generally not discussed here. For example, whenwelist thewaysinwhich
an object can be created, we generally do not include the ways in which the Core
Reflection API can accomplish this. Readers should be aware of these additional
mechanisms even though they are not mentioned in the text.

1.5 Preview Features

A preview feature is a new feature of the Java programming language that
is fully specified, fully implemented, and yet impermanent. It is available in
implementations of a given release of the Java SE Platform to provoke developer
feedback based on real world use; this may lead to it becoming permanent in a
future release of the Java SE Platform.

Implementations must disable, at both compile time and run time, the preview
features defined by agiven release of the Java SE Platform, unlessthe user indicates
via the host system, at both compile time and run time, that preview features are
to be enabled.

The preview features defined by a given release of the Java SE Platform are
specified in standalone documents that indicate changes ("diffs') to The Javae
Language Specification for that release. The specifications of preview features are
incorporated into The Javae Language Specification by reference, and made a part
thereof, if and only if preview features are enabled at compile time.

Java SE 15 defines three preview features in the Java programming language:
Pattern Matching for i nst anceof ; Records; and Sealed Classes. The standalone
documents which specify these preview features are available at the Oracle web
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site which hosts The Java® Language Specification: ht t ps: / / docs. or acl e. com
j avase/ specs/ .

A preview feature may be associated with elements of the Java SE Platform API.
Namely, an APl element is essential if it exists in the package j ava. | ang or
java. | ang. annot ati on, and programs cannct use the preview feature without
referring (directly or indirectly) to the API element.

If preview features are disabled, then a compile-time error occurs if an essentia
APl element isused (overridden, invoked, or referenced by name) in the declaration
of aprogram element (whether explicitly or implicitly declared).

If preview features are enabled, then a Java compiler must produce a preview
warning if an essential APl element is used (overridden, invoked, or referenced
by name) in the declaration of a program element (whether explicitly or implicitly
declared), unless:

e Theuseiswithin adeclaration that isitself an essential APl element; or

» The use is within a declaration that is annotated to suppress preview warnings
(89.6.4.5); or

» The declaration where the use appears and the declaration of the essential AP
element are both within the same outermost class; or

* Theuseiswithinani nport declaration that imports the essential APl element.
Java SE 15 contain the following essential APl elements:

* For the preview feature Records. The class Record; and in enum
j ava. | ang. annot at i on. El erent Type, the enum constant RECORD COVPONENT.

1.6 Feedback

Readers are invited to report technical errors and ambiguities in The Javae
Language Specificationtoj | s-j vis- spec- comment s@penj dk. j ava. net .

Questions concerning the behavior of j avac (the reference compiler for the Java
programming language), and in particular its conformance to this specification,
may be sent to conpi | er - dev@pen;j dk. j ava. net .
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CHAPTER2

Grammars

THIS chapter describes the context-free grammars used in this specification to
define the lexical and syntactic structure of a program.

2.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has
an abstract symbol called a nonterminal as its left-hand side, and a sequence of
one or more nonterminal and terminal symbols as its right-hand side. For each
grammar, the terminal symbols are drawn from a specified al phabet.

Starting from a sentence consisting of asingledistinguished nonterminal, called the
goal symbol, a given context-free grammar specifies alanguage, namely, the set of
possible sequences of terminal symbols that can result from repeatedly replacing
any nonterminal in the sequence with aright-hand side of a production for which
the nonterminal isthe left-hand side.

2.2 ThelLexical Grammar

A lexical grammar for the Java programming language is given in 83 (Lexical
Structure). Thisgrammar has asitsterminal symbolsthe characters of the Unicode
character set. It defines a set of productions, starting from the goal symbol Input
(83.5), that describe how sequences of Unicode characters (83.1) aretrandated into
a sequence of input elements (83.5).

These input elements, with white space (83.6) and comments (83.7) discarded,
form the terminal symbols for the syntactic grammar for the Java programming
language and are called tokens (83.5). These tokens are the identifiers (83.8),

11
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keywords (83.9), literals (83.10), separators (83.11), and operators (83.12) of the
Java programming language.

2.3 The Syntactic Grammar

The syntactic grammar for the Java programming language is given in Chapters
4, 6-10, 14, and 15. This grammar has as its terminal symbols the tokens defined
by the lexical grammar. It defines a set of productions, starting from the goal
symbol CompilationUnit (87.3), that describe how sequences of tokens can form
syntactically correct programs.

For convenience, the syntactic grammar is presented all together in Chapter 19.

2.4 Grammar Notation

Termina symbolsare showninfixed wi dt h font in the productions of the lexical
and syntactic grammars, and throughout this specification whenever the text is
directly referring to such a terminal symbol. These are to appear in a program
exactly aswritten.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is
introduced by the name of the nonterminal being defined, followed by acolon. One
or more aternative definitionsfor the nonterminal then follow on succeeding lines.

For example, the syntactic production:

IfThenStatement:
i f ( Expression) Statement

states that the nonterminal IfThenStatement represents the token i f, followed by a left
parenthesis token, followed by an Expression, followed by a right parenthesis token,
followed by a Statement.

The syntax {x} on the right-hand side of a production denotes zero or more
occurrences of X.

For example, the syntactic production:

ArgumentList:
Argument {, Argument}
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states that an ArgumentL.ist consists of an Argument, followed by zero or more occurrences
of acommaand an Argument. The result isthat an ArgumentList may contain any positive
number of arguments.

The syntax [X] on the right-hand side of a production denotes zero or one
occurrences of x. That is, x is an optional symbol. The alternative which contains
the optional symbol actually defines two alternatives: one that omits the optional
symbol and one that includesiit.

This means that:

BreakStatement:
br eak [Identifier] ;

is aconvenient abbreviation for:

BreakStatement:
break ;
br eak ldentifier ;

As another example, it means that:

BasicFor Satement:
for ( [Forlnit] ; [Expression] ; [ForUpdate] ) Satement

is aconvenient abbreviation for:

BasicFor Satement:
for (; [Expression] ; [ForUpdate] ) Satement
for ( Forlnit; [Expression] ; [ForUpdate] ) Satement

which in turn is an abbreviation for:

BasicFor Statement:
for (;; [ForUpdate] ) Satement
for (; Expression; [ForUpdate] ) Satement
for ( Forlnit; ; [ForUpdate] ) Satement
for ( Forlnit; Expression; [ForUpdate] ) Satement

which in turn is an abbreviation for:

24
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BasicFor Satement:
for (; ;) Satement
for (; ; ForUpdate) Satement
for (; Expression; ) Satement
for (; Expression; ForUpdate) Satement
for ( Forlnit; ; ) Satement
for ( Forlnit; ; ForUpdate) Satement
for ( Forlnit; Expression; ) Satement
for ( Forlnit; Expression; ForUpdate) Statement

so the nonterminal BasicFor Statement actually has eight alternative right-hand sides.

A very long right-hand side may be continued on asecond line by clearly indenting
the second line.

For example, the syntactic grammar contains this production:

Normal ClassDeclaration:
{ClassModifier} cl ass Typeldentifier [ TypeParameters]
[Superclass] [Superinterfaces] ClassBody

which defines one right-hand side for the nonterminal Normal ClassDeclaration.

The phrase (one of) on the right-hand side of a production signifiesthat each of the
symbols on the following line or linesis an aternative definition.

For example, the lexical grammar contains the production:

ZeroToThree:
(one of)
0123
which is merely a convenient abbreviation for:

ZeroToThree:
0

1
2
3
When an alternativein aproduction appearsto be atoken, it representsthe sequence
of characters that would make up such atoken.
Thus, the production:

BooleanLiteral:
(one of)
truefal se

14
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is shorthand for:

BooleanLiteral:
true
fal se

The right-hand side of a production may specify that certain expansions are not
permitted by using the phrase "but not" and then indicating the expansions to be
excluded.

For example:

Identifier:
IdentifierChars but not a Keyword or BooleanLiteral or NullLiteral

Finally, afew nonterminals are defined by a narrative phrase in roman type where
it would be impractical to list al the alternatives.

For example:

RawlnputCharacter:
any Unicode character

24
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CHAPTER3

Lexical Structure

THIS chapter specifies the lexical structure of the Java programming language.

Programs are written in Unicode (83.1), but lexical translations are provided (83.2)
so that Unicode escapes (83.3) can be used to include any Unicode character using
only ASCII characters. Line terminators are defined (83.4) to support the different
conventions of existing host systems while maintaining consistent line numbers.

The Unicode characters resulting from the lexical trandations are reduced to a
seguence of input elements (83.5), which are white space (83.6), comments (83.7),
and tokens. The tokens are the identifiers (83.8), keywords (83.9), literals (§83.10),
separators (83.11), and operators (83.12) of the syntactic grammar.

3.1 Unicode

Programs are written using the Unicode character set (81.7). Information about
this character set and its associated character encodings may befound at ht t ps: //
www. uni code. org/ .

The Java SE Platform tracks the Unicode Standard as it evolves. The precise
version of Unicode used by a given release is specified in the documentation of
the class Char act er.

Versionsof the Javaprogramming language prior to JDK 1.1 used Unicode 1.1.5. Upgrades
to newer versions of the Unicode Standard occurred in JDK 1.1 (to Unicode 2.0), JDK 1.1.7
(to Unicode 2.1), Java SE 1.4 (to Unicode 3.0), Java SE 5.0 (to Unicode 4.0), Java SE 7
(to Unicode 6.0), Java SE 8 (to Unicode 6.2), Java SE 9 (to Unicode 8.0), Java SE 11 (to
Unicode 10.0), Java SE 12 (to Unicode 11.0), Java SE 13 (to Unicode 12.1), and Java SE
15 (to Unicode 13.0).

The Unicode standard was originally designed as a fixed-width 16-bit character
encoding. It has since been changed to allow for characters whose representation

17
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requires more than 16 bits. The range of legal code points is now U+0000 to U
+10FFFF, using the hexadecimal U+n notation. Characters whose code points
are greater than U+FFFF are caled supplementary characters. To represent
the complete range of characters using only 16-bit units, the Unicode standard
defines an encoding called UTF-16. In thisencoding, supplementary charactersare
represented as pairs of 16-bit code units, the first from the high-surrogates range
(U+D800 to U+DBFF), and the second from the low-surrogates range (U+DCO00
to U+DFFF). For characters in the range U+0000 to U+FFFF, the values of code
points and UTF-16 code units are the same.

The Java programming language represents text in sequences of 16-bit code units,
using the UTF-16 encoding.

Some APIs of the Java SE Platform, primarily in the Char act er class, use 32-hit integers
to represent code points as individua entities. The Java SE Platform provides methods to
convert between 16-bit and 32-bit representations.

This specification uses the terms code point and UTF-16 code unit where the
representation is relevant, and the generic term character where the representation
isirrelevant to the discussion.

Except for comments (83.7), identifiers (83.8, and the contents of character literals,
string literals, and text blocks (83.10.4, 83.10.5, 83.10.6), al input e ements (83.5)
in a program are formed only from ASCI| characters (or Unicode escapes (83.3)
which result in ASCII characters).

ASCII (ANSI X3.4) isthe American Standard Code for Information Interchange. Thefirst
128 characters of the Unicode UTF-16 encoding are the ASCI| characters.

3.2 Lexical Trandations

A raw Unicode character stream is trandated into a sequence of tokens, using the
following three lexical tranglation steps, which are applied in turn:

1. Atranslation of Unicode escapes(83.3) intheraw stream of Unicode characters
to the corresponding Unicode character. A Unicode escape of theform\ uxxxx,
where xxxx is a hexadecimal value, represents the UTF-16 code unit whose
encoding is xxxx. This translation step allows any program to be expressed
using only ASCII characters.

2. A trandation of the Unicode stream resulting from step 1 into astream of input
characters and line terminators (83.4).
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3. A trandation of the stream of input characters and line terminators resulting
from step 2 into a sequence of input elements (83.5) which, after white space
(83.6) and comments (83.7) are discarded, comprise the tokens (§3.5) that are
the terminal symbols of the syntactic grammar (82.3).

The longest possible trandation is used at each step, even if the result does not
ultimately make a correct program while ancther lexical trandation would. There
is one exception: if lexical trandation occurs in a type context (84.11) and the
input stream has two or more consecutive > charactersthat are followed by anon->
character, then each > character must be translated to the token for the numerical
comparison operator >.

The input characters a--b are tokenized (83.5) as a, --, b, which is not part of any
grammatically correct program, even though the tokenization a, -, - , b could be part of a
grammatically correct program.

Without the rule for > characters, two consecutive > brackets in a type such as
Li st <Li st <Stri ng>> would be tokenized as the signed right shift operator >>, while
three consecutive > brackets in a type such as Li st <Li st <Li st <St ri ng>>> would be
tokenized as the unsigned right shift operator >>>. Worse, the tokenization of four or more
consecutive > bracketsin atype such asLi st <Li st <Li st <Li st <St ri ng>>>> would be
ambiguous, as various combinations of >, >>, and >>> tokens could represent the >>>>
characters.

3.3 Unicode Escapes

A compiler for the Java programming language (" Java compiler") first recognizes
Unicode escapes in itsinput, trand ating the ASCII characters\ u followed by four
hexadecimal digits to the UTF-16 code unit (83.1) for the indicated hexadecimal
value, and passing all other characters unchanged. One Unicode escape can
represent characters in the range U+0000 to U+FFFF; representing supplementary
charactersin the range U+010000 to U+10FFFF requires two consecutive Unicode
escapes. This trandlation step results in a sequence of Unicode input characters.

Unicodel nputCharacter:
UnicodeEscape
RawlnputCharacter

UnicodeEscape:
\ UnicodeMarker HexDigit HexDigit HexDigit HexDigit

3.3
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UnicodeMarker:

u {u}

HexDigit:
(one of)
0123456789abcdef ABCDEF

RawlnputCharacter:
any Unicode character

The\, u, and hexadecimal digits here are all ASCII characters.

In addition to the processing implied by the grammar, for each raw input character
that isabackslash\ , input processing must consider how many other \ characters
contiguously precedeit, separating it fromanon-\ character or the start of theinput
stream. If this number is even, then the\ is €ligible to begin a Unicode escape; if
the number is odd, then the\ is not eligible to begin a Unicode escape.

For example, theraw input "\ \ u2122=\u2122" resultsinthe eleven characters” \ \ u
2122 =™"(\u2122 isthe Unicode encoding of the character ™.

If an eligible\ isnot followed by u, then it istreated as a Rawl nputCharacter and
remains part of the escaped Unicode stream.

If an eligible\ isfollowed by u, or more than one u, and the last u is not followed
by four hexadecimal digits, then a compile-time error occurs.

The character produced by aUnicode escape does not participatein further Unicode
escapes.

For example, the raw input \ u005cu005a results in the six characters\ u 0 0 5 a,
because 005c¢ is the Unicode value for \ . It does not result in the character Z, which is
Unicode character 005a, because the\ that resulted from the\ u005c is not interpreted as
the start of afurther Unicode escape.

The Java programming language specifies a standard way of transforming a
program written in Unicode into ASCII that changes a program into a form that
can be processed by ASCII-based tools. The transformation involves converting
any Unicode escapesin the source text of the program to ASCII by adding an extra
u - for example, \ uxxxx becomes\ uuxxxx - while simultaneously converting non-
ASCII charactersin the source text to Unicode escapes containing asingle u each.

This transformed version is equally acceptable to a Java compiler and represents
the exact same program. The exact Unicode source can later be restored from this
ASCII form by converting each escape sequence where multipleu'sare present to a
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sequence of Unicode characterswith one fewer u, while simultaneously converting
each escape sequencewith asingleu to the corresponding single Unicode character.

A Java compiler should use the \ uxxxx notation as an output format to display Unicode
characters when a suitable font is not available.

3.4 LineTerminators

A Java compiler next divides the sequence of Unicode input charactersinto lines
by recognizing line terminators.

LineTerminator:
the ASCII LF character, also known as "newline"
the ASCII CR character, also known as "return”
the ASCII CR character followed by the ASCII LF character

InputCharacter:
Unicodel nputCharacter but not CR or LF

Lines are terminated by the ASCII characters CR, or LF, or CR LF. The two
characters CR immediately followed by LF are counted as one line terminator, not
two.

A line terminator specifies the termination of the// form of acomment (83.7).

The lines defined by line terminators may determine the line numbers produced by a Java
compiler.

The result is a sequence of line terminators and input characters, which are the
terminal symbolsfor the third step in the tokenization process.

3.5 Input Elementsand Tokens

The input characters and line terminators that result from Unicode escape
processing (83.3) and then input line recognition (83.4) are reduced to a sequence
of input elements.

Input:
{InputElement} [ Sub]

21
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InputElement:
WhiteSpace
Comment
Token

Token:
Identifier

Keyword
Literal

Separator

Operator

Qb
the ASCII SUB character, also known as "control-Z"

Those input elements that are not white space or comments are tokens. The tokens
are the terminal symbols of the syntactic grammar (8§2.3).

White space (83.6) and comments (83.7) can serve to separate tokens that, if
adjacent, might be tokenized in another manner. For exampl e, the ASCII characters
- and = in the input can form the operator token - = (83.12) only if there is no
intervening white space or comment.

Asaspecial concession for compatibility with certain operating systems, the ASCI|
SUB character (\ uo01a, or control-Z) is ignored if it is the last character in the
escaped input stream.

Consider two tokensx andy in the resulting input stream. If x precedesy, then we
say that x isto theleft of y and that y isto theright of x.

For example, in this simple piece of code:

class Empty {
}

we say that the} token isto the right of the { token, even though it appears, in this two-
dimensional representation, downward and to the | eft of the{ token. This convention about
the use of thewords|eft and right allows usto speak, for example, of the right-hand operand
of abinary operator or of the left-hand side of an assignment.
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3.6 White Space

White space is defined asthe ASCII space character, horizontal tab character, form
feed character, and line terminator characters (83.4).

WhiteSpace:
the ASCII SP character, also known as " space”
the ASCII HT character, also known as "horizontal tab"
the ASCII FF character, aso known as "form feed"
LineTerminator

3.7 Comments

There are two kinds of comments:

o /* text*/
A traditional comment: all the text from the ASCII characters/ * to the ASCII
characters*/ isignored (asin C and C++).

o /] text

An end-of-line comment: all the text from the ASCI| characters// to the end of
thelineisignored (asin C++).

Comment:
Traditional Comment
EndOfLineComment

Traditional Comment:
/ * CommentTail

CommentTail:
* CommentTail Star
NotSar CommentTail

CommentTailSar:
/
* CommentTailSar
NotSarNotSash CommentTail

23
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NotSar:
InputCharacter but not *
LineTerminator

NotStarNotSash:
InputCharacter but not * or /
LineTerminator

EndOfLineComment:
/1 {InputCharacter}

These productions imply al of the following properties:
* Comments do not nest.
» /* and*/ have no special meaning in comments that begin with// .

* /1 hasno special meaning in comments that begin with/* or /**.
As aresult, the following text is a single compl ete comment:
/* this comment /* // /** ends here: */

Thelexical grammar implies that comments do not occur within character literals,
string literals, or text blocks (83.10.4, §3.10.5, §3.10.6).

3.8 ldentifiers

An identifier is an unlimited-length sequence of Java letters and Java digits, the
first of which must be a Java letter.

I dentifier:
I dentifierChars but not a Keyword or BooleanLiteral or NullLiteral

IdentifierChars:
Javal etter {Javal etter OrDigit}

Javal etter:
any Unicode character that isa"Javaletter”

JavaL etter OrDigit:
any Unicode character that is a"Javaletter-or-digit"

24
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A "Java letter" is a character for which the method
Character.isJavaldentifierStart(int) returnstrue.

A "Java letter-or-digit® is a character for which the method
Character.isJavaldentifierPart(int) returnstrue.

The "Java letters' include uppercase and lowercase ASCII Latin letters A-Z (\ u0041-
\ u005a), and a- z (\ u0061-\ u007a), and, for historical reasons, the ASCII dollar sign
($, or \ u0024) and underscore (_, or \ u005f ). The dollar sign should be used only in
mechanically generated source code or, rarely, to access pre-existing names on legacy
systems. The underscore may be used in identifiers formed of two or more characters, but
it cannot be used as a one-character identifier due to being a keyword.

The"Javadigits' include the ASCII digits0- 9 (\ u0030-\ u0039).

Letters and digits may be drawn from the entire Unicode character set, which
supports most writing scriptsin use in the world today, including the large sets for
Chinese, Japanese, and Korean. This allows programmersto useidentifiersin their
programs that are written in their native languages.

An identifier cannot have the same spelling (Unicode character sequence) as a
keyword (83.9), boolean literal (83.10.3), or the null literal (83.10.8), or acompile-
time error occurs.

Two identifiers are the same only if, after ignoring characters that are
ignorable, the identifiers have the same Unicode character for each letter
or digit. An ignorable character is a character for which the method
Character.isldentifierlgnorable(int) returnstrue. Identifiers that have the
same external appearance may yet be different.

For example, the identifiers consisting of the single letters LATIN CAPITAL LETTER
A (A, \u0041), LATIN SMALL LETTER A (a, \u0061), GREEK CAPITAL
LETTER ALPHA (A, \u0391), CYRILLIC SMALL LETTER A (a, \u0430) and
MATHEMATICAL BOLD ITALIC SMALL A (a,\ ud835\ udc82) are al different.

Unicode composite characters are different from their canonical equivalent decomposed
characters. For example, aLATIN CAPITAL LETTERA ACUTE (A, \ u00c1) isdifferent
from a LATIN CAPITAL LETTER A (A, \ u0041) immediately followed by a NON-
SPACING ACUTE (", \u0301) in identifiers. See The Unicode Standard, Section 3.11
"Normalization Forms".

Examples of identifiers are:

e String
e i3

* apetn

3.8
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e MAX_VALUE
e isLetterODigit

Theidentifiersvar andyi el d arerestricted identifiersbecausethey are not allowed
in some contexts.

A type identifier is an identifier that is not the character sequence var or the
character sequenceyi el d.

Typel dentifier:
Identifier but not var or yi el d

Type identifiers are used in certain contexts involving the declaration or use of types. For
example, the name of a class must be a Typel dentifier, so it isillegal to declare a class
named var oryi el d (88.1).

An ungualified method identifier is an identifier that is not the character sequence
yi el d.

UnqualifiedMethodl dentifier:
Identifier but not yi el d

This restriction alows yi el d to be used in ayi el d statement (814.21) and till also be
used as a (qualified) method name for compatibility reasons.

3.9 Keywords

51 character sequences, formed from ASCII letters, are reserved for use as
keywords and cannot be used as identifiers (83.8).
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Keyword:
(one of)
abstract conti nue
assert def aul t
bool ean do
br eak doubl e
byt e el se
case enum
catch ext ends
char final
cl ass finally
const fl oat

_ (underscore)

for

if

goto

i mpl ement s
i mport

i nst anceof
i nt
interface
| ong
native

new
package
private
protected
public
return
short
static
strictfp
super

Keywords 39

switch
synchroni zed
this

t hr ow

t hr ows
transi ent
try

voi d

vol atile
whil e

The keywords const and got o are reserved, even though they are not currently used.
This may allow a Java compiler to produce better error messages if these C++ keywords
incorrectly appear in programs. The keyword _ (underscore) isreserved for possible future

use in parameter declarations.

A variety of character sequences are sometimes assumed, incorrectly, to be keywords:

e true andfal se are not keywords, but rather boolean literals (§83.10.3).

¢ nul | isnot akeyword, but rather the null literal (§83.10.8).

» var andyi el d arenot keywords, but rather restricted identifiers (83.8). var hasspecial
meaning asthe type of alocal variable declaration (§14.4, §14.14.1, §14.14.2, §14.20.3)
and the type of alambda formal parameter (815.27.1). yi el d has special meaning in a
yi el d statement (§14.21). All invocations of a method named yi el d must be qualified

so asto be distinguished from ayi el d statement.

A further ten character sequences are restricted keywords: open, nodul e,
requires, transitive, exports, opens, to, uses, provi des, and wi th. These
character sequences are tokenized as keywords solely where they appear as
terminals in the ModuleDeclaration, ModuleDirective, and RequiresModifier
productions (87.7). They are tokenized as identifiers everywhere else, for
compatibility with programswritten before theintroduction of restricted keywords.
There is one exception: immediately to the right of the character segquence
requi r es in the ModuleDirective production, the character sequencetransi ti ve
is tokenized as a keyword unless it is followed by a separator, in which caseit is

tokenized as an identifier.
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3.10 Literals

A literal isthe source code representation of avalue of aprimitive type (84.2), the
String type (84.3.3), or the null type (84.1).

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
SringLiteral
TextBlock
NullLiteral

3.10.1 Integer Literals

Aninteger literal may be expressed in decimal (base 10), hexadecimal (base 16),
octal (base 8), or binary (base 2).

IntegerLiteral:
DecimalIntegerLiteral
HexlntegerLiteral
OctallntegerLiteral
BinarylntegerLiteral

DecimallntegerLiteral:
DecimalNumeral [ Integer TypeSuffix]

HexlIntegerLiteral:
HexNumeral [ Integer TypeSuffix]

OctallntegerLiteral:
OctalNumeral [Integer TypeSuffix]

BinarylntegerLiteral:
BinaryNumeral [Integer TypeSuffix]

Integer TypeSuffix:
(one of)
I L
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Aninteger literal isof typel ong if it is suffixed with an ASCII letter L or 1 (ell);
otherwiseit isof typei nt (84.2.1).

The suffix L is preferred, becausetheletter | (ell) isoften hard to distinguish from the digit
1 (one).

Underscores are allowed as separators between digits that denote the integer.

In a hexadecimal or binary literal, the integer is only denoted by the digits after
the ox or ob characters and before any type suffix. Therefore, underscores may not
appear immediately after ox or ob, or after the last digit in the numeral.

In adecimal or octal literal, the integer is denoted by all the digits in the litera
before any type suffix. Therefore, underscores may not appear before thefirst digit
or after the last digit in the numeral. Underscores may appear after the initial 0 in
an octal numeral (since 0 is a digit that denotes part of the integer) and after the
initial non-zero digit in anon-zero decimal literal.
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A decimal numeral iseither the single ASCII digit 0, representing the integer zero,
or consistsof an ASCII digit from 1 to 9 optionally followed by one or more ASCI|
digitsfrom 0 to 9 interspersed with underscores, representing a positive integer.

DecimalNumeral:
0
NonZeroDigit [ Digits]
NonZeroDigit Underscores Digits

NonZeroDigit:
(one of)
123456789

Digits:

Digit

Digit [ DigitsAndUnder scores] Digit
Digit:

0

NonZeroDigit

DigitsAndUnderscores:
DigitOrUnderscore {DigitOrUnderscore}

DigitOrUnderscore:
Digit

Underscores:

{3
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A hexadecimal numeral consists of theleading ASCII charactersox or 0x followed
by one or more ASCII hexadecimal digits interspersed with underscores, and can
represent a positive, zero, or negative integer.

Hexadecimal digitswith values 10 through 15 are represented by the ASCI| letters
a through f or A through F, respectively; each letter used as a hexadecimal digit
may be uppercase or lowercase.

HexNumeral:
0 x HexDigits
0 X HexDigits

HexDigits:
HexDigit
HexDigit [ HexDigitsAndUnder scores] HexDigit

HexDigit:
(one of)
0123456789abcdef ABCDEF

HexDigitsAndUnder scores:
HexDigitOrUnder score {HexDigitOrUnder scor e}

HexDigitOrUnderscore:
HexDigit

The HexDigit production above comes from §3.3.

3.10
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Anocta numeral consistsof an ASCII digit o followed by one or more of the ASCI|
digitso through 7 interspersed with underscores, and can represent a positive, zero,
or negative integer.

OctalNumeral:
0 OctalDigits
0 Underscores OctalDigits

OctalDigits:
OctalDigit
OctalDigit [ Octal DigitsAndUnder scores] Octal Digit

OctalDigit:
(one of)
01234567

Octal DigitsAndUnder scores:
Octal DigitOrUnderscore {Octal DigitOrUnder score}

Octal DigitOrUnderscore:
OctalDigit

Note that octal numerals always consist of two or more digits, as 0 aone is aways
considered to be a decimal numeral - not that it matters much in practice, for the numerals
0, 00, and 0x0 al represent exactly the same integer value.
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A binary numeral consists of theleading ASCII charactersob or 0B followed by one
or more of the ASCII digitso or 1 interspersed with underscores, and can represent
apositive, zero, or negative integer.

BinaryNumeral:
0 b BinaryDigits
0 B BinaryDigits

BinaryDigits:

BinaryDigit

BinaryDigit [ BinaryDigitsAndUnderscores] BinaryDigit
BinaryDigit:

(one of)
01

BinaryDigitsAndUnder scores:
BinaryDigitOrUnderscore {BinaryDigitOrUnderscore}

BinaryDigitOrUnderscore:
BinaryDigit

3.10
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The largest decimal literal of typei nt is 2147483648 (2°%).

All decimal literalsfrom 0 t0 2147483647 may appear anywhereani nt literal may
appear. The decimal literal 2147483648 may appear only as the operand of the
unary minus operator - (815.15.4).

Itisacompile-timeerror if thedecimal literal 2147483648 appears anywhere other
than as the operand of the unary minus operator; or if adecimal literal of typei nt
islarger than 2147483648 (2°Y).

The largest positive hexadecimal, octal, and binary literals of typei nt - each of
which represents the decimal value 2147483647 (2 l-1) - arerespectively:

o OX7fff ffff,
e 0177_7777_7777,and
e 0b0111_1111 1111 1111 1111 1111 1111 1111

The most negative hexadecimal, octal, and binary literals of type i nt - each of
which represents the decimal value - 2147483648 (-231) - are respectively:

* 0x8000_0000,
e 0200_0000_0000, and
* 0b1000_0000_0000_0000_0000_0000_0000_0000

The following hexadecimal, octal, and binary literals represent the decimal value
-1

o Oxffff _ffff,
e 0377_7777_7777,and
e O0b1111_ 1111 1111 1111 1111 1111 1111 1111

It isa compile-time error if a hexadecimal, octal, or binary i nt literal does not fit
in 32 bits.

The largest decimal literal of type| ong is 9223372036854775808L (2%).

All decima literals from oL to 9223372036854775807L may appear anywhere a
I ong literal may appear. The decimal literal 9223372036854775808L may appear
only as the operand of the unary minus operator - (815.15.4).

It is a compile-time error if the decimal literal 9223372036854775808L appears
anywhere other than as the operand of the unary minus operator; or if a decimal
literal of type! ong islarger than 9223372036854775808L (2%).
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The largest positive hexadecimal, octal, and binary literals of type | ong - each
of which represents the decimal value 9223372036854775807L (2%-1) - are
respectively:

o OX7fff fFFff fFFF _FFFFL,
e 07_7777_7777_7777_7777_7777L, and

e Ob0O111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111L

The most negative hexadecimal, octal, and binary literals of type | ong - each
of which represents the decimal value - 9223372036854775808L (-2%%) - are
respectively:

* 0x8000_0000_0000_0000L, and
* 010_0000_0000_0000_0000_0000L, and

e 0b1000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000L

The following hexadecimal, octal, and binary literals represent the decimal value
-1L:

o OXFfff fff fEff fEEFL,

e 017_7777_7777_7777_7777_7777L, and

o Ob1111 1111 1111 1111 1111 1111_1111_1111_1111_1111_1111_1111_1111_1111_1111_1111L

It is a compile-time error if a hexadecimal, octal, or binary | ong literal does not
fit in 64 bits.

Examplesof i nt literals:
0 2 0372 OxDada_Caf e 1996 0x00_FF__00_FF
Examplesof | ong literals:

ol 0777L 0x100000000L 2_147_483_648L 0xC0BOL

3.10.2 Floating-Point Literals

A floating-point literal has the following parts: awhole-number part, adecimal or
hexadecimal point (represented by an ASCII period character), a fraction part, an
exponent, and a type suffix.

A floating-point literal may be expressed in decimal (base 10) or hexadecimal (base
16).

3.10
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For decimal floating-point literals, at least one digit (in either the whole number or
the fraction part) and either a decimal point, an exponent, or afloat type suffix are
required. All other parts are optional. The exponent, if present, isindicated by the
ASCII letter e or E followed by an optionally signed integer.

For hexadecimal floating-point literals, at least one digit is required (in either the
whole number or the fraction part), and the exponent is mandatory, and the float
type suffix isoptional. The exponent isindicated by the ASCI| letter p or Pfollowed
by an optionally signed integer.

Underscoresare allowed as separators between digitsthat denote the whole-number
part, and between digitsthat denote the fraction part, and between digitsthat denote
the exponent.

FloatingPointLiteral:
Decimal FloatingPointLiteral
Hexadecimal FloatingPointLiteral

Decimal FloatingPointLiteral:
Digits. [Digits] [ ExponentPart] [FloatTypeSuffix]
. Digits [ ExponentPart] [FloatTypeSuffix]
Digits ExponentPart [ Float TypeSuffix]
Digits [ ExponentPart] FloatTypeSuffix

ExponentPart:
ExponentIndicator Sgnedinteger

Exponentlndicator:
(one of)
e E

Sgnedinteger:
[Sgn] Digits

Sgn:
(one of)
+ -

FloatTypeSuffix:
(one of)
f FdD
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Hexadecimal FloatingPointLiteral:
HexS gnificand BinaryExponent [ Float TypeSuffix]

HexSgnificand:
HexNumeral [. ]
0 x [HexDigits] . HexDigits
0 X[HexDigits] . HexDigits

BinaryExponent:
BinaryExponentindicator Signedinteger

BinaryExponentI ndicator:
(one of)
p P

A floating-point literal is of typefl oat if it is suffixed with an ASCII letter F or
f; otherwise its type is doubl e and it can optionally be suffixed with an ASCII
letter D or d.

The elements of the types float and doubl e are those values that can be
represented using the IEEE 754 binary32 and |IEEE 754 binary64 floating-point
formats, respectively (84.2.3).

The details of proper input conversion from a Unicode string representation of a floating-
point number to the internal |EEE 754 binary floating-point representation are described
for the methods val ueCf of classFl oat and class Doubl e of the packagej ava. | ang.

The largest and smallest positive literals of typef | oat are asfollows:

« Thelargest positive finitef oat valueis numerically equal to (2 - 2°%) (2%
The shortest decimal literal which rounds to thisvalueis 3. 4028235e38f .
A hexadecimal literal for thisvalueisox1. fffffeP+127f.

« The smallest positive finite non-zero f 1 oat valueis numerically equal to 24,
The shortest decimal literal which roundsto thisvalueis 1. 4e- 45f .

Two hexadecimal literals for this value are 0x0.000002P-126f and
0x1. OP- 149f .

The largest and smallest positive literals of type doubl e are asfollows:

3.10
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« Thelargest positive finite doubl e valueis numerically equal to (2 - 2°°%) (2102,

The shortest decima litera which rounds to this vaue is
1. 7976931348623157e308.

A hexadecimal literal for thisvalueisox1.f_ffff _ffff _ffffP+1023.
« Thesmallest positivefinite non-zero doubl e valueis numerically equal to 22974,
The shortest decimal literal which roundsto thisvalueis 4. 9e- 324.

Two hexadecimal literals for this value are 0x0. 0_0000_0000_0001P- 1022 and
0x1. OP- 1074.

It isacompile-time error if a non-zero floating-point literal istoo large, so that on
rounded conversion to itsinternal representation, it becomes an |[EEE 754 infinity.

A program can represent infinitieswithout producing acompile-time error by using
constant expressions such as1f / 0f or - 1d/ 0d or by using the predefined constants
POSI TI VE_I NFI NI TY and NEGATI VE_| NFI NI TY of the classes FI oat and Doubl e.

Itisacompile-timeerror if anon-zero floating-point literal istoo small, so that, on
rounded conversion to its internal representation, it becomes a zero.

A compile-time error does not occur if anon-zero floating-point literal has asmall
value that, on rounded conversion to its internal representation, becomes a non-
zero subnormal number.

Predefined constants representing Not-a-Number values are defined in the classes
Fl oat and Doubl e asFl oat . NaN and Doubl e. NaN.

Examplesof f | oat literals:
lelf 2. f . 3f of 3. 14f 6. 022137e+23f
Examples of doubl e literals:

lel 2. .3 0.0 3.14 le-9d 1lel37

3.10.3 Boolean Literals

The bool ean type has two values, represented by the boolean literals t r ue and
f al se, formed from ASCI| letters.

BooleanLiteral:
(one of)
true fal se
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A boolean literal is aways of type bool ean (84.2.5).

3.10.4 Character Literals

A character literal is expressed as a character or an escape sequence (83.10.7),
enclosed in ASCII single quotes. (The single-quote, or apostrophe, character is
\ u0027.)

CharacterLiteral:
* SngleCharacter *
' EscapeSequence

SngleCharacter:
InputCharacter but not' or\

A character literal isaways of type char (84.2.1).

The content of a character literal is the SngleCharacter or the EscapeSequence
which follows the opening * .

Itisacompile-timeerror for the character following the content to be other thana' .

It is a compile-time error for aline terminator (83.4) to appear after the opening
' and beforethe closing ' .

The characters CR and LF are never an InputCharacter; each is recognized as constituting
aLineTerminator, so may not appear in a character literal, even in the escape sequence \
LineTerminator.

The character represented a character literal is the content of the
character literal with any escape sequence interpreted, as if by execution of
String. transl at eEscapes on the content.

Character literals can only represent UTF-16 code units (83.1), i.e., they arelimited
to values from \ u0000 to \ uf f f f . Supplementary characters must be represented
either as a surrogate pair within achar sequence, or as an integer, depending on
the API they are used with.

The following are examples of char literals:

¢ '3
e '%

o '\t
e "\
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L] ‘\“

+ "\ u03a9’
« '\ UFFFF
o \177

o ' TM

Because Unicode escapes are processed very early, it is not correct to write ' \ u000a’
for a character literal whose value is linefeed (LF); the Unicode escape \ u000a is
transformed into an actual linefeed in trandation step 1 (83.3) and the linefeed becomes a
LineTerminator in step 2 (83.4), so the character literal is not valid in step 3. Instead, one
should use the escape sequence’ \ n' . Similarly, it is not correct to write' \ uoood' for a
character literal whose value is carriage return (CR). Instead, use' \r' . Finaly, it is not
possibleto write' \ u0027' for acharacter literal containing an apostrophe (* ).

In C and C++, a character literal may contain representations of more than one character,
but the value of such acharacter literal isimplementation-defined. In the Java programming
language, a character literal always represents exactly one character.

3.10.5 StringLiterals

A dtring literal consists of zero or more characters enclosed in double quotes.
Characters such as newlines may be represented by escape sequences (83.10.7).

SringLiteral:
" {SringCharacter} "

SringCharacter:
InputCharacter but not " or\
EscapeSequence

A string literal isaways of type st ri ng (84.3.3).

The content of astring literal isthe sequence of charactersthat beginsimmediately
after the opening " and ends immediately before the matching closing " .

It is acompile-time error for aline terminator (83.4) to appear after the opening "
and before the matching closing .

The characters CR and LF are never an InputCharacter; each is recognized as constituting
a LineTerminator, so may not appear in a string literal, even in the escape sequence \
LineTerminator.

Thestring represented by astring literal isthe content of the string literal with every
escape sequence interpreted, asif by execution of Stri ng. transl at eEscapes on
the content.
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The following are examples of string literals:

e

"This is a string"

"This is a" +
"two-line string"

Literals

/'l the enpty string

/1 a string containing " alone

/1 a string containing 16 characters

/1 actually a string-valued constant expression,

/1 formed fromtwo string literals

Because Unicode escapes are processed very early, it is not correct to write "\ uo0oa"

for a string literal containing a single linefeed (LF); the Unicode escape \ u000a is
transformed into an actual linefeed in trandlation step 1 (83.3) and the linefeed becomes
aLineTerminator in step 2 (83.4), so the string literal is not valid in step 3. Instead, one
should use the escape sequence "\ n" . Similarly, it is not correct to write "\ u00od" for a
string literal containing a single carriage return (CR). Instead, use "\ r . Finaly, it is not
possible to write "\ u0022" for astring literal containing a double quotation mark (*).

A long string literal can always be broken up into shorter pieces and written as a (possibly
parenthesized) expression using the string concatenation operator + (§15.18.1).

At run time, a string litera is a reference to an instance of class stri ng (84.3.3)
that denotes the string represented by the string literal.

Moreover, astring literal always refers to the same instance of class st ri ng. This
is because string literals - or, more generaly, stringsthat are the values of constant
expressions (815.29) - are "interned”" so as to share unique instances, as if by
execution of the method St ri ng. i nt ern (812.5).

Example 3.10.5-1. String Literals

The program consisting of the compilation unit (87.3):

package test Package;

class Test {

public static void main(String[] args) {

String hello = "Hello", lo = "lo0";
Systemout.println(hello == "Hello");
Systemout.println(CQher.hello == hello);
Systemout. println(other.ther.hello == hello);
Systemout.println(hello == ("Hel"+"10"));
Systemout.printin(hello == ("Hel "+l 0));
Systemout.printin(hello == ("Hel"+lo).intern());
}
class Oher { static String hello = "Hello"; }

and the compilation unit:

package ot her;

public class Gher { public static String hello = "Hello"; }

3.10
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produces the output:

true
true
true
true
fal se
true

This example illustrates six points:
e String literals in the same class and package represent references to the same St ri ng
object (84.3.1).

e String literals in different classes in the same package represent references to the same
St ri ng object.

e String literals in different classes in different packages likewise represent references to
thesame St ri ng object.

 Strings concatenated from constant expressions (815.29) are computed at compile time
and then treated as if they were literals.

e Strings computed by concatenation at run time are newly created and therefore distinct.

e The result of explicitly interning a computed string is the same St ri ng object as any
pre-existing string literal with the same contents.

3.10.6 Text Blocks

A text block consists of zero or more characters enclosed by opening and closing
delimiters. Characters may be represented by escape sequences (§3.10.7), but
the newline and double guote characters that must be represented with escape
sequencesin astring literal (83.10.5) may be represented directly in atext block.

TextBlock:
"  {TextBlockWhiteSpace} LineTerminator {TextBlockCharacter} " " "

TextBlockWhiteSpace:
WhiteSpace but not LineTerminator

TextBlockCharacter:
InputCharacter but not \
EscapeSequence
LineTerminator

The following productions from §3.3, 83.4, and §3.6 are shown here for convenience:
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WhiteSpace:
the ASCII SP character, also known as "space”
the ASCII HT character, also known as "horizontal tab"
the ASCII FF character, also known as "form feed"
LineTerminator

LineTerminator:
the ASCII LF character, also known as "newline"
the ASCII CR character, also known as "return"
the ASCII CR character followed by the ASCII LF character

InputCharacter:
Unicodel nputCharacter but not CR or LF

Unicodel nputCharacter:
UnicodeEscape
RawlnputCharacter

UnicodeEscape:
\' UnicodeMarker HexDigit HexDigit HexDigit HexDigit

RawlnputCharacter:
any Unicode character

A text block isalways of type st ri ng (84.3.3).

The opening delimiter is a sequence that starts with three double quote characters
("), continues with zero or more space, tab, and form feed characters, and
concludes with aline terminator.

The closing delimiter is a sequence of three double quote characters.

The content of atext block is the sequence of characters that begins immediately
after the line terminator of the opening delimiter, and ends immediately before the
first double quote of the closing delimiter.

Unlikeinastring literal (83.10.5), it isnot acompile-timeerror for alineterminator
to appear in the content of atext block.

Example 3.10.6-1. Text Blocks

When multi-line strings are desired, a text block is usually more readable than a
concatenation of string literals. For example, compare these alternative representations of
asnippet of HTML:

String htm = "<htm >\n" +
<body>\n" +
<p>Hel | 0, world</p>\n" +
</ body>\n" +
"</htm >\n";

String htm

3.10
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<htm >
<body>
<p>Hel | o, worl d</p>
</ body>
</htm >

The following are examples of text blocks:

class Test {
public static void main(String[] args) {
/'l The six characters wi nt er
String season = """
winter""";

/1 The seven characters wi nt er LF
String period = """

W nt er
/!l The ten characters Hi , SP" Bo b " LF
String greeting = """
H , "Bob"
/'l The el even characters Hi , LF SP" Bo b " LF
String salutation = """
Hi,

" Bob"

/1 The enpty string (zero | ength)
String enpty = """

/!l The two characters " LF
String quote = """

/1 The two characters \ LF
String backslash = """
\\

Using the escape sequences \n and \" to represent a newline character and a
double quote character, respectively, is permitted in atext block, though not usually
necessary. The exception is where three consecutive double quote characters
appear that are not intended to be the closing delimiter "** - in this case, it is
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necessary to escape at least one of the double quote characters in order to avoid
mimicking the closing delimiter.

Example 3.10.6-2. Escape sequencesin text blocks

In the following program, the value of the story variable would be less readable if
individual double quote characters were escaped:

class Storyl {
public static void main(String[] args) {
String story = """
"When | use a word," Hunpty Dunpty said,
in rather a scornful tone, "it neans just what |
choose it to nmean - neither nore nor |ess."
"The question is," said Alice, "whether you
can make words nean so nany different things."
"The question is," said Hunpty Dunpty,
"which is to be naster - that's all."

}

If the program is modified to place the closing delimiter on the last line of the content, then
an error occurs because the first three consecutive double quote characters on the last line
are trandlated (83.2) into the closing delimiter """ and thus a stray double quote character
remains:

class Story2 {
public static void main(String[] args) {

String story = """
"When | use a word," Hunpty Dunpty said,
in rather a scornful tone, "it neans just what |

choose it to nmean - neither nore nor |less."

"The question is," said Alice, "whether you

can make words nean so many different things."
"The question is," said Hunpty Dunpty,

"which is to be master - that's all.""""; [/ error

}

The error can be avoided by escaping the final double quote character in the content:

class Story3 {
public static void main(String[] args) {
String story = """
"When | use a word," Hunpty Dunpty said,
in rather a scornful tone, "it neans just what |
choose it to nmean - neither nore nor |ess."
"The question is," said Alice, "whether you
can make words nean so nany different things."
"The question is," said Hunpty Dunpty,

3.10
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"which is to be master - that's all.\""""; [/ K
}

If atext block is intended to denote another text block, then it is recommended to escape
the first double quote character of the embedded opening and closing delimiters:

cl ass Code {
public static void main(String[] args) {
String text = """
The qui ck brown fox junps over the | azy dog

String code =
String text = \"""

The qui ck brown fox junps over the | azy dog
Ay

}

The string represented by a text block is not the literal sequence of charactersin
the content. Instead, the string represented by atext block is the result of applying
the following transformations to the content, in order:

1.

Line terminators are normalized to the ASCII LF character, as follows:

* An ASCII CR character followed by an ASCII LF character is translated to
an ASCII LF character.

* An ASCII CR character istranslated to an ASCII LF character.

Incidental white space isremoved, asif by execution of Stri ng. st ri pl ndent
on the characters resulting from step 1.

Escape sequences are interpreted, as if by execution of
String. transl at eEscapes on the characters resulting from step 2.

When this specification says that a text block contains a particular character or
sequence of characters, or that a particular character or sequence of charactersis
in atext block, it means that the string represented by the text block (as opposed to
theliteral sequence of charactersin the content) contains the character or sequence
of characters.

Example 3.10.6-3. Order of transformations on text block content

Interpreting escape sequences last allows developers to use \ n, \ f, and \ r for vertica
formatting of a string without affecting the normalization of line terminators, and to use
\ b and\t for horizontal formatting of a string without affecting the removal of incidental
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white space. For example, consider this text block that mentions the escape sequence\ r
(CR):

String htm = """
<htm >\r
<body>\r
<p>Hel l 0, world</p>\r
</ body>\r
</htm >\r

The \ r escape sequences are not interpreted until after the line terminators have been
normalized to LF. Using Unicode escapesto visualize LF (\ u000A) and CR (\ u000D), and
using | to visualize the left margin, the string represented by the text block is:

| <ht m >\ uO0OD\ uOOOA

| <body>\ u000D\ uO00A

| <p>Hel | o, worl d</p>\ u0O0O0D\ uOOOA
| </ body>\ uOOOD\ uOOOA

| </ ht ml >\ uOOOD\ uOOOA

At runtime, atext block is areference to an instance of class St ri ng that denotes
the string represented by the text block.

Moreover, atext block always refersto the same instance of class st ri ng. Thisis
because the strings represented by text blocks - or, more generally, stringsthat are
the values of constant expressions (815.29) - are "interned" so as to share unique
instances, as if by execution of the method St ri ng. i nt ern (812.5).

Example 3.10.6-4. Text blocks evaluateto Stri ng

Text blocks can be used wherever an expression of type Stri ng is alowed, such asin
string concatenation (§15.18.1), in the invocation of methods on instances of St ri ng, and
in annotations with St r i ng elements:

Systemout.println("ab" + """
cde

")

String cde = """
abcde""". substring(2);

String math = "
1+1 equal s \
""" 4+ String. val ued (2):

@recondi tions("""

rate > 0 &&

rate <= MAX_REFRESH RATE
")

public void setRefreshRate(int rate) { ... }

3.10
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3.10.7 Escape Sequences

In character literals, string literals, and text blocks (83.10.4, §3.10.5, §3.10.6),
the escape sequences allow for the representation of some nongraphic characters
without using Unicode escapes (83.3), as well as the single quote, double quote,
and backslash characters.

EscapeSequence:
\ b (backspace BS, Unicode\ uo008)

s (space SP, Unicode\ u0020)

t (horizontal tab HT, Unicode\ uo009)

n (linefeed LF, Unicode\ uoooa)

f (form feed FF, Unicode\ uoooc)

r (carriagereturn CR, Unicode\ uo0od)

LineTerminator (line continuation, no Unicode representation)
(double quote ", Unicode\ uo022)
(single quote ' , Unicode\ u0027)

\  (backdash\, Unicode\ uoosc)

OctalEscape (octa value, Unicode\ u0000 to\ uoof f)

\
\
\
\
\
\
\
\
\

Octal Escape:
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit Octal Digit

OctalDigit:
(one of)
01234567

ZeroToThree:
(one of)
0123

The OctalDigit production above comes from §3.10.1. Octal escapes are provided for
compatibility with C, but can express only Unicode values \ u0000 through \ uOOFF, so
Unicode escapes are usually preferred.

It is a compile-time error if the character following a backdash in an escape
seguence is not a LineTerminator or an ASCIl b, s, t,n, f,r,",",\,0,1,2, 3,
4,5,6,0r7.

An escape sequence in the content of a character literal, string literal, or text
block is interpreted by replacing its\ and trailing character(s) with the single
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character denoted by the Unicode escape in the EscapeSequence grammar. The
line continuation escape sequence has no corresponding Unicode escape, O is
interpreted by replacing it with nothing.

Theline continuati on escape sequence can appear in atext block, but cannot appear
in a character literal or astring literal because each disallows a LineTerminator.

3.10.8 TheNull Literal

Thenull type has one value, the null reference, represented by the null literal nul 1,
which isformed from ASCII characters.

NullLiteral:

nul |

A null literal is always of the null type (84.1).

3.11 Separators

Twelve tokens, formed from ASCII characters, are the separators (punctuators).

Separator:

(one of)
O S e )

3.12 Operators

38 tokens, formed from ASCII characters, are the operators.

Operator:
(one of)
= > < ! ~ ? : ->
= >= <= l= && || ++ -
+ - * / & | A % << >> >>>
+= -= *z= [= &= | = = U <<= >>= >>>=
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CHAPTER |

Types, Values, and Variables

T HE Java programming language is a statically typed language, which means
that every variable and every expression has atype that is known at compile time.

The Java programming language is also a strongly typed language, because types
limit the values that a variable (84.12) can hold or that an expression can produce,
limit the operations supported on those values, and determine the meaning of the
operations. Strong static typing helps detect errors at compile time.

The types of the Java programming language are divided into two kinds: primitive
types and reference types. The primitive types (84.2) are the bool ean type and the
numerictypes. Thenumerictypesaretheintegral typesbyt e, short,i nt,1 ong, and
char, and the floating-point types 1 oat and doubl e. The reference types (84.3)
are classtypes, interfacetypes, and array types. Thereisalso aspecial null type. An
object (84.3.1) is adynamically created instance of a class type or a dynamically
created array. The values of areference type are references to objects. All abjects,
including arrays, support the methods of class tbj ect (84.3.2). String literals are
represented by St ri ng objects (84.3.3).

4.1 TheKindsof Typesand Values

There are two kinds of types in the Java programming language: primitive types
(84.2) and reference types (84.3). There are, correspondingly, two kinds of data
values that can be stored in variables, passed as arguments, returned by methods,
and operated on: primitive values (84.2) and reference values (84.3).

Type:
PrimitiveType
ReferenceType
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Thereisalso aspecial null type, thetype of the expressionnul | (83.10.8, §15.8.1),
which has no name.

Because the null type has no name, it isimpossible to declare a variabl e of the null
type or to cast to the null type.

The null reference is the only possible value of an expression of null type.

Thenull reference can always be assigned or cast to any referencetype (85.2, §85.3,
85.5).

In practice, the programmer can ignore the null type and just pretend that nul | is merely
aspeciad literal that can be of any reference type.

4.2 Primitive Typesand Values

A primitive type is predefined by the Java programming language and named by
its reserved keyword (§3.9):

PrimitiveType:
{Annotation} NumericType
{Annotation} bool ean

NumericType:
Integral Type
FloatingPointType

Integral Type:
(one of)
byt e short int | ong char

FloatingPointType:
(one of)
fl oat doubl e

Primitive values do not share state with other primitive values.
The numeric types are the integral types and the floating-point types.

Theintegral typesarebyt e, short,int, and | ong, whose values are 8-bit, 16-bit,
32-bit and 64-bit signed two's-complement integers, respectively, and char , whose
values are 16-bit unsigned integers representing UTF-16 code units (83.1).
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The floating-point types are f1 oat , whose values include the 32-bit |IEEE 754
binary32 floating-point numbers, and doubl e, whose values include the 64-bit
|EEE 754 binary64 floating-point numbers.

Thebool ean type has exactly two values: true and f al se.

421 Integral Typesand Values

The values of the integral types are integersin the following ranges:

» For byt e, from-128to 127, inclusive

» For short, from -32768 to 32767, inclusive

» Forint, from -2147483648 to 2147483647, inclusive

 For I ong, from -9223372036854775808 to 9223372036854 775807, inclusive
» For char, from'\u0000' to'\uffff' inclusive, thatis, from O to 65535

4.2.2 Integer Operations

The Java programming language providesanumber of operatorsthat act onintegral
values:

» The comparison operators, which result in avalue of type bool ean:
— The numerical comparison operators <, <=, >, and >= (815.20.1)
— The numerical equality operators== and ! = (§15.21.1)
» The numerical operators, which result in avalue of typei nt or | ong:
— The unary plus and minus operators + and - (815.15.3, §15.15.4)
— The multiplicative operators*, / , and %(815.17)
— The additive operators + and - (815.18)
— The increment operator ++, both prefix (815.15.1) and postfix (815.14.2)
— The decrement operator - -, both prefix (815.15.2) and postfix (815.14.3)
— The signed and unsigned shift operators <<, >>, and >>> (815.19)
— The bitwise complement operator ~ (§15.15.5)
— Theinteger bitwise operators &, ~, and | (815.22.1)
» The conditional operator ? : (815.25)

4.2
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» The cast operator (815.16), which can convert from an integral value to avalue
of any specified numeric type

* The string concatenation operator + (815.18.1), which, when given a String
operand and an integral operand, will convert the integral operandto a stri ng
(the decimal form of a byte, short, i nt, or | ong operand, or the character
of a char operand), and then produce a newly created String that is the
concatenation of the two strings

Other useful constructors, methods, and constants are predefined in the classes
Byt e, Short, | nt eger, Long, and Char act er.

If an integer operator other than a shift operator has at least one operand of type
| ong, then the operation is carried out using 64-bit precision, and the result of
the numerical operator is of type | ong. If the other operand is not | ong, it isfirst
widened (85.1.5) to type | ong by numeric promotion (85.6).

Otherwise, the operation is carried out using 32-bit precision, and the result of the
numerical operator isof typei nt . If either operandisnot ani nt, it isfirst widened
totypei nt by numeric promotion.

Any value of any integral type may be cast to or from any numeric type. There are
no casts between integral types and the type bool ean.

See 84.2.5 for an idiom to convert integer expressionsto bool ean.

The integer operators do not indicate overflow or underflow in any way.

An integer operator can throw an exception (811 (Exceptions)) for the following
reasons:

* Any integer operator can throw a Null Poi nter Exception if unboxing
conversion (85.1.8) of anull referenceis required.

» The integer divide operator / (815.17.2) and the integer remainder operator %
(815.17.3) canthrow an Ari t hret i cExcept i on if theright-hand operand iszero.

e The increment and decrement operators ++ (815.14.2, 815.15.1) and --
(815.14.3, 815.15.2) can throw an Qut Of Meror yEr ror if boxing conversion
(85.1.7) isrequired and there is not sufficient memory available to perform the
conversion.

Example 4.2.2-1. Integer Operations

class Test {
public static void main(String[] args) {
int i = 1000000;
Systemout.printin(i * i);
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long I =1i;
Systemout.printin(l * 1);
Systemout.printin(20296 / (I - i));

}

This program produces the outpult:

- 727379968
1000000000000

and then encounters an Ari t hmet i cExcepti on in the divison by | - i, because |
- i iszero. Thefirst multiplication is performed in 32-bit precision, whereas the second
multiplicationisal ong multiplication. The value - 727379968 isthe decimal value of the
low 32 hits of the mathematical result, 1000000000000, which is a value too large for
typei nt .

4.2.3 Floating-Point Types, Formats, and Values

The floating-point typesaref | oat and doubl e, which are conceptually associated
with the 32-bit binary32 and 64-bit binary64 floating-point formats for IEEE 754
values and operations, as specified in the IEEE 754 Standard (81.7).

In Java SE 15 and |ater, the Java programming language uses the 2019 version of the IEEE
754 Standard. Prior to Java SE 15, the Java programming language used the 1985 version
of the IEEE 754 Standard, where the binary32 format was known as the single format and
the binary64 format was known as the double format.

|EEE 754 includes not only positive and negative numbersthat consist of asign and
magnitude, but also positive and negative zeros, positive and negative infinities,
and special Not-a-Number values (hereafter abbreviated NaN). A NaN value is
used to represent the result of certain invalid operations such as dividing zero by
zero. NaN constants of both f 1 oat and doubl e type are predefined as Fl oat . NaN
and Doubl e. NaN.

Every implementation of the Javaprogramming languageisrequired to support two
standard sets of floating-point values, called the float val ue set and the double value
set. In addition, an implementation of the Java programming language may support
either or both of two extended-exponent floating-point value sets, called the float-
extended-exponent value set and the double-extended-exponent value set. These
extended-exponent value sets may, under certain circumstances, be used instead
of the standard value sets to represent the values of expressions of type 1 oat or
doubl e (85.1.13, §15.4).

The finite nonzero values of any floating-point value set can all be expressed in
the form s Om 2@ N+ 1), where sis+1 or -1, mis a positive integer less than

4.2
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2N and e is an integer between Epin = -(25-2) and Epey = 2521, inclusive, and
where N and K are parameters that depend on the value set. Some values can be
represented in thisform in more than one way; for example, supposing that avalue
v in a value set might be represented in this form using certain values for s, m,
and e, then if it happened that m were even and e were less than 241 one could
halve m and increase e by 1 to produce a second representation for the game value
v. A representation in this form is called normalized if m = 2 N1 otherwise the
representationissaidto be subnormal. If avaluein avalue set cannot berepresented
in such away that m= 2™ then the value is said to be a subnormal value, becauise
its magnitude is below the magnitude of the smallest normalized value.

The constraints on the parameters N and K (and on the derived parameters Enin
and Engy) for the two required and two optional floating-point value sets are
summarized in Table 4.2.3-A.

Table 4.2.3-A. Floating-point value set parameters

Parameter float float-extended-  double double-extended-
exponent exponent
24 24 53 53
8 >11 1 215
Emex +127 > +1023 +1023 > +16383
Emin -126 <-1022 -1022 <-16382

Where one or both extended-exponent value sets are supported by an
implementation, then for each supported extended-exponent value set there is
a specific implementation-dependent constant K, whose value is constrained by
Table 4.2.3-A; thisvalue K in turn dictates the values for Eqin and Emax.

Each of the four value sets includes not only the finite nonzero values that are
ascribed to it above, but also NaN values and the four values positive zero, negative
zero, positive infinity, and negative infinity.

Note that the constraintsin Table 4.2.3-A are designed so that every element of the
float value set is hecessarily also an element of the float-extended-exponent value
set, the double value set, and the double-extended-exponent value set. Likewise,
each element of the double value set is necessarily also an element of the double-
extended-exponent value set. Each extended-exponent value set has alarger range
of exponent values than the corresponding standard value set, but does not have
more precision.
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The elements of the float value set are exactly the values that can be represented
using the binary32 floating-point format defined by IEEE 754. The elements of the
double value set are exactly the values that can be represented using the binary64
floating-point format defined by IEEE 754. Note, however, that the elements of
thefl oat-extended-exponent and double-extended-exponent val ue sets defined here
do not correspond to the values that can be represented using, respectively, the
binary32 extended and binary64 extended floating-point formats defined by |EEE
754,

The float, float-extended-exponent, double, and double-extended-exponent value
sets are not types. It is always correct for an implementation of the Java
programming language to use an element of the float value set to represent avalue
of type f I oat ; however, it may be permissible in certain regions of code for an
implementation to use an element of the float-extended-exponent value set instead.
Similarly, itisaways correct for an implementation to use an element of the double
value set to represent a value of type doubl e; however, it may be permissible in
certain regions of code for an implementation to use an element of the double-
extended-exponent value set instead.

Except for NaN, floating-point values are ordered; arranged from smallest to
largest, they are negative infinity, negative finite nonzero values, positive and
negative zero, positive finite nonzero values, and positive infinity.

|EEE 754 allows multipledistinct NaN valuesfor each of itsbinary32 and binary64
floating-point formats. While each hardware architecture returns a particular bit
pattern for NaN when a new NaN is generated, a programmer can also create
NaNs with different bit patterns to encode, for example, retrospective diagnostic
information.

For the most part, the Java SE Platform treats NaN values of agiven type asthough
collapsed into asingle canonical value, and hence this specification normally refers
to an arbitrary NaN as though to a canonical value.

However, version 1.3 of the Java SE Platform introduced methods enabling the
programmer to distinguish between NaN values: the Fl oat . f| oat ToRawi nt Bi t s and
Doubl e. doubl eToRawLongBi t s methods. The interested reader is referred to the
specifications for the Fl oat and Doubl e classes for more information.

Positive zero and negative zero compare equal; thus the result of the expression
0.0==-0. 0 istrue and the result of 0. 0>-0. 0 is false. But other operations can
distinguish positive and negative zero; for example, 1. 0/ 0. 0 hasthe value positive
infinity, while the value of 1. 0/ - 0. 0 is negative infinity.

NaN is unordered, so:

4.2
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» The numerical comparison operators <, <=, >, and >= return f al se if either or
both operands are NaN (815.20.1).

In particular, (x<y) == !(x>=y) will befal seif x ory isNaN.
» The equality operator == returnsf al se if either operand is NaN.
e Theinequality operator ! = returnst r ue if either operand is NaN (815.21.1).

In particular, x! =x istrue if and only if x is NaN.

4.2.4 Floating-Point Operations

The Java programming language provides a number of operators that act on
floating-point values:

» The comparison operators, which result in avalue of type bool ean:
— The numerical comparison operators <, <=, >, and >= (8§15.20.1)
— The numerical equality operators== and ! = (815.21.1)
» The numerical operators, which result in avalue of typef1 oat or doubl e:
— The unary plus and minus operators + and - (815.15.3, §15.15.4)
— The multiplicative operators*, / , and %(815.17)
— The additive operators + and - (815.18.2)
— The increment operator ++, both prefix (815.15.1) and postfix (§15.14.2)
— The decrement operator - -, both prefix (815.15.2) and postfix (815.14.3)
» The conditional operator ? : (815.25)

* The cast operator (815.16), which can convert from a floating-point value to a
value of any specified numeric type

» The string concatenation operator + (815.18.1), which, when given a String
operand and afloating-point operand, will convert the floating-point operand to
astring representing its value in decimal form (without information loss), and
then produce a newly created st ri ng by concatenating the two strings

Other useful constructors, methods, and constants are predefined in the classes
Fl oat , Doubl e, and Mat h.

If at least one of the operands to a binary operator is of floating-point type, then
the operation is a floating-point operation, even if the other isintegral.
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If at least one of the operands to a numerical operator is of type doubl e, then the
operation is carried out using 64-bit floating-point arithmetic, and the result of the
numerical operator isavaue of type doubl e. If the other operand is not adoubl e,
it isfirst widened (85.1.5) to type doubl e by numeric promotion (85.6).

Otherwise, the operation is carried out using 32-hit floating-point arithmetic, and
the result of the numerical operator is avalue of typef1 oat . (If the other operand
isnot afl oat, it isfirst widened to typef I oat by numeric promotion.)

Any value of afloating-point type may be cast to or from any numeric type. There
are no casts between floating-point types and the type bool ean.

See 84.2.5 for an idiom to convert floating-point expressions to bool ean.

Operators on floating-point numbers behave as specified by IEEE 754, with the
exception of certain operators described bel ow. In particular, the Javaprogramming
language requires support of IEEE 754 subnormal floating-point numbers and
gradual underflow, which make it easier to prove desirable properties of particular
numerical algorithms. Floating-point operations do not "flush to zero" if the
calculated result is a subnormal number.

Floating-point arithmetic is an approximation to rea arithmetic. While there are
an infinite number of real numbers, a particular floating-point format only has a
finite number of values. In the Java programming language, a rounding policy is
a function used to map from a real number to a floating-point value in a given
format. For real numbers in the representable range of a floating-point format, a
continuous segment of the real number line is mapped to a single floating-point
value. The real number whose value is numerically equa to afloating-point value
is mapped to that floating-point value; for example, the real number 1.5 is mapped
to the floating-point value 1.5 in a given format. The Java programming language
defines two rounding policies, as follows:

» The round to nearest rounding policy applies to all floating-point operations
except for (i) conversion to an integer value, and (ii) floating-point remainder.
Under the round to nearest rounding policy, inexact results must be rounded to
the representable value nearest to the infinitely precise result; if the two nearest
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representable values are equally near, then the value whose least significant bit
is zero is chosen.

The round to nearest rounding policy corresponds to the default rounding-
direction attribute for binary arithmetic in IEEE 754, roundTiesToEven.

The roundTiesToEven rounding-direction attribute was known as the "round to nearest"
rounding mode in the 1985 version of the IEEE 754 Standard. The rounding policy in
the Java programming language is named after this rounding mode.

» The round toward zero rounding policy appliesto (i) conversion of a floating-
point value to an integer value (85.1.3), and (ii) floating-point remainder
(815.17.3). Under the round toward zero rounding policy, inexact results are
rounded to the nearest representable value that is not greater in magnitude than
the infinitely precise result. For conversion to integer, the round toward zero
rounding policy is equivalent to truncation where fractional significand bits are
discarded.

The round toward zero rounding policy corresponds to the roundTowardZero
rounding-direction attribute for binary arithmetic in IEEE 754.

The roundTowardZero rounding-direction attribute was known as the "round toward

zero" rounding modein the 1985 version of the | EEE 754 Standard. The rounding policy

in the Java programming language is named after this rounding mode.
The Java programming language requiresthat floating-point arithmetic behave asif
every floating-point operation roundsitsfloating-point result to the result precision.
Therounding policy used for each floating-point operation iseither round to nearest
or round toward zero, as specified above.

A floating-point operation that overflows produces a signed infinity.

A floating-point operation that underflows produces a subnormal value or asigned
zero.

A floating-point operation that has no unique mathematically defined result
produces NaN.

All numeric operations with NaN as an operand produce NaN as a result.

A floating-point operator can throw an exception (811 (Exceptions)) for the
following reasons.

» Any floating-point operator can throw a Nul | Poi nt er Except i on if unboxing
conversion (85.1.8) of anull referenceis required.

» The increment and decrement operators ++ (815.14.2, 8§15.15.1) and --
(815.14.3, 815.15.2) can throw an Qut Of MenoryError if boxing conversion
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(85.1.7) isrequired and there is not sufficient memory available to perform the

conversion.

Example 4.2.4-1. Floating-point Operations

class Test {

}

public static void main(String[] args) {

/1 An exanple of overflow
double d = 1e308;
System out. print("overflow produces infinity: ");
Systemout.println(d + "*10==" + d*10);
/1 An exanpl e of gradual underfl ow
d = 1e-305 * Math.PIl;
System out. print("gradual underflow " + d + "\n ")
for (int i =0; i < 4; i++)
Systemout.print(" " + (d /= 100000));
Systemout. println();
/1 An exanpl e of NaN:
Systemout.print("0.0/0.0 is Not-a-Nunber: ");
d = 0.0/0.0;
System out. println(d);
/1 An exanpl e of inexact results and roundi ng:
Systemout.print("inexact results with float:");

for (int i =0; i < 100; i++) {
float z = 1.0f / i;
if (z*i !=1.0f)
Systemout.print(" " + i);
}

Systemout. println();
/1 Anot her exampl e of inexact results and roundi ng:
Systemout. print("inexact results with double:");

for (int i =0; i < 100; i++) {
double z = 1.0/ i;
if (z*i !'=1.0)
Systemout.print(" " + i);
}

Systemout. println();

/1 An exanple of cast to integer rounding:
Systemout.print("cast to int rounds toward 0: ");
d = 12345. 6;

Systemout.printin((int)d +" " + (int)(-d));

This program produces the outpuit:
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overfl ow produces infinity: 1.0E308*10==Infinity
gradual underflow 3.141592653589793E- 305

3. 1415926535898E- 310 3. 141592653E- 315 3. 142E-320 0.0
0.0/0.0 is Not-a-Nunmber: NaN
inexact results with float: 0 41 47 55 61 82 83 94 97
inexact results with double: 0 49 98
cast to int rounds toward 0: 12345 -12345

This example demonstrates, among other things, that gradua underflow can result in a
gradual loss of precision.

The resultswhen i is0 involve division by zero, so that z becomes positive infinity, and
z * 0isNaN, whichisnot equa to1. 0.

4.25 Thebool ean Type and boolean Values

Thebool ean type represents alogical quantity with two possible values, indicated
by theliteralstrue andf al se (83.10.3).

The boolean operators are:

» Therelational operators==and! = (815.21.2)

» Thelogical complement operator ! (8§15.15.6)

» Thelogical operators &, ~, and | (815.22.2)

» The conditional-and and conditional-or operators && (815.23) and | | (§15.24)
» The conditional operator ? : (815.25)

» The string concatenation operator + (815.18.1), which, when given a String
operand and abool ean operand, will convert the bool ean operandtoastri ng
(either "t rue" or"fal se"), and then produce anewly created St ri ng that isthe
concatenation of the two strings

Boolean expressions determine the control flow in several kinds of statements:
* Theif statement (814.9)

» Thewhi | e statement (§14.12)

* The do statement (8§14.13)

e Thefor statement (814.14)

A bool ean expression also determines which subexpression is evaluated in the
conditional ? : operator (815.25).

Only bool ean and Bool ean expressions can be used in control flow statements and
asthefirst operand of the conditional operator ? : .
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An integer or floating-point expression x can be converted to a bool ean value,
following the C language convention that any nonzero value is true, by the
expression x! =0.

An object reference obj can be converted to a bool ean value, following the C
language convention that any reference other than nul | ist r ue, by the expression
obj ! =nul | .

A bool ean value can be converted to a st ri ng by string conversion (85.4).

A bool ean value may be cast totypebool ean, Bool ean, or Obj ect (85.5). No other
casts on type bool ean are alowed.

4.3 Reference Typesand Values

There are four kinds of reference types: class types (88.1), interface types (89.1),
type variables (84.4), and array types (810.1).

ReferenceType:
ClassOrlInterfaceType
TypeVariable
ArrayType

ClassOr|nterfaceType:
ClassType
InterfaceType

ClassType:
{Annotation} Typeldentifier [ TypeArguments]
PackageName . {Annotation} Typeldentifier [ TypeArguments]
ClassOrlInterfaceType. {Annotation} Typeldentifier [ TypeArguments]

InterfaceType:
ClassType

TypeVariable:
{Annotation} Typeldentifier

ArrayType:
PrimitiveType Dims
ClassOrInterfaceType Dims
TypeVariable Dims
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Dims:
{Annotation} [ ] {{Annotation} [ ]}

The sample code:

class Point { int[] metrics; }
interface Move { void nove(int deltax, int deltay); }

declaresaclasstypePoi nt , aninterfacetype Move, and usesan array typei nt [] (anarray
of i nt) to declarethefield met ri cs of the class Poi nt .

A classor interface type consists of anidentifier or adotted sequence of identifiers,
where each identifier is optionally followed by type arguments (84.5.1). If type
arguments appear anywhere in a class or interface type, it is a parameterized type
(84.5).

Eachidentifier in aclass or interface typeis classified as a package name or atype
name (86.5.1). Identifierswhich are classified astype names may be annotated. If a
classor interface type hastheform T. i d (optionally followed by type arguments),
then i d must be the simple name of an accessible member type of T (86.6, §8.5,
§89.5), or a compile-time error occurs. The class or interface type denotes that
member type.

4.3.1 Objects

An object isaclassinstance or an array.

The reference values (often just references) are pointers to these objects, and a
specia null reference, which refers to no object.

A classinstanceisexplicitly created by aclassinstance creation expression (815.9).
An array isexplicitly created by an array creation expression (§15.10.1).

Other expressionsmay implicitly createaclassinstance (812.5) or an array (810.6).

Example 4.3.1-1. Object Creation

class Point {
int x, vy;
Point() { Systemout.println("default"); }
Point(int x, int y) { this.x =x; this.y =vy; }

/* A Point instance is explicitly created at
class initialization time: */
static Point origin = new Point(0,0);
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/* A String can be inplicitly created
by a + operator: */
public String toString() { return "(" + x +"," +y +")"; }

}

class Test {
public static void main(String[] args) {
/* A Point is explicitly created
usi ng new nstance: */
Point p = null;
try {
p = (Point)C ass. forNanme("Point").new nstance();
} catch (Exception e) {
Systemout.printlin(e);

}

/* An array is inplicitly created
by an array initializer: */
Point a[] = { new Point(0,0), new Point(1,1) };

/* Strings are inplicitly created
by + operators: */
Systemout.printin("p: " + p);
Systemout.printin("a: { " + a[0] + ", " + a[1] + " }");

/* An array is explicitly created

by an array creation expression: */
String sa[] = new String[?2];
sa[0] = "he"; sa[1] = "llo";
Systemout.printin(sa[0] + sa[1l]);

}
This program produces the output:

def aul t

p: (0,0)

a: { (0,0), (1,1 }
hell o

The operators on references to objects are:

Field access, using either a qualified name (86.6) or a field access expression
(815.11)

Method invocation (815.12)
The cast operator (85.5, §15.16)

The string concatenation operator + (815.18.1), which, when given a Stri ng
operand and areference, will convert the referenceto a st ri ng by invoking the
t oSt ri ng method of the referenced object (using “nul | * if either the reference
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or the result of tosString is a null reference), and then will produce a newly
created St ri ng that is the concatenation of the two strings

* Thei nst anceof operator (815.20.2)
» Thereference equality operators==and ! = (815.21.3)
 The conditional operator ? : (815.25).

There may be many references to the same object. Most objects have state, stored
in the fields of abjects that are instances of classes or in the variables that are the
components of an array object. If two variables contain references to the same
object, the state of the object can be modified using one variable's reference to the
object, and then the altered state can be observed through the referencein the other
variable.

Example 4.3.1-2. Primitive and Reference | dentity
class Value { int val; }

class Test {
public static void main(String[] args) {

int il=3;
int i2=1i1;
i2 = 4

Systemout.print("il==" + i1);
Systemout.println(" but i2==" +i2);
Val ue vl = new Val ue();

vl.val = 5;

Val ue v2 = vi,

v2.val = 6;

Systemout.print("vl. val ==" + vl.val);
Systemout.println(" and v2.val ==" + v2.val);

}
This program produces the output:

i 1==3 but i2==4
vl.val ==6 and v2.val ==6

because v1. val and v2. val reference the same instance variable (84.12.3) in the one
Val ue object created by the only new expression, whilei 1 andi 2 are different variables.

Each object is associated with a monitor (817.1), which is used by synchr oni zed
methods (88.4.3) and thesynchr oni zed statement (§814.19) to provide control over
concurrent access to state by multiple threads (817 (Threads and Locks)).
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4.3.2 The Class j ect

The class j ect isasuperclass (88.1.4) of all other classes.

All class and array types inherit (88.4.8) the methods of class j ect , which are
summarized as follows:

The method cI one is used to make a duplicate of an object.

The method equal s definesanotion of object equality, which is based onvalue,
not reference, comparison.

The method fi nal i ze isrun just before an object is destroyed (812.6).

The method get d ass returns the d ass object that represents the class of the
object.

A d ass object exists for each reference type. It can be used, for example,
to discover the fully qualified name of a class, its members, its immediate
superclass, and any interfaces that it implements.

The type of a method invocation expression of get C ass IS O ass<? ext ends
[T]>, where T is the class or interface that was searched for get d ass (815.12.1)
and |T| denotes the erasure of T (84.6).

A class method that is declared synchroni zed (88.4.3.6) synchronizes on the
monitor associated with the d ass object of the class.

The method hashCode is very useful, together with the method equal s, in
hashtables such asj ava. uti | . HashMap.

Themethodswai t , noti fy,andnoti fyAl | areused in concurrent programming
using threads (817.2).

Themethod t oSt ri ng returnsast ri ng representation of the object.

433 TheClassstring

Instances of class St ri ng represent sequences of Unicode code points.

A string object has aconstant (unchanging) value.

String literals (83.10.5) and text blocks (83.10.6) arereferencesto instances of class
String.

The string concatenation operator + (815.18.1) implicitly creates a new Stri ng
object when the result is not a constant expression (815.29).
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4.3.4 When Reference Types Arethe Same

Two reference types are the same compile-time type if they are declared in
compilation units associated with the same module (87.3), and they have the same
binary name (§13.1), and their type arguments, if any, are the same, applying this
definition recursively.

When two reference types are the same, they are sometimes said to be the same
class or the same interface.

At run time, severa reference types with the same binary name may be loaded
simultaneously by different class loaders. These types may or may not represent
the same type declaration. Even if two such types do represent the same type
declaration, they are considered distinct.

Two reference types are the same run-time type if:

» They are both class or both interface types, are defined by the same class |oader,
and have the same binary name (813.1), in which case they are sometimes said
to be the same run-time class or the same run-time interface.

» They are both array types, and their component types are the same run-time type
(810 (Arrays)).

4.4 TypeVariables

A typevariableisanunqualified identifier used asatypein class, interface, method,
and constructor bodies.

A type variable is introduced by the declaration of atype parameter of a generic
class, interface, method, or constructor (88.1.2, 89.1.2, 88.4.4, §8.8.4).

TypeParameter:
{TypeParameter Modifier} Typeldentifier [ TypeBound)]

TypeParameterModifier:
Annotation

TypeBound:
ext ends TypeVariable
ext ends ClassOrlnterfaceType { Additional Bound}
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Additional Bound:
& InterfaceType

The scope of atype variable declared as atype parameter is specified in 8§6.3.

Every type variable declared as a type parameter has a bound. If no bound is
declared for atype variable, aoj ect isassumed. If abound is declared, it consists
of either:

e asingletypevariableT, or
» aclassor interface type T possibly followed by interfacetypesi ; & ... &1 y.
Itisacompile-timeerror if any of thetypesi ; ... I , isaclasstype or type variable.

The erasures (84.6) of all constituent types of a bound must be pairwise different,
or acompile-time error occurs.

A typevariable must not at the same time be a subtype of two interface typeswhich
are different parameterizations of the same generic interface, or a compile-time
€rror occurs.

Theorder of typesinaboundisonly significant in that the erasure of atypevariable
is determined by the first type in its bound, and that a class type or type variable
may only appear in the first position.

The members of atype variable x withbound T &1 ; & ... & I ,, are the members of
the intersection type (84.9) T &1 & ... & | , appearing at the point where the type
variable is declared.

Example 4.4-1. Members of a Type Variable
package TypeVar Menbers;

class C{
public voi d mCPublic() {}
protected void nCProtected() {}
voi d mCPackage() {}
private voi d mCPrivate() {}

}

interface I {
void m();
}

class CT extends Cinplenents | {
public void m () {}
}

class Test {
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<T extends C & | > void test(T t) {

t.m(); /11 K
t. mCPublic(); /Il K
t.mCProtected(); // XK
t. mCPackage() ; /Il K
t.nCPrivate(); /1 Conpile-time error

}

The type variable T has the same members as the intersection type C & |, which in turn
has the same members as the empty class CT, defined in the same scope with equivalent
supertypes. Themembersof aninterfaceareawayspubl i ¢, and thereforealwaysinherited
(unless overridden). Hence m is a member of CT and of T. Among the members of C, all
but nCPr i vat e areinherited by CT, and are therefore members of both CT and T.

If C had been declared in a different package than T, then the call to nCPackage would
giveriseto acompile-timeerror, asthat member would not be accessible at the point where
T isdeclared.

4.5 Parameterized Types

A class or interface declaration that is generic (88.1.2, 89.1.2) defines a set of
parameterized types.

A parameterized type is a class or interface type of the form c<Ty,...,T,>, where C
is the name of a generic type and <Ty,...,T,> isalist of type arguments that denote
aparticular parameterization of the generic type.

A generic type has type parameters Fy,...,F, with corresponding bounds Bq,...,B;.
Each type argument T, of a parameterized type ranges over all types that are
subtypes of all types listed in the corresponding bound. That is, for each bound
typesing;, T; isasubtypeof S[ Fi: =Ty, .. ., Fn: =Tp] (84.10).

A parameterized type C<Ty,...,To> iswell-formed if al of the following are true:
* Ccisthe name of ageneric type.

» The number of type arguments is the same as the number of type parametersin
the generic declaration of C.

» When subjected to capture conversion (85.1.10) resulting in thetype C<Xy,...,Xn>,
each type argument X; is a subtype of S[ F;: =Xy, ..., Fq: =X,] for each bound
typesinsg;.

Itisacompile-time error if a parameterized type is not well-formed.
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In this specification, whenever we speak of aclassor interface type, weincludethe
generic version as well, unless explicitly excluded.

Two parameterized types are provably distinct if either of the following istrue:
» They are parameterizations of distinct generic type declarations.
» Any of their type arguments are provably distinct.

Giventhegenerictypesinthe examplesof §8.1.2, here are somewell-formed parameterized
types:

* Seq<String>
* Seq<Seq<String>>
* Seq<String>. Zi pper <l nt eger >

e Pair<String,|nteger>
Here are some incorrect parameterizations of those generic types:

* Seq<i nt > isillegal, as primitive types cannot be type arguments.

e Pair<String>isillega, asthere are not enough type arguments.

e Pair<String, String, String>isillegal, asthere are too many type arguments.

A parameterized type may be an parameterization of a generic class or interface which
is nested. For example, if a hon-generic class C has a generic member class D<T>, then
C. D<bj ect > is a parameterized type. And if a generic class C<T> has a non-generic

member class D, then the member type C<St r i ng>. Disaparameterized type, even though
the class Dis hot generic.

45.1 TypeArgumentsof Parameterized Types

Type arguments may be either reference types or wildcards. Wildcards are useful
in situations where only partial knowledge about the type parameter is required.

TypeArguments.
< TypeArgumentList >

TypeArgumentList:
TypeArgument {, TypeArgument}

TypeArgument:

ReferenceType
Wildcard
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Wildcard:
{Annotation} ? [WildcardBounds]

WildcardBounds:
ext ends ReferenceType
super ReferenceType

Wildcards may be given explicit bounds, just like regular type variable
declarations. An upper bound is signified by the following syntax, where B is the
bound:

? extends B

Unlike ordinary type variables declared in a method signature, no type inference
isrequired when using awildcard. Consequently, it is permissible to declare lower
bounds on awildcard, using the following syntax, where B is alower bound:

? super B

The wildcard ? ext ends Qbj ect is equivaent to the unbounded wildcard ~.
Two type arguments are provably distinct if one of the following istrue:

» Neither argument is atype variable or wildcard, and the two arguments are not
the same type.

» One type argument is a type variable or wildcard, with an upper bound (from
capture conversion (85.1.10), if necessary) of S; and the other type argument T
isnot atype variable or wildcard; and neither |s| <: |T| nor |T| <: || (84.8, §84.10).

» Each type argument is a type variable or wildcard, with upper bounds (from
capture conversion, if necessary) of s and T; and neither [s| <: [T| nor [T] <: [S].

A type argument T, is said to contain another type argument T,, written T, <= Ty,
if the set of types denoted by T, is provably a subset of the set of types denoted
by T1 under the reflexive and transitive closure of the following rules (where <:
denotes subtyping (84.10)):

e ?extends T<=?extends SifT<: S
* ?extends T<=?

e ?super T<=?super SifS<: T

* ?super T<=7?

* ? super T <=? extends bj ect
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e T<=T
e T<=?extends T

e T<=?super T

The relationship of wildcards to established type theory is an interesting one, which we
briefly alude to here. Wildcards are a restricted form of existential types. Given a generic
type declaration G<T ext ends B>, G<?> isroughly analogousto Sone X <: B. G<X>.

Historically, wildcards are a direct descendant of the work by Atsushi Igarashi and Mirko
Viroli. Readersinterested in amore comprehensive discussion should refer to On Variance-
Based Subtyping for Parametric Types by Atsushi Igarashi and Mirko Viroli, in the
Proceedings of the 16th European Conference on Object Oriented Programming (ECOOP
2002). This work itself builds upon earlier work by Kresten Thorup and Mads Torgersen
(Unifying Genericity, ECOOP 99), aswell asalong tradition of work on declaration based
variance that goes back to Pierre America's work on POOL (OOPSLA 89).

Wildcards differ in certain details from the constructs described in the aforementioned
paper, in particular in the use of capture conversion (85.1.10) rather than the cl ose
operation described by Igarashi and Viroli. For a formal account of wildcards, see Wild
FJ by Mads Torgersen, Erik Ernst and Christian Plesner Hansen, in the 12th workshop on
Foundations of Object Oriented Programming (FOOL 2005).

Example 4.5.1-1. Unbounded Wildcards

inmport java.util.Collection;
inmport java.util.Arraylist;

class Test {
static void printCollection(Collection<?>c) {
/1 a wildcard collection
for (Qbject o: c) {
System out. println(o);
}
}

public static void main(String[] args) {
Col l ection<String> cs = new ArrayList<String>();
cs.add("hel 1l 0");
cs.add("worl d");
printCollection(cs);

}

Note that using Col | ect i on<Obj ect > as the type of the incoming parameter, c, would
not be nearly as useful; the method could only be used with an argument expression that
had type Col | ect i on<bj ect >, which would be quite rare. In contrast, the use of an
unbounded wildcard allows any kind of collection to be passed as an argument.

Here is an example where the element type of an array is parameterized by awildcard:
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public Method get Met hod(d ass<?>[] paraneterTypes) { ... }

Example 4.5.1-2. Bounded Wildcards

bool ean addAl | (Col | ecti on<? extends E> c)

Here, the method is declared within the interface Col | ect i on<E>, and is designed to add
all the elements of its incoming argument to the collection upon which it is invoked. A
natural tendency would beto useCol | ect i on<E> asthetypeof ¢, but thisisunnecessarily
restrictive. An alternative would be to declare the method itself to be generic:

<T> bool ean addAl | (Col | ecti on<T> c¢)

Thisversionissufficiently flexible, but note that the type parameter isused only onceinthe
signature. Thisreflectsthe fact that the type parameter is not being used to express any kind
of interdependency between the type(s) of the argument(s), the return type and/or throws
type. In the absence of such interdependency, generic methods are considered bad style,
and wildcards are preferred.

Ref erence(T referent, ReferenceQueue<? super T> queue)

Here, the referent can be inserted into any queue whose element type is a supertype of the
type T of the referent; T is the lower bound for the wildcard.

452 Membersand Constructors of Parameterized Types

Let c be ageneric class or interface declaration with type parameters A4,...,A,, and
let c<Ty,...,To> be a parameterization of c where, for 1 <i < n, T; isatype (rather
than awildcard). Then:

» Let mbe a member or constructor declaration in C, whose type as declared is T
(88.2, 88.8.6).

Thetype of min C<Ty,...,To> IST[ A1: =Ty, . . ., A =Th] .

» Letmbeamember or constructor declarationin b, whereDisaclassextended by C
or aninterfaceimplemented by C. Let D<uy,...,Uc> be the supertype of C<Ty,...,Tp>
that corresponds to D.

Thetype of min C<Ty,...,Ty> isthe type of min D<Uy,...,U>.
If any of the type arguments in the parameterization of C are wildcards, then:

» The types of the fields, methods, and constructors in c<Ty,...,T,> are the types
of the fields, methods, and constructors in the capture conversion of C<Ty,...,T,>
(85.1.10).
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* Let D be a (possibly generic) class or interface declaration in C. Then the type
of Din C<Ty,...,T,> isDwhere, if Dis generic, all type arguments are unbounded
wildcards.

Thisis of no consequence, asit isimpossible to access a member of a parameterized type
without performing capture conversion, and it is impossible to use a wildcard after the
keyword newin aclass instance creation expression (§15.9).

The sole exception to the previous paragraph is when a nested parameterized type is used
asthe expressionin ani nst anceof operator (§15.20.2), where capture conversion is not
applied.

A stati c member that is declared in a generic type declaration must be referred
to using the non-generic type that corresponds to the generic type (86.1, 86.5.5.2,
86.5.6.2), or a compile-time error occurs.

In other words, it is illega to refer to a stati c member declared in a generic type
declaration by using a parameterized type.

46 TypeErasure

Type erasureis a mapping from types (possibly including parameterized types and
type variables) to types (that are never parameterized types or type variables). We
write |T| for the erasure of type T. The erasure mapping is defined as follows:

» The erasure of a parameterized type (84.5) G<Ty,...,Tn> iS|G.

» The erasure of anested type T. Cis|T|.C.

» Theerasure of an array type T[] iS|T|[].

» Theerasure of atype variable (84.4) isthe erasure of its leftmost bound.
» The erasure of every other typeis the type itself.

Type erasure aso maps the signature (88.4.2) of a constructor or method to a
signature that has no parameterized types or type variables. The erasure of a
constructor or method signature s is a signature consisting of the same name as s
and the erasures of all the formal parameter typesgivenins.

The return type of a method (88.4.5) and the type parameters of a generic method
or constructor (88.4.4, §8.8.4) also undergo erasure if the method or constructor's
signature is erased.

The erasure of the signature of a generic method has no type parameters.

4.6
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4.7 Reifiable Types

Because some type information is erased during compilation, not al types are
available at run time. Types that are completely available at run time are known
asreifiable types.

A typeisreifiableif and only if one of the following holds:

It refers to a non-generic class or interface type declaration.

It is a parameterized type in which al type arguments are unbounded wildcards
(84.5.2).

Itisaraw type (84.8).

It isaprimitive type (84.2).

It isan array type (810.1) whose element type isreifiable.

It isanested type where, for each type T separated by a". ", T itself isreifiable.

For example, if a generic class X<T> has a generic member class Y<U>, then the
type X<?>. Y<?> is reifiable because X<?> isreifiable and Y<?> isreifiable. The type
X<?>. Y<Cbj ect > isnot reifiable because Y<bj ect > is not reifiable.

An intersection typeis not reifiable.

The decision not to make all generic types reifiable is one of the most crucial, and
controversial design decisions involving the type system of the Java programming
language.

Ultimately, the most important motivation for this decision is compatibility with existing
code. In anaive sense, the addition of new constructs such as generics has no implications
for pre-existing code. The Java programming language, per se, is compatible with earlier
versions as long as every program written in the previous versions retains its meaning in
the new version. However, this notion, which may be termed language compatibility, is
of purely theoretical interest. Real programs (even trivial ones, such as "Hello World")
are composed of several compilation units, some of which are provided by the Java SE
Platform (such aselementsof j ava. | ang orj ava. uti | ). In practice, then, the minimum
requirement is platform compatibility - that any program written for the prior version of the
Java SE Platform continues to function unchanged in the new version.

One way to provide platform compatibility is to leave existing platform functionality
unchanged, only adding new functionality. For example, rather than modify the existing
Collections hierarchy inj ava. uti | , one might introduce a new library utilizing generics.

The disadvantages of such a schemeisthat it is extremely difficult for pre-existing clients
of the Callection library to migrate to the new library. Collections are used to exchange
data between independently developed modules; if a vendor decides to switch to the new,
generic, library, that vendor must also distribute two versionsof their code, to be compatible
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with their clients. Librariesthat are dependent on other vendors code cannot be modified to
use generics until the supplier'slibrary is updated. If two modules are mutually dependent,
the changes must be made simultaneously.

Clearly, platform compatibility, as outlined above, does not provide a realistic path for
adoption of a pervasive new feature such as generics. Therefore, the design of the generic
type system seeks to support migration compatibility. Migration compatibility allows the
evolution of existing code to take advantage of generics without imposing dependencies
between independently developed software modules.

The price of migration compatibility isthat afull and sound reification of the generic type
system is not possible, at least while the migration is taking place.

4.8 Raw Types

Tofacilitateinterfacing with non-generic legacy code, it ispossibleto use asatype
the erasure (84.6) of a parameterized type (84.5) or the erasure of an array type
(810.1) whose element type is a parameterized type. Such a type is called a raw

type.
More precisely, araw typeis defined to be one of:

» Thereferencetypethat isformed by taking the name of ageneric typedeclaration
without an accompanying type argument list.

» An array type whose element type isaraw type.

* A non-stati c member typeof araw typeRthat isnot inherited from asuperclass
or superinterface of R.

A non-generic class or interface type is not araw type.

To see why a nhon-st ati ¢ type member of a raw type is considered raw, consider the
following example:

class Quter<T>{
Tt,;
class | nner {
T setQuterT(T t1) { t =t1; returnt; }
}
}

The type of the member(s) of | nner depends on the type parameter of Qut er . If Qut er is
raw, | nner must be treated as raw as well, asthereisno valid binding for T.

4.8
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Thisrule applies only to type members that are not inherited. Inherited type members that
depend on type variables will be inherited as raw types as a consequence of the rule that
the supertypes of araw type are erased, described later in this section.

Another implication of the rules above is that a generic inner class of araw type can itself
only be used as araw type:

class Quter<T>{
class I nner<S> {
S's;
}
}

It isnot possibleto access| nner asapartialy raw type (a"rare" type):

Quter.|nner<Double> x = null; // illegal
Double d = x.s;

because Qut er itself israw, hence so are al itsinner classesincluding | nner, and soitis
not possible to pass any type arguments to Inner.

The superclasses (respectively, superinterfaces) of araw type arethe erasuresof the
superclasses (superinterfaces) of any of the parameterizations of the generic type.

Thetype of aconstructor (88.8), instance method (88.4, §9.4), or non-st at i ¢ field
(88.3) of araw type Ccthat is not inherited from its superclasses or superinterfaces
isthe erasure of itstype in the generic declaration corresponding to C.

Thetypeof ast ati ¢ method or st at i ¢ field of araw type cisthe same asitstype
in the generic declaration corresponding to C.

It isacompile-time error to pass type arguments to anon-st at i ¢ type member of
araw typethat is not inherited from its superclasses or superinterfaces.

It isacompile-time error to attempt to use atype member of a parameterized type
asaraw type.

This means that the ban on "rare" types extends to the case where the qualifying type is
parameterized, but we attempt to use the inner class as araw type:

Quter<integer>.lnner x = null; // illegal

Thisisthe opposite of the case discussed above. There is no practical justification for this
half-baked type. Inlegacy code, no type arguments are used. In non-legacy code, we should
use the generic types correctly and pass al the required type arguments.

The supertype of a class may be a raw type. Member accesses for the class are
treated as normal, and member accesses for the supertype are treated as for raw
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types. In the constructor of the class, calsto super aretreated as method calls on
araw type.

The use of raw types is allowed only as a concession to compatibility of legacy
code. The use of raw types in code written after the introduction of genericsinto
the Java programming language is strongly discouraged. It is possible that future
versions of the Java programming language will disallow the use of raw types.

To make sure that potential violations of the typing rules are aways flagged, some
accessesto membersof araw typewill result in compile-time unchecked warnings.
The rules for compile-time unchecked warnings when accessing members or
constructors of raw types are asfollows:

» At an assignment to a field: if the type of the Primary in the field access
expression (815.11) isaraw type, then acompile-time unchecked warning occurs
if erasure changes the field's type.

» Ataninvocation of amethod or constructor: if thetype of the classor interfaceto
search (815.12.1) isaraw type, then acompil e-time unchecked warning occursif
erasure changes any of the formal parameter types of the method or constructor.

» No compile-time unchecked warning occurs for a method call when the formal
parameter types do not change under erasure (even if the return type and/or
t hr ows clause changes), for reading from afield, or for a classinstance creation
of araw type.

Notethat the unchecked warnings above are distinct from the unchecked warnings possible
from narrowing reference conversion (85.1.6), unchecked conversion (85.1.9), method
declarations (88.4.1, §8.4.8.3), and certain expressions (815.12.4.2, §15.13.2, §15.27.3).

The warnings here cover the case where a legacy consumer uses a generified library. For
example, the library declares a generic class Foo<T ext ends String> that hasafield f
of type Vect or <T>, but the consumer assigns a vector of integersto e. f where e hasthe
raw type Foo. The legacy consumer receives a warning because it may have caused heap
pollution (84.12.2) for generified consumers of the generified library.

(Note that the legacy consumer can assign a Vect or <St ri ng> from the library to itsown
Vect or variable without receiving awarning. That is, the subtyping rules (84.10.2) of the
Java programming language make it possible for a variable of araw type to be assigned a
value of any of the type's parameterized instances.)

Thewarningsfrom unchecked conversion cover the dual case, where agenerified consumer
uses a legacy library. For example, a method of the library has the raw return type
Vect or, but the consumer assigns the result of the method invocation to a variable of type
Vect or <St ri ng>. Thisis unsafe, since the raw vector might have had adifferent element
type than Stri ng, but is still permitted using unchecked conversion in order to enable
interfacing with legacy code. The warning from unchecked conversion indicates that the
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generified consumer may experience problems from heap pollution at other points in the

program.

Example 4.8-1. Raw Types

class Cell <E> {
E val ue;

Cel | (E v)
E get ()

{ value =v; }
{ return value; }

void set(E v) { value = v; }

public stat
Cell x
System
System
X.set ("

ic void main(String[] args) {

= new Cel | <String>("abc");
out.println(x.value); // OK has type Object
out.printin(x.get()); // OK has type Object
def"); /'l unchecked war ni ng

Example 4.8-2. Raw Types and I nheritance

import java.uti
cl ass NonGeneri

l.*;

c {

Col | ecti on<Nunber> nyNunbers() { return null; }

}

abstract class

static Coll
new Arr
public stat

Rawivenber s<T> ext ends NonCeneric

i mpl ements Col |l ection<String> {
ecti on<NonGeneric> cng =
ayLi st <NonGeneric>();

ic void main(String[] args) {

RawMenbers rw = nul | ;

Col | ect

i on<Number> cn = rw. myNunbers();
I K

Iterator<String>is = rwiterator();

Col | ect

}

/1 Unchecked war ni ng
i on<NonGeneri c> cnn = rw. cng;
/1 OK, static nenber

In this program (which is not meant to be run), Rawivenber s<T> inherits the method:

Iterator<String> iterator()

from the Col | ecti on<String> superinterface. The raw type RawMenbers inherits
iterator() fromcCol | ecti on,theerasureof Col | ecti on<St ri ng>, which meansthat
thereturn type of i t erat or () in RawMenbers islterator. Asaresult, the attempt to

assignrw.iterator()

to I terator<String> requires an unchecked conversion, so a

compile-time unchecked warning isissued.



TYPES, VALUES AND VARIABLES

In contrast, RawMenber s inherits nyNunber s() from the NonGeneric class whose
erasureisalso NonGener i ¢. Thus, the return type of nyNunber s() in RawMenber s isnot
erased, and the attempt to assign r w. myNumber s() to Col | ect i on<Nunber > requiresno
unchecked conversion, so no compile-time unchecked warning is issued.

Similarly, the st ati ¢ member cng retains its parameterized type even when accessed
through a object of raw type. Note that accessto ast at i ¢ member through an instance is
considered bad style and is discouraged.

This example reveals that certain members of a raw type are not erased, namely st ati ¢
members whose types are parameterized, and members inherited from a non-generic
supertype.

Raw types are closely related to wildcards. Both are based on existential types. Raw types
can be thought of as wildcards whose type rules are deliberately unsound, to accommodate
interaction with legacy code. Historically, raw types preceded wildcards; they were first
introduced in GJ, and described in the paper Making the future safe for the past: Adding
Genericity to the Java Programming Language by Gilad Bracha, Martin Odersky, David
Stoutamire, and Philip Wadler, in Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA 98), October 1998.

4.9 Intersection Types

AnintersectiontypetakestheformT; &... & T, (n>0), whereT; (1<i<n)aretypes.

Intersection types can be derived from type parameter bounds (84.4) and cast
expressions (815.16); they also arise in the processes of capture conversion

(85.1.10) and least upper bound computation (84.10.4).

The values of an intersection type are those objects that are values of all of the

typesT; forl<i<n.

Every intersection type T; & ... & T, induces a notional class or interface for the

purpose of identifying the members of the intersection type, as follows:

Foreach T; (L <i<n), let G bethe most specific class or array type such that
Ti <. G. Then there must be some ¢, suchthat G, <: G foranyi (1<i<n),or
acompile-time error occurs.

For 1<j<n,if T; isatypevariable, then let T; ' be an interface whose members
are the same as the publ i ¢ members of T; ; otherwise, if T; is an interface, then
let T; ' be Tj.

If ¢ is vject, a notiona interface is induced; otherwise, a notional class
is induced with direct superclass G,. This class or interface has direct

Intersection Types
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superinterfacesT,', ..., T,' and isdeclared in the package in which theintersection
type appears.

The members of an intersection type are the members of the class or interface it
induces.

It isworth dwelling upon the distinction between intersection types and the bounds of type
variables. Every type variable bound induces an intersection type. Thisintersection typeis
often trivial, consisting of a single type. The form of a bound is restricted (only the first
element may be a class or type variable, and only one type variable may appear in the
bound) to preclude certain awkward situations coming into existence. However, capture
conversion can lead to the creation of type variables whose bounds are more general, such

as array types).

4.10 Subtyping

The subtype and supertype relations are binary relations on types.

The supertypes of atype are obtained by reflexive and transitive closure over the
direct supertype relation, written s >; T, which is defined by rules given later in
this section. We write s : > T to indicate that the supertype relation holds between
sandT.

Sisaproper supertypeof T, writtens>T,if S:>TandS#T.

The subtypes of atype T are al types U such that T is a supertype of U, and the
null type. Wewrite T <: S to indicate that that the subtype relation holds between
typesT and S.

T isaproper subtypeof S, written T< S, if T<: SandS#T.
Tisadirect subtypeof s, written T<; S, if S>; T.

Subtyping does not extend through parameterized types. T <: S does not imply that
C<T><: C<S>.

4.10.1 Subtyping among Primitive Types

The following rules define the direct supertype relation among the primitive types:
* doubl e >; fl oat

e float > 1o0ng

* long > int

* int > char
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* int > short

* short >; byte

4.10.2 Subtyping among Class and Interface Types

Given a non-generic type declaration C, the direct supertypes of the type c are all
of the following:

» Thedirect superclass of C (88.1.4).
» Thedirect superinterfaces of C (88.1.5).
» Thetype Obj ect , if Cisan interface type with no direct superinterfaces (89.1.3).

Given a generic type declaration C<F,...,F,> (n > 0), the direct supertypes of the
raw type c (84.8) are al of the following:

» Thedirect superclass of the raw type C.
» The direct superinterfaces of the raw type C.

» The type bj ect, if C<Fy,...,Fn> iS @ generic interface type with no direct
superinterfaces (89.1.2).

Given a generic type declaration C<F,...,F,> (n > 0), the direct supertypes of the
generic type C<Fy,...,F,> are al of the following:

» Thedirect superclass of C<Fy,...,Fn>.
» Thedirect superinterfaces of C<Fy,...,Fn>.

» The type bj ect, if C<Fy,...,Fn> iS @ generic interface type with no direct
superinterfaces.

e Theraw typecC.

Given a generic type declaration C<Fy,...,F> (n > 0), the direct supertypes of
the parameterized type C<Ty,...,To>, Wwhere T; (1 <i < n) isatype, are al of the
following:

* DU 6,...,Uc 6>, where D<uy,...,U> is a generic type which is a direct supertype
of the generic type C<F,...,F,> and B isthe substitution [ Fy: =T4, . . ., Fr: =Tn] .

e C<Sy,..,S,>, Where s; contains T, (1<i<n)(84.5.1).

* The type bj ect, if C<Fy,...,F,> is a generic interface type with no direct
superinterfaces.

» Theraw typecC.
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Given a generic type declaration C<Fy,...,F,> (n > 0), the direct supertypes of the
parameterized type C<Ry,...,R,> Where at least one of theR (1 <i <n)isawildcard
type argument, are the direct supertypes of the parameterized type C<Xy,...,Xn>
which isthe result of applying capture conversion to C<Ry,...,R,> (85.1.10).

The direct supertypes of anintersectiontypeT; &...& Ty areT; (L<i<n).
The direct supertypes of atype variable are the typeslisted in its bound.
A type variable isadirect supertype of its lower bound.

The direct supertypes of the null type are all reference types other than the null
typeitself.

4.10.3 Subtyping among Array Types

The following rules define the direct supertype relation among array types:
» If sand T are both reference types, then 5[] >; T[] iff S>; T.

* (bject > Object[]

* Cl oneabl e >; Object][]

* java.io. Serializable>; Object][]

If Pisaprimitive type, then:
— hj ect > P[]
— Cl oneabl e >; P[]

—java.io.Serializable>; P[]

4,104 Least Upper Bound

Theleast upper bound, or "lub”, of aset of referencetypesisashared supertypethat
is more specific than any other shared supertype (that is, no other shared supertype
is a subtype of the least upper bound). This type, lub(Uy, ..., W), is determined as
follows.

If k=1, then the lub isthe type itself: lub(U) = u.
Otherwise:
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e Foreachu (1<i<KkK):
Let ST(U ) be the set of supertypes of U .
Let EST(u ), the set of erased supertypes of U, be:
EST(U) ={ W |win ST(U ) } where |Wisthe erasure of w

The reason for computing the set of erased supertypes is to deal with situations where
the set of typesincludes several distinct parameterizations of a generic type.

For example, given List<String> and Li st <Obj ect>, simply intersecting the
sets ST(Li st <String>) ={ Li st<String>, Col | ecti on<String>, Object } and
ST(Li st <Obj ect >) = { Li st <bj ect >, Col | ecti on<Cbj ect >, Obj ect } would
yield aset { Obj ect }, and we would have lost track of the fact that the upper bound
can safely be assumed to be alLi st .

In contrast, intersecting EST(Li st <Stri ng>) ={ Li st, Col | ecti on, Obj ect } and
EST(Li st <Obj ect >) ={ Li st, Col | ecti on, Obj ect } yields{ Li st, Col | ecti on,
bj ect }, which will eventually enable usto produce Li st <?>.
» Let EC, the erased candidate set for u; ... U, be the intersection of all the sets
EST(U) (1<i<Kk).

* Let MEC, the minimal erased candidate set for u; ... Uy, be:
MEC ={ v|vinEC, and for al w# vin EC, it is not the case that w<: v}

Because we are seeking to infer more precise types, we wish to filter out any candidates
that are supertypes of other candidates. Thisis what computing MEC accomplishes. In
our running example, we had EC = { Li st, Col | ect i on, Obj ect }, SOMEC ={ Li st
}. The next step isto recover type arguments for the erased typesin MEC.

 For any element G of MEC that is a generic type:
Let the "relevant" parameterizations of G, Relevant(g), be:
Relevant(g) ={ v|1l<i<k vinST(y)andv=G<..>}

In our running example, the only generic element of MEC isLi st , and Relevant(Li st )
={ Li st<String>, Li st <bj ect >}. We will now seek to find a type argument for
Li st that contains (84.5.1) both St ri ng and Qbj ect .

This is done by means of the least containing parameterization (Icp) operation defined
below. Thefirst line defines lcp() on a set, such as Relevant(Li st ), asan operation on a
list consisting of the elements of the set. The next line definesthe operation on such alist
as a pairwise reduction on the elements of thelist. Thethird lineisthe definition of Icp()
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on pairs of parameterized types, which in turn relies on the notion of least containing
type argument (Icta). Icta() is defined for all possible cases.

Let the "candidate' parameterization of G Candidate(G), be the most
specific parameterization of the generic type G that contains all the relevant
parameterizations of G

Candidate(c) = Icp(Relevant(G))
where lcp(), the least containing parameterization, is:
— lep(s) = Icp(ey, ..., en) Wheree; (1<i<n)ins
— lep(ey, ..., en) = lcp(lcp(es, e2), €3, ..., €n)
— lep(GXq, vy Xn>, <Y1, ..., Yp>) = Glcta(Xy, Y1), ..., Icta(X,, Yn)>
— lep(GeXy, ..., Xp>) = Gelcta(Xy), ..., Icta(X,)>
and where Icta(), the least containing type argument, is. (assuming U and v are
types)
— Icta(y, v) = uif U=V, otherwise ? ext ends lub(y, V)
— Icta(u, ? ext ends V) = ? ext ends lub(y, V)
— lcta(u, ? super V) =2 super glb(u, V)
— Icta(? ext ends U, ? ext ends V) = ? ext ends [ub(U, V)
— Icta(? ext ends U, ? super V) =?
— lcta(? super U, ? super V) =2 super glb(u, V)
— lcta(u) = 2 if Us upper bound is Qbj ect , otherwise ? ext ends lub(U,0bj ect )
and where glb() is as defined in §85.1.10.
e Letlub(u; ... W) be:
Best(W) & ... & Best(w)

wherew (1 <i <r) are the elements of MEC, the minimal erased candidate set
of Uy ... Ug

and where, if any of these elements are generic, we use the candidate
parameterization (so as to recover type arguments):

Best(X) = Candidate(X) if X is generic; X otherwise.

Strictly speaking, this lub() function only approximates a least upper bound.
Formally, there may exist some other typeT suchthat all of u; ... U, aresubtypesof T
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and T isasubtype of lub(uy, ..., Us). However, acompiler for the Java programming
language must implement lub() as specified above.

It is possible that the lub() function yields an infinite type. Thisis permissible, and
acompiler for the Java programming language must recognize such situations and
represent them appropriately using cyclic data structures.

The possibility of aninfinite type stems from the recursive calls to lub(). Readers familiar
with recursive types should note that an infinite type is not the same as arecursive type.

4.10.5 TypeProjections

A synthetic type variable is a type variable introduced by the compiler during
capture conversion (85.1.10) or inference variable resolution (§818.4).

It is sometimes necessary to find a close supertype of atype, where that supertype
does not mention certain synthetic type variables. Thisis achieved with an upward
projection applied to the type.

Similarly, adownward projection may be applied to find a close subtype of atype,
where that subtype does not mention certain synthetic type variables. Because such
atype does not aways exist, downward projection isa partial function.

These operations take as input a set of type variables that should no longer
be referenced, referred to as the restricted type variables. When the operations
recur, the set of restricted type variables is implicitly passed on to the recursive
application.

The upward projection of atype T with respect to a set of restricted type variables
is defined as follows:

* If T does not mention any restricted type variable, then the result is T.

» If T isarestricted type variable, then the result is the upward projection of the
upper bound of T.
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 If Tisaparameterized class type or a parameterized interface type, GcA,...,An>,
then the result is eA,...,Ay'>, where, for 1 <i < n, A'is derived from A as
follows:

— If A, does not mention any restricted type variable, then A ' = A .

— If A isatypethat mentions arestricted type variable, then | et U be the upward
projection of A . A" isawildcard, defined by three cases:

> If Uisnot obj ect, and if either the declared bound of the ith parameter of
G, B, mentions atype parameter of G, or B; isnot asubtype of U, then A" is
an upper-bounded wildcard, ? ext ends U.

> Otherwise, if thedownward projection of A isL, then A 'isalower-bounded
wildcard, ? super L.

> Otherwise, the downward projection of A is undefined and A ' is an
unbounded wildcard, 2.

— If A/ is an upper-bounded wildcard that mentions a restricted type variable,
then let U be the upward projection of the wildcard bound. A" is an upper-
bounded wildcard, ? ext ends U.

— If A, isalower-bounded wildcard that mentions arestricted type variabl e, then
if the downward projection of the wildcard bound is L, then A" is a lower-
bounded wildcard, ? super L; if the downward projection of the wildcard
bound is undefined, then A ' is an unbounded wildcard, 2.

» If Tisanarray type, S[ 1, then the result is an array type whose component type
isthe upward projection of s.

« If T is an intersection type, then the result is an intersection type. For each
element, s, of T, the result has as an element the upward projection of s.

Thedownward projection of atype T with respect to aset of restricted typevariables
isapartial function, defined as follows:

* If T does not mention any restricted type variable, then theresult isT.

* If Tisarestricted typevariable, thenif T hasalower bound, and if the downward
projection of that bound is L, the result is L; if T has no lower bound, or if the
downward projection of that bound is undefined, then the result is undefined.
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 If Tisaparameterized class type or a parameterized interface type, GcA,...,An>,
thentheresultisceA,',...,A)>, if, for 1<i < n, atype argument A ' can be derived
from A asfollows; if not, the result is undefined:

— If A, isdoes not mention arestricted type variable, then A ' = A .
— If A isatypethat mentions arestricted type variable, then A" is undefined.

— If A is an upper-bounded wildcard that mentions a restricted type variable,
thenif the downward projection of thewildcard boundisu, then A; ' isan upper-
bounded wildcard, ? ext ends U; if the downward projection of the wildcard
bound is undefined, then A; ' is undefined.

— If A, isalower-bounded wildcard that mentions arestricted type variabl e, then
let L be the upward projection of the wildcard bound. A ' is a lower-bounded
wildcard, ? super L.

» If Tisan array type, 5[], then if the downward projection of sis s', theresult is
ST1; if the downward projection of s isundefined, then the result is undefined.

* If Tisanintersection type, then if the downward projection is defined for each
element of T, the result is an intersection type whose el ements are the downward
projections of the elements of T; if the downward projection is undefined for any
element of T, then the result is undefined.

Like lub (84.10.4), upward projection and downward projection may produce
infinite types, due to the recursion on type variable bounds.

4.11 Where TypesAre Used

Types are used in most kinds of declaration and in certain kinds of expression.
Specificaly, there are 16 type contexts where types are used:
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¢ |ndeclarations;

1. Atypeintheextends orinpl enents clause of aclass declaration (88.1.4,
88.1.5, 88.5, §9.5)

2. Atypeintheext ends clause of an interface declaration (89.1.3, 88.5, §9.5)

3. The return type of a method (including the type of an element of an
annotation type) (88.4.5, §9.4, §9.6.1)

4. Atypeinthet hrows clause of amethod or constructor (88.4.6, §8.8.5, §9.4)

A type in the ext ends clause of a type parameter declaration of a generic
class, interface, method, or constructor (88.1.2, §9.1.2, 88.4.4, §88.8.4)

6. The type in afield declaration of a class or interface (including an enum
constant) (88.3, §9.3, §8.9.1)

7. The type in a forma parameter declaration of a method, constructor, or
lambda expression (88.4.1, §8.8.1, §89.4, §15.27.1)

8. Thetype of the receiver parameter of a method (88.4)
9. Thetypeinalocal variabledeclaration (§14.4, 814.14.1, 814.14.2, §14.20.3)
10. Thetypein an exception parameter declaration (§814.20)

* Inexpressions:

11. A typeintheexplicit type argument list to an explicit constructor invocation
statement or class instance creation expression or method invocation
expression (88.8.7.1, §15.9, §15.12)

12. In an unqualified class instance creation expression, as the class type to be
instantiated (815.9) or as the direct superclass or direct superinterface of an
anonymous class to be instantiated (§15.9.5)

13. The element typein an array creation expression (815.10.1)
14. Thetypein the cast operator of a cast expression (815.16)
15. The typethat followsthei nst anceof relational operator (§15.20.2)

16. In a method reference expression (815.13), as the reference type to search
for amember method or as the class type or array type to construct.

Also, types are used as:

» The element type of an array type in any of the above contexts; and
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* A non-wildcard type argument, or a bound of a wildcard type argument, of a
parameterized type in any of the above contexts.

Finally, there are three specia terms in the Java programming language which
denote the use of atype:

« An unbounded wildcard (84.5.1)
* The. .. inthetypeof avariablearity parameter (88.4.1), toindicate an array type

» The simple name of a type in a constructor declaration (88.8), to indicate the
class of the constructed object

The meaning of typesin type contextsis given by:
e 84.2, for primitive types
e 84.4, for type parameters

» 845, for classand interface typesthat are parameterized, or appear either astype
arguments in a parameterized type or as bounds of wildcard type argumentsin
a parameterized type

» 84.8, for class and interface types that are raw
» 84.9, for intersection types in the bounds of type parameters

* 86.5, for class and interface types in contexts where genericity is unimportant
(86.1)

» 810.1, for array types
Some type contexts restrict how a reference type may be parameterized:

» The following type contexts require that if atype is a parameterized reference
type, it has no wildcard type arguments:

— Inanext ends or i npl enent s clause of aclass declaration (88.1.4, §8.1.5)
— In an ext ends clause of an interface declaration (89.1.3)

— In an unqualified class instance creation expression, as the class type to be
instantiated (815.9) or as the direct superclass or direct superinterface of an
anonymous class to be instantiated (815.9.5)

— In amethod reference expression (815.13), as the reference type to search for
amember method or as the class type or array type to construct.

In addition, no wildcard type arguments are permitted in the explicit type
argument list to an explicit constructor invocation statement or class instance
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creation expression or method invocation expression or method reference
expression (88.8.7.1, §15.9, §15.12, §15.13).

» The following type contexts require that if atype is a parameterized reference
type, it has only unbounded wildcard type arguments (i.e. it isareifiable type) :

— Asthe element type in an array creation expression (815.10.1)
— Asthetypethat followsthei nst anceof relational operator (815.20.2)

» Thefollowing type contexts disallow a parameterized reference type altogether,
because they involve exceptions and the type of an exception is non-generic
(86.1):

— As the type of an exception that can be thrown by a method or constructor
(88.4.6, 88.8.5, §9.4)

— In an exception parameter declaration (§14.20)

In any type context where atype is used, it is possible to annotate the keyword dencting
a primitive type or the Identifier denoting the simple name of a reference type. It is also
possible to annotate an array type by writing an annotation to the left of the[ at the desired
level of nesting in the array type. Annotationsin these locations are called type annotations,
and are specified in §9.7.4. Here are some examples:

e @oo0 int[] f; annotatesthe primitivetypei nt

e int @oo [] f; annotatesthearray typei nt[]

e int @oo [][] f; annotatesthearray typeint[][]

e int[] @oo [] f; annotatesthe array typeint[] which isthe component type of

thearray typeint[][]

Five of the type contexts which appear in declarations occupy the same syntactic real estate
as anumber of declaration contexts (89.6.4.1):

« Thereturn type of amethod (including the type of an element of an annotation type)

« Thetypein afield declaration of aclass or interface (including an enum constant)

e The type in a formal parameter declaration of a method, constructor, or lambda
expression

e Thetypeinaloca variable declaration

¢ Thetypein an exception parameter declaration

The fact that the same syntactic location in a program can be both a type context and a
declaration context arises because the modifiers for a declaration immediately precede the

type of the declared entity. §9.7.4 explains how an annotation in such alocation is deemed
to appear in atype context or a declaration context or both.
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Example 4.11-1. Usage of a Type

import java.util.Random
inmport java.util.Collection;
inmport java.util.Arraylist;

cl ass M scMat h<T ext ends Nunber> {

int divisor;

M scMath(int divisor) { this.divisor = divisor; }

float ratio(long I) {
try {

I /= divisor;
} catch (Exception e) {
if (e instanceof ArithneticException)
| = Long. MAX_VALUE;
el se
I = 0;
}
return (float)l;

}

doubl e gausser () {

Random r = new Randon();
doubl e[] val = new doubl e[ 2];
val [0] = r.next Gaussian();
val [1] = r.next Gaussian();
return (val[0] + val[1]) / 2;

}

Col | ecti on<Nunmber> fromArray(Nunber[] na) {
Col | ecti on<Nunmber> cn = new Arrayli st <Nunmber >();
for (Nunber n : na) cn.add(n);
return cn;

<S> void loop(S s) { this.<S>loop(s); }
}

In this example, types are used in declarations of the following:

Where Types Are Used

Imported types (87.5); here the type Random imported from the type

java. util . Randomof the packagej ava. uti | , is declared

« Fields, which are the class variables and instance variables of classes (88.3), and
constants of interfaces (§89.3); herethefield di vi sor intheclassM scMat h isdeclared
to be of typei nt

« Method parameters (88.4.1); here the parameter | of the method r at i o is declared to
be of typel ong

* Method results (88.4); here the result of the method rati o is declared to be of type
f 1 oat , and the result of the method gausser isdeclared to be of typedoubl e

¢ Constructor parameters (88.8.1); here the parameter of the constructor for M scMat h is
declared to be of typei nt
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¢ Local variables (§814.4, 814.14); the local variablesr and val of the method gausser
are declared to be of types Randomand doubl e[] (array of doubl e)

» Exception parameters (814.20); here the exception parameter e of the cat ch clauseis
declared to be of type Except i on

« Type parameters (84.4); here the type parameter of M scMat h isatype variable T with
the type Nunber asits declared bound

* Inany declaration that uses a parameterized type; here the type Nunber isused asatype
argument (84.5.1) in the parameterized type Col | ect i on<Nunber >.

and in expressions of the following kinds:

» Classinstance creations (815.9); herealocal variabler of method gausser isinitialized
by aclass instance creation expression that uses the type Random

* Genericclass(88.1.2) instance creations (815.9); hereNunber isused asatypeargument
in the expression new ArrayLi st <Number >()

¢ Array creations (815.10.1); heretheloca variableval of method gausser isinitialized
by an array creation expression that creates an array of doubl e with size 2

» Generic method (88.4.4) or constructor (88.8.4) invocations (815.12); here the method
I oop calsitself with an explicit type argument S

e Casts (815.16); here the r et ur n statement of the method r at i o uses the f I oat type
inacast

e Thei nstanceof operator (§15.20.2); herethei nst anceof operator testswhether e is
assignment-compatible with the type Ari t hmet i cExcept i on

412 Variables

A variable is a storage location and has an associated type, sometimes called its
compile-time type, that is either aprimitive type (84.2) or areference type (84.3).

A variable's value is changed by an assignment (815.26) or by a prefix or postfix +
+ (increment) or - - (decrement) operator (815.14.2, 815.14.3, §15.15.1, §15.15.2).

Compatibility of the value of avariable with itstypeis guaranteed by the design of
the Javaprogramming language, aslong asaprogram does not giveriseto compile-
time unchecked warnings(84.12.2). Default values (84.12.5) are compatibleand al
assignments to a variable are checked for assignment compatibility (85.2), usually
at compile time, but, in a single case involving arrays, a run-time check is made
(810.5).

94



TYPES, VALUES, AND VARIABLES Variables

4.12.1 Variablesof Primitive Type

A variable of aprimitivetype always holds aprimitive value of that exact primitive
type.

4.12.2 Variablesof Reference Type

A variable of aclasstype T can hold a null reference or areference to an instance
of class T or of any classthat is a subclass of T.

A variable of an interface type can hold a null reference or a reference to any
instance of any class that implements the interface.

Note that a variable is not guaranteed to always refer to a subtype of its declared type, but
only to subclasses or subinterfaces of the declared type. This is due to the possibility of
heap pollution discussed below.

If Tisaprimitivetype, then avariable of type"array of T" can hold anull reference
or areference to any array of type "array of T".

If Tisareferencetype, then avariable of type "array of T" can hold anull reference
or areference to any array of type "array of S" such that type s is a subclass or
subinterface of type T.

A variable of type tbj ect [] can hold areferenceto an array of any reference type.

A variable of type obj ect can hold a null reference or a reference to any object,
whether it is an instance of aclass or an array.

It is possible that a variable of a parameterized type will refer to an object that is
not of that parameterized type. This situation is known as heap pollution.

Heap pollution can only occur if the program performed some operation involving
araw typethat would give rise to a compile-time unchecked warning (84.8, 85.1.6,
85.1.9,88.4.1, 88.4.8.3,88.4.8.4,89.4.1.2, 815.12.4.2), or if the program aliases an
array variable of non-reifiable element typethrough an array variable of asupertype
which is either raw or non-generic.

For example, the code:

List | = new ArrayLi st <Nunber>();
List<String>Is =1; [/ Unchecked warning

gives rise to a compile-time unchecked warning, because it is not possible to ascertain,
either at compile time (within the limits of the compile-time type checking rules) or at run
time, whether the variable| doesindeed refer toali st <Stri ng>.
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If the code above is executed, heap pollution arises, as the variable | s, declared to be a
Li st <Stri ng>, refersto avaluethatisnotinfact alLi st <Stri ng>.

The problem cannot be identified at run time because type variables are not reified, and
thus instances do not carry any information at run time regarding the type arguments used
to create them.

In a simple example as given above, it may appear that it should be straightforward to
identify the situation at compiletimeand givean error. However, inthegeneral (and typical)
case, thevalue of the variablel may bethe result of an invocation of a separately compiled
method, or its value may depend upon arbitrary control flow. The code above is therefore
very atypical, and indeed very bad style.

Furthermore, the fact that Qbj ect [] is a supertype of all array types means that unsafe
aliasing can occur which leadsto heap pollution. For example, the following code compiles
becauseit is statically type-correct:

static void m(List<String> .. stringLists) {
Obj ect[] array = stringLists;
Li st<Integer> tnpList = Arrays. asLi st(42);
array[ 0] = tnpList; Il (1)
String s = stringLists[0].get(0); // (2)
}

Heap pollution occurs at (1) because a component in the st ri nglLi st s array that should
refertoali st <Stri ng> now refersto aLi st <I nt eger >. Thereis no way to detect this
pollutionin the presence of both auniversal supertype (Obj ect [ ] ) and anon-reifiabletype
(the declared type of the formal parameter, Li st <Stri ng>[]). No unchecked warning is
justified at (1); nevertheless, at runtime, aCl assCast Except i on will occur at (2).

A compile-time unchecked warning will be given at any invocation of the method above
because an invocation is considered by the Java programming language's static type system
to create an array whose element type, Li st <St ri ng>, isnon-reifiable (§15.12.4.2). If and
only if the body of the method was type-safe with respect to the variable arity parameter,
then the programmer could use the Saf evarargs annotation to silence warnings at
invocations (89.6.4.7). Since the body of the method aswritten above causes heap pollution,
it would be completely inappropriate to use the annotation to disable warnings for callers.

Finaly, notethat thest ri ngLi st s array could be aliased through variables of types other
than Qbj ect [ ], and heap pollution could still occur. For example, the type of the ar r ay
variable could bej ava. util . Col | ection[] - araw element type - and the body of the
method above would compilewithout warnings or errorsand still cause heap pollution. And
if the Java SE Platform defined, say, Sequence as a hon-generic supertype of Li st <T>,
then using Sequence asthetype of ar r ay would also cause heap pollution.

The variable will always refer to an object that is an instance of a class that
represents the parameterized type.

The value of | s in the example above is always an instance of a class that provides a
representation of aLi st .
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Assignment from an expression of araw typeto avariable of a parameterized type should
only be used when combining legacy code which does not make use of parameterized types
with more modern code that does.

If no operation that requires a compile-time unchecked warning to be issued takes place,
and no unsafe aliasing occurs of array variables with non-reifiable element types, then
heap pollution cannot occur. Note that this does not imply that heap pollution only occurs
if a compile-time unchecked warning actually occurred. It is possible to run a program
where some of the binaries were produced by a compiler for an older version of the Java
programming language, or from sources that explicitly suppressed unchecked warnings.
This practice is unhealthy at best.

Conversely, it is possible that despite executing code that could (and perhaps did)
give rise to a compile-time unchecked warning, no heap pollution takes place. Indeed,
good programming practice requires that the programmer satisfy herself that despite any
unchecked warning, the code is correct and heap pollution will not occur.

412.3 Kindsof Variables

There are eight kinds of variables:

1. A classvariableis afield declared using the keyword st at i ¢ within a class

3.

declaration (88.3.1.1), or with or without the keyword static within an
interface declaration (89.3).

A classvariableis created when its class or interface is prepared (812.3.2) and
isinitialized to a default value (84.12.5). The class variable effectively ceases
to exist when its class or interface is unloaded (812.7).

Aninstancevariableisafield declared within aclass declaration without using
the keyword st ati ¢ (88.3.1.1).

If aclassT hasafield a that isan instance variable, then anew instance variable
a is created and initialized to a default value (84.12.5) as part of each newly
created object of class T or of any class that is a subclass of T (88.1.4). The
instance variabl e effectively ceasesto exist when the object of whichitisafield
is no longer referenced, after any necessary finalization of the object (812.6)
has been compl eted.

Array components are unnamed variables that are created and initialized to
default values (84.12.5) whenever anew object that isan array is created (810
(Arrays), 815.10.2). The array components effectively cease to exist when the
array is no longer referenced.

Method parameters (88.4.1) name argument values passed to a method.

For every parameter declared in amethod declaration, anew parameter variable
is created each time that method is invoked (815.12). The new variable is
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initialized with the corresponding argument val ue from the method invocation.
The method parameter effectively ceases to exist when the execution of the
body of the method is complete.

Constructor parameters (88.8.1) name argument values passed to a
constructor.

For every parameter declared in a constructor declaration, a new parameter
variable is created each time a class instance creation expression (815.9) or
explicit constructor invocation (88.8.7) invokes that constructor. The new
variableisinitialized with the corresponding argument value from the creation
expression or constructor invocation. The constructor parameter effectively
ceases to exist when the execution of the body of the constructor is compl ete.

Lambda parameters (815.27.1) name argument values passed to a lambda
expression body (815.27.2).

For every parameter declared in alambda expression, anew parameter variable
is created each time a method implemented by the lambda body is invoked
(815.12). The new variable is initidized with the corresponding argument
value from the method invocation. The lambda parameter effectively ceasesto
exist when the execution of the lambda expression body is complete.

An exception parameter is created each time an exception is caught by acat ch
clause of atry statement (814.20).

The new variable is initialized with the actual object associated with the
exception (811.3, 814.18). The exception parameter effectively ceasesto exist
when execution of the block associated with the cat ch clause is complete.

Local variables are declared by local variable declaration statements (§14.4).

Whenever the flow of control enters a block (814.2) or for statement
(814.14), anew variable is created for each local variable declared in alocal
variable declaration statement immediately contained within that block or f or
statement.

A local variable declaration statement may contain an expression which
initializesthe variable. The local variable with an initializing expression is not
initialized, however, until thelocal variable declaration statement that declares
it is executed. (The rules of definite assignment (816 (Definite Assignment))
prevent the value of a local variable from being used before it has been
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initialized or otherwise assigned avalue.) Thelocal variable effectively ceases
to exist when the execution of the block or for statement is complete.

Were it not for one exceptiona situation, a local variable could always be regarded
as being created when its local variable declaration statement is executed. The
exceptional situation involvesthe swi t ch statement (§14.11), whereit is possible for
control to enter ablock but bypass execution of alocal variable declaration statement.
Because of the restrictionsimposed by the rules of definite assignment (816 (Definite
Assignment)), however, the local variable declared by such a bypassed local variable
declaration statement cannot be used before it has been definitely assigned a value by
an assignment expression (815.26).

Example 4.12.3-1. Different Kinds of Variables

class Point {

static int nunmPoints; /1 nunPoints is a class variable
int x, vy; /1 x and y are instance vari abl es
int[] w=newint[10]; // wO0] is an array conponent

int setX(int x) { /1 x is a nethod paraneter

int oldx = this.x; // oldx is a local variable
this.x = x;
return ol dx;

4124 final Variables

A variable can bedeclaredfi nal . A final variable may only be assigned to once.
It is a compile-time error if afinal variable is assigned to unless it is definitely
unassigned immediately prior to the assignment (816 (Definite Assignment)).

Once afinal variable has been assigned, it always contains the same value. If a
final variable holds areference to an object, then the state of the object may be
changed by operations on the object, but the variable will aways refer to the same
object. This applies also to arrays, because arrays are objects; if afi nal variable
holds areference to an array, then the components of the array may be changed by
operations on the array, but the variable will always refer to the same array.

A blank fi nal isafinal variable whose declaration lacks an initializer.

A constant variableis afinal variable of primitive type or type Stri ng that is
initialized with a constant expression (815.29). Whether a variable is a constant
variable or not may have implications with respect to classinitialization (812.4.1),
binary compatibility (813.1), reachability (814.22), and definite assignment
(816.1.1).

Three kinds of variable are implicitly declared final : a field of an interface
(89.3), aloca variable declared as a resource of atry-with-resources statement
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(814.20.3), and an exception parameter of a multi-cat ch clause (§14.20). An
exception parameter of auni-cat ch clause is never implicitly declared f i nal , but
may be effectively final.

Example 4.12.4-1. Final Variables

Declaringavariablef i nal can serveasuseful documentation that itsvaluewill not change
and can help avoid programming errors. In this program:

class Point {
int x, vy;
int useCount;
Point(int x, int y) { this.x = x; this.y =vy; }
static final Point origin = new Point(0, 0);

}

the class Poi nt declares afinal class variable ori gi n. The ori gi n variable holds a
reference to an object that is an instance of class Poi nt whose coordinates are (0, 0). The
value of the variable Poi nt . ori gi n can never change, so it always refers to the same
Poi nt object, the one created by itsinitializer. However, an operation on thisPoi nt object
might change its state - for example, modifying itsuseCount or even, misleadingly, itsx
ory coordinate.

Certain variables that are not declared final are instead considered effectively
final:

» A local variable whose declarator has an initializer (814.4.2) is effectively final
if al of the following are true:
— Itisnot declared fi nal .

— It never occurs as the left hand side in an assignment expression (815.26).
(Note that the local variable declarator containing the initializer is not an
assignment expression.)

— It never occurs as the operand of a prefix or postfix increment or decrement
operator (815.14, §15.15).

» A local variable whose declarator lacks an initializer is effectively final if all of
the following are true:

— Itisnot declared f i nal .

— Whenever it occurs as the left hand side in an assignment expression, it is
definitely unassigned and not definitely assigned before the assignment; that
is, it is definitely unassigned and not definitely assigned after the right hand
side of the assignment expression (816 (Definite Assignment)).
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— It never occurs as the operand of a prefix or postfix increment or decrement
operator.

» A method, constructor, lambda, or exception parameter (88.4.1, §8.8.1, §9.4,
§15.27.1, 814.20) is treated, for the purpose of determining whether it is
effectively final, as alocal variable whose declarator has an initializer.

If avariable is effectively final, adding the fi nal modifier to its declaration will
not introduce any compile-time errors. Conversely, a local variable or parameter
that is declared fi nal in avalid program becomes effectively final if the fi nal
modifier is removed.

4125 Initial Valuesof Variables

Every variable in a program must have a value before its value is used:

» Each class variable, instance variable, or array component is initialized with a
default value when it is created (815.9, §15.10.2):

— For type byt e, the default value is zero, that is, the value of (byt e) 0.

— For typeshort, the default valueis zero, that is, the value of (short) 0.
— For typei nt, the default value is zero, that is, 0.

— For typel ong, the default value is zero, that is, OL.

— For typefl oat , the default value is positive zero, that is, 0. 0f .

— For type doubl e, the default value is positive zero, that is, 0. 0d.

— For typechar, the default value is the null character, that is, * \ u0000" .
— For type bool ean, the default valueist al se.

— For al reference types (84.3), the default valueisnul | .

» Each method parameter (88.4.1) is initialized to the corresponding argument
value provided by the invoker of the method (§15.12).

» Each constructor parameter (88.8.1) isinitialized to the corresponding argument
value provided by a class instance creation expression (815.9) or explicit
constructor invocation (88.8.7).

* An exception parameter (814.20) isinitialized to the thrown object representing
the exception (811.3, §14.18).
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* A local variable (814.4, 814.14) must be explicitly given a value before it is
used, by either initialization (814.4) or assignment (815.26), in away that can be
verified using the rules for definite assignment (816 (Definite Assignment)).

Example 4.12.5-1. Initial Values of Variables

class Point {
static int npoints;
int x, vy;
Poi nt root;

}

class Test {
public static void main(String[] args) {
System out. println("npoints=" + Point.npoints);
Point p = new Point();
Systemout.printin("p.x=" + p.x + ", p.y=" + p.y);
Systemout.printin("p.root=" + p.root);

}
This program prints:

npoi nt s=0
p.x=0, p.y=0
p. root =nul |

illustrating the default initialization of npoi nt s, which occurs when the class Poi nt is
prepared (§12.3.2), and thedefault initialization of x, y, andr oot , which occurswhen anew
Poi nt isinstantiated. See §12 (Execution) for a full description of all aspects of loading,
linking, and initialization of classes and interfaces, plus a description of the instantiation
of classes to make new classinstances.

4.12.6 Types, Classes, and I nterfaces

In the Java programming language, every variable and every expression has atype
that can be determined at compile time. The type may be a primitive type or a
reference type. Reference typesinclude class types and interface types. Reference
types are introduced by type declarations, which include class declarations (88.1)
and interface declarations (89.1). We often use the term type to refer to either a
class or an interface.

Inthe JavaVirtual Machine, every object belongsto some particular class: the class
that was mentioned in the creation expression that produced the object (815.9), or
the classwhose d ass object was used to invoke areflective method to produce the
object, or the st ri ng classfor abjectsimplicitly created by the string concatenation
operator + (815.18.1). Thisclassis called the class of the object. An object is said
to be an instance of its class and of all superclasses of its class.
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Every array also has a class. The method get d ass, when invoked for an array
object, will return a class object (of class d ass) that represents the class of the
array (810.8).

The compile-time type of avariable is aways declared, and the compile-time type
of an expression can be deduced at compile time. The compile-time type limitsthe
possible valuesthat the variable can hold at run time or the expression can produce
at run time. If arun-time value isareference that isnot nul 1, it refersto an object
or array that has a class, and that class will necessarily be compatible with the
compile-time type.

Even though a variable or expression may have a compile-time type that is an
interface type, there are no instances of interfaces. A variable or expression whose
typeis an interface type can reference any object whose class implements (88.1.5)
that interface.

Sometimes a variable or expression is said to have a "run-time type". This refers
to the class of the object referred to by the value of the variable or expression at
run time, assuming that the valueisnot nul 1 .

The correspondence between compile-time types and run-time types isincomplete
for two reasons:

1. Atruntime, classesand interfacesareloaded by the JavaVirtual Machineusing
class loaders. Each class loader defines its own set of classes and interfaces.
Asaresult, it is possible for two loadersto load an identical class or interface
definition but produce distinct classes or interfaces at run time. Consequently,
code that compiled correctly may fail at link timeif the class |oaders that load
it are inconsistent.

See the paper Dynamic Class Loading in the Java Virtual Machine, by Sheng Liang
and Gilad Bracha, in Proceedings of OOPSLA '98, published as ACM SIGPLAN
Notices, Volume 33, Number 10, October 1998, pages 36-44, and The Java Virtual
Machine Specification, Java SE 15 Edition for more details.

2. Type variables (84.4) and type arguments (84.5.1) are not reified at run
time. As aresult, the same class or interface at run time represents multiple
parameterized types (84.5) from compile time. Specifically, all compile-time
parameterizations of a given generic type (88.1.2, 89.1.2) share a single run-
time representation.

Under certain conditions, it is possible that a variable of a parameterized type refers
to an object that is not of that parameterized type. This situation is known as heap
pollution (84.12.2). The variable will always refer to an object that is an instance of
aclassthat represents the parameterized type.
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Example 4.12.6-1. Type of a Variable versus Class of an Object

interface Col orable {
voi d setCol or(byte r, byte g, byte b);
}

class Point { int x, y; }

cl ass Col oredPoi nt extends Point inplenments Col orable {
byte r, g, b;
public void setColor(byte rv, byte gv, byte bv) {
r =rv, g =g9v, b= by;
}
}

class Test {
public static void main(String[] args) {
Point p = new Point();
Col oredPoi nt cp = new Col oredPoi nt () ;
p =cp;
Col orable ¢ = cp;

}

In this example:

e Thelocal variable p of the method mai n of class Test has type Poi nt and isinitialy
assigned areference to a new instance of class Poi nt .

e Theloca variable cp similarly has asits type Col or edPoi nt , and isinitialy assigned
areference to a new instance of class Col or edPoi nt .

¢ The assignment of the value of cp to the variable p causes p to hold a reference
to a Col or edPoi nt object. This is permitted because Col or edPoi nt is a subclass
of Poi nt, so the class Col or edPoi nt is assignment-compatible (85.2) with the type
Poi nt. A Col or edPoi nt object includes support for all the methods of a Poi nt . In
additiontoitsparticular fieldsr , g, and b, it hasthefields of classPoi nt , namely x andy .

e The local variable ¢ has as its type the interface type Col or abl e, so it can hold a
reference to any object whose class implements Col or abl e; specificaly, it can hold a
reference to a Col or edPoi nt .

Note that an expression such as new Col or abl e() isnot valid because it is not possible
to create an instance of an interface, only of a class. However, the expression new
Colorable() { public void setColor... } isvalid because it declares an
anonymous class (815.9.5) that implements the Col or abl e interface.



CHAPTER5

Conversions and Contexts

EVERY expression written in the Java programming language either produces no
result (815.1) or has atype that can be deduced at compile time (815.3). When an
expression appears in most contexts, it must be compatible with atype expected in
that context; this type is called the target type. For convenience, compatibility of
an expression with its surrounding context is facilitated in two ways.

 Firgt, for some expressions, termed poly expressions (815.2), the deduced type
can be influenced by the target type. The same expression can have different
typesin different contexts.

 Second, after thetype of the expression has been deduced, animplicit conversion
from the type of the expression to the target type can sometimes be performed.

If neither strategy is able to produce the appropriate type, a compile-time error
OCCUrs.

The rulesdetermining whether an expressionisapoly expression, and if so, itstype
and compatibility in aparticular context, vary depending on the kind of context and
the form of the expression. In addition to influencing the type of the expression,
the target type may in some cases influence the run time behavior of the expression
in order to produce a value of the appropriate type.

Similarly, the rules determining whether atarget type allowsanimplicit conversion
vary depending onthekind of context, thetype of the expression, and, in one specia
case, the value of a constant expression (815.29). A conversion from type s to type
T allows an expression of type s to be treated at compile time as if it had type T
instead. In some cases thiswill require a corresponding action at run time to check
the validity of the conversion or to translate the run-time value of the expression
into aform appropriate for the new type T.
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Example 5.0-1. Conversions at Compile Timeand Run Time

« A conversion from type Obj ect totype Thr ead requires arun-time check to make sure
that the run-time value is actually an instance of class Thr ead or one of its subclasses,
if itisnot, an exception is thrown.

* A conversion from type Thr ead to type Obj ect requires no run-time action; Thr ead
isasubclass of Qbj ect , so any reference produced by an expression of type Thr ead is
avalid reference value of type oj ect .

« A conversion from typei nt to typel ong requires run-time sign-extension of a 32-bit
integer value to the 64-hit | ong representation. No information is lost.

¢ A conversion from type doubl e to type | ong requires a non-trivial translation from a
64-bit floating-point value to the 64-bit integer representation. Depending on the actual
run-time value, information may be lost.

The conversions possible in the Java programming language are grouped into
several broad categories:

| dentity conversions

Widening primitive conversions
Narrowing primitive conversions
Widening reference conversions
Narrowing reference conversions
Boxing conversions

Unboxing conversions
Unchecked conversions

Capture conversions

String conversions

Vaue set conversions

There are six kinds of conversion contexts in which poly expressions may be
influenced by context or implicit conversions may occur. Each kind of context has
different rules for poly expression typing and allows conversions in some of the
categories above but not others. The contexts are:

Assignment contexts (85.2, 815.26), in which an expression's value is bound to
anamed variable. Primitive and reference types are subject to widening, values
may be boxed or unboxed, and some primitive constant expressions may be
subject to narrowing. An unchecked conversion may also occur.
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 Strict invocation contexts (85.3, §15.9, 815.12), in which an argument is bound
to aformal parameter of aconstructor or method. Widening primitive, widening
reference, and unchecked conversions may occur.

* Loose invocation contexts (85.3, 815.9, §15.12), in which, like strict invocation
contexts, an argument is bound to a formal parameter. Method or constructor
invocations may provide this context if no applicable declaration can be found
using only strict invocation contexts. In addition to widening and unchecked
conversions, this context allows boxing and unboxing conversions to occur.

* String contexts (85.4, 815.18.1), in which avalue of any typeis converted to an
object of type stri ng.

 Casting contexts (85.5), in which an expression's value is converted to a type
explicitly specified by a cast operator (815.16). Casting contexts are more
inclusive than assignment or loose invocation contexts, allowing any specific
conversion other than a string conversion, but certain casts to a reference type
are checked for correctness at run time.

» Numeric contexts (85.6), in which the operands of a numeric operator or some
other expressions that operate on numbers may be widened to a common type.

The term "conversion” is also used to describe, without being specific, any
conversionsallowed in aparticular context. For example, we say that an expression
that is the initializer of a local variable is subject to "assignment conversion”,
meaning that a specific conversion will be implicitly chosen for that expression
according to the rules for the assignment context.

Example 5.0-2. ConversionsIn Various Contexts

class Test {
public static void main(String[] args) {
/1 Casting conversion (5.4) of a float literal to
/1 type int. Wthout the cast operator, this would
/1l be a conpile-time error, because this is a
/1 narrow ng conversion (5.1.3):
int i = (int)12.5f;

/1 String conversion (5.4) of i's int value:
Systemout.printin("(int)l12. 5f==" + i);

/'l Assignnent conversion (5.2) of i's value to type
/1 float. This is a wi dening conversion (5.1.2):
float f = 1i;

/1 String conversion of f's float val ue:
Systemout.println("after float widening: " + f);

/1 Numeric pronotion (5.6) of i's value to type
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/1 float. This is a binary numeric pronotion.

// After pronotion, the operation is float*float:

Systemout. print(f);
f=1f*i;

/1l Two string conversions of i and f:
Systemout.println("*" + i + "==" + f);

/'l lnvocation conversion (5.3) of f's value

/'l to type doubl e, needed because the nmethod Math.sin

/'l accepts only a doubl e argunent:
double d = Math.sin(f);

/1 Two string conversions of f and d:

Systemout.printin("Math.sin(" + f + ")==" + d);

}

This program produces the outpult:
(int)12.5f==12
after float w dening: 12.0

12.0*12==144.0
Mat h. si n(144. 0) ==-0. 49102159389846934

5.1 Kindsof Conversion

Specific type conversions in the Java programming language are divided into 13

kinds.

5.1.1 Identity Conversion

A conversion from atype to that same typeis permitted for any type.

This may seem trivial, but it has two practical consequences. First, it is aways permitted
for an expression to have the desired type to begin with, thus allowing the simply stated rule
that every expression is subject to conversion, if only atrivial identity conversion. Second,
itimpliesthat it is permitted for a program to include redundant cast operators for the sake

of clarity.

5.1.2 Widening Primitive Conversion

19 specific conversions on primitive types are called the widening primitive

conversions:

* bytetoshort,int,long,float, Or doubl e
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e short toint,I|ong,float, Or doubl e
e char toint,long,fl oat, Or doubl e
* int tolong, fl oat, Or doubl e

* longtofl oat Or doubl e

* fl oat todoubl e

A widening primitive conversion does not lose information about the overal
magnitude of a numeric value in the following cases, where the numeric value is
preserved exactly:

» from an integral type to another integral type

» frombyt e, short, or char to afloating point type

» fromint todoubl e

e fromfl oat todoubl e inastrictfp expression (§15.4)

A widening primitive conversion fromf | oat to doubl e that isnot stri ct f p may
lose information about the overall magnitude of the converted value.

A widening primitive conversion fromint to float, or from | ong to fI oat, or
from | ong to doubl e, may result in loss of precision, that is, the result may lose
some of the least significant bits of the value. In this case, the resulting floating-
point value will be acorrectly rounded version of theinteger value, using the round
to nearest rounding policy (84.2.4).

A widening conversion of asigned integer value to an integral type T simply sign-
extends the twao's-complement representation of the integer value to fill the wider
format.

A widening conversion of a char to an integra type T zero-extends the
representation of the char valueto fill the wider format.

Despite the fact that loss of precision may occur, awidening primitive conversion
never resultsin arun-time exception (811.1.1).

Example 5.1.2-1. Widening Primitive Conversion

class Test {
public static void main(String[] args) {
int big = 1234567890;
float approx = big;
Systemout. println(big - (int)approx);
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This program prints:
-46

thusindicating that information waslost during the conversion fromtypei nt totypef | oat
because values of typef | oat are not precise to nine significant digits.

5.1.3 Narrowing Primitive Conversion

22 specific conversions on primitive types are called the narrowing primitive
conversions:

e short tobyte Or char

e char tObyte Or short

* int tobyte, short, Or char

* |ong tobyte, short, char, Orint

e float tobyte, short,char,int,Orlong

* doubl e to byt e, short, char,int,long, O fl oat

A narrowing primitive conversion may lose information about the overal
magnitude of a numeric value and may also lase precision and range.

A narrowing primitive conversion from doubl e tof 1 oat usesthe round to nearest
rounding policy (84.2.4). This conversion can lose precision, but also lose range,
resultingin af | oat zerofrom anonzero doubl e and afl oat infinity from afinite
doubl e. A doubl e NaN is converted to afloat NaN and a doubl e infinity is
converted to the same-signed f | oat infinity.

A narrowing conversion of a signed integer to an integral type T simply discards
all but the n lowest order bits, where n is the number of bits used to represent type
T. In addition to a possible loss of information about the magnitude of the numeric
value, this may cause the sign of the resulting value to differ from the sign of the
input value.

A narrowing conversion of achar to an integral type T likewise simply discards
all but the n lowest order bits, where n is the number of bits used to represent type
T. In addition to a possible loss of information about the magnitude of the numeric
value, this may cause the resulting value to be a negative number, even though
chars represent 16-bit unsigned integer values.

A narrowing conversion of afloating-point number to an integral type T takes two
steps:
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1. Inthefirst step, the floating-point number is converted either to al ong, if Tis
long,ortoanint,if Tisbyte, short, char, orint, asfollows:

* If thefloating-point number isNaN (84.2.3), the result of thefirst step of the
conversionisanint orlong 0.

» Otherwise, if the floating-point number is not an infinity, the floating-point
valueis rounded to an integer value v using the round toward zero rounding
policy (84.2.4). Then there are two cases:

a IfTisl ong, and thisinteger value can be represented asal ong, thenthe
result of the first step isthel ong value v.

b. Otherwise, if this integer value can be represented as an i nt, then the
result of the first stepisthei nt valuev.

» Otherwise, one of the following two cases must be true:

a. The value must be too small (a negative value of large magnitude
or negative infinity), and the result of the first step is the smallest
representable value of typei nt or | ong.

b. The value must be too large (a positive value of large magnitude
or positive infinity), and the result of the first step is the largest
representable value of typei nt or | ong.

2. Inthe second step:
» If Tisint orl ong, theresult of the conversion isthe result of the first step.

e If Tisbyte, char, or short, the result of the conversion is the result of a
narrowing conversion to type T (85.1.3) of the result of the first step.

Despite the fact that overflow, underflow, or other loss of information may occur,
aharrowing primitive conversion never results in arun-time exception (§11.1.1).

Example 5.1.3-1. Narrowing Primitive Conversion

class Test {
public static void main(String[] args) {
float fmn = Fl oat. NEGATI VE_| NFI NI TY;
float fmax = Fl oat. PCSI TI VE_I NFI NI TY;

Systemout.printin("long: " + (long)fmn +
".." + (long)fmax);
Systemout.println("int: " + (int)fmn +
"o+ (int) fmax);
Systemout.printlin("short: " + (short)fmn +
".." + (short)fnmax);
Systemout.printin("char: " + (int)(char)fmn +

" + (int)(char)fnmax);
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Systemout.println("byte: " + (byte)fmn +
+ (byte)fmx);

}

This program produces the output:

I ong: -9223372036854775808. . 9223372036854775807
int: -2147483648..2147483647

short: 0..-1

char: 0..65535

byte: 0..-1

The results for char, int, and | ong are unsurprising, producing the minimum and
maximum representabl e values of the type.

The results for byt e and short lose information about the sign and magnitude of the
numeric values and also lose precision. The results can be understood by examining the
low order bits of the minimum and maximum i nt . The minimum i nt is, in hexadecimal,
0x80000000, andthemaximumintisox7f f f f f f f . Thisexplainstheshor t results, which
arethelow 16 bits of these values, namely, 0x0000 and 0xf f f f ; it explainsthe char results,
which aso are the low 16 bits of these values, namely, ' \ u0000' and ' \uffff'; andit
explains the byte results, which are the low 8 bits of these values, namely, 0x00 and Oxf f .

Example 5.1.3-2. Narrowing Primitive Conversions that lose information

class Test {
public static void main(String[] args) {
/1 A narrowing of int to short |oses high bits:
Systemout. println("(short)0x12345678==0x" +
I nt eger. toHexString((short)0x12345678));
/1 An int value too big for byte changes sign and magnitude:

Systemout. println("(byte)255==" + (byte)255);
/1 A float value too big to fit gives largest int val ue:
Systemout.println("(int)le20f==" + (int)1le20f);

/1 A NaN converted to int yields zero:
Systemout.println("(int)NaN==" + (int)Float.NaN);

/1 A double value too large for float yields infinity:
Systemout.println("(float)-1e100==" + (float)-1el100);

/1 A double value too snall for float underflows to zero:
Systemout.println("(float)le-50==" + (float)le-50);

}

This program produces the output:
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(short)0x12345678==0x5678

(byte) 255==-1
(int)1le20f==2147483647
(i nt) NaN==0

(float)-1el00==-Infinity
(float)le-50==0.0

5.1.4 Widening and Narrowing Primitive Conversion

The following conversion combines both widening and narrowing primitive
conversions:

* bytetochar

First, the byt e is converted to ani nt viawidening primitive conversion (85.1.2),
and thentheresultingi nt isconvertedtoachar by narrowing primitive conversion
(85.1.3).

5.1.5 Widening Reference Conversion

A widening reference conversion exists from any reference type s to any reference
type T, provided s is a subtype of T (84.10).

Widening reference conversions never require a special action at run time and
therefore never throw an exception at run time. They consist simply in regarding
a reference as having some other type in a manner that can be proved correct at
compiletime.

Thenull typeisnot areferencetype (84.1), and so awidening reference conversion does not
exist from the null type to areference type. However, many conversion contexts explicitly
allow the null type to be converted to areference type.

5.1.6 Narrowing Reference Conversion

A narrowing reference conversion treats expressions of a reference type s as
expressions of a different reference type T, where S is not a subtype of T.
The supported pairs of types are defined in 85.1.6.1. Unlike widening reference
conversion, the types need not be directly related. However, there are restrictions
that prohibit conversion between certain pairs of types when it can be statically
proven that no value can be of both types.

A narrowing reference conversion may require a test at run time to validate
that a value of type s is a legitimate value of type T. However, due to the
lack of parameterized type information at run time, some conversions cannot be
fully validated by a run time test; they are flagged at compile time (85.1.6.2).
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For conversions that can be fully validated by a run time test, and for certain
conversions that involve parameterized type information but can still be partially
validated at run time, ad assCast Except i on isthrown if the test fails (85.1.6.3).

5.1.6.1 Allowed Narrowing Reference Conversion

A narrowing reference conversion exists from reference type s to reference type T
if al of the following are true:

* sisnot asubtype of T (84.10)

* If there existsaparameterized type X that isa supertype of T, and aparameterized
type that isasupertype of s, such that the erasures of X and Y are the same, then
x and Y are not provably distinct (84.5).

Using types from the j ava. uti| package as an example, no narrowing reference
conversion exists from Ar r ayLi st <St ri ng> to Ar r ayLi st <Qbj ect >, Or vice versa,
because the type arguments String and Object are provably distinct. For the
same reason, nNo harrowing reference conversion exists from Arr ayLi st <Stri ng> to
Li st <Ooj ect >, or vice versa. The rejection of provably distinct typesisasimple static
gate to prevent "stupid” narrowing reference conversions.
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* One of the following cases applies:

1
2.
3.

10.

11.

12.

Sand T are class types, and either |s| <: [T] or [T| <: [S].
s and T areinterface types.

Sisaclasstype, T isan interface type, and s does not name afi nal class
(88.1.1).

S isaclass type T is an interface type, and S names a fi nal class that
implements the interface named by T.

sisaninterface type, T isaclasstype, and T does not name afi nal class.

s is an interface type, T is a class type, and T names a fi nal class that
implements the interface named by s.

S isthe class type vj ect or the interface typej ava. i o. Seri al i zabl e Or
C oneabl e (the only interfaces implemented by arrays (810.8)), and T isan

array type.
Sisan array type sC ], that is, an array of components of type SC; T isan

array type ([ ], that is, an array of components of type TC; and anarrowing
reference conversion exists from scto TC.

S is atype variable, and a narrowing reference conversion exists from the
upper bound of stoT.

T is a type variable, and either a widening reference conversion or a
narrowing reference conversion exists from s to the upper bound of T.

Sisanintersectiontypes; &...& Sy, andfor al i (1<i<n), either awidening
reference conversion or anarrowing reference conversion existsfroms; toT.

TisanintersectiontypeT; &...&T,, andfor all i (1<i < n), either awidening
reference conversion or anarrowing reference conversion existsfromstoT; .

5.1.6.2 Checked and Unchecked Narrowing Reference Conversions

A narrowing reference conversion is either checked or unchecked. These terms
refer to the ability of the Java Virtual Machine to validate, or not, the type
correctness of the conversion.

If a narrowing reference conversion is unchecked, then the Java Virtual Machine
will not be able to fully validate its type correctness, possibly leading to heap
pollution (84.12.2). To flag this to the programmer, an unchecked narrowing
reference conversion causes acompile-time unchecked war ning, unless suppressed
by @uppr esswar ni ngs (89.6.4.5). In contrast, if anarrowing reference conversion

51

115



51

116

Kinds of Conversion CONVERS ONS AND CONTEXTS

is not unchecked, then it is checked; the Java Virtual Machine will be able to fully
validate its type correctness, so no warning is given at compile time.

The unchecked narrowing reference conversions are as follows:

* A narrowing reference conversion from a type s to a parameterized class or
interface type T is unchecked, unless at least one of the following istrue:

— All of the type arguments of T are unbounded wildcards.

— T<: S, and s has no subtype X other than T where the type arguments of X are
not contained in the type arguments of T.

» A narrowing reference conversion from atypesto atypevariable T isunchecked.

» A narrowing reference conversion from atype s to an intersection type T, & ... &
Tn isunchecked if there existsaT; (1 <i < n) such that s is not a subtype of T,
and a narrowing reference conversion from s to T; is unchecked.

5.1.6.3 Narrowing Reference Conversions at Run Time

All checked narrowing reference conversions require a validity check at run
time. Primarily, these conversions are to class and interface types that are not
parameterized.

Some unchecked narrowing reference conversions require a validity check at run
time. This depends on whether the unchecked narrowing reference conversion is
completely unchecked or partially unchecked. A partially unchecked narrowing
reference conversion requires a validity check at run time, while a completely
unchecked narrowing reference conversion does not.

These terms refer to the compatibility of the types involved in the conversion when
viewed as raw types. If the conversion is conceptually an "upcast”, then the conversion
is completely unchecked; no run time test is needed because the conversion is legal in
the non-generic type system of the Java Virtual Machine. In contrast, if the conversion is
conceptually a "downcast", then the conversion is partially unchecked; even in the non-
generic type system of the Java Virtual Machine, a run time check is needed to test the
compatibility of the (raw) typesinvolved in the conversion.

Using types from the java.util package as an example, a conversion from
ArrayLi st<String> to Col | ecti on<T> is completely unchecked, because the (raw)
type ArrayLi st isasubtype of the (raw) type Col | ect i on inthe Java Virtual Machine.
In contrast, a conversion from Col | ecti on<T> to ArrayLi st<String> is partialy
unchecked, because the (raw) type Col | ecti on is not a subtype of the (raw) type
ArraylLi st inthe JavaVirtual Machine.

The categorization of an unchecked narrowing reference conversion is as follows:
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» Anunchecked narrowing reference conversion from s to a non-intersection type
T is completely unchecked if || <: [T].

Otherwise, it is partially unchecked.

» An unchecked narrowing reference conversion from s to an intersection type T,
& ... & T, is completely unchecked if, for @l i (1 <i < n), either s<: T; or a
narrowing reference conversion from sto T; is completely unchecked.

Otherwise, it is partially unchecked.

The run time validity check for a checked or partially unchecked narrowing
reference conversion is asfollows:

e |f thevalueat runtimeisnul | , then the conversion is allowed.
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» Otherwise, let R be the class of the object referred to by the value, and let T be
the erasure (84.6) of the type being converted to. Then:

— If Risan ordinary class (not an array class):

> If Tisaclasstype, then R must be either the same classas T (84.3.4) or a
subclass of T, or adl assCast Except i on iSthrown.

> If T is an interface type, then R must implement interface T (88.1.5), or a
d assCast Except i on isthrown.

> If Tisan array type, then ad assCast Except i on isthrown.

— If Risan interface:

Note that R cannot be an interface when these rules are first applied for any given
conversion, but R may be an interface if the rules are applied recursively because the
run-timereference value may refer to an array whose element typeisan interfacetype.

> If T is a class type, then T must be ject (84.32), or a
d assCast Excepti on isthrown.

> If T isan interface type, then R must be either the same interface as T or a
subinterface of T, or ad assCast Except i on isthrown.

> If Tisan array type, then ad assCast Except i on isthrown.

— If Risaclass representing an array type R 1, that is, an array of components
of typeRC:

> If T is a class type, then T must be bject (84.3.2), or a
d assCast Except i on isthrown.

> If Tisan interface type, then T must be the typej ava.io. Seri al i zabl e
or doneable (the only interfaces implemented by arrays), or a
d assCast Excepti on isthrown.

> If Tisan array type Tq ], that is, an array of components of type TcC, then
a d assCast Excepti on is thrown unless either TC and RC are the same
primitive type, or TC and RC are reference types and are allowed by a
recursive application of these run-time rules.

If the conversion isto an intersection type T; & ... & Ty, thenfor al i (1 <i < n),
any run-time check required for a conversion from sto T; is also required for the
conversion to the intersection type.
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5.1.7 Boxing Conversion

Boxing conversion treats expressions of a primitive type as expressions of a
corresponding reference type. Specificaly, the following nine conversions are
called the boxing conversions:

From type bool ean to type Bool ean
From type byt e to type Byt e

From typeshort to type Short
From type char to type Char act er
Fromtypei nt totypel nt eger
From type| ong to type Long

From typef | oat to typeFI oat
From type doubl e to type Doubl e
From the null type to the null type

This rule is necessary because the conditional operator (815.25) applies boxing
conversion to the types of its operands, and uses the result in further calculations.

At run time, boxing conversion proceeds as follows:

If pisavalueof typebool ean, then boxing conversion convertsp into areference
r of class and type Bool ean, suchthat r. bool eanval ue() == p

If p isavalue of type byt e, then boxing conversion converts p into a reference
r of classand type Byt e, such that r. byt eval ue() == p

If p isavaue of type char, then boxing conversion converts p into areference
r of class and type Char acter, suchthat r. char val ue() == p

If p isavalue of type short , then boxing conversion converts p into areference
r of classand type short, suchthatr. shortVvalue() == p

If p isavalue of typei nt, then boxing conversion converts p into areferencer
of classand typel nteger, suchthatr.intvalue() == p

If p isavaue of typel ong, then boxing conversion converts p into areference
r of classand type Long, such thatr. | ongval ue() ==
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* If pisavalueof typefl oat then:

— If p isnot NaN, then boxing conversion converts p into areferencer of class
and typeFl oat , such that r . f | oat Val ue() evaluatestop

— Otherwise, boxing conversion converts p into a referencer of class and type
Fl oat suchthatr.isNaN() evaluatestotrue

 If pisavalue of typedoubl e, then:

— If p isnot NaN, boxing conversion converts p into areferencer of class and
type Doubl e, such that r . doubl eval ue() evaluatesto p

— Otherwise, boxing conversion converts p into a referencer of class and type
Doubl e suchthatr. i sNaN() evaluatestotrue

 If p isavalue of any other type, boxing conversion is equivalent to an identity
conversion (85.1.1).

If the value p being boxed isthe result of evaluating a constant expression (815.29)
of typebool ean, byt e, char, short,int, Or I ong, and theresult ist rue, f al se, a
character in the range ' \ u0000' to'\u007f' inclusive, or aninteger in the range
- 128 to 127 inclusive, then let a and b be the results of any two boxing conversions
of p. Itisawaysthe casethat a == b.

Ideally, boxing aprimitive value would alwaysyield anidentical reference. In practice, this
may not befeasible using existing implementation techniques. Theruleaboveisapragmatic
compromise, requiring that certain common values always be boxed into indistinguishable
objects. The implementation may cache these, lazily or eagerly. For other values, the rule
disallows any assumptions about the identity of the boxed values on the programmer's part.
This allows (but does not require) sharing of some or all of these references.

This ensures that in most common cases, the behavior will be the desired one, without
imposing an undue performance penalty, especially on small devices. Less memory-limited
implementations might, for example, cache al char and short values, aswell asi nt and
| ong valuesin the range of -32K to +32K.

A boxing conversion may result in an cut Of Menor yEr r or if anew instance of one
of the wrapper classes (Bool ean, Byt e, Char act er, Short, | nt eger, Long, Fl oat ,
or Doubl e) needs to be allocated and insufficient storage is available.

5.1.8 Unboxing Conversion

Unboxing conversion treats expressions of a reference type as expressions of a
corresponding primitive type. Specifically, the following eight conversions are
called the unboxing conversions:
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» From type Bool ean to type bool ean

* FromtypeByt e to type byt e

* From type short totypeshort

* From type Char act er totypechar

* Fromtypel nt eger totypei nt

* From type Long to typel ong

* FromtypeFl oat totypefl oat

* From type Doubl e to type doubl e

At run time, unboxing conversion proceeds as follows:

 If r isareference of type Bool ean, then unboxing conversion convertsr into
r. bool eanVal ue()

» If r is a reference of type Byt e, then unboxing conversion converts r into
r. byt eVal ue()

* If r isareference of type Char act er , then unboxing conversion convertsr into
r. char Val ue()

» If r is areference of type short, then unboxing conversion converts r into
r.short Val ue()

» If r is areference of type I nt eger, then unboxing conversion converts r into
r.intVal ue()

» If r is a reference of type Long, then unboxing conversion converts r into
r.longVal ue()

o If r is a reference of type Float, unboxing conversion converts r into
r.fl oat Val ue()

» If r is a reference of type Doubl e, then unboxing conversion converts r into
r. doubl eVal ue()

 Ifr isnul I, unboxing conversion throws aNul | Poi nt er Except i on

A typeissaidto beconvertibleto anumerictypeif itisanumerictype(84.2), oritis
areference type that may be converted to a numeric type by unboxing conversion.

A typeissaid to be convertible to an integral typeif itisan integral type, oritisa
reference type that may be converted to an integral type by unboxing conversion.
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5.1.9 Unchecked Conversion

Let G name a generic type declaration with n type parameters.

There is an unchecked conversion from the raw class or interface type (84.8) Gto
any parameterized type of the form GeTy,...,T>.

Thereisan unchecked conversion fromtheraw array typed ] Kto any array type of
theform &<Ty,.... To>[ 1 X. (Thenotation[ ] X indicates an array type of k dimensions.)

Use of an unchecked conversion causes a compile-time unchecked warning unless
al typearguments T; (1 <i < n) are unbounded wildcards (84.5.1), or the warning
is suppressed by @uppr essWar ni ngs (89.6.4.5).

Unchecked conversion is used to enable a smooth interoperation of legacy code, written
before the introduction of generic types, with libraries that have undergone a conversion
to use genericity (a process we call generification). In such circumstances (most notably,
clients of the Collections Framework in j ava. uti | ), legacy code uses raw types (e.g.
Col | ecti on instead of Col | ecti on<St ri ng>). Expressions of raw types are passed as
arguments to library methods that use parameterized versions of those same types as the
types of their corresponding formal parameters.

Such calls cannot be shown to be statically safe under the type system using generics.
Rejecting such callswould invalidate large bodies of existing code, and prevent them from
using newer versions of the libraries. Thisin turn, would discourage library vendors from
taking advantage of genericity. To prevent such an unwelcome turn of events, araw type
may be converted to an arbitrary invocation of the generic type declaration to which the raw
type refers. While the conversion is unsound, it is tolerated as a concession to practicality.
An unchecked warning isissued in such cases.

5.1.10 Capture Conversion

Let G name a generic type declaration (88.1.2, §9.1.2) with n type parameters
Aq,...,A, With corresponding bounds Uy,...,U,.

There exists a capture conversion from a parameterized type G<Ty,...,Tn> (84.5) to
a parameterized type G<S,...,Sy>, Where, for 1<i<n:

» If T; isawildcard type argument (84.5.1) of the form 2, then s; is afresh type
variable whose upper boundisU [ A;: =Sy, . . ., An: =S,] and whose lower bound
isthe null type (84.1).
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» If T; isawildcard type argument of the form ? ext ends B;, then s; is afresh
type variable whose upper boundisglb(g;, U [ A;: =Sy, . . ., Ay =S,] ) and whose
lower bound isthe null type.

glb(Vy,...,Vy) isdefined as vy & ... & Vi

It is a compile-time error if, for any two classes (not interfaces) vi and v, V; is
not a subclass of v; or vice versa

* If T; isawildcard type argument of the form 2 super B;, then s, isafresh type
variable whose upper boundisU [ A;: =Sy, . . ., Ay =S,] and whose lower bound
is B;.

» Otherwise, s; =T;.

Capture conversion on any type other than a parameterized type (84.5) acts as an
identity conversion (85.1.1).

Capture conversion is not applied recursively.

Capture conversion never requires a special action at run time and therefore never
throws an exception at run time.

Capture conversion is designed to make wildcards more useful. To understand the
motivation, let's begin by looking at the method j ava. uti |l . Col | ections. reverse():

public static void reverse(List<?> |list);

Themethod reversesthelist provided asaparameter. It worksfor any typeof list, and so the
useof thewildcard typeLi st <?> asthetype of theformal parameter isentirely appropriate.

Now consider how one would implement r ever se() :

public static void reverse(List<?> list) { rev(list); }
private static <T> void rev(List<T> list) {
Li st<T> tnp = new ArrayLi st<T>(list);
for (int i =0; i < list.size(); i++) {
list.set(i, tnp.get(list.size() - i - 1));
}
}

The implementation needs to copy the list, extract elements from the copy, and insert them
intotheorigina. To do thisin atype-safe manner, we need to giveaname, T, to the element
type of the incoming list. We do thisin the private service method r ev() . Thisrequiresus
to pass theincoming argument list, of typeLi st <?>, asan argumenttor ev() . In general,
Li st <?>isalist of unknowntype. Itisnot asubtypeof Li st <T>, for any type T. Allowing
such a subtype relation would be unsound. Given the method:

public static <T> void fill(List<T> 1, T obj)
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the following code would undermine the type system:

List<String> Is = new ArraylList<String>();
List<?> 1 =1Is;
Col lections.fill(l, new Object()); // not legal - but assume it was!
String s = Is.get(0); // C assCastException - |s contains
/1 Cbjects, not Strings.

So, without some special dispensation, we can seethat the call fromr ever se() torev()
would be disallowed. If this were the case, the author of rever se() would be forced to
write its signature as:

public static <T> void reverse(List<T> |list)

This is undesirable, as it exposes implementation information to the caller. Worse, the
designer of an APl might reason that the signature using a wildcard is what the callers of
the API require, and only later realize that a type safe implementation was precluded.

The call fromreverse() torev() isin fact harmless, but it cannot be justified on the
basis of ageneral subtyping relation between Li st <?> and Li st <T>. Thecall isharmless,
because the incoming argument is doubtless alist of some type (albeit an unknown one). I
we can capture this unknown type in atype variable X, we can infer T to be X. That is the
essence of capture conversion. The specification of course must cope with complications,
like non-trivia (and possibly recursively defined) upper or lower bounds, the presence of
multiple arguments etc.

Mathematically sophisticated readers will want to relate capture conversion to established
type theory. Readers unfamiliar with type theory can skip this discussion - or else study a
suitable text, such as Types and Programming Languages by Benjamin Pierce, and then
revisit this section.

Here then is a brief summary of the relationship of capture conversion to established
type theoretical notions. Wildcard types are arestricted form of existential types. Capture
conversion corresponds loosely to an opening of a value of existential type. A capture
conversion of an expression e can be thought of as an open of e in a scope that comprises
thetop level expression that enclosese.

The classical open operation on existentials requires that the captured type variable must
not escape the opened expression. The open that corresponds to capture conversion is
always on a scope sufficiently large that the captured type variable can never be visible
outside that scope. The advantage of this scheme is that there is no need for a cl ose
operation, as defined in the paper On Variance-Based Subtyping for Parametric Types by
Atsushi Igarashi and Mirko Virali, in the proceedings of the 16th European Conference on
Object Oriented Programming (ECOOP 2002). For aformal account of wildcards, see Wild
FJ by Mads Torgersen, Erik Ernst and Christian Plesner Hansen, in the 12th workshop on
Foundations of Object Oriented Programming (FOOL 2005).

5.1.11 String Conversion

Any type may be converted to type st ri ng by string conversion.
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A value x of primitive type T isfirst converted to areference value asiif by giving
it as an argument to an appropriate class instance creation expression (815.9):

* |f Tisbool ean, then use new Bool ean(x).

e |f Tischar, thenusenew Character (x).

e [f Tisbyte, short,Orint,thenusenew I nteger(x).

* |f Tisl ong, then use new Long(x) .

e If Tisfl oat,then usenew Fl oat (x).

 If Tisdoubl e, then use new Doubl e(x) .

This reference value is then converted to type st ri ng by string conversion.
Now only reference values need to be considered:

« If thereferenceisnul I, itisconvertedtothestring"nul | " (four ASCII characters
n,u,l,l).

» Otherwise, the conversion is performed as if by an invocation of thetoStri ng
method of the referenced object with no arguments; but if the result of invoking
thet oSt ring method isnul I, then the string "nul 1 " is used instead.

The toString method is defined by the primordia class bj ect (84.3.2). Many
classes override it, notably Bool ean, Char act er, | nt eger, Long, Fl oat, Doubl e,
and String.

5.1.12 Forbidden Conversions

Any conversion that is not explicitly allowed is forbidden.

5.1.13 Value Set Conversion

Value set conversion is the process of mapping a floating-point value from one
value set to another without changing its type.

Within an expression that is not FP-strict (815.4), value set conversion provides
choices to an implementation of the Java programming language:

« If the value is an element of the float-extended-exponent value set, then the
implementation may, at its option, map the value to the nearest element of the
float value set. This conversion may result in overflow (in which case the value
isreplaced by an infinity of the same sign) or underflow (in which casethevalue
may lose precision because it is replaced by a subnormal number or zero of the
same sign).
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* If the value is an element of the double-extended-exponent value set, then the
implementation may, at its option, map the value to the nearest element of the
doublevalueset. Thisconversion may resultin overflow (in which casethevalue
isreplaced by an infinity of the same sign) or underflow (in which casethevalue
may lose precision because it is replaced by a subnormal number or zero of the
same sign).

Within an FP-strict expression (815.4), value set conversion does not provide any
choices; every implementation must behave in the same way:

* If thevalueisof typefl oat andisnot an element of the float value set, then the
implementation must map the value to the nearest element of the float value set.
This conversion may result in overflow or underflow.

« If thevalueisof type doubl e and is not an element of the double value set, then
theimplementation must map the valueto the nearest element of the doublevalue
set. This conversion may result in overflow or underflow.

Within an FP-strict expression, mapping values from the float-extended-exponent
value set or double-extended-exponent value set is necessary only when a method
isinvoked whose declaration is not FP-strict and the implementation has chosen to
represent the result of the method invocation asan element of an extended-exponent
value set.

Whether in FP-strict code or code that is not FP-strict, value set conversion aways
leaves unchanged any value whose type is neither f | oat nor doubl e.

5.2 Assignment Contexts

Assignment contexts allow the value of an expression to be assigned (815.26) to a
variable; the type of the expression must be converted to the type of the variable.

Assignment contexts allow the use of one of the following:
 anidentity conversion (85.1.1)

» awidening primitive conversion (85.1.2)

» awidening reference conversion (85.1.5)

» awidening reference conversion followed by an unboxing conversion

» a widening reference conversion followed by an unboxing conversion, then
followed by awidening primitive conversion
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» aboxing conversion (85.1.7)

» aboxing conversion followed by awidening reference conversion

* an unboxing conversion (85.1.8)

* an unboxing conversion followed by awidening primitive conversion

If, after the conversions listed above have been applied, the resulting typeisaraw
type (84.8), an unchecked conversion (85.1.9) may then be applied.

Inaddition, if the expression isaconstant expression (815.29) of typebyt e, short,
char,orint:

* A narrowing primitive conversion may be used if the variable is of type byt e,
short, or char, and the value of the constant expression is representable in the
type of the variable.

» A narrowing primitive conversion followed by aboxing conversion may be used
if thevariableisof typeByt e, Short, Or Char act er , and the value of the constant
expression is representablein the type byt e, short, or char respectively.

The compile-time narrowing of constant expressions means that code such as:
byte theAnswer = 42;

is allowed. Without the narrowing, the fact that the integer literal 42 hastypei nt would
mean that a cast to byt e would be required:

byte theAnswer = (byte)42; // cast is pernmitted but not required

Finally, avalue of the null type (the null reference is the only such value) may be
assigned to any reference type, resulting in anull reference of that type.

It is a compile-time error if the chain of conversions contains two parameterized
types that are not in the subtype relation (84.10).

An example of such anillegal chain would be:
I nt eger, Conpar abl e<| nt eger>, Conpar abl e, Conpar abl e<Stri ng>

The first three elements of the chain are related by widening reference conversion, while
the last entry is derived from its predecessor by unchecked conversion. However, this is
not a valid assignment conversion, because the chain contains two parameterized types,
Conpar abl e<I nt eger > and Conpar abl e<St ri ng>, that are not subtypes.

If thetype of an expression can be converted to thetype of avariable by assignment
conversion, we say the expression (or its value) is assignable to the variable or,
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equivalently, that the type of the expression is assignment compatible with the type
of the variable.

If the type of the variableisf1 oat or doubl e, then value set conversion (85.1.13)
is applied to the value v that is the result of the conversion(s):

» If visof typefloat andisan element of the float-extended-exponent value set,
then the implementation must map v to the nearest element of the float value set.
This conversion may result in overflow or underflow.

* If v isof typedoubl e and is an element of the double-extended-exponent value
set, then the implementation must map v to the nearest element of the double
value set. This conversion may result in overflow or underflow.

The only exceptionsthat may arise from conversionsin an assignment context are:

* A d assCast Excepti on if, after the conversions above have been applied, the
resulting value is an object which is not an instance of a subclass or subinterface
of the erasure (84.6) of the type of the variable.

This circumstance can only arise as a result of heap pollution (84.12.2). In practice,
implementations need only perform casts when accessing afield or method of an object
of parameterized type when the erased type of the field, or the erased return type of the
method, differ from its unerased type.

e AnQut Of Meror yEr ror asaresult of aboxing conversion.

* A Nul | Poi nter Exception as a result of an unboxing conversion on a null
reference.

* An ArrayStoreException in special cases involving array elements or field
access (810.5, 815.26.1).
Example 5.2-1. Assignment for Primitive Types

class Test {
public static void main(String[] args) {

short s = 12; /1 narrow 12 to short

float f = s; /1 w den short to float
Systemout.printin("f=" + f);

char ¢ = "\u0123';

long I = c; /1 widen char to |ong
Systemout.println("l=0x" + Long.toString(l,16));
f = 1.23f;

double d = f; /1 widen float to double
Systemout.println("d=" + d);

}

This program produces the outpult:
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f=12.0
| =0x123
d=1.2300000190734863

The following program, however, produces compile-time errors:

class Test {
public static void main(String[] args) {
short s = 123;
char ¢ = s; /1 error: would require cast
s = c; /1 error: would require cast

}

becausenot all short valuesarechar values, and neither areall char valuesshort vaues.

Example 5.2-2. Assignment for Reference Types

class Point { int x, vy; }
class Point3D extends Point { int z; }
interface Colorable { void setColor(int color); }

cl ass Col oredPoi nt extends Point inplenments Col orable {
int color;
public void setColor(int color) { this.color = color; }

}

class Test {
public static void main(String[] args) {

/1 Assignnents to variables of class type:

Point p = new Point();

p = new Point 3D();
/1 OK because Point3D is a subclass of Point

Poi nt 3D p3d = p;
/1 Error: will require a cast because a Point
/1 mght not be a Point3D (even though it is,
/1 dynamically, in this exanple.)

/1 Assignnents to variables of type Object:

Object o = p; /1 OK: any object to Object
int[] a = new int[3];
Obj ect 02 = a; /Il OK an array to Qbject

/1 Assignments to variables of interface type:
Col oredPoi nt cp = new Col oredPoi nt ();
Col orable ¢ = cp;

/1 OK: Col oredPoint inplenments Col orable

/1 Assignnents to variables of array type:
byte[] = new byte[4];
a = b;
/] Error: these are not arrays of the sane prinitive type
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Poi nt 3D[] p3da = new Poi nt 3D[ 3] ;
Point[] pa = p3da;

/1 OK: since we can assign a Point3D to a Point
p3da = pa;

/1 Error: (cast needed) since a Point

/1 can't be assigned to a Point3D

}

Thefollowing test program illustrates assignment conversions on reference val ues, but fails
to compile, asdescribed initscomments. Thisexample should be compared to the preceding

class Point { int x, y; }
interface Colorable { void setColor(int color); }
cl ass Col oredPoi nt extends Point inplenments Col orable {
int color;
public void setColor(int color) { this.color = color; }

}

class Test {

public static void main(String[] args) {
Point p = new Point();
Col oredPoi nt cp = new Col oredPoi nt();
/1 Okay because Col oredPoint is a subclass of Point:
p = cp;
/1l Okay because Col oredPoi nt inplements Col orabl e:
Col orable ¢ = cp;
/1 The following cause conpile-tine errors because
/'l we cannot be sure they will succeed, depending on
/'l the run-tine type of p; a run-tine check will be
/'l necessary for the needed narrow ng conversion and
/'l must be indicated by including a cast:

cp = p; /1 p mght be neither a Col oredPoi nt
/1 nor a subclass of Col oredPoint
c =p; /1 p mght not inplenent Colorable

}

Example 5.2-3. Assignment for Array Types

class Point { int x, y; }
cl ass Col oredPoi nt extends Point { int color; }

class Test {

public static void main(String[] args) {
long[] veclong = new | ong[100];
Obj ect o = vecl ong; /1 okay
Long | = veclong; /1 conpile-tinme error
short[] vecshort = veclong; // conpile-time error
Point[] pvec = new Point[100];
Col oredPoi nt[] cpvec = new Col oredPoi nt[100] ;
pvec = cpvec; /1 okay
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pvec[0] = new Point(); /1 okay at conpile tine,
/1 but would throw an
/] exception at run tine
cpvec = pvec; /1 conpile-tine error

}
In this example:

¢ Thevalue of vecl ong cannot be assigned to a Long variable, because Long isaclass
type other than Cbj ect . An array can be assigned only to a variable of a compatible
array type, or to avariable of type Qbj ect, d oneabl e or j ava. i o. Seri al i zabl e.

e The vaue of vecl ong cannot be assigned to vecshort, because they are arrays of
primitive type, and short and | ong are not the same primitive type.

e Thevalue of cpvec can be assigned to pvec, because any reference that could be the
value of an expression of type Col or edPoi nt can be the value of a variable of type
Poi nt . The subsequent assignment of the new Poi nt to a component of pvec then
would throw an Arr ay St or eExcept i on (if the program were otherwise corrected so
that it could be compiled), because a Col or edPoi nt array cannot have an instance of
Poi nt asthe value of a component.

* Thevalue of pvec cannot be assigned to cpvec, because not every reference that could
be the value of an expression of type Poi nt can correctly be the value of a variable of
type Col or edPoi nt . If the value of pvec at run time were areference to an instance of
Poi nt [ ], and theassignment to cpvec werealowed, asimplereferenceto acomponent
of cpvec, say, cpvec[ 0], could return aPoi nt , and aPoi nt isnot aCol or edPoi nt .
Thus to alow such an assignment would alow a violation of the type system. A cast
may be used (85.5, §15.16) to ensure that pvec referencesa Col or edPoi nt [ ] :

cpvec = (Col oredPoint[])pvec; [/ OK but nmay throw an
/] exception at run tine

5.3 Invocation Contexts

Invocation contexts allow an argument value in amethod or constructor invocation
(88.8.7.1, 815.9, §15.12) to be assigned to a corresponding formal parameter.

Strict invocation contexts allow the use of one of the following:
 anidentity conversion (85.1.1)

» awidening primitive conversion (85.1.2)

» awidening reference conversion (85.1.5)

Loose invocation contexts allow a more permissive set of conversions, because
they are only used for a particular invocation if no applicable declaration can be
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found using strict invocation contexts. Loose invocation contexts allow the use of
one of the following:

* anidentity conversion (85.1.1)

» awidening primitive conversion (85.1.2)

 awidening reference conversion (85.1.5)

» awidening reference conversion followed by an unboxing conversion

» a widening reference conversion followed by an unboxing conversion, then
followed by awidening primitive conversion

 aboxing conversion (85.1.7)

 aboxing conversion followed by widening reference conversion

« an unboxing conversion (85.1.8)

« an unboxing conversion followed by awidening primitive conversion

If, after the conversions listed for an invocation context have been applied, the
resulting typeis araw type (84.8), an unchecked conversion (85.1.9) may then be

applied.

A value of the null type (the null referenceis the only such value) may be assigned
to any reference type.

It is a compile-time error if the chain of conversions contains two parameterized
typesthat are not in the subtype relation (84.10).

If the type of an argument expression is either 1 oat or doubl e, then value set
conversion (85.1.13) is applied after the conversion(s):

« If an argument value of typef | oat isan element of the float-extended-exponent
value set, then the implementation must map the value to the nearest element of
the float value set. This conversion may result in overflow or underflow.

 If an argument value of type doubl e is an element of the double-extended-
exponent value set, then the implementation must map the value to the nearest
element of the double value set. This conversion may result in overflow or
underflow.

The only exceptions that may arise in an invocation context are:

» A d assCast Excepti on if, after the type conversions above have been applied,
the resulting value is an object which is not an instance of a subclass or
subinterface of the erasure (84.6) of the corresponding formal parameter type.
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e AnQut Of Meror yEr ror asaresult of aboxing conversion.

* A Nul | Poi nter Exception as a result of an unboxing conversion on a null
reference.

Neither strict nor loose invocation contexts include the implicit narrowing of integer
constant expressions which is allowed in assignment contexts. The designers of the Java
programming language felt that including these implicit narrowing conversions would add
additional complexity to the rules of overload resolution (§15.12.2).

Thus, the program:

class Test {
static int m(byte a, int b) { return a+b; }
static int m(short a, short b) { return a-b; }
public static void main(String[] args) {
Systemout.printlin(m12, 2)); // conpile-time error
}
}

causes a compile-time error because the integer literals 12 and 2 have typei nt , so neither
method mmatches under the rules of overload resolution. A language that included implicit
narrowing of integer constant expressions would need additional rulesto resolve caseslike
this example.

5.4 String Contexts

String contexts apply only to an operand of the binary + operator which is not a
St ri ng when the other operandisastri ng.

The target type in these contexts is always String, and a string conversion
(85.1.11) of the non-st ri ng operand always occurs. Evaluation of the + operator
then proceeds as specified in §15.18.1.

5.5 Casting Contexts

Casting contexts allow the operand of a cast expression (815.16) to be converted to
the type explicitly named by the cast operator. Compared to assignment contexts
and invocation contexts, casting contexts allow the use of more of the conversions
defined in 85.1, and allow more combinations of those conversions.

If the expression is of aprimitive type, then a casting context allows the use of one
of the following:
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 anidentity conversion (85.1.1)

» awidening primitive conversion (85.1.2)

* anarrowing primitive conversion (85.1.3)

» awidening and narrowing primitive conversion (85.1.4)

 aboxing conversion (85.1.7)

 aboxing conversion followed by awidening reference conversion (85.1.5)

If the expression is of a reference type, then a casting context allows the use of
one of the following:

* anidentity conversion (85.1.1)
» awidening reference conversion (85.1.5)
» awidening reference conversion followed by an unboxing conversion

» a widening reference conversion followed by an unboxing conversion, then
followed by awidening primitive conversion

 anarrowing reference conversion (85.1.6)

» anarrowing reference conversion followed by an unboxing conversion
* an unboxing conversion (85.1.8)

* an unboxing conversion followed by awidening primitive conversion

If the expression hasthe null type, then the expression may be cast to any reference
type.

If acasting context makes use of a narrowing reference conversion that is checked
or partially unchecked (85.1.6.2, §5.1.6.3), then arun time check will be performed
on the class of the expression's value, possibly causing a C assCast Except i on.
Otherwise, no run time check is performed.

Value set conversion (85.1.13) is applied after the type conversion.

The following tables enumerate which conversions are used in certain casting
contexts. Each conversion is signified by a symbol:

- gignifies no conversion allowed
» =gignifiesidentity conversion (85.1.1)
» wsignifies widening primitive conversion (85.1.2)

* 1 signifies narrowing primitive conversion (85.1.3)
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wn signifies widening and narrowing primitive conversion (85.1.4)

O signifies widening reference conversion (85.1.5)

O signifies narrowing reference conversion (85.1.6)

O signifies boxing conversion (85.1.7)
[ signifies unboxing conversion (85.1.8)

In the tables, a comma between symbols indicates that a casting context uses one
conversion followed by another. The type bj ect means any reference type other
than the eight wrapper classes Bool ean, Byt e, Short, Char act er, | nt eger, Long,
Fl oat , Doubl e.
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Table5.5-A. Casting to primitive types

To byte short char i nt long float double boolean
From |

byte = w on &) 0 0 w .
short n = n ) ) w w B
char n n = ) ) w w B

i nt n n n = W w w B
I ong n n n n = w W )
fl oat n n n n n = w .
doubl e n n n n n n = i}
bool ean - - - - - - } =
Byte 0 0,0 - 0,0 0,0 0,0 0,0 -
Short - O - 0,0 0,w 0,w 0,w -
Character - - 0 0,w 0,w 0,w 0,w -
I nt eger - - - 0 O,w 0,w 0,w -
Long - - - ) 0 0,w 0,w .
FI oat - - - - - O 0w B
Doubl e - - - - - } 0 N
Bool ean - - - - - - } O
Qoj ect 00 00 0,0 0,0 0,0 0,0 0,0 0o
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Table 5.5-B. Casting to reference types

To Byte Short Character | nteger Long Fl oat Doubl e Bool ean Obj ect
From |

byt e 0 - - - - - - - 0.0
short - 0 - - - - - - 0.0
char - - 0 - - - - - 0.0
i nt - - - 0 - - - - 0.0
| ong - - - - 0 - - - 0.0
f1 oat - - - - - 0 - - 0.0
doubl e - - - - - - 0 - 0.0
bool ean - - - - - - - 0 0.0
Byt e ~ - - - - - - - 0
Shor t - ~ - - - - - - 0
Character - - = - - - - - 0
I nteger - - - ~ - - - - 0
Long - - - - - - - - 0
Fl oat - - - - - ~ - - 0
Doubl e - - - - - - - - 0
Bool ean - - - - - - - - 0
Gject g o D 0 0 O D 0 =
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Example 5.5-1. Casting for Reference Types

class Point { int x, vy; }
interface Col orable { void setColor(int color); }
cl ass Col oredPoi nt extends Point inplenments Col orable {
int color;
public void setColor(int color) { this.color = color; }

}

final class EndPoi nt extends Point {}

class Test {
public static void main(String[] args) {
Point p = new Point();
Col oredPoi nt cp = new Col oredPoi nt ();
Col orabl e c;
/1l The following may cause errors at run time because
/1 we cannot be sure they will succeed; this possibility
/1 is suggested by the casts:
cp = (ColoredPoint)p; // p mght not reference an
/1 object which is a Col oredPoi nt
/1 or a subclass of Col oredPoint
c = (Col orabl e)p; /1 p mght not be Col orable
/1 The following are incorrect at conpile tine because
/1 they can never succeed as explained in the text:

Long | = (Long)p; /] conpile-tine error #1
EndPoi nt e = new EndPoi nt ();
c = (Col orabl e)e; /1 conpile-tine error #2

}

Here, the first compile-time error occurs because the class types Long and Poi nt are
unrelated (that is, they are not the same, and neither is a subclass of the other), so a cast
between them will always fail.

The second compile-time error occurs because a variable of type EndPoi nt can never
reference a value that implements the interface Col or abl e. Thisis because EndPoi nt is
afinal type and avariable of afinal type always holds a value of the same run-time
type as its compile-time type. Therefore, the run-time type of variable e must be exactly
the type EndPoi nt , and type EndPoi nt does not implement Col or abl e.

CONVERSIONS AND CONTEXTS



CONVERSIONS AND CONTEXTS Casting Contexts

Example 5.5-2. Casting for Array Types

class Point {

}

int x, vy;
Point(int x, int y) { this.x = x; this.y = vy; }
public String toString() { return "("+x+","+y+")"; }

interface Colorable { void setColor(int color); }
cl ass Col oredPoi nt extends Point inplenments Col orable {

}

int color;
Col oredPoint(int x, int y, int color) {
super(x, y); setColor(color);
}
public void setColor(int color) { this.color = color; }
public String toString() {
return super.toString() + "@ + color;

}

class Test {

}

public static void main(String[] args) {
Point[] pa = new Col oredPoint[4];
pa[ 0] = new Col oredPoint (2, 2, 12);
pa[ 1] = new Col oredPoi nt (4, 5, 24);
Col oredPoi nt[] cpa = (Col oredPoint[]) pa;
Systemout.print("cpa: {");
for (int i =0; i < cpa.length; i++)
Systemout.print((i ==0?2" " : ", ") + cpalil]);
Systemout.printin(" }");

This program compiles without errors and produces the output:

cpa: { (2,2)@z2, (4,5 @4, null, null }
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Example 5.5-3. Casting Incompatible Types at Run Time

class Point { int x, vy; }
interface Col orable { void setColor(int color); }
cl ass Col oredPoi nt extends Point inplenments Col orable {
int color;
public void setColor(int color) { this.color = color; }

}

class Test {
public static void main(String[] args) {
Point[] pa = new Point[100];

/1 The following line will throw a d assCast Excepti on:
Col oredPoi nt[] cpa = (Col oredPoint[]) pa;

System out. println(cpa[0]);

int[] shortvec = newint[2];

Obj ect o = shortvec;

/1 The following line will throw a d assCast Excepti on:

Col orabl e ¢ = (Col orabl e) o;
c.setCol or(0);

}

This program uses casts to compile, but it throws exceptions at run time, because the types
areincompatible.

5.6 Numeric Contexts

Numeric contexts apply to the operands of arithmetic operators, array creation and
access expressions, conditional expressions, and the result expressions of swi t ch
expressions.

An expression appears in a numeric arithmetic context if the expression is one of
the following:

The operand of a unary plus operator +, unary minus operator -, or bitwise
complement operator ~ (815.15.3, 815.15.4, 815.15.5)

An operand of amultiplicative operator *, /, or %(815.17)

An operand of an addition or subtraction operator for numeric types + or -
(815.18.2)

An operand of a shift operator <<, >>, or >>> (815.19). Operands of these shift
operatorsaretreated separately rather than asagroup. A | ong shift distance (right
operand) does not promote the value being shifted (Ieft operand) to | ong.
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* Anoperand of anumerical comparison operator <, <=, >, or >= (§15.20.1)
» Anoperand of anumerical equality operator == or ! = (§15.21.1)
» Anoperand of an integer bitwise operator &, ~, or | (815.22.1)

An expression appears in a numeric array context if the expression is one of the
following:

» A dimension expression in an array creation expression (§15.10.1)
» Theindex expression in an array access expression (815.10.3)

An expression appears in a numeric choice context if the expression is one of the
following:

» The second or third operand of a numeric conditional expression (8§15.25.2)

* A result expression of a standalone swi t ch expression (815.28.1) where all the
result expressions are convertible to anumeric type

Numeric promotion determines the promoted type of all the expressions in a
numeric context. The promoted type is chosen such that each expression can be
converted to the promoted type, and, in the case of an arithmetic operation, the
operation is defined for values of the promoted type. The order of expressionsin a
numeric context is not significant for numeric promotion. The rules are asfollows:

1. If any expression isof areferencetype, it is subjected to unboxing conversion
(85.1.8).

5.6
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2. Next, widening primitive conversion (85.1.2) and narrowing primitive
conversion (85.1.3) are applied to some expressions, according to thefollowing
rules:

* If any expression is of type doubl e, then the promoted type is doubl e, and

other expressions that are not of type doubl e undergo widening primitive
conversion to doubl e.

Otherwise, if any expression is of type f I oat, then the promoted type is
f1 oat, and other expressions that are not of type f 1 oat undergo widening
primitive conversion to f | oat .

Otherwise, if any expressionisof typel ong, then the promoted typeisi ong,
and other expressions that are not of type | ong undergo widening primitive
conversionto | ong.

Otherwise, none of the expressions are of type doubl e, 1 oat, Or | ong. In
this case, the kind of context determines how the promoted type is chosen.

In a numeric arithmetic context or a numeric array context, the promoted
typeisi nt, and any expressions that are not of typei nt undergo widening
primitive conversiontoi nt .

In a numeric choice context, the following rules apply:

— If any expression is of typei nt and isnot a constant expression (815.29),
then the promoted type isi nt , and other expressions that are not of type
i nt undergo widening primitive conversiontoi nt .

— Otherwisg, if any expression is of typeshort, and every other expression
iseither of typeshort or of typebyt e or aconstant expression of typei nt
with avaluethat isrepresentableinthetypeshor t , then the promoted type
isshort , andthebyt e expressionsundergo widening primitive conversion
toshort,andthei nt expressionsundergo narrowing primitive conversion
toshort.

— Otherwisg, if any expressionisof typebyt e, and every other expressionis
either of type byt e or a constant expression of typei nt with a value that
is representable in the type byt e, then the promoted typeis byt e, and the
i nt expressions undergo narrowing primitive conversion to byt e.

— Otherwise, if any expressionisof typechar , and every other expressionis
either of type char or aconstant expression of typei nt with avalue that
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isrepresentable in the type char , then the promoted typeis char, and the
i nt expressions undergo narrowing primitive conversion to char .

— Otherwise, the promoted typeisi nt, and al the expressions that are not
of typei nt undergo widening primitive conversiontoint .

3. Aftertheconversion(s), if any, value set conversion (85.1.13) isapplied to each
expression.

Unary numeric promotion consists of applying numeric promotion to a single
expression that occursin anumeric arithmetic context or a numeric array context.

Binary numeric promotion consists of applying numeric promotion to a pair of
expressions that occur in a numeric arithmetic context.

General numeric promotion consists of applying numeric promotion to al the
expressions that occur in a numeric choice context.

Example 5.6-1. Unary Numeric Promotion

class Test {
public static void main(String[] args) {
byte b = 2;
int a[] = newint[b]; // dimension expression pronotion
char ¢ = '\u0001';

afc] = 1; /1 index expression pronotion
a[0] = -c; /] unary - pronption
Systemout.println("a: " + a[0] + "," + a[1]);

b = -1,

int i = ~b; /1 bitwi se conpl ement pronotion

Systemout. println("~0x" + |Integer.toHexString(b)

+ "==0x" + Integer.toHexString(i));
i = b << 4L /1 shift pronotion (left operand)
System out. println("0x" + |Integer.toHexString(b)

+ "<<4L==0x" + Integer.toHexString(i));

}
This program produces the output:

a -1,1
~Oxffffffff==0x0
Oxffffffff<<4lL==0xfffffffo

Example 5.6-2. Binary Numeric Promotion

class Test {
public static void main(String[] args) {

int i 0;

float f 1.0
doubl e d 2.0

f,
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}

CONVERSIONS AND CONTEXTS

/1l First int*float is pronoted to float*float, then
/1 float==double is pronoted to doubl e==doubl e:
if (i *f ==d) Systemout.println("oops");

/1 A char&byte is pronpted to int&nt:

byte b = Ox1f;

char ¢ ='G;

int control = c & b;

Systemout. println(lnteger.toHexString(control));

/!l Here int:float is pronpoted to float:float:
f = (b==0) ? i : 4.0f;
Systemout.println(1.0/f);

This program produces the outpuit:

7
0.25

The example convertsthe ASCII character Gto the ASCII control-G (BEL), by masking off
all but the low 5 bits of the character. The 7 is the numeric value of this control character.
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Names

N AMES are used to refer to entities declared in a program.

A declared entity (86.1) is a package, class type (hormal or enum), interface
type (normal or annotation type), member (class, interface, field, or method) of
a reference type, type parameter (of a class, interface, method or constructor),
parameter (to a method, constructor, or exception handler), or local variable.

Names in programs are either simple, consisting of asingle identifier, or qualified,
consisting of a sequence of identifiers separated by ". " tokens (86.2).

Every declaration that i ntroduces aname has a scope (86.3), which isthe part of the
program text within which the declared entity can be referred to by asimple name.

A qualified name N. x may be used to refer to amember of a package or reference
type, where N is a simple or qualified name and x is an identifier. If N names a
package, then x is a member of that package, which is either a class or interface
type or a subpackage. If N names areference type or avariable of areference type,
then x names a member of that type, which is either a class, an interface, afield,
or amethod.

In determining the meaning of aname (86.5), the context of the occurrenceis used
to disambiguate among packages, types, variables, and methods with the same
name.

Access control (86.6) can be specified in a class, interface, method, or field
declaration to control when access to a member is allowed. Access is a different
concept from scope. Access specifies the part of the program text within which the
declared entity can bereferred to by aqualified name. Accessto adeclared entity is
aso relevant in afield access expression (815.11), amethod invocation expression
inwhich the method is not specified by asimple name (815.12), amethod reference
expression (815.13), or a qualified class instance creation expression (815.9). In
the absence of an access modifier, most declarations have package access, allowing
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access anywhere within the package that containsits declaration; other possibilities
arepublic, protected, and pri vat e.

Fully qualified and canonical names (86.7) are also discussed in this chapter.

6.1 Declarations

A declaration introduces an entity into aprogram and includes an identifier (§3.8)
that can be used in a name to refer to this entity. The identifier is constrained to
be a type identifier when the entity being introduced is a class, interface, or type
parameter.

A declared entity is one of the following:
* A module, declared in anodul e declaration (87.7)
A package, declared in apackage declaration (87.4)

» Animported type, declared in asingle-type-import declaration or atype-import-
on-demand declaration (§87.5.1, §7.5.2)

* Animported st at i ¢ member, declared in a single-static-import declaration or a
static-import-on-demand declaration (87.5.3, §7.5.4)

* A class, declared in a class type declaration (88.1)
» Aninterface, declared in an interface type declaration (89.1)

» A type parameter, declared as part of the declaration of ageneric class, interface,
method, or constructor (88.1.2, §9.1.2, §8.4.4, §8.8.4)
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* A member of a reference type (88.2, §9.2, §8.9.3, 89.6, 810.7), one of the
following:

— A member class (88.5, §9.5)
— A member interface (88.5, §9.5)
— An enum constant (88.9)
— A field, one of the following:
> A field declared in a class type or enum type (88.3, §8.9.2)
> A field declared in an interface type or annotation type (89.3, §9.6.1)
> Thefield I engt h, which isimplicitly amember of every array type (810.7)
— A method, one of the following:

> A method (abst ract or otherwise) declared in a class type or enum type
(88.4, 88.9.2)

> A method (abstract or otherwise) declared in an interface type or
annotation type (89.4, 89.6.1)

» A parameter, one of the following:

— A forma parameter of a method or constructor of a class type or enum type
(88.4.1, 88.8.1, 88.9.2), or of alambda expression (815.27.1)

— A formal parameter of an abst ract method of an interface type or annotation
type (89.4, 89.6.1)

— An exception parameter of an exception handler declared in acat ch clause of
atry statement (§14.20)

» A local variable, one of the following:
— A local variable declared in ablock (§14.4)
— A local variable declared in af or statement (§14.14)

Constructors (88.8) are also introduced by declarations, but use the name of the
classin which they are declared rather than introducing a new name.

The declaration of a type which is not generic (class C ...) declares one
entity: a non-generic type (C). A non-generic type is not a raw type, despite the
syntactic similarity. In contrast, the declaration of agenerictype (cl ass C<T> ...
or interface C<T> ...) declares two entities. a generic type (c<T>) and a
corresponding non-generic type (C). In this case, the meaning of the term ¢ depends
on the context where it appears:

6.1
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* If genericity is unimportant, asin the non-generic contexts identified below, the
identifier c denotes the non-generic type C.

* If genericity is important, as in all contexts from 86.5 except the non-generic
contexts, the identifier C denotes either:

— Theraw type Cc which is the erasure (84.6) of the generic type c<T>; or

— A parameterized type which is a particular parameterization (84.5) of the
generic type C<T>.

The 14 non-generic contexts are as follows:

Inauses or provi des directive in amodule declaration (87.7.1)

In asingle-type-import declaration (§7.5.1)

To the left of the . in asingle-static-import declaration (87.5.3)

To theleft of the. in a static-import-on-demand declaration (8§7.5.4)
To theleft of the ( in aconstructor declaration (88.8)

After the @sign in an annotation (89.7)

Totheleft of . cl ass inaclasslitera (815.8.2)

Totheleft of . t hi s inaqualifiedt hi s expression (815.8.4)

© 0o N o 00 &~ wDd P

To the left of .super in a qualified superclass field access expression
(815.11.2)

. Totheleft of . Identifier or . super . Identifier in aqualified method invocation
expression (815.12)

=
o

11. Totheleft of . super:: inamethod reference expression (815.13)

12. Inaqualified expression namein a postfix expression or at r y-with-resources
statement (815.14.1, §14.20.3)

13. Inat hr ows clause of amethod or constructor (88.4.6, §8.8.5, §9.4)
14. In an exception parameter declaration (814.20)

The first eleven non-generic contexts correspond to the first eleven syntactic
contexts for a TypeName in 86.5.1. The twelfth non-generic context is where
a qualified ExpressionName such as C. x may include a TypeName C to denote
static member access. The common use of TypeName in these twelve contexts
is significant: it indicates that these contexts involve a less-than-first-class use
of atype. In contrast, the thirteenth and fourteenth non-generic contexts employ
ClassType, indicating that t hr ows and cat ch clauses usetypesin afirst-classway,
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in line with, say, field declarations. The characterization of these two contexts as
non-generic is due to the fact that an exception type cannot be parameterized.

Note that the ClassType production allows annotations, so it is possible to annotate the
use of atypeinathrows or cat ch clause, whereas the TypeName production disallows
annotations, so it is not possible to annotate the name of atypein, say, asingle-type-import
declaration.

Naming Conventions

Theclasslibraries of the Java SE Platform attempt to use, whenever possible, names chosen
according to the conventions presented bel ow. These conventions help to make code more
readable and avoid certain kinds of name conflicts.

We recommend these conventions for usein all programs written in the Java programming
language. However, these conventions should not be followed davishly if long-held
conventional usage dictates otherwise. So, for example, the si n and cos methods of
the classj ava. | ang. Mat h have mathematically conventional names, even though these
method names flout the convention suggested here because they are short and are not verbs.

Package Names and Module Names

Developers should take steps to avoid the possibility of two published packages having the
same name by choosing unique package names for packages that are widely distributed.
This allows packages to be easily and automatically installed and catalogued. This
section specifies a suggested convention for generating such unique package names.
Implementations of the Java SE Platform are encouraged to provide automatic support for
converting a set of packages from local and casual package names to the unique name
format described here.

If unique package names are not used, then package name conflicts may arise far from the
point of creation of either of the conflicting packages. This may create a situation that is
difficult or impossible for the user or programmer to resolve. The classes O assLoader
and Modul eLayer can be used to isolate packages with the same name from each other in
those cases where the packages will have constrained interactions, but not in away that is
transparent to a naive program.

Y ou form a unique package name by first having (or belonging to an organization that has)
an Internet domain name, such as or acl e. com You then reverse this name, component
by component, to obtain, in this example, com or acl e, and use this as a prefix for
your package names, using a convention developed within your organization to further
administer package names. Such a convention might specify that certain package name
components be division, department, project, machine, or login names.
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Example 6.1-1. Unique Package Names

com ni ght hacks. scrabbl e. di cti onary
org. openj dk. conpi |l er. source. tree
net.jcip.annotations

edu. cru. ¢s. bovi k. cheese

gov. whi t ehouse. socks. nousefi nder

The first component of a unique package name is always written in all-lowercase ASCII
letters and should be one of the top level domain names, such ascom edu, gov, ni | , net,
or or g, or one of the English two-letter codes identifying countries as specified in 1SO
Sandard 3166.

In some cases, the Internet domain name may not be avalid package name. Here are some
suggested conventions for dealing with these situations:

« |If the domain name contains a hyphen, or any other special character not allowed in an
identifier (83.8), convert it into an underscore.

e If any of the resulting package name components are keywords (§3.9), append an
underscore to them.

« If any of theresulting package name components start with adigit, or any other character
that is not allowed as an initial character of an identifier, have an underscore prefixed
to the component.

The name of amodule should correspond to the name of its principal exported package. If
amodule does not have such a package, or if for legacy reasons it must have a name that
does not correspond to one of its exported packages, then its name should still start with
the reversed form of an Internet domain with which its author is associated.

Example 6.1-2. Unique M odule Names

com ni ght hacks. scrabbl e
org. openj dk. conpi | er
net.jcip.annotations

Thefirst component of a package or module name must not betheidentifier j ava. Package
and module namesthat start with theidentifier j ava arereserved for packages and modules
of the Java SE Platform.

The name of a package or module is not meant to imply where the package or module is
stored on the Internet. For example, a package named edu. cmu. ¢s. bovi k. cheese isnot
necessarily obtainable from the host cnu. edu or cs. crmu. edu or bovi k. cs. crmu. edu.
The suggested convention for generating unique package and module names is merely a
way to piggyback a package and module naming convention on top of an existing, widely
known unique name registry instead of having to create a separate registry for package and
module names.

Class and Interface Type Names
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Names of classtypes should be descriptive nounsor noun phrases, not overly long, in mixed
case with the first letter of each word capitalized.

Example 6.1-3. Descriptive Class Names

C assLoader

Securit yManager

Thr ead

Di ctionary

Buf f er edl nput St r eam

Likewise, names of interface types should be short and descriptive, not overly long, in
mixed case with the first letter of each word capitalized. The name may be a descriptive
noun or noun phrase, which is appropriate when an interface is used asif it were an abstract
superclass, such asinterfacesj ava. i o. Dat al nput andj ava. i 0. Dat aQut put ; or it may
be an adjective describing a behavior, as for the interfaces Runnabl e and C oneabl e.

Type Variable Names

Type variable names should be pithy (single character if possible) yet evocative, and should
not include lower case letters. This makes it easy to distinguish type parameters from
ordinary classes and interfaces.

Container types should use the name E for their element type. Maps should use K for the
type of their keysand V for the type of their values. The name X should be used for arbitrary
exception types. We use T for type, whenever thereis not anything more specific about the
type to distinguish it. (Thisis often the case in generic methods.)

If there are multiple type parameters that denote arbitrary types, one should use letters
that neighbor T in the alphabet, such as S. Alternately, it is acceptable to use numeric
subscripts (e.g., T1, T2) to distinguish among the different type variables. In such cases, al
the variables with the same prefix should be subscripted.

If a generic method appears inside a generic class, it is a good idea to avoid using the
same names for the type parameters of the method and class, to avoid confusion. The same
applies to nested generic classes.

Example 6.1-4. Conventional Type Variable Names

public class HashSet <E> extends AbstractSet<kE> { ... }
public class HashMap<K, V> extends Abstract Map<K V> { ... }
public class ThreadLocal <T> { ... }
public interface Functor<T, X extends Throwabl e> {

T eval () throws X;
}

When type parameters do not fall conveniently into one of the categories mentioned, names
should be chosen to be as meaningful as possible within the confines of asingleletter. The
names mentioned above (E, K, V, X, T) should not be used for type parameters that do not
fall into the designated categories.
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Method Names

Method names should be verbs or verb phrases, in mixed case, with thefirst letter lowercase
and the first letter of any subsequent words capitalized. Here are some additional specific
conventions for method names:

« Methods to get and set an attribute that might be thought of as a variable V should be
named get V and set V. An example is the methods get Pri ority andsetPriority
of class Thr ead.

« A method that returns the length of something should be named | engt h, as in class
String.

* A method that tests a boolean condition V about an object should be named i sv. An
exampleisthe method i si nt er r upt ed of class Thr ead.

*« A method that converts its object to a particular format F should be named
toF. Examples are the method toString of class Object and the methods
toLocal eString andt oGWTSt ri ng of classj ava. uti | . Dat e.

Whenever possible and appropriate, basing the names of methods in a new class on hames
in an existing class that is similar, especially a class from the Java SE Platform API, will
make it easier to use.

Field Names

Names of fields that are not f i nal should be in mixed case with a lowercase first letter
and the first letters of subsequent words capitalized. Note that well-designed classes have
very few publ i ¢ or pr ot ect ed fields, except for fieldsthat are constants (st ati ¢ fi nal
fields).

Fields should have names that are nouns, noun phrases, or abbreviations for nouns.

Examples of this convention are the fields buf, pos, and count of the class
java.io.ByteArrayl nput Stream and the field bytesTransferred of the class
java.io. | nterruptedl OException.

Constant Names

The names of constants in interface types should be, and fi nal variables of class types
may conventionally be, a sequence of one or more words, acronyms, or abbreviations,
all uppercase, with components separated by underscore "_" characters. Constant names
should be descriptive and not unnecessarily abbreviated. Conventionally they may be any
appropriate part of speech.

Examples of names for constants include M N_VALUE, MAX_VALUE, M N_RADI X, and
MAX_RADI X of the class Char act er .

A group of constants that represent alternative values of a set, or, less frequently, masking
bits in an integer value, are sometimes usefully specified with a common acronym as a
name prefix.
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For example:

interface ProcessStates {
int PS_ RUNNING = 0;
int PS_SUSPENDED = 1,
}

Local Variable and Parameter Names

Local variable and parameter names should be short, yet meaningful. They are often short
sequences of lowercase letters that are not words, such as:

« Acronyms, that is the first |etter of a series of words, asin cp for avariable holding a
reference to a Col or edPoi nt
« Abbreviations, asin buf holding apointer to a buffer of some kind

* Mnemonic terms, organized in some way to aid memory and understanding, typically
by using a set of local variables with conventional names patterned after the names of
parameters to widely used classes. For example:

— i n and out, whenever some kind of input and output are involved, patterned
after thefields of Syst em

— of f and | en, whenever an offset and length are involved, patterned after the
parameters to the r ead and wr i t e methods of the interfaces Dat al nput and
Dat aQut put of j ava.io

One-character |ocal variable or parameter names should be avoided, except for temporary
and looping variables, or where a variable holds an undistinguished value of a type.
Conventional one-character names are:

e bforabyte

e c forachar

¢ dforadoubl e

e e foranException

e f forafl oat

e i,j,andk forints

« | foralong

¢ o for an Obj ect

e sforastring

« v for an arbitrary value of sometype

Local variable or parameter namesthat consist of only two or threelowercase | etters should

not conflict with the initial country codes and domain names that are the first component
of unique package names.
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6.2 Namesand |dentifiers

A nameis used to refer to an entity declared in a program.
There are two forms of names: simple names and qualified names.

A simple nameisasingleidentifier.

A gualified name consists of aname, a". " token, and an identifier.

I n determining the meaning of aname (86.5), the context in which the name appears
istaken into account. The rules of §6.5 distinguish among contexts where a name
must denote (refer to) a package (86.5.3), atype (86.5.5), avariable or valuein an
expression (86.5.6), or amethod (86.5.7).

Packages and reference types have members which may be accessed by qualified names.
As background for the discussion of qualified names and the determination of the meaning
of names, see the descriptions of membership in 84.4, 84.5.2, §84.8, 8§4.9, 87.1, §8.2, §9.2,
and §10.7.

Not al identifiersin a program are a part of a name. Identifiers are also used in
the following situations:

* In declarations (86.1), where an identifier may occur to specify the name by
which the declared entity will be known.

» Aslabelsin labeled statements (814.7) and in br eak and cont i nue Statements
(814.15, §814.16) that refer to statement labels.

The identifiers used in labeled statements and their associated break and
cont i nue statements are completely separate from those used in declarations.

* Infield access expressions (815.11), where an identifier occurs after a”. " token

toindicateamember of the object denoted by the expression beforethe”. " token,

or the object denoted by the super or TypeName. super beforethe . " token.

* In some method invocation expressions (815.12), wherever an identifier occurs
after a". " token and before a"(" token to indicate a method to be invoked for
the object denoted by the expression before the . " token, or the type denoted
by the TypeName before the ". " token, or the object denoted by the super or

TypeName. super beforethe™. " token.

* In some method reference expressions (815.13), wherever an identifier occurs
after a": : " token to indicate a method of the object denoted by the expression
before the ": : " token, or the type denoted by the TypeName before the ": :*
token, or the object denoted by the super or TypeName. super beforethe™: : "
token.
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* In qualified class instance creation expressions (815.9), where an identifier
occurs to the right of the new token to indicate a type that is a member of the
compile-time type of the expression preceding the new token.

* In element-value pairs of annotations (89.7.1), to denote an element of the
corresponding annotation type.

In this program:

class Test {
public static void main(String[] args) {
Class ¢ = System out.getC ass();
Systemout.printin(c.toString().length() +
args[0].length() + args.length);

}

the identifiers Test , mai n, and the first occurrences of ar gs and ¢ are not names. Rather,
they are identifiers used in declarations to specify the names of the declared entities. The
namesString, d ass, System out . get d ass, Systemout.println,c.toString,
args, andar gs. | engt h appear in the example.

Theoccurrenceof | engt hinar gs. | engt hisanamebecausear gs. | engt hisaquaified
name (86.5.6.2) and not a field access expression (815.11). A field access expression, as
well asamethod invocation expression, amethod reference expression, and aqualified class
instance creation expression, uses an identifier rather than a name to denote the member of
interest. Thus, the occurrence of | engt hiinar gs[ 0] . | engt h() isnot aname, but rather
an identifier appearing in a method invocation expression.

One might wonder why these kinds of expression use an identifier rather than a smple
name, which is after al just an identifier. The reason is that a smple expression name is
defined intermsof thelexical environment; that is, asimple expression name must bein the
scope of avariable declaration (86.5.6.1). On the other hand, field access, qualified method
invocation, method references, and qualified class instance creation all refer to members
whose names are not in the lexical environment. By definition, such names are bound only
in the context provided by the Primary of the field access expression, method invocation
expression, method reference expression, or class instance creation expression; or by the
super of the field access expression, method invocation expression, or method reference
expression; and so on. Thus, we denote such members with identifiers rather than simple
names.

To complicate things further, a field access expression is not the only way to denote a
field of an object. For parsing reasons, a qualified name is used to denote afield of anin-
scope variable. (The variable itself is denoted with a simple name, alluded to above)) It is
necessary for access control (86.6) to apply to both denotations of afield.
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6.3 Scope of a Declaration

The scope of a declaration is the region of the program within which the entity
declared by the declaration can be referred to using a simple name, provided it is
not shadowed (86.4.1).

A declaration is said to be in scope at a particular point in a program if and only
if the declaration's scope includes that point.

The scope of the declaration of an observable top level package (87.4.3) is al
observable compilation units associated with modules to which the package is
uniquely visible (87.4.3).

The declaration of a package that is not observable is never in scope.
The declaration of a subpackage is never in scope.
The packagej ava is awaysin scope.

The scope of atypeimported by asingle-type-import declaration (87.5.1) or atype-
import-on-demand declaration (87.5.2) isthe module declaration (87.7) and al the
class and interface type declarations (87.6) of the compilation unit in which the
i npor t declaration appears, as well as any annotations on the module declaration
or package declaration of the compilation unit.

The scope of a member imported by a single-static-import declaration (87.5.3)
or a static-import-on-demand declaration (87.5.4) is the module declaration and
al the class and interface type declarations of the compilation unit in which the
i npor t declaration appears, as well as any annotations on the module declaration
or package declaration of the compilation unit.

The scope of atop level type (87.6) isall type declarationsin the package in which
the top level typeis declared.

The scope of a declaration of amember mdeclared in or inherited by aclasstypeC
(88.1.6) isthe entire body of c, including any nested type declarations.

The scope of a declaration of a member mdeclared in or inherited by an interface
typel (89.1.4) isthe entire body of 1, including any nested type declarations.

The scope of an enum constant C declared in an enum type T is the body of T, and
any case label of aswi t ch statement whose expressionisof enumtype T (814.11).

The scope of a forma parameter of a method (88.4.1), constructor (88.8.1), or
lambdaexpression (815.27) isthe entire body of the method, constructor, or lambda
expression.
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The scope of a class's type parameter (88.1.2) is the type parameter section of the
class declaration, the type parameter section of any superclass or superinterface of
the class declaration, and the class body.

The scope of an interface's type parameter (89.1.2) is the type parameter section
of the interface declaration, the type parameter section of any superinterface of the
interface declaration, and the interface body.

The scope of a method's type parameter (88.4.4) is the entire declaration of the
method, including the type parameter section, but excluding the method modifiers.

The scope of a constructor's type parameter (88.8.4) is the entire declaration of
the constructor, including the type parameter section, but excluding the constructor
modifiers.

The scope of alocal class declaration immediately enclosed by a block (814.2) is
the rest of the immediately enclosing block, including its own class declaration.

The scope of alocal class declaration immediately enclosed by a switch block
statement group (814.11) is the rest of the immediately enclosing switch block
statement group, including its own class declaration.

The scope of alocal variable declaration in ablock (814.4) isthe rest of the block
in which the declaration appears, starting with itsown initializer and including any
further declarators to the right in the local variable declaration statement.

The scope of alocal variable declared in the Forlnit part of abasic f or statement
(814.14.1) includes dl of the following:

 Itsowninitializer

» Any further declarators to the right in the ForInit part of thef or statement
» The Expression and ForUpdate parts of the f or statement

» The contained Statement

The scope of alocal variable declared in the Formal Parameter part of an enhanced
for statement (814.14.2) is the contained Statement.

The scope of a parameter of an exception handler that isdeclared in acat ch clause
of atry statement (814.20) is the entire block associated with the cat ch.

The scope of a variable declared in the ResourceSpecification of a try-with-
resources statement (814.20.3) isfrom the declaration rightward over the remainder
of the ResourceSpecification and the entiret r y block associated with thet r y-with-
resources statement.

6.3
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The trandation of at r y-with-resources statement implies the rule above.
Example 6.3-1. Scope of Type Declarations

Theserulesimply that declarations of class and interface types need not appear before uses
of the types. In the following program, the use of Poi nt Li st in class Poi nt is valid,
because the scope of the class declaration Poi nt Li st includes both class Poi nt and class
Poi nt Li st , aswell as any other type declarations in other compilation units of package
poi nts.

package points;
class Point {

int x, vy;
Poi ntList list;
Poi nt next;

}

class PointlList {
Point first;

}

Example 6.3-2. Scope of Local Variable Declarations

The following program causes a compile-time error because the initialization of local
variable x is within the scope of the declaration of local variable x, but the local variable
x does not yet have a value and cannot be used. The field x has a value of 0 (assigned
when Test 1 wasiinitialized) but isared herring since it is shadowed (86.4.1) by the local
variablex.

class Testl {
static int x;
public static void main(String[] args) {
int x = x;
}
}

The following program does compile:
class Test2 {
static int x;
public static void main(String[] args) {
int x = (x=2)*2;

System out. println(x);

}

because the local variable x is definitely assigned (816 (Definite Assignment)) beforeit is
used. It prints:

4
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In the following program, the initializer for t hr ee can correctly refer to the variable t wo
declared in an earlier declarator, and the method invocation in the next line can correctly
refer to the variablet hr ee declared earlier in the block.

class Test3 {
public static void main(String[] args) {
Systemout. print ("2+1=");
int two =2, three = tw + 1
System out. println(three)

}
This program produces the output:

2+1=3

6.4 Shadowing and Obscuring

A local variable (§14.4), formal parameter (88.4.1, §15.27.1), exception parameter
(814.20), and local class (814.3) can only be referred to using a simple name, not
aqualified name (86.2).

Some declarations are not permitted within the scope of a local variable, formal
parameter, exception parameter, or local class declaration because it would be
impossible to distinguish between the declared entities using only simple names.

For example, if the name of aformal parameter of amethod could be redeclared asthe name
of alocal variable in the method body, then the local variable would shadow the formal
parameter and there would be no way to refer to the formal parameter - an undesirable
outcome.

Itisacompile-timeerror if the name of aformal parameter isused to declare anew
variable within the body of the method, constructor, or lambda expression, unless
the new variable is declared within a class declaration contained by the method,
constructor, or lambda expression.

Itisacompile-time error if the name of alocal variable v is used to declare anew
variable within the scope of v, unless the new variable is declared within a class
whose declaration is within the scope of v.

It isa compile-time error if the name of an exception parameter is used to declare
a new variable within the Block of the cat ch clause, unless the new variable is
declared within a class declaration contained by the Block of the cat ch clause.

6.4

159



6.4 Shadowing and Obscuring NAMES

Itisacompile-timeerror if the name of alocal classcisused to declareanew loca
class within the scope of C, unless the new local class is declared within another
class whose declaration is within the scope of C.

These rules allow redeclaration of avariable or local classin nested class declarations that
occur in the scope of the variable or local class; such nested class declarations may belocal
classes (814.3) or anonymous classes (§815.9). Thus, the declaration of aformal parameter,
local variable, or local class may be shadowed in aclass declaration nested within amethod,
constructor, or lambda expression; and the declaration of an exception parameter may be
shadowed in a class declaration nested within the Block of the cat ch clause.

There are two design dternatives for handling name clashes created by |lambda parameters
and other variables declared in lambda expressions. Oneisto mimic classdeclarations: like
local classes, lambdaexpressionsintroduce anew "level” for names, and all variable names
outside the expression can be redeclared. Another isa"local" strategy: likecat ch clauses,
for loops, and blocks, lambda expressions operate at the same "level" as the enclosing
context, and local variables outside the expression cannot be shadowed. The above rules
use the local strategy; there is no special dispensation that allows a variable declared in a
lambda expression to shadow a variable declared in an enclosing method.

Notethat therulefor local classes does not make an exception for aclass of the same name
declared within the local classitself. However, this caseis prohibited by a separate rule: a
class cannot have the same name as a class that encloses it (88.1).

Example 6.4-1. Attempted Shadowing Of A Local Variable

Because a declaration of an identifier as a local variable of a method, constructor, or
initializer block must not appear within the scope of a parameter or local variable of the
same hame, a compile-time error occurs for the following program:

class Testl {
public static void main(String[] args) {
int i;
for (int i =0; i < 10; i++)
Systemout.printin(i);

}

This restriction helps to detect some otherwise very obscure bugs. A similar restriction on
shadowing of members by local variables was judged impractical, because the addition of
amember in asuperclass could cause subclasses to have to renamelocal variables. Related
considerations make restrictions on shadowing of local variables by members of nested
classes, or on shadowing of local variables by local variables declared within nested classes
unattractive as well.

Hence, the following program compiles without error:

class Test2 {
public static void main(String[] args) {
int i;
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class Local {

{
for (int i =0; i < 10; i++)
Systemout.println(i);

}
}

new Local ();
}

On the other hand, local variables with the same name may be declared in two separate
blocks or f or statements, neither of which contains the other:

class Test3 {
public static void main(String[] args) {

for (int i =0; i < 10; i++)
Systemout.print(i + " ");
for (int i =10; i >0; i--)

Systemout.print(i + " ");
Systemout. println();

}

This program compiles without error and, when executed, produces the output:

012345678910987654321

6.4.1 Shadowing

Some declarations may be shadowed in part of their scope by another declaration of
the same name, in which case asimple name cannot be used to refer to the declared
entity.

Shadowing is distinct from hiding (88.3, §8.4.8.2, §8.5, §9.3, §9.5), which applies
only to members which would otherwise be inherited but are not because of a
declaration in a subclass. Shadowing is also distinct from obscuring (86.4.2).

A declaration d of a type named n shadows the declarations of any other types
named n that are in scope at the point where d occurs throughout the scope of d.

A declaration d of afield or formal parameter named n shadows, throughout the
scope of d, the declarations of any other variables named n that are in scope at the
point where d occurs.

A declaration d of a local variable or exception parameter named n shadows,
throughout the scope of d, (a) the declarations of any other fields named n that are
in scope at the point whered occurs, and (b) the declarations of any other variables

6.4
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named n that are in scope at the point where d occurs but are not declared in the
innermost class in which d is declared.

A declaration d of amethod named n shadowsthe declarations of any other methods
named n that are in an enclosing scope at the point where d occurs throughout the
scope of d.

A package declaration never shadows any other declaration.

A type-import-on-demand declaration never causes any other declaration to be
shadowed.

A static-import-on-demand declaration never causes any other declaration to be
shadowed.

A single-type-import declaration d in acompilation unit ¢ of packagep that imports
atype named n shadows, throughout ¢, the declarations of:

 any top level type named n declared in another compilation unit of p
* any type named n imported by a type-import-on-demand declarationin ¢
* any type named n imported by a static-import-on-demand declarationin ¢

A single-static-import declaration d in a compilation unit ¢ of package p that
imports a field named n shadows the declaration of any static field named n
imported by a static-import-on-demand declaration in ¢, throughout c.

A single-static-import declaration d in a compilation unit ¢ of package p that
imports a method named n with signature s shadows the declaration of any
static method named n with signature s imported by a static-import-on-demand
declaration in ¢, throughout c.

A single-static-import declaration d in a compilation unit ¢ of package p that
imports atype named n shadows, throughout c, the declarations of:

* any static type named n imported by a static-import-on-demand declarationinc;

 any top level type (87.6) named n declared in another compilation unit (87.3)
of p;

 any type named n imported by atype-import-on-demand declaration (87.5.2) in
C.

Example 6.4.1-1. Shadowing of a Field Declaration by a Local Variable Declaration

class Test {
static int x = 1;
public static void main(String[] args) {
int x = 0;
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Systemout. print("x=" + Xx);
Systemout.println(", Test.x=" + Test.Xx);

}

This program produces the output:
x=0, Test.x=1

This program declares:

e aclassTest

e aclass(static) variable x that isamember of the class Test

» aclass method nai n that is a member of the class Test

e aparameter ar gs of the mai n method

 alocal variable x of the mai n method

Since the scope of a class variable includes the entire body of the class (88.2), the class
variable x would normally be available throughout the entire body of the method nai n.

In this example, however, the class variable x is shadowed within the body of the method
mai n by the declaration of the local variable x.

A local variable has as its scope the rest of the block in which it is declared (86.3); in
this case thisis the rest of the body of the mai n method, namely itsinitializer "0" and the
invocations of Syst em out . pri nt and System out. printl n.

This means that:

e The expression x in the invocation of pri nt refers to (denotes) the value of the local
variable x.

¢ Theinvocation of pri nt1 n uses aqualified name (86.6) Test . x, which uses the class
type name Test to access the class variable x, because the declaration of Test . x is
shadowed at this point and cannot be referred to by its simple name.

The keywordt hi s can also be used to access a shadowed field x, using theform t hi s. x.
Indeed, thisidiom typically appearsin constructors (88.8):

class Pair {
Obj ect first, second;
public Pair(Object first, Object second) {
this.first = first;
thi s.second = second;

}

Here, the constructor takes parameters having the same names asthefieldsto beinitialized.
This is simpler than having to invent different names for the parameters and is not too
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confusing in this stylized context. In general, however, it is considered poor style to have
local variables with the same names as fields.

Example 6.4.1-2. Shadowing of a Type Declaration by Another Type Declaration

inmport java.util.*;
class Vector {

int val[] ={ 1, 2};
}

class Test {
public static void main(String[] args) {
Vector v = new Vector();
Systemout.println(v.val[0]);

}
The program compiles and prints:
1

using the class Vector declared here in preference to the generic class
java.util.Vector (88.1.2) that might be imported on demand.

6.4.2 Obscuring

A simple name may occur in contexts where it may potentially be interpreted as
the name of avariable, atype, or a package. In these situations, the rules of §6.5.2
specify that avariable will be chosen in preferenceto atype, and that atype will be
chosen in preferenceto apackage. Thus, it is may sometimes beimpossibleto refer
to a type or package via its simple name, even though its declaration is in scope
and not shadowed. We say that such adeclaration is obscured.

Obscuring is distinct from shadowing (86.4.1) and hiding (88.3, §8.4.8.2, §8.5,
§9.3, §9.5).

There is no obscuring between the name of a module and the name of a variable,
type, or package; thus, modules may share names with variables, types, and
packages, though it is not necessarily recommended to name a module after a
package it contains.

The naming conventions of 86.1 help reduce obscuring, but if it does occur, here are some
notes about what you can do to avoid it.

When package names occur in expressions:

« |If a package name is obscured by afield declaration, then i npor t declarations (§7.5)
can usually be used to make available the type names declared in that package.
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« |If apackage nameisobscured by adeclaration of a parameter or local variable, then the
name of the parameter or local variable can be changed without affecting other code.

Thefirst component of apackage nameisnormally not easily mistaken for atype name, asa
type name normally beginswith asingle uppercase | etter. (The Javaprogramming language
does not actually rely on case distinctions to determine whether a name is a package name
or atype name.)

Obscuring involving class and interface type names is rare. Names of fields, parameters,
and local variables normally do not obscure type names because they conventionally begin
with alowercase |etter whereas type names conventionally begin with an uppercase letter.

Method names cannot obscure or be obscured by other names (86.5.7).
Obscuring involving field namesis rare; however:
« If afield name obscures a package name, then ani nport declaration (87.5) can usually

be used to make available the type names declared in that package.

« If afield name obscures atype name, then afully qualified namefor the type can be used
unless the type name denotes alocal class (814.3).

« Field names cannot obscure method names.
« If afield name is shadowed by a declaration of a parameter or local variable, then the
name of the parameter or local variable can be changed without affecting other code.

Obscuring involving constant namesisrare:

¢ Constant names normally have no lowercase letters, so they will not normally obscure
names of packagesor types, nor will they normally shadow fields, whose namestypically
contain at least one lowercase | etter.

e Constant names cannot obscure method names, because they are distinguished
syntactically.

6.5 Determining the Meaning of a Name

The meaning of a name depends on the context in which it is used. The
determination of the meaning of a name requires three steps:

» First, context causes a name syntactically to fall into one of seven categories:
ModuleName, PackageName, TypeName, ExpressionName, MethodName,
PackageOr TypeName, or AmbiguousName.

TypeName and MethodName are less expressive than the other five categories,
because they are denoted with Typeldentifier and UnqualifiedMethodl dentifier,
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respectively. The former excludesthe character sequencesvar andyi el d (83.8),
and the latter excludes the character sequenceyi el d.

Second, anamethat isinitially classified by its context as an AmbiguousName or
as aPackageOrTypeNameisthen reclassified to be a PackageName, TypeName,
or ExpressionName.

Third, the resulting category then dictates the final determination of the meaning
of the name (or a compile-time error if the name has no meaning).

ModuleName:
| dentifier
ModuleName . Identifier

PackageName:
Identifier
PackageName . Identifier

TypeName:
Typel dentifier
PackageOrTypeName . Typel dentifier

PackageOr TypeName:
Identifier
PackageOrTypeName . Identifier

ExpressionName:
Identifier
AmbiguousName . Identifier

MethodName:
UnqualifiedMethodl dentifier

AmbiguousName:
|dentifier
AmbiguousName . Identifier

The use of context helps to minimize name conflicts between entities of different
kinds. Such conflicts will be rare if the naming conventions described in 86.1 are
followed. Nevertheless, conflicts may arise unintentionally as types developed by different
programmers or different organizations evolve. For example, types, methods, and fields
may have the same name. It is always possible to distinguish between a method and afield
with the same name, since the context of a use always tells whether a method is intended.
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6.5.1 Syntactic Classification of a Name According to Context
A nameis syntactically classified as a ModuleName in these contexts:
e Inarequires directivein amodule declaration (87.7.1)

e To theright of to in an exports or opens directive in a module declaration
(87.7.2)

A nameis syntactically classified as a PackageName in these contexts:
» Totheright of exports or opens in amodule declaration
» Totheleft of the". " in aqualified PackageName
A nameis syntactically classified as a TypeName in these contexts:
» Thefirst eleven non-generic contexts (86.1):

1. Inauses or provi des directivein amodule declaration (87.7.1)
In asingle-type-import declaration (87.5.1)
To the left of the. in asingle-static-import declaration (87.5.3)
To the left of the. in astatic-import-on-demand declaration (87.5.4)
To the left of the ( in aconstructor declaration (§8.8)
After the @sign in an annotation (89.7)
Totheleft of . cl ass inaclassliteral (815.8.2)
Totheleft of . t hi s inaqualifiedt hi s expression (§15.8.4)

© o N o g b~ 0D

To the left of . super in a qualified superclass field access expression
(§15.11.2)

10. To the left of . Identifier or . super. Identifier in a qualified method
invocation expression (815.12)

11. Totheleft of . super:: inamethod reference expression (815.13)

» Astheldentifier or dotted Identifier sequencethat constitutes any ReferenceType
(including a ReferenceType to the left of the brackets in an array type, or to
the left of the < in a parameterized type, or in a non-wildcard type argument
of a parameterized type, or in an ext ends or super clause of a wildcard type
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argument of a parameterized type) in the 16 contexts where types are used
(84.11):

1

10.
11.

12.

13.
14.
15.
16.

In an ext ends or i npl enent s clause of a class declaration (88.1.4, 88.1.5,
§8.5, §9.5)

In an ext ends clause of an interface declaration (89.1.3)

The return type of a method (88.4, §9.4) (including the type of an element
of an annotation type (89.6.1))

Inthet hr ows clause of amethod or constructor (88.4.6, §88.8.5, §89.4)

In an ext ends clause of a type parameter declaration of a generic class,
interface, method, or constructor (88.1.2, 89.1.2, §8.4.4, §8.8.4)

Thetypein afield declaration of aclass or interface (88.3, §9.3)

The type in a formal parameter declaration of a method, constructor, or
lambda expression (88.4.1, §8.8.1, §89.4, §15.27.1)

The type of the receiver parameter of a method (88.4)
Thetypeinalocal variable declaration (814.4, 814.14.1, §14.14.2, §14.20.3)
A typein an exception parameter declaration (814.20)

In an explicit type argument list to an explicit constructor invocation
statement or class instance creation expression or method invocation
expression (88.8.7.1, §15.9, §15.12)

In an unqualified class instance creation expression, either as the class type
to be instantiated (815.9) or as the direct superclass or direct superinterface
of an anonymous class to be instantiated (§15.9.5)

The element type in an array creation expression (815.10.1)
The typein the cast operator of acast expression (§15.16)
Thetype that followsthei nst anceof relational operator (815.20.2)

In a method reference expression (815.13), as the reference type to search
for amember method or as the class type or array type to construct.

The extraction of a TypeName from the identifiers of a ReferenceType in the 16 contexts
above is intended to apply recursively to all sub-terms of the ReferenceType, such as its
element type and any type arguments.

For example, suppose a field declaration uses the type p. q. Foo[ ] . The brackets of the
array typeareignored, and thetermp. q. Foo isextracted asadotted sequence of Identifiers
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to the left of the brackets in an array type, and classified as a TypeName. A later step
determines which of p, g, and Foo is atype name or a package name.

Asanother example, supposeacast operator usesthetypep. q. Foo<? ext ends Stri ng>.
The term p. g. Foo is again extracted as a dotted sequence of Identifier terms, this time
to the left of the < in a parameterized type, and classified as a TypeName. The term
St ri ng isextracted as an ldentifier in an ext ends clause of awildcard type argument of
aparameterized type, and classified as a TypeName.

A nameis syntactically classified as an ExpressionName in these contexts:

» As the qualifying expression in a qualified superclass constructor invocation
(88.8.7.1)

As the qualifying expression in a qualified class instance creation expression
(815.9)

» Asthe array reference expression in an array access expression (815.10.3)
As a PostfixExpression (8§15.14)
Asthe left-hand operand of an assignment operator (8§15.26)

» AsaVariableAccessin at r y-with-resources statement (814.20.3)

A nameis syntactically classified as a MethodName in this context:

» Beforethe"(" in amethod invocation expression (§15.12)

A nameis syntacticaly classified as a PackageOr TypeName in these contexts:
» Totheleft of the". " inaqualified TypeName

* |n atype-import-on-demand declaration (§7.5.2)

A nameis syntactically classified as an AmbiguousName in these contexts:

* Totheleft of the". " in aqualified ExpressionName

» Totheleft of therightmost . that occurs before the (" in a method invocation
expression

» Totheleft of the". " in aqualified AmbiguousName
* Inthe default value clause of an annotation type element declaration (89.6.2)
* Totheright of an "=" in an an element-value pair (89.7.1)

* Totheleft of : : in amethod reference expression (815.13)

The effect of syntactic classification is to restrict certain kinds of entities to certain parts
of expressions:
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e Thenameof afield, parameter, or local variable may beused asan expression (815.14.1).

¢ The name of amethod may appear in an expression only as part of a method invocation
expression (815.12).

* The name of a class or interface type may appear in an expression only as part of a
class literal (815.8.2), aqualified t hi s expression (815.8.4), a class instance creation
expression (815.9), an array creation expression (815.10.1), a cast expression (815.16),
ani nst anceof expression (§15.20.2), an enum constant (88.9), or aspart of aqualified
name for afield or method.

« The name of a package may appear in an expression only as part of a qualified name
for aclass or interface type.

6.5.2 Reclassification of Contextually Ambiguous Names

An AmbiguousName is then reclassified as follows.

If the AmbiguousName is a simple hame, consisting of asingle Identifier:

If the Identifier appears within the scope (86.3) of alocal variable declaration
(814.4) or parameter declaration (88.4.1, §8.8.1, 814.20) or field declaration
(88.3) with that name, then the AmbiguousName is reclassified as an
ExpressionName.

Otherwise, if a field of that name is declared in the compilation unit (87.3)
containing the Identifier by a single-static-import declaration (87.5.3), or by
a static-import-on-demand declaration (87.5.4) then the AmbiguousName is
reclassified as an ExpressionName.

Otherwise, if the Identifier is a valid Typeldentifier and appears within the
scope (86.3) of atop level class (88 (Classes)) or interface type declaration (89
(Interfaces)), alocal class declaration (814.3) or member type declaration (88.5,
§9.5) with that name, then the AmbiguousName is reclassified as a TypeName.

Otherwise, if the Identifier is a valid Typeldentifier and a type of that name
is declared in the compilation unit (87.3) containing the ldentifier, either
by a single-type-import declaration (87.5.1), or by a type-import-on-demand
declaration (87.5.2), or by a single-static-import declaration (87.5.3), or by
a static-import-on-demand declaration (87.5.4), then the AmbiguousName is
reclassified as a TypeName.

Otherwise, the AmbiguousName is reclassified as a PackageName. A later step
determines whether or not a package of that name actually exists.

If the AmbiguousName is a qualified name, consisting of a name, a". ", and an
Identifier, then the name to the left of the". " isfirst reclassified, for it isitself an
AmbiguousName. Thereis then a choice:
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« |f the nameto theleft of the". " is reclassified as a PackageName, then:

— If the Identifier is avalid Typeldentifier, and there is a package whose name
is the name to the left of the ". ", and that package contains a declaration of
atype whose name is the same as the Identifier, then this AmbiguousName is
reclassified as a TypeName.

— Otherwise, this AmbiguousName is reclassified as a PackageName. A later
step determines whether or not a package of that name actually exists.

* If the nameto theleft of the". " isreclassified as a TypeName, then:

— If the Identifier is the name of a method or field of the type denoted by
TypeName, then this AmbiguousName is reclassified as an ExpressionName.

— Otherwisg, if the Identifier is a valid Typeldentifier and is the name of a
member type of the type denoted by TypeName, then this AmbiguousName is
reclassified as a TypeName.

— Otherwise, a compile-time error occurs.

* If the nameto the left of the". " isreclassified as an ExpressionName, then this
AmbiguousName is reclassified as an ExpressionName. A later step determines
whether or not a member with the name Identifier actually exists.

The requirement that a potential type name be "a valid Typeldentifier" prevents treating
var andyi el d asatype name. It is usually redundant, because the rules for declarations
already prevent the introduction of types named var andyi el d. However, in some cases,
a compiler may find a binary class named var or yi el d, and we want to be clear that
such classes can never be named. The simplest solution isto consistently check for avalid
Typeldentifier.

Example 6.5.2-1. Reclassification of Contextually Ambiguous Names

Consider the following contrived "library code":

package org.rpgpoet;
import java.util.Random
public interface Music { Randon{] w zards = new Randon{4]; }

and then consider this example code in another package:

package bazol a;
class Gabriel {
static int n = org.rpgpoet. Musi c. w zards. | engt h;

}

First of al, the name org. r pgpoet. Musi c. wi zards. | engt h is classified as an
ExpressionName because it functions as a PostfixExpression. Therefore, each of the names:
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org. rpgpoet. Musi c. w zards
org. rpgpoet. Musi c

org. r pgpoet
org

isinitialy classified as an AmbiguousName. These are then reclassified:

The simple name or g is reclassified as a PackageName (since there is no variable or
type named org in scope).

Next, assuming that thereisno classor interfacenamedr pgpoet inany compilation unit
of packageor g (and weknow that thereisno such classor interface because packageor g
has a subpackage named r pgpoet ), the qualified name or g. r pgpoet isreclassified as
a PackageName.

Next, because package or g. r pgpoet has an accessible (86.6) interface type named
Musi ¢, the qualified nameor g. r pgpoet . Musi c isreclassified as a TypeName.

Finally, because the name or g. r pgpoet . Musi ¢ is a TypeName, the qualified name
org.rpgpoet. Misi c. wi zar ds is reclassified as an ExpressionName.

6.5.3 Meaning of Module Names and Package Names

The module name M, whether simple or qualified, denotesthe module (if any) with
that name.

This section does not mandate a compile-time error if no module with that name is
observable. Instead, ther equi r es directive in a module declaration (87.7.1) performsits
own validation of the module name, while the export s and opens directives (§87.7.2) are
tolerant of non-existent module names.

The meaning of a name classified as a PackageName is determined as follows.

6.5.3.1 Smple Package Names

If apackage name consistsof asingleldentifier, then theidentifier must occur inthe
scope of exactly one declaration of atop level package with this name (86.3), and
that package must be uniquely visibleto the current module (87.4.3), or acompile-
time error occurs. The meaning of the package name is that package.

6.5.3.2 Qualified Package Names

If a package name is of the form Q. 1 d, then Q must also be a package name. The
package name Q 1 d names a package that is the member named 1 d within the
package named by Q

If Q 1d does not name a package that is uniquely visible to the current module
(87.4.3), then a compile-time error occurs.
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6.5.4 Meaning of PackageOrTypeNames

6.5.4.1 Smple PackageOr TypeNames

If the PackageOr TypeName, Q isavalid Typeldentifier and occurs in the scope of
atype named Q, then the PackageOr TypeName is reclassified as a TypeName.

Otherwise, the PackageOrTypeName is reclassified as a PackageName. The
meaning of the PackageOr TypeName is the meaning of the reclassified name.

6.5.4.2 Qualified PackageOrTypeNames

Given a qualified PackageOrTypeName of the form Q1d, if 1d is a valid
Typeldentifier and the type or package denoted by Q@ has amember type named 1 d,
then the qualified PackageOr TypeName name is reclassified as a TypeName.

Otherwise, it is reclassified as a PackageName. The meaning of the qualified
PackageOr TypeName is the meaning of the reclassified name.

6.5.5 Meaning of Type Names

The meaning of aname classified as a TypeName is determined as follows.

6.5.5.1 Smple Type Names

If atype name consists of a single Identifier, then the identifier must occur in the
scope of exactly one declaration of atype with this name (86.3), or acompile-time
error occurs. The meaning of the type name is that type.

6.5.5.2 Qualified Type Names

If atype nameis of the form Q I d, then Q must be either the name of atypein a
package uniquely visible to the current module, or the name of a package uniquely
visible to the current module (87.4.3).

If I d names exactly one accessible type (86.6) that is a member of the type or
package denoted by Q, then the qualified type name denotes that type.

If I d does not name amember typewithin Q(88.5, §9.5), or the member type named
I d within Qisnot accessible (§86.6), or I d names more than one member typewithin
Q then a compile-time error occurs.

Example 6.5.5.2-1. Qualified Type Names

class Test {
public static void main(String[] args) {
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java.util.Date date =
new java. util.Date(SystemcurrentTimeMI1lis());
Systemout. println(date.tolLocaleString());

}

This program produced the following output the first time it was run:
Sun Jan 21 22:56:29 1996

In this example, the name j ava. uti | . Date must denote a type, so we first use the
procedure recursively to determineif j ava. uti | isan accessibletype or a package, which
itis, and then look to see if the type Dat e isaccessiblein this package.

6.5.6 Meaning of Expression Names

The meaning of a name classified as an ExpressionName is determined as follows.

6.5.6.1 Smple Expression Names

If an expression name consists of asingle Identifier, then there must be exactly one
declaration denoting either alocal variable, formal parameter, or field in scope at
the point at which the Identifier occurs. Otherwise, a compile-time error occurs.

If the declaration denotes an instance variable (88.3.1.1), the expression name must
appear within an instance method (88.4.3.2), instance variable initializer (88.3.2),
instance initializer (88.6), or constructor (88.8). If the expression name appears
within a class method, class variable initializer, or static initializer (88.7), then a
compile-time error occurs.

If the declaration declares afi nal variable which isdefinitely assigned before the
simple expression, the meaning of the nameisthe value of that variable. Otherwise,
the meaning of the expression name is the variable declared by the declaration.

If the expression name appears in an assignment context, invocation context, or
casting context, then the type of the expression name is the declared type of the
field, local variable, or parameter after capture conversion (85.1.10).

Otherwise, the type of the expression name is the declared type of the field, local
variable or parameter.

That is, if the expression name appears " on theright hand side”, itstypeis subject to capture
conversion. If the expression nameisavariable that appears "on theleft hand side", itstype
is not subject to capture conversion.
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Example 6.5.6.1-1. Simple Expression Names

class Test {
static int v;
static final int f = 3;
public static void main(String[] args) {
int i;

i =1,

v = 2;

f =33; // conpile-time error
Systemout.printin(i +" " +v +" " + f);

}

In this program, the names used as the left-hand-sides in the assignmentstoi , v, and f
denote the local variablei , the field v, and the value of f (not the variable f , becausef is
afinal variable). The example therefore produces an error at compile time because the
last assignment does not have a variable as its |eft-hand side. If the erroneous assignment
is removed, the modified code can be compiled and it will produce the output:

123

6.5.6.2 Qualified Expression Names

If an expression name is of the form Q I d, then Q has already been classified as a
package name, atype name, or an expression hame.

If Qisapackage name, then a compile-time error occurs.
If Qis atype name that names a class type (88 (Classes)), then:

« If there is not exactly one accessible (86.6) member of the class type that is a
field named I d, then a compile-time error occurs.

» Otherwise, if the single accessible member field isnot aclassvariable (that is, it
isnot declared st at i ¢), then a compile-time error occurs.

e Otherwisg, if the class variable is declared fi nal , then Q I d denotes the value
of the class variable.

The type of the expression Q | d is the declared type of the class variable after
capture conversion (85.1.10).

If Q 1d appears in a context that requires a variable and not a value, then a
compile-time error occurs.
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Otherwise, Q | d denotes the class variable.

The type of the expression Q 1 d is the declared type of the class variable after

capture conversion (85.1.10).

Note that this clause covers the use of enumconstants (88.9), since these always have
acorresponding f i nal classvariable.

If Qisatype name that names an interface type (89 (Interfaces)), then:

If there is not exactly one accessible (86.6) member of the interface type that is
afield named 1 d, then acompile-time error occurs.

Otherwise, Q 1 d denotes the value of the field.

The type of the expression Q 1 d is the declared type of the field after capture
conversion (85.1.10).

If Q Id appears in a context that requires a variable and not a value, then a
compile-time error occurs.

If Qisan expression name, let T be the type of the expression Q

 If Tisnot areference type, a compile-time error occurs.

« If there is not exactly one accessible (86.6) member of the type T that is afield

named | d, then a compile-time error occurs.
Otherwisg, if thisfield is any of the following:
— A field of an interface type

— A final field of a class type (which may be either a class variable or an
instance variable)

— Thefinal fieldl engt h of an array type (810.7)

thenQ | d denotesthevalueof thefield, unlessit appearsin acontext that requires
avariable and the field is a definitely unassigned blank fi nal field, in which
caseit yiddsavariable.

The type of the expression Q 1 d is the declared type of the field after capture
conversion (85.1.10).

If Q 1 d appearsin acontext that requires avariable and not avalue, and thefield
denoted by Q I d is definitely assigned, then a compile-time error occurs.
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» Otherwise, Q | d denotes avariable, thefield | d of class T, which may be either
aclass variable or an instance variable.

The type of the expression Q I d is the type of the field member after capture
conversion (85.1.10).

Example 6.5.6.2-1. Qualified Expression Names

class Point {
int x, vy;
static int nPoints;

}

class Test {
public static void main(String[] args) {
int i =0;
i X++; /1 conpile-tine error
Point p = new Point();
p.nPoints(); // conpile-tine error

}

This program encounters two compile-time errors, because the i nt variable i has no
members, and because nPoi nt s isnot amethod of class Poi nt .

Example 6.5.6.2-2. Qualifying an Expression with a Type Name

Note that expression names may be qualified by type names, but not by typesin general.
A consequence is that it is not possible to access a class variable through a parameterized
type. For example, given the code:

cl ass Foo<T> {
public static int classVar = 42;

}
the following assignment isillegal:

Foo<String>.classVar = 91; // illegal
Instead, one writes:

Foo. cl assVar = 91;
This does not restrict the Java programming language in any meaningful way. Type
parameters may not be used in the types of static variables, and so the type arguments
of a parameterized type can never influence the type of a static variable. Therefore, no
expressive power islost. The type name Foo appears to be araw type, but it is not; rather,

it is the name of the non-generic type Foo whose static member is to be accessed (86.1).
Since thereis no use of araw type, there are no unchecked warnings.
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6.5.7 Meaning of Method Names

The meaning of a name classified as a MethodName is determined as follows.

6.5.7.1 Smple Method Names

A simple method name appears in the context of a method invocation expression
(815.12). The simple method name consists of a single Identifier which specifies
the name of the method to beinvoked. The rules of method invocation require that
the Identifier either denotes a method that is in scope at the point of the method
invocation, or denotes a method imported by a single-static-import declaration or
static-import-on-demand declaration (87.5.3, §7.5.4).

Example 6.5.7.1-1. Simple Method Names

The following program demonstrates the role of scoping when determining which method
to invoke.

cl ass Super {
void f2(String s) {}
void f3(String s) {}
void f3(int i1, int i2) {}
}

class Test {
void f1(int i) {}
void f2(int i) {}
void f3(int i) {}

void m) {

new Super () {

f1(0); [// OK, resolves to Test.f1(int)
f2(0); // conpile-tine error
f3(0); [// conpile-tine error

}

For the invocation f 1(0), only one method named f 1 is in scope. It is the method
Test. f 1(i nt), whose declaration is in scope throughout the body of Test including the
anonymousclassdeclaration. §15.12.1 choosesto searchinclassTest sincetheanonymous
class declaration has no member named f 1. Eventually, Test . f 1(i nt) isresolved.

For the invocation f 2( 0) , two methods named f 2 are in scope. First, the declaration of
the method Super . f 2( St ri ng) isin scope throughout the anonymous class declaration.
Second, the declaration of the method Test . f 2(i nt) isin scope throughout the body of
Test including the anonymous class declaration. (Note that neither declaration shadows
the other, because at the point where each is declared, the other is not in scope.)



NAMES Access Control

815.12.1 chooses to search in class Super because it has a member named f 2. However,
Super . f2( String) isnot applicabletof 2(0), so acompile-time error occurs. Note that
class Test isnot searched.

For the invocation f 3(0), three methods named f 3 are in scope. First and second,
the declarations of the methods Super. f3(String) and Super.f3(int,int) arein
scope throughout the anonymous class declaration. Third, the declaration of the method
Test . f3(int) isin scope throughout the body of Test including the anonymous class
declaration. §15.12.1 chooses to search in class Super becauseit has amember named f 3.
However, Super . f 3(Stri ng) and Super. f3(int,int) arenotapplicabletof 3(0), so
acompile-time error occurs. Note that class Test is not searched.

Choosing to search anested class's superclass hierarchy beforethelexically enclosing scope
iscaled the "comb rule" (815.12.1).

6.6 Access Control

The Java programming language provides mechanisms for access control, to
prevent the users of apackage or classfrom depending on unnecessary details of the
implementation of that package or class. If access is permitted, then the accessed
entity is said to be accessible.

Note that accessibility is a static property that can be determined at compile time;
it depends only on types and declaration modifiers.

Qualified names are a means of access to members of packages and reference
types. When the name of such amember is classified fromits context (86.5.1) asa
gualified type name (denoting a member of a package or reference type, 86.5.5.2)
or aqualified expression name (denoting a member of a reference type, §86.5.6.2),
access control is applied.

For example, a single-type-import declaration uses a qudified type name (87.5.1), so
the named type must be accessible from the compilation unit containing the i nport
declaration. As another example, a class declaration may use a qualified type name for a
superclass (88.1.5), so again the named type must be accessible.

Some obvious expressions are "missing” from context classification in §6.5.1: field access
on aPrimary (815.11.1), method invocation on a Primary (815.12), method reference via
aPrimary (815.13), and theinstantiated classin a qualified class instance creation (§15.9).
Each of these expressions uses identifiers, rather than names, for the reason given in 86.2.
Conseguently, access control to members (whether fields, methods, or types) is applied
explicitly by field access expressions, method invocation expressions, method reference
expressions, and qualified class instance creation expressions. (Note that accessto afield
may also be denoted by a qualified name occuring as a postfix expression.)

6.6
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In addition, many statements and expressions alow the use of types rather than type
names. For example, a class declaration may use a parameterized type (84.5) to denote
a superclass. Because a parameterized type is not a qualified type name, it is necessary
for the class declaration to explicitly perform access control for the denoted superclass.
Consequently, most of the statements and expressions that provide contexts in 86.5.1 to
classify a TypeName a so perform their own access control checks.

Beyond access to members of a package or reference type, there is the matter of access
to constructors of a reference type. Access control must be checked when a constructor
isinvoked explicitly or implicitly. Consequently, access control is checked by an explicit
constructor invocation statement (88.8.7.1) and by a class instance creation expression
(815.9.3). Such checks are necessary because 86.5.1 has no mention of explicit constructor
invocation statements (because they reference constructor namesindirectly) andisunaware
of the distinction between the class type denoted by an unqualified class instance creation
expression and a constructor of that class type. Also, constructors do not have qualified
names, so we cannot rely on access control being checked during classification of qualified
type names.

Accessihility affects inheritance of class members (88.2), including hiding and method
overriding (§8.4.8.1).

6.6.1 Determining Accessibility

» If atop level class or interface type is declared publ i ¢ and is a member of a
packagethat is exported by amodul e, then the type may be accessed by any code
in the same module, and by any code in another module to which the package
is exported, provided that the compilation unit in which the type is declared is
visible to that other module (87.3).

» If atop level class or interface type is declared publ i ¢ and is a member of a
package that is not exported by a module, then the type may be accessed by any
code in the same module.

 If atop level class or interface type is declared with package access, then it may
be accessed only from within the package in which it is declared.

A top level class or interface type declared without an access modifier implicitly
has package access.
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* A member (class, interface, field, or method) of areferencetype, or aconstructor
of aclass type, is accessible only if the type is accessible and the member or
constructor is declared to permit access:

— |f the member or constructor is declared publ i ¢, then accessis permitted.
All members of interfaces lacking access modifiers are implicitly publ i c.

— Otherwisg, if the member or constructor isdeclared pr ot ect ed, then accessis
permitted only when one of the following is true:

> Access to the member or constructor occurs from within the package
containing the class in which the prot ect ed member or constructor is
declared.

> Accessiscorrect as described in 86.6.2.

— Otherwisg, if the member or constructor is declared with package access, then
access is permitted only when the access occurs from within the package in
which the type is declared.

A class member or constructor declared without an access modifier implicitly
has package access.

— Otherwise, the member or constructor is declared private, and access is
permitted if and only if it occurs within the body of the top level type (§7.6)
that encloses the declaration of the member or constructor.

» Anarray typeisaccessibleif and only if its element type is accessible.

Example 6.6-1. Access Control

Consider the two compilation units:

package poi nts;
class PointVec { Point[] vec; }

and:

package poi nts;
public class Point {
protected int x, vy;
public void nove(int dx, int dy) { x += dx; y += dy; }
public int getX() { return x; }
public int getY() { returny; }
}

which declare two class types in the package poi nt s:
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e The class type Poi nt Vec is not publ i ¢ and not part of the publ i ¢ interface of the
package poi nt s, but rather can be used only by other classes in the package.

e The classtype Poi nt isdeclared publ i ¢ and is available to other packages. It is part
of the publ i c interface of the package poi nt s.

¢ Themethodsnove, get X, and get Y of the class Poi nt are declared publ i ¢ and so are
available to any code that uses an object of type Poi nt .

e The fields x and y are declared prot ect ed and are accessible outside the package
poi nt s only in subclasses of class Poi nt , and only when they arefields of objects that
are being implemented by the code that is accessing them.

See 86.6.2 for an example of how the pr ot ect ed access modifier limits access.
Example 6.6-2. Accessto publ i ¢ Fields, Methods, and Constructors

A publ i ¢ class member or constructor is accessible throughout the package where it is
declared and from any other package, provided the package in which it is declared is
observable (§7.4.3). For example, in the compilation unit:

package poi nts;
public class Point {
int x, vy;
public void nove(int dx, int dy) {
X += dx; y += dy;
noves++;
}
public static int noves = 0;

}

the publ i ¢ class Poi nt has as publ i ¢ members the nove method and the noves field.
These publ i ¢ members are accessible to any other package that has access to package
poi nts. Thefieldsx andy are not publ i ¢ and therefore are accessible only from within
the package poi nt s.

Example 6.6-3. Accessto publ i ¢ and Non-publ i ¢ Classes

If aclasslacksthepubl i ¢ modifier, accessto the classdeclaration islimited to the package
inwhich it is declared (86.6). In the example:

package points;
public class Point {
public int x, vy;
public void nove(int dx, int dy) { x += dx; y +=dy; }
}
class PointlList {
Poi nt next, prev;

}

two classes are declared in the compilation unit. The class Poi nt is available outside
the package poi nt s, while the class Poi nt Li st is available for access only within the
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package. Thus acompilation unit in another package can accesspoi nt s. Poi nt , either by
using its fully qualified name:

package poi ntsUser;
class Testl {
public static void main(String[] args) {
poi nts. Point p = new points. Point();
Systemout.println(p.x +" " + p.y);

}

or by using asingle-type-import declaration (§7.5.1) that mentionsthe fully qualified name,
so that the simple name may be used thereafter:

package poi ntsUser;
i mport points. Point;
class Test2 {
public static void main(String[] args) {
Point p = new Point();
Systemout.printin(p.x +" " + p.y);

}

However, this compilation unit cannot use or import poi nt s. Poi nt Li st, which is not
declared publ i ¢ and is therefore inaccessible outside package poi nt s.

Example 6.6-4. Accessto Package-Access Fields, M ethods, and Constructors

If none of the access modifiers publ i c, prot ect ed, or pri vat e are specified, a class
member or constructor has package access. it is accessible throughout the package that
contains the declaration of the class in which the class member is declared, but the class
member or constructor is not accessible in any other package.

If apublic class has a method or constructor with package access, then this method or
constructor is not accessible to or inherited by a subclass declared outside this package.

For example, if we have:

package poi nts;
public class Point {
public int x, vy;
void nove(int dx, int dy) { x += dx; y += dy; }
public void noveAl so(int dx, int dy) { nove(dx, dy); }
}

then a subclass in another package may declare an unrelated move method, with the same
signature (88.4.2) and return type. Because the original move method isnot accessible from
package nor epoi nt s, super may not be used:

package norepoints;

6.6
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public class PlusPoint extends points.Point {
public void nove(int dx, int dy) {
super. move(dx, dy); // conpile-time error
moveAl so(dx, dy);

}

Because nove of Poi nt isnot overridden by nove in Pl usPoi nt , the method moveAl so
in Poi nt never callsthe method nove in Pl usPoi nt . Thusif you deletethe super . nove
call from Pl usPoi nt and execute the test program:

i mport points. Point;
i mport norepoints. Pl usPoi nt;
class Test {
public static void main(String[] args) {
Pl usPoi nt pp = new Pl usPoint();
pp. nove(1, 1);

}

it terminates normally. If nove of Poi nt were overridden by nove in Pl usPoi nt , then
this program would recurse infinitely, until a St ackOver f | owEr r or occurred.

Example 6.6-5. Accessto pri vat e Fields, Methods, and Constructors

A pri vat e class member or constructor is accessible only within the body of the top level
class (8§7.6) that encloses the declaration of the member or constructor. It is not inherited
by subclasses. In the example:

class Point {

Point () { setMasterID(); }

int x, vy;

private int |D

private static int masterlD = 0;

private void setMasterID() { ID = master| D++; }
}

the private members| D, mast er | D, and set Mast er | D may be used only within the body
of class Poi nt . They may not be accessed by qualified names, field access expressions, or
method invocation expressions outside the body of the declaration of Poi nt .

See §8.8.10 for an example that usesapri vat e constructor.

6.6.2 Detailson protected Access

A prot ect ed member or constructor of an object may be accessed from outside
the package in which it is declared only by code that is responsible for the
implementation of that object.
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6.6.2.1 Accessto apr ot ect ed Member

Let C be the class in which apr ot ect ed member is declared. Access is permitted
only within the body of a subclass s of C.

A subclass S is regarded as being responsible for the implementation of objects of class C.
Depending on C's accessibility, S may be declared in the same package as C, or in different
package of the same module as C, or in a package of adifferent module entirely.

In addition, accessto an instancefield or instance method is permitted based on the
form of the qualified name, field access expression (815.11), method invocation
expression (815.12), or method reference expression (815.13):

 If the access is by (i) a qualified name of the form Expressi onNane. I d or
TypeNane. 1d, or (ii) afield access expression of the form pri mary. 1 d, then
access to the instance field 1 d is permitted if and only if the qualifying typeis
S or asubclass of s.

The qualifying type is the type of the ExpressionName or Primary, or the type
denoted by TypeName.

o If the access is by (i) a method invocation expression of the form
Expressi onNane. [ d(...) Or TypeNane. I d(...) OrPrimary.ld(...),or(ii)a
method reference expression of theform Expr essi onName :: 1doOrPrimary ::
I d or Ref er enceType :: |d,then accessto theinstance method | d is permitted
if and only if the qualifying typeiss or asubclass of S.

The qualifying type is the type of the ExpressionName or Primary, or the type
denoted by TypeName or ReferenceType.

More information about accessto pr ot ect ed members can be found in Checking Access
to Protected Members in the Java Virtual Machine by Alessandro Coglio, in the Journal
of Object Technology, October 2005.

6.6.2.2 Accessto aprot ect ed Constructor

Let c be the class in which apr ot ect ed constructor is declared and let S be the
innermost class in whose declaration the use of the pr ot ect ed constructor occurs.
Then:

» If the access is by a superclass constructor invocation super(...), Or a
qualified superclass constructor invocation E. super (. . . ) , whereEisaPrimary
expression, then the access is permitted.

6.6

185



6.6 Access Control NAMES

* If the accessis by an anonymous class instance creation expression new (.. . .)
{...}, or a qualified anonymous class instance creation expression E. new
C(...){...},whereEisaPrimary expression, then the accessis permitted.

* If the accessis by a simple class instance creation expression newC(...), Or a
gualified classinstance creation expressionE. newC(.. . . ), whereEisaPrimary
expression, or amethod reference expression C: : new, where Cis a ClassType,
then the access is not permitted. A pr ot ect ed constructor can be accessed by a
classinstance creation expression (that does not declare an anonymousclass) or a
method reference expression only from within the packagein which it isdefined.

Example 6.6.2-1. Accessto prot ect ed Fields, Methods, and Constructors

Consider this example, where the poi nt s package declares:

package points;
public class Point {
protected int x, y;
voi d war p(threePoint.Point3d a) {
if (a.z >0) // conpile-time error: cannot access a.z
a.delta(this);

}
and thet hr eePoi nt package declares:

package threePoint;
i mport points. Point;
public class Point3d extends Point {
protected int z;
public void delta(Point p) {
p.x +=this.x; // conpile-time error: cannot access p.X
p.y += this.y; [/ conpile-tine error: cannot access p.y

public void delta3d(Point3d q) {
gq.X += this.x
gq.y += this.y;
g.z += this.z;

}

A compile-time error occurs in the method del t a here: it cannot access the pr ot ect ed
members x and y of its parameter p, because while Poi nt 3d (the class in which the
references to fields x and y occur) is a subclass of Poi nt (the classin whichx andy are
declared), it isnot involved in theimplementation of aPoi nt (thetype of the parameter p).
The method del t a3d can access the pr ot ect ed members of its parameter q, because the
classPoi nt 3d isasubclass of Poi nt and isinvolved in theimplementation of aPoi nt 3d.

The method del t a could try to cast (85.5, §15.16) its parameter to be aPoi nt 3d, but this
cast would fail, causing an exception, if the class of p at run time were not Poi nt 3d.
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A compile-time error also occurs in the method war p: it cannot access the pr ot ect ed
member z of itsparameter a, becausewhilethe classPoi nt (theclassinwhichthereference
tofield z occurs) isinvolved in theimplementation of aPoi nt 3d (the type of the parameter
a), itisnot asubclass of Poi nt 3d (the classin which z is declared).

6.7 Fully Qualified Names and Canonical Names

Every primitive type, named package, top level class, and top level interface has
afully qualified name:

» The fully qualified name of a primitive type is the keyword for that primitive
type, namely byt e, short, char,int,|ong,fl oat, doubl e, Or bool ean.

» Thefully qualified name of anamed package that is not a subpackage of anamed
package isits simple name.

» The fully qualified name of a named package that is a subpackage of another
named package consists of the fully qualified name of the containing package,
followed by ". ", followed by the smple (member) name of the subpackage.

» Thefully qualified name of atop level classor top level interfacethat is declared
in an unnamed package is the simple name of the class or interface.

» Thefully qualified name of atop level classor top level interfacethat is declared
in anamed package consists of the fully qualified name of the package, followed

by ". ", followed by the simple name of the class or interface.

Each member class, member interface, and array type may have a fully qualified
name:

» A member class or member interface Mof another class or interface c hasafully
qualified nameif and only if c hasafully qualified name.

In that case, the fully qualified name of Mmconsists of the fully qualified name of
c, followed by ". ", followed by the simple name of M

* An array type has a fully qualified name if and only if its element type has a
fully qualified name.

In that case, the fully qualified name of an array type consists of the fully
qualified name of the component type of the array type followed by "[]1".

A locdl class or anonymous class does not have a fully qualified name.

Every primitive type, named package, top level class, and top level interface has
acanonical name:

6.7
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 For every primitive type, named package, top level class, and top level interface,
the canonical name is the same as the fully qualified name.

Each member class, member interface, and array type may have a canonical name:

* A member class or member interface Mdeclared in another class or interface C
has a canonical name if and only if C has a canonical name.

Inthat case, the canonical name of Mconsists of the canonical name of ¢, followed

by ". ", followed by the simple name of M

* An array type has a canonical name if and only if its component type has a
canonical name.

In that case, the canonical name of the array type consists of the canonical name
of the component type of the array type followed by "[]1".

A local class or anonymous class does not have a canonical name.

Example 6.7-1. Fully Qualified Names

¢ Thefully qualified name of thetypel ong is"l ong".

e The fully qualified name of the package j ava. | ang is "j ava. | ang" because it is
subpackage| ang of packagej ava.

¢ The fully qualified name of the class Qbj ect, which is defined in the package
j ava. |l ang, is"j ava. | ang. Qbj ect ".

« Thefully qualified name of theinterface Enumer at i on, which isdefined in the package
java.util,is"java.util.Enumeration".

e Thefully qualified name of the type "array of doubl e" is"doubl e[]".
e The fully qualified name of the type "array of array of array of array of String" is
“java.lang. String[J[1[][]1".

In the code:

package points;
cl ass Poi nt {int x, y; }
class PointVec { Point[] vec; }

the fully qualified name of the type Poi nt is"poi nt s. Poi nt "; the fully qualified name
of thetype Poi nt Vec is"poi nt s. Poi nt Vec"; and the fully qualified name of the type of
thefield vec of class Poi nt Vec is"poi nts. Poi nt[]".

Example 6.7-2. Fully Qualified Namesv. Canonical Name

The difference between a fully qualified name and a canonical name can be seen in code
such as:
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package p;
class OL { class | {} }
class @2 extends OL {}

Both p. OL. 1 and p. @2. | are fully qualified names that denote the member class | , but
only p. OL. | isitscanonical name.
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CHAPTER ;

Packages and Modules

PROGRAMS are organized as sets of packages. The members of a package (87.1)
are class and interface types, which are declared in compilation units of the
package, and subpackages, which may contain compilation units and subpackages
of their own.

Each package has its own set of names for types, which helps to prevent name
conflicts. The naming structure for packages is hierarchical.

If aset of packagesis sufficiently cohesive, then the packages may be grouped into
a module. A module categorizes some or al of its packages as exported, which
means their types may be accessed from code outside the module. If a packageis
not exported by a module, then only code inside the module may access its types.
Furthermore, if codein amodul e wishesto accessthe packages exported by another
module, then the first module must explicitly depend on the second module. Thus,
amodul e controls how its packages use other modul es (by specifying dependences)
and controls how other modules use its packages (by specifying which of its
packages are exported).

Modules and packages may be stored in a file system or in a database (87.2).
Modules and packages that are stored in afile system may have certain constraints
on the organization of their compilation unitsto allow asimple implementation to
find module and type declarations easily.

Code in a compilation unit automatically has access to al types declared in its
package and also automatically imports all of the publ i ¢ types declared in the
predefined packagej ava. | ang.

A top level type is accessible (86.6) outside the package that declares it only if
thetypeisdeclared publ i c. A top level type is accessible outside the module that
declares it only if the type is declared publ i ¢ and is a member of an exported
package. A typethat isdeclared publ i ¢ but isnot amember of an exported package
is accessible only to code inside the module.
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For small programs and casual development, a package can be unnamed (87.4.2) or
have asimple name, but if codeisto be widely distributed, unique package names
should be chosen using qualified names. This can prevent the conflicts that would
otherwise occur if two development groups happened to pick the same package
name and these packages were later to be used in a single program.

7.1 Package Members

The members of a package are its subpackages and all the top level class types
(87.6, 88 (Classes)) and top level interface types (89 (Interfaces)) declared in all
the compilation units (87.3) of the package.

For example, in the Java SE Platform API:

e The package j ava has subpackages awt , appl et , i o, | ang, net, and uti | , but no
compilation units.

e The package j ava. awmt has a subpackage named i mage, as well as a number of
compilation units containing declarations of class and interface types.

If the fully qualified name (86.7) of a package is P, and Qs a subpackage of P,
then P. Qis the fully qualified name of the subpackage, and furthermore denotes
a package.

A package may not contain two members of the same name, or a compile-time
error results.

Here are some examples:

* Because the package j ava. awt has a subpackage i mage, it cannot (and does not)
contain adeclaration of aclass or interface type named i mage.

« |If thereis a package named nouse and a member type But t on in that package (which
then might be referred to asnmouse. But t on), then there cannot be any package with the
fully qualified name nouse. But t on or nouse. But t on. i ck.

¢ If com ni ght hacks. j ava. j ag isthe fully qualified name of atype, then there cannot
be any package whose fully qualified name is either com ni ght hacks. j ava. j ag or
com ni ght hacks. j ava. j ag. scrabbl e.

It is however possible for members of different packages to have the same simple name.
For example, it is possible to declare a package:

package vector;
public class Vector { Qbject[] vec; }
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that hasasamember apubl i ¢ classnamed Vect or , even though the packagej ava. uti |

also declares a class named Vect or . These two class types are different, reflected by the
fact that they have different fully qualified names (86.7). The fully qualified name of this
example Vect or isvect or. Vect or, whereasj ava. uti | . Vect or isthefully qualified
name of the Vect or classincluded in the Java SE Platform. Because the package vect or
contains a class named Vect or , it cannot also have a subpackage named Vect or .

The hierarchical naming structure for packages is intended to be convenient for
organizing related packages in a conventional manner, but has no significance in
itself other than the prohibition against a package having a subpackage with the
same simple name as atop level type (87.6) declared in that package.

For example, thereis no special access relationship between apackage named ol i ver and
another package named ol i ver . t wi st , or between packages named evel yn. wood and
evel yn. waugh. That is, thecodein apackagenamed ol i ver . t wi st has no better access
to the types declared within package ol i ver than codein any other package.

7.2 Host Support for M odules and Packages

Each host system determines how modules, packages, and compilation units are
created and stored.

Each host system determines which compilation units are observable in a
particular compilation (87.3). Each host system also determines which observable
compilation units are associated with a module. The observability of compilation
units associated with a modul e determines which modules are observable (§7.7.3)
and which packages are visible within those modules (§7.4.3).

The host system is free to determine that a compilation unit which contains a module
declaration is not, in fact, observable, and thus is not associated with the modul e declared
therein. This enables a compiler to choose which directory on a nodul esour cepat h is
"really" the embodiment of a given module. However, if the host system determines that a
compilation unit which contains a module declaration is observable, then 87.4.3 mandates
that the compilation unit must be associated with the modul e declared therein, and not with
any other module.

The host system is free to determine that a compilation unit which contains a type
declaration is (first) observable and (second) associated with an unnamed module or an
automatic module - despite no declaration of an unnamed or automatic module existing in
any compilation unit, observable or otherwise.

In simpleimplementations of the Java SE Platform, packages and compilation units
may be stored in alocal file system. Other implementations may store them using
adistributed file system or some form of database.

7.2

193



7.2

194

Host Support for Modules and Packages PACKAGES AND MODULES

If a host system stores packages and compilation units in a database, then the
database must not impose the optiona restrictions (87.6) on compilation units
permissible in file-based implementations.

For example, a system that uses a database to store packages may not enforce a maximum
of one public class or interface per compilation unit.

Systems that use a database must, however, provide an option to convert a
program to aform that obeys the restrictions, for purposes of export to file-based
implementations.

As an extremely simple example of storing packages in a file system, all the packages
and source and binary code in a project might be stored in a single directory and its
subdirectories. Each immediate subdirectory of this directory would represent a top level
package, that is, one whose fully qualified name consists of a single simple name. Each
further level of subdirectory would represent a subpackage of the package represented by
the containing directory, and so on.

The directory might contain the following immediate subdirectories:

com
gls
jag
java
wnj

where directory j ava would contain the Java SE Platform packages; the directoriesj ag,
gl s, andwnj might contain packages that three of the authors of this specification created
for their personal use and to share with each other within this small group; and the directory
comwould contain packages procured from companies that used the conventions described
in 86.1 to generate unique names for their packages.

Continuing the example, the directory j ava would contain, among others, the following
subdirectories:

appl et
awt

io

| ang
net
util

corresponding to the packages j ava. appl et, java.aw, java.io, java.lang,
java. net,andjava. util that are defined as part of the Java SE Platform API.

Still continuing the example, if we were to look inside the directory uti | , we might see
the following files:
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BitSet.java Observabl e. j ava
Bi t Set.cl ass Obser vabl e. cl ass
Date.j ava Observer.java
Dat e. cl ass oserver. cl ass

where each of the. j ava files containsthe source for acompilation unit (§87.3) that contains
the definition of a class or interface whose binary compiled form is contained in the
corresponding . cl ass file.

Under this simple organization of packages, an implementation of the Java SE Platform
would transform a package name into a pathname by concatenating the components of
the package name, placing a file name separator (directory indicator) between adjacent
components.

For example, if this simple organization were used on an operating system where the file
name separator is/ , the package name:

j ag. scrabbl e. board
would be transformed into the directory name:
j ag/ scr abbl e/ board

A package name component or class name might contain a character that cannot correctly
appear in a host file system's ordinary directory name, such as a Unicode character on a
system that allows only ASCII charactersin file names. As a convention, the character can
be escaped by using, say, the @character followed by four hexadecimal digits giving the
numeric value of the character, asin the\ uxxxx escape (83.3).

Under this convention, the package name:
children.activities.crafts. papi er M u00Oe2ch\ u00e9
which can also be written using full Unicode as:
children.activities.crafts. papi er Maché

might be mapped to the directory name:
children/activities/crafts/papi er M@0e2ch@?0e9

If the @character is not a valid character in a file name for some given host file system,
then some other character that is not valid in aidentifier could be used instead.
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7.3 Compilation Units

CompilationUnit isthe goal symbol (82.1) for the syntactic grammar (82.3) of Java
programs. It is defined by the following production:

CompilationUnit:
OrdinaryCompilationUnit
Modular CompilationUnit

OrdinaryCompilationUnit:
[ PackageDeclaration] {ImportDeclaration} { TypeDeclaration}

Modular CompilationUnit:
{ImportDeclaration} ModuleDeclaration

An ordinary compilation unit consists of three parts, each of which is optional:

* A package declaration (87.4), giving the fully qualified name (86.7) of the
package to which the compilation unit belongs.

A compilation unit that has no package declaration is part of an unnamed
package (87.4.2).

* inport declarations (87.5) that allow types from other packages and stati c
members of types to be referred to using their simple names.

» Top level type declarations (87.6) of class and interface types.

A modular compilation unit consists of a nodul e declaration (87.7), optionaly
preceded by i nport declarations. The i nport declarations alow types from
packages in this module and other modules, as well as st at i ¢ members of types,
to be referred to using their ssmple names within the nodul e declaration.

Every compilation unit implicitly imports every publ i ¢ type name declared in
the predefined package j ava. | ang, as if the declaration i mport j ava.l ang. *;
appeared at the beginning of each compilation unitimmediately after any package
declaration. As aresult, the names of all those types are available as simple names
in every compilation unit.

The host system determines which compilation units are observable, except for the
compilation unitsin the predefined packagej ava and its subpackages| ang andi o,
which are all always observable.

Each observable compilation unit may be associated with amodule, as follows:
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* The host system may determine that an observable ordinary compilation unit is
associated with a module chosen by the host system, except for (i) the ordinary
compilation unitsin the predefined packagej ava and its subpackages| ang and
i 0, which are al associated with the j ava. base module, and (ii) any ordinary
compilation unit in an unnamed package, which is associated with a module as
specified in §7.4.2.

* The host system must determine that an observable modular compilation unit is
associated with the module declared by the modular compilation unit.

The observability of acompilation unit influences the observahility of its package (§7.4.3),
while the association of an observable compilation unit with a module influences the
observability of that module (87.7.6).

When compiling the modular and ordinary compilation units associated with a
moduleM the host system must respect the dependences specified in Msdeclaration.
Specifically, the host system must limit the ordinary compilation units that
would otherwise be observable, to only those that are visible to M The ordinary
compilation units that are visible to M are the observable ordinary compilation
units associated with the modules that are read by M The modules read by M
are given by the result of resolution, as described in the j ava. | ang. modul e
package specification, with M as the only root module. The host system must
perform resolution to determine the modules read by M it isacompile-time error if
resolution failsfor any of the reasons described inthej ava. | ang. modul e package
specification.

The readability relation is reflexive, so M reads itself, and thus all of the modular and
ordinary compilation units associated with Mare visible to M

The modules read by Mdrive the packages that are uniquely visible to M(87.4.3), which in
turn drives both the top level packagesin scope and the meaning of package namesfor code
in the modular and ordinary compilation units associated with M(86.3, §6.5.3, §6.5.5).

The rules above ensure that package/type names used in annotations in a modular
compilation unit (in particular, annotations applied to the module declaration) are
interpreted asif they appeared in an ordinary compilation unit associated with the module.

Types declared in different ordinary compilation units can refer to each other,
circularly. A Javacompiler must arrangeto compile all such typesat the sametime.
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7.4 Package Declarations

A package declaration appears within an ordinary compilation unit to indicate the
package to which the compilation unit belongs.

7.4.1 Named Packages

A package declaration in an ordinary compilation unit specifies the name (86.2)
of the package to which the compilation unit belongs.

PackageDeclaration:
{PackageModifier} package ldentifier {. Identifier} ;

PackageModifier:
Annotation

The package name mentioned in apackage declaration must be the fully qualified
name of the package (86.7).

The scope and shadowing of a package declaration is specified in §86.3 and §6.4.

The rules for annotation modifiers on a package declaration are specified in §9.7.4
and §9.7.5.

At most one annotated package declaration is permitted for a given package.

The manner in which this restriction is enforced must, of necessity, vary from
implementation to implementation. The following scheme is strongly recommended for
file-system-based implementations: The sole annotated package declaration, if it exists, is
placed in asourcefile caled package- i nf 0. j ava in the directory containing the source
filesfor the package. Thisfiledoesnot contain the sourcefor aclasscalled package- i nf o;
indeed it would beillegal for itto do so, aspackage- i nf oisnotalegal identifier. Typically
package-i nf 0. j ava containsonly apackage declaration, preceded immediately by the
annotations on the package. While the file could technically contain the source code for
one or more classes with package access, it would be very bad form.

It is recommended that package-info.java, if it is present, take the place of
package. ht i for j avadoc and other similar documentation generation systems. If
this file is present, the documentation generation tool should look for the package
documentation comment immediately preceding the (possibly annotated) package
declaration in package-i nfo.java. In this way, package-i nf 0. j ava becomes the
sole repository for package-level annotations and documentation. If, in future, it becomes
desirable to add any other package-level information, this file should prove a convenient
home for this information.
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7.4.2 Unnamed Packages

An ordinary compilation unit that has no package declaration, but has at least one
other kind of declaration, is part of an unnamed package.

Unnamed packages are provided by the Java SE Platform principaly for
convenience when developing small or temporary applications or when just
beginning devel opment.

An unnamed package cannot have subpackages, since the syntax of a package
declaration always includes areference to anamed top level package.

An implementation of the Java SE Platform must support at least one unnamed
package. An implementation may support more than one unnamed package, but
is not required to do so. Which ordinary compilation units are in each unnamed
package is determined by the host system.

The host system must associate ordinary compilation unitsin an unnamed package
with an unnamed module (8§7.7.5), not a named module.

Example 7.4.2-1. Unnamed Package

The compilation unit:

class FirstCall {
public static void main(String[] args) {
Systemout.println("M. Watson, cone here. "
+ "l want you.");

}
defines a very simple compilation unit as part of an unnamed package.

In implementations of the Java SE Platform that use a hierarchical file system for storing
packages, onetypical strategy isto associate an unnamed package with each directory; only
one unnamed package is observable at atime, namely the one that is associated with the
"current working directory". The precise meaning of "current working directory” depends
on the host system.

7.4.3 Package Observability and Visibility
A package isobservableif and only if at least one of the following is true:

* An ordinary compilation unit containing a declaration of the package is
observable (87.3).

A subpackage of the package is observable.

The packagesj ava, j ava. | ang, and j ava. i o are always observable.
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One can conclude this from the rule above and from the rules of observable compilation
units, as follows. The predefined package j ava. | ang declares the class Obj ect , so the
compilationunit for Coj ect isalwaysobservable(87.3). Hence, thej ava. | ang packageis
observable, and thej ava package also. Furthermore, since Obj ect isobservable, thearray
type Qbj ect [] implicitly exists. Itssuperinterfacej ava. i 0. Seri al i zabl e (§810.1) also
exists, hencethej ava. i o package is observable.

A package is visible to a module mif and only if an ordinary compilation unit
containing a declaration of the packageisvisibleto M

Package visibility is meant to imply that a package is observable in auseful way to agiven
module. It is generally not useful to know that package P is observable merely because a
subpackage P.Q is observable. For example, suppose P.Q is observable (in module M1)
and P.R is observable (in module M2); then, P is observable, but where? In M1, or M2, or
both? The question is redundant; during compilation of module N that requires only M1, it
matters that P.Q is observable, but it does not matter that P is observable.

A packageisuniquely visibleto a moduleMif and only if one of thefollowing holds:

» An ordinary compilation unit associated with M contains a declaration of the
package, and mdoes not read any other module that exports the package to m

» No ordinary compilation unit associated with M contains a declaration of the
package, and Mreads exactly one other module that exports the package to M

7.5 Import Declarations

Animport declaration allows a named type or ast at i ¢ member to be referred to
by a simple name (86.2) that consists of asingle identifier.

Without the use of an appropriate import declaration, the only way to refer to a
type declared in another package, or ast ati ¢ member of ancther type, isto use
afully qualified name (86.7).

ImportDeclaration:
SngleTypelmportDeclaration
Typel mportOnDemandDeclaration
SngleSaticlmportDeclaration
Saticl mportOnDemandDeclaration

» A singletype-import declaration (87.5.1) imports a single named type, by
mentioning its canonical name (86.7).
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* A type-import-on-demand declaration (87.5.2) imports all the accessible types
of anamed type or named package as needed, by mentioning the canonical name
of atype or package.

* A single-static-import declaration (87.5.3) imports al accessible static
members with a given name from atype, by giving its canonical name.

o A dtatic-import-on-demand declaration (87.5.4) imports all accessible static
members of anamed type as needed, by mentioning the canonical name of atype.

The scope and shadowing of atype or member imported by these declarations is
specified in §6.3 and §6.4.

An inport declaration makes types or members available by their simple names only
within the compilation unit that actually containsthei nport declaration. The scope of the
type(s) or member(s) introduced by an i nport declaration specifically does not include
other compilation units in the same package, other i nport declarations in the current
compilation unit, or apackage declaration in the current compilation unit (except for the
annotations of apackage declaration).

75.1 Single-Type-lmport Declarations

A single-type-import declaration imports a single type by giving its canonical
name, making it available under a simple name in the module, class, and interface
declarations of the compilation unit in which the single-type-import declaration

appears.

SngleTypel mportDeclaration:
i nport TypeName ;

The TypeName must be the canonical name of a class type, interface type, enum
type, or annotation type (86.7).

The type must be either a member of a named package, or a member of a type
whose outermost lexically enclosing type declaration (88.1.3) is a member of a
named package, or a compile-time error occurs.

It is acompile-time error if the named typeis not accessible (86.6).

If two single-type-import declarations in the same compilation unit attempt to
import types with the same simple name, then a compile-time error occurs, unless
the two types are the same type, in which case the duplicate declaration isignored.

If the typeimported by the single-type-import declaration isdeclared asatop level
type (87.6) in the compilation unit that contains the i nport declaration, then the
i nport declaration isignored.
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If asingle-type-import declaration imports atype whose simple nameisn, and the
compilation unit also declares atop level type whose simple nameisn, acompile-
time error occurs.

If a compilation unit contains both a single-type-import declaration that imports a
type whose ssmple name is n, and a single-static-import declaration (8§7.5.3) that
imports atype whose simple nameisn, acompile-time error occurs, unlessthe two
types are the same type, in which case the duplicate declaration is ignored.

Example 7.5.1-1. Single-Type-Import

inmport java.util.Vector;

causes the simple name Vect or to be available within the class and interface declarations
in acompilation unit. Thus, the ssimple name Vect or refersto thetype declaration Vect or
in the package j ava. uti| in al places where it is not shadowed (86.4.1) or obscured
(86.4.2) by a declaration of a field, parameter, local variable, or nested type declaration
with the same name.

Notethat the actual declaration of j ava. uti | . Vect or isgeneric (88.1.2). Onceimported,
the name Vect or can be used without qualification in a parameterized type such as
Vector<String>, or as the raw type Vector. A related limitation of the i nport
declaration isthat a nested type declared inside a generic type declaration can beimported,
but its outer typeis always erased.

Example 7.5.1-2. Duplicate Type Declarations
This program:

import java.util.Vector;
class Vector { Onject[] vec; }

causes a compile-time error because of the duplicate declaration of Vect or, as does:

import java.util.Vector;
i mport nyVect or. Vect or;

where nyVect or isapackage containing the compilation unit:

package myVector;
public class Vector { Object[] vec; }

Example 7.5.1-3. No Import of a Subpackage

Notethat ani nport declaration cannot import a subpackage, only atype.

For example, it does not work to try to import j ava. util and then use the name
uti| . Randomto refer to thetypej ava. uti | . Randomt
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inmport java.util;
class Test { util.Random generator; }
Il incorrect: conpile-time error

Example 7.5.1-4. Importing a Type Name that is also a Package Name

Package names and type names are usualy different under the naming conventions
described in 86.1. Nevertheless, in acontrived examplewhere thereis an unconventionally-
named package Vect or , which declares a public class whose name is Mbsqui t o:

package Vector;
public class Msquito { int capacity; }

and then the compilation unit:

package strange;
import java.util.Vector;
i mport Vector.Msquito;
class Test {
public static void main(String[] args) {
System out. println(new Vector().getd ass());
System out. println(new Mysquito().getC ass());

}

the single-type-import declaration importing class Vect or from packagej ava. uti | does
not prevent the package name Vect or from appearing and being correctly recognized in
subsequent i npor t declarations. The example compiles and produces the output:

class java.util. Vector
class Vector.Msquito

7.5.2 Type-lmport-on-Demand Declarations

A type-import-on-demand declaration allows all accessible types of a named
package or type to be imported as needed.

Typel mportOnDemandDecl ar ation:
i nport PackageOrTypeName. * ;

The PackageOr TypeName must be the canonical name (86.7) of apackage, aclass
type, an interface type, an enum type, or an annotation type.

If the PackageOr TypeName denotes a type (86.5.4), then the type must be either
amember of a named package, or a member of a type whose outermost lexically
enclosing type declaration (88.1.3) isamember of anamed package, or acompile-
time error occurs.
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Itisacompile-timeerror if the named packageisnot uniquely visibleto the current
module (87.4.3), or if the named typeis not accessible (86.6).

Itisnot acompile-timeerror to nameeither j ava. | ang or the named package of the
current compilation unit in atype-import-on-demand declaration. The type-import-
on-demand declaration is ignored in such cases.

Two or more type-import-on-demand declarations in the same compilation unit
may name the same type or package. All but one of these declarations are
considered redundant; the effect is asif that type was imported only once.

If a compilation unit contains both a type-import-on-demand declaration and a
static-import-on-demand declaration (87.5.4) that name the sametype, the effect is
asif thest ati c member types of that type (88.5, §9.5) were imported only once.

Example 7.5.2-1. Type-lmport-on-Demand
inmport java.util.*;

causes the simple names of al publ i ¢ types declared in the package j ava. uti |l to be
available within the class and interface declarations of the compilation unit. Thus, the
simple name Vect or refers to the type Vect or in the packagej ava. util inal places
in the compilation unit where that type declaration is not shadowed (86.4.1) or obscured
(86.4.2).

The declaration might be shadowed by a single-type-import declaration of a type whose
simplenameisVect or ; by atype named Vect or and declared in the package to which the
compilation unit belongs; or any nested classes or interfaces.

The declaration might be obscured by a declaration of afield, parameter, or local variable
named Vect or .

(It would be unusual for any of these conditions to occur.)

7.5.3 Single-Static-lmport Declarations

A single-static-import declaration imports all accessible st ati ¢ members with a
given simple name from atype. Thismakesthesest at i c members available under
their simplenameinthemodule, class, and interface declarations of the compilation
unit in which the single-static-import declaration appears.

SingleStaticlmportDeclaration:
i nport static TypeName. ldentifier ;

The TypeName must be the canonical name (86.7) of a class type, interface type,
enum type, or annotation type.
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The type must be either a member of a named package, or a member of a type
whose outermost lexically enclosing type declaration (88.1.3) is a member of a
named package, or a compile-time error occurs.

It isacompile-time error if the named type is not accessible (86.6).

The Identifier must name at least one st at i ¢ member of the named type. It isa
compile-timeerror if thereisnost at i ¢ member of that name, or if all of the named
members are not accessible.

Itis permissible for one single-static-import declaration to import several fields or
types with the same name, or several methods with the same name and signature.
This occurs when the named type inherits multiple fields, member types, or
methods, all with the same name, from its own supertypes.

If two single-static-import declarations in the same compilation unit attempt to
import types with the same simple name, then a compile-time error occurs, unless
the two types are the same type, in which case the duplicate declaration isignored.

If a single-static-import declaration imports a type whose simple name is n, and
the compilation unit also declares atop level type (87.6) whose simple nameisn,
a compile-time error occurs.

If a compilation unit contains both a single-static-import declaration that imports
atype whose simple name is n, and a single-type-import declaration (87.5.1) that
imports atype whose smple nameisn, acompile-time error occurs, unless the two
types are the same type, in which case the duplicate declaration is ignored.

75.4 Static-lmport-on-Demand Declarations

A static-import-on-demand declaration alows all accessible st ati ¢ members of
anamed type to be imported as needed.

SaticlmportOnDemandDeclaration:
i nport static TypeName. * ;

The TypeName must be the canonical name (86.7) of a class type, interface type,
enum type, or annotation type.

The type must be either a member of a named package, or a member of a type
whose outermost lexically enclosing type declaration (88.1.3) is a member of a
named package, or a compile-time error occurs.

It isacompile-time error if the named type is not accessible (86.6).
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Two or more static-import-on-demand declarations in the same compilation unit
may name the same type; the effect isas if there was exactly one such declaration.

Two or more static-import-on-demand declarations in the same compilation unit
may name the same member; the effect is as if the member was imported exactly
once.

It is permissible for one static-import-on-demand declaration to import severa
fields or types with the same name, or several methods with the same name and
signature. This occurswhen the named type inherits multiplefields, member types,
or methods, al with the same name, from its own supertypes.

If a compilation unit contains both a static-import-on-demand declaration and a
type-import-on-demand declaration (87.5.2) that name the same type, the effect is
asif the st ati ¢ member types of that type (88.5, 89.5) were imported only once.

7.6 Top Level Type Declarations

A top level type declaration declares atop level classtype (88 (Classes)) or atop
level interface type (89 (Interfaces)).

TypeDeclaration:
ClassDeclaration
InterfaceDeclaration

Extra"; " tokens appearing at the level of type declarations in a compilation unit have no
effect on the meaning of the compilation unit. Stray semicolons are permitted in the Java
programming language solely as a concession to C++ programmerswho are used to placing
", " after aclass declaration. They should not be used in new Java code.

In the absence of an access modifier, a top level type has package access: it is
accessible only within ordinary compilation units of the package in which it is
declared (86.6.1). A type may be declared publ i ¢ to grant access to the type from
code in other packages of the same module, and potentialy from codein packages
of other modules.

It is a compile-time error if atop level type declaration contains any one of the
following access modifiers: prot ect ed, pri vate, Or stati c.

Itisacompile-timeerror if the name of atop level type appears asthe name of any
other top level class or interface type declared in the same package.
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The scope and shadowing of atop level typeis specified in 86.3 and §6.4.
Thefully qualified name of atop level typeis specified in 86.7.
Example 7.6-1. Conflicting Top Level Type Declarations
package test;

import java.util.Vector;
class Point {

int x, vy;

}

interface Point { // conpile-time error #1
int getR();
int getTheta()

}

class Vector { Point[] pts; } // conpile-time error #2

Here, thefirst compile-time error is caused by the duplicate declaration of the name Poi nt
as both a class and an interface in the same package. A second compile-time error is the
attempt to declare the name Vect or both by a class type declaration and by a single-type-
import declaration.

Note, however, that it isnot an error for thenameof aclassto also name atypethat otherwise
might beimported by atype-import-on-demand declaration (87.5.2) in the compilation unit
(87.3) containing the class declaration. Thus, in this program:

package test;
inmport java.util.*;
class Vector {} // not a conpile-tinme error

the declaration of the class Vector is permitted even though there is aso a class
java. util . Vect or. Within this compilation unit, the simple name Vect or refersto the
classtest. Vector, nottojava. util. Vector (which can still be referred to by code
within the compilation unit, but only by its fully qualified name).

Example 7.6-2. Scope of Top Level Types

package poi nts;
class Point {

int x, vy; /'l coordinates
Poi nt Col or col or; /1 color of this point
Poi nt next; /1 next point with this color
static int nPoints;

}

cl ass Poi nt Col or {
Point first; /1 first point with this color
Poi nt Col or (int color) { this.color = color; }
private int color; // color conponents

}

This program defines two classes that use each other in the declarations of their class
members. Because the class types Poi nt and Poi nt Col or have all the type declarations
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in package poi nt s, including all those in the current compilation unit, as their scope, this
program compiles correctly. That is, forward reference is not a problem.

Example 7.6-3. Fully Qualified Names

class Point { int x, y; }

Inthiscode, the classPoi nt isdeclared in acompilation unit with no package declaration,
and thus Poi nt isitsfully qualified name, whereasin the code:

package vi st a;
class Point { int x, vy; }

the fully qualified name of the class Poi nt isvi st a. Poi nt . (The package name vi st a
issuitable for local or personal use; if the package were intended to be widely distributed,
it would be better to give it a unique package name (86.1).)

An implementation of the Java SE Platform must keep track of types within
packages by the combination of their enclosing module names and their binary
names (813.1). Multiple ways of naming atype must be expanded to binary names
to make sure that such names are understood as referring to the same type.

For example, if acompilation unit contains the single-type-import declaration (§7.5.1):
inmport java.util.Vector;

then within that compilation unit, the simple name Vect or and the fully qualified name
java. util. Vector refer to the sametype.

If and only if packages are stored in a file system (87.2), the host system may
chooseto enforce the restriction that it isacompile-time error if atypeisnot found
in afile under aname composed of the type name plus an extension (such as. j ava
or . jav) if either of the following istrue:

» Thetypeisreferred to by codein other ordinary compilation units of the package
in which the type is declared.

» Thetypeisdeclared publ i ¢ (and therefore is potentially accessible from code
in other packages).

This restriction implies that there must be at most one such type per compilation unit.
This restriction makes it easy for a Java compiler to find a named class within a package.
In practice, many programmers choose to put each class or interface type in its own
compilation unit, whether or not it ispubl i ¢ or isreferred to by code in other compilation
units.
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For example, the source code for apubl i ¢ type wet . sprocket . Toad would be found
in afile Toad. j ava in the directory wet / spr ocket , and the corresponding object code
would be found in the file Toad. ¢l ass in the same directory.

7.7 Module Declarations

A module declaration specifies a new named module. A named module specifies
dependences on other modules to define the universe of classes and interfaces
available to its own code; and specifies which of its packages are exported or
opened in order to populate the universe of classes and interfaces available to other
modul es which specify a dependence oniit.

A "dependence" iswhat is expressed by ar equi r es directive, independent of whether a
module exists with the name specified by the directive. A "dependency" is the observable
module enumerated by resolution (as described in the j ava. | ang. nodul e package
specification) for agivenr equi r es directive. Generaly, therules of the Javaprogramming
language are more interested in dependences than dependencies.

ModuleDeclaration:
{Annotation} [open] nodul e Identifier {. Identifier}
{ {ModuleDirective} }

A module declaration introduces a module name that can be used in other module
declarationsto express rel ationships between modules. A module name consists of
one or more Java identifiers (83.8) separated by ". " tokens.

There are two kinds of modules: normal modules and open modules. The kind of
a modul e determines the nature of access to the modul€e's types, and the members
of those types, for code outside the module.

A normal module, without the open modifier, grants access at compile time and
run timeto typesin only those packages which are explicitly exported.

An open module, with the open modifier, grants access at compiletimeto typesin
only those packages which are explicitly exported, but grants access a run timeto
typesin all its packages, asif all packages had been exported.

For code outside a module (whether the module is norma or open), the access
granted at compile time or run time to types in the modul€e's exported packagesis
specifically tothepubl i ¢ and pr ot ect ed types in those packages, and the publ i ¢
and pr ot ect ed membersof thosetypes(86.6). No accessisgranted at compiletime
or run time to types, or their members, in packages which are not exported. Code
inside the module may access publ i ¢ and pr ot ect ed types, and the publ i ¢ and
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pr ot ect ed members of those types, in al packages in the module at both compile
time and run time.

Distinct from access at compile time and access at run time, the Java SE Platform
provides reflective access via the Core Reflection API (81.4). A normal module
grants reflective access to types in only those packages which are explicitly
exported or explicitly opened (or both). An open module grants reflective access
totypesin all its packages, asif all packages had been opened.

For code outside a norma module, the reflective access granted to types in the
module's exported (and not opened) packages is specificaly to the public and
prot ect ed types in those packages, and the publ i ¢ and pr ot ect ed members of
thosetypes. Thereflective access granted to typesin the modul €'s opened packages
(whether exported or not) isto all typesin those packages, and all members of those
types. No reflective accessis granted to types, or their members, in packageswhich
are not exported or opened. Code inside the module enjoys reflective access to all
types, and all their members, in al packagesin the module.

For code outside an open module, the reflective access granted to types in the
module's opened packages (that is, all packages in the module) isto al typesin
those packages, and all members of those types. Code inside the module enjoys
reflective accessto al types, and all their members, in all packages in the module.

The directives of amodule declaration specify the modul €'s dependences on other
modules (viar equi r es, 87.7.1), the packages it makes available to other modules
(viaexports and opens, 87.7.2), the services it consumes (viauses, §7.7.3), and
the servicesit provides (viapr ovi des, §7.7.4).

ModuleDirective:
requi r es {RequiresModifier} ModuleName ;
export s PackageName [t o ModuleName {, ModuleName}] ;
opens PackageName [t o ModuleName {, ModuleName}] ;
uses TypeName;
provi des TypeNamewi t h TypeName{, TypeName} ;

RequiresModifier:
(one of)
transitivestatic

If and only if packagesare stored in afile system (87.2), the host system may choose
to enforce the restriction that it is a compile-time error if a module declaration is
not found in afile under aname composed of modul e- i nf o plusan extension (such
as.javaor.jav).
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To aid comprehension, it is customary, though not required, for a module declaration to
group its directives, so that ther equi r es directives which pertain to modules are visually
distinct from the expor t s and opens directives which pertain to packages, and from the
uses and pr ovi des directives which pertain to services. For example:

nodul e com exanpl e. foo {
requi res com exanpl e. foo. http;
requires java.l ogging;

requires transitive com exanpl e.foo0.network;

exports com exanpl e. f 0o. bar;
exports com exanpl e.foo.internal to com exanpl e. foo. probe;

opens com exanpl e. f 00. quux;
opens com exanpl e.foo.internal to com exanpl e. f 0o. net work,
com exanpl e. f 0o. probe;

uses com exanpl e. foo.spi.Intf;
provi des com exanpl e.foo.spi.Intf with comexanple.foo.|npl;

}
The opens directives can be avoided if the module is open:

open nodul e com exanpl e. foo {
requi res com exanpl e. foo. http;
requires java.l ogging;

requires transitive com exanpl e. foo. network;

exports com exanpl e. f 0o. bar;
exports com exanpl e.foo.internal to com exanpl e. foo. probe;

uses com exanpl e. foo. spi.Intf;
provi des com exanpl e.foo.spi.Intf with comexanple.foo.|npl;

}

Development tools for the Java programming language are encouraged to highlight
requires transitive directives and unqualified expor t s directives, asthese form the
primary APl of amodule.

7.7.1 Dependences

The requires directive specifies the name of a module on which the current
modul e has a dependence.

A requi r es directive must not appear in the declaration of thej ava. base module,
or a compile-time error occurs, because it is the primordial module and has no
dependences (88.1.4).
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If the declaration of a module does not express a dependence on the j ava. base
module, and the module isnot itself j ava. base, then the module has an implicitly
declared dependence on the j ava. base module.

Ther equi r es keyword may befollowed by the modifier t r ansi ti ve. Thiscauses
any module which requi res the current module to have an implicitly declared
dependence on the module specified by therequires transi ti ve directive.

The requi res keyword may be followed by the modifier st ati c. This specifies
that the dependence, while mandatory at compile time, is optional at run time.

If the declaration of a module expresses a dependence on the j ava. base module,
and themoduleisnot itself j ava. base, then it isacompile-time error if amodifier
appears after ther equi res keyword.

It is a compile-time error if more than one requires directive in a module
declaration specifies the same module name.

It is a compile-time error if resolution, as described in the j ava. | ang. nodul e
package specification, with the current module as the only root module, fails for
any of the reasons described in thej ava. | ang. nodul e package specification.

For example, if arequi r es directive specifies a module that is not observable, or if the
current module directly or indirectly expresses a dependence on itself.

If resolution succeeds, then its result specifies the modules that are read by the
current module. The modul esread by the current modul e determine which ordinary
compilation units are visible to the current module (87.3). The types declared in
those ordinary compilation units (and only those ordinary compilation units) may
be accessible to code in the current module (86.6).

The Java SE Platform distinguishes between named modules that are explicitly declared
(that is, with a module declaration) and named modules that are implicitly declared (that
is, automatic modules). However, the Java programming language does not surface the
distinction: r equi r es directives refer to named modules without regard for whether they
are explicitly declared or implicitly declared.

While automatic modules are convenient for migration, they are unreliable in the sense
that their names and exported packages may change when their authors convert them
to explicitly declared modules. A Java compiler is encouraged to issue a warning if
arequires directive refers to an automatic module. An especialy strong warning is
recommended if thet r ansi t i ve modifier appearsin the directive.

Example 7.1.1-1. Resolution of requi res transi ti ve directives

Suppose there are four module declarations as follows:
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modul e m A {
requi res m B;

}

nodul e m B {

requires transitive m¢C,

}

modul e m C {

requires transitive mD;

}

module m D {
exports p;

}

where the package p exported by m Dis declared as follows:

package p;
public class Point {}

Module Declarations

and where a package cl i ent in module m A refers to the publ i ¢ type Poi nt in the
exported package p:

package client;

i mport p. Point;

public class Test {
public static void main(String[] args) {

System out. println(new Point());

}
}

The modules may be compiled as follows, assuming that the current directory has one
subdirectory per module, named after the module it contains:

j avac
j avac
j avac
j avac

--nodul e-source-path .
--nodul e-source-path .
--nodul e-source-path .
--nodul e-source-path .

-d .
-d .
-d .
-d .

--nodul e
--nodul e
--nodul e
--nodul e

The programcl i ent . Test may be run asfollows:

java --nodul e-path .

mD
mC
mB
mA

--nodule mA/client. Test

Thereference from codein m Atothe exported publ i ¢ typePoi nt inm Dislegal because
m Areadsm D, and m D exports the package containing Poi nt . Resolution determines that
m Areadsm Dasfollows:

¢ m Arequires m Bandthereforereads m B.
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e Sincem Areadsm B,andsincem Brequi restransitivem C, resolution determines
that m Areadsm C.

¢ Then, since m A reads m C, and since m C requires transitive m D, resolution
determinesthat m Areadsm D.

In effect, a module may read another module through multiple levels of dependence, in
order to support arbitrary amounts of refactoring. Once a module is released for someone
toreuse (viar equi r es), the modul€'s author has committed to itsname and API but isfree
to refactor its content into other modules which the original module reuses (viar equi r es
transitive) for the benefit of consumers. In the example above, package p may have
been exported originally by m B (thus, m Ar equi r es m B) but refactoring has caused some
of m B's content to moveinto m Cand m D. By using achain of requires transitive
directives, the family of m B, m C, and m D can preserve access to package p for code in
m A without forcing any changesto ther equi r es directives of m A. Note that package p
inm Disnot "re-exported’ by m Cand m B; rather, m Ais madeto read m Ddirectly.

7.7.2 Exported and Opened Packages

Theexpor t s directive specifiesthe name of apackageto be exported by the current
module. For code in other modules, this grants access at compile time and run time
tothepubl i ¢ and pr ot ect ed typesin the package, and the publ i ¢ and pr ot ect ed
members of those types (86.6). It also grants reflective access to those types and
members for code in other modules.

The opens directive specifies the name of a package to be opened by the current
module. For code in other modules, this grants access at run time, but not compile
time, to the publ i ¢ and protected types in the package, and the public and
pr ot ect ed members of those types. It also grants reflective access to all typesin
the package, and all their members, for code in other modules.

It isa compile-time error if the package specified by export s isnot declared by a
compilation unit associated with the current module (87.3).

Itispermitted for opens to specify apackagewhichisnot declared by acompilation
unit associated with the current module. (If the package should happen to be
declared by an observable compilation unit associated with another module, the
opens directive has no effect on that other module.)

It is a compile-time error if more than one exports directive in a module
declaration specifies the same package name.

It isacompile-time error if more than one opens directivein amodule declaration
specifies the same package name.

Itisacompile-timeerror if an opens directive appearsin the declaration of an open
module.
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If an exports or opens directive has ato clause, then the directive is qualified;
otherwise, it is unqualified. For a qualified directive, the publ i ¢ and pr ot ect ed
types in the package, and their publ i ¢ and pr ot ect ed members, are accessible
solely to code in the modules specified in thet o clause. The modules specified in
the t o clause are referred to as friends of the current module. For an unqualified
directive, these types and their members are accessible to code in any module.

It is permitted for the to clause of an exports or opens directive to specify a
module which is not observable (87.7.6).

Itisacompile-timeerror if thet o clause of agiven export s directive specifiesthe
same module name more than once.

It is a compile-time error if thet o clause of a given opens directive specifies the
same module name more than once.

7.7.3 Service Consumption

The uses directive specifies a service for which the current module may discover
providersviaj ava. util . Servi ceLoader .

The service must be a class type, an interface type, or an annotation type. It is a
compile-time error if auses directive specifies an enum type (88.9) asthe service.

The service may be declared in the current module or in another module. If the
service is not declared in the current module, then the service must be accessible
to code in the current module (86.6), or a compile-time error occurs.

It is a compile-time error if more than one uses directive in a module declaration
specifies the same service.

7.7.4 ServiceProvision

Theprovi des directive specifies aservice for which thewi t h clause specifies one
or more service providerstoj ava. uti | . Servi ceLoader .

The service must be a class type, an interface type, or an annotation type. It is a
compile-time error if a provi des directive specifies an enum type (88.9) as the
service.

The service may be declared in the current module or in another module. If the
service is not declared in the current module, then the service must be accessible
to code in the current module (86.6), or a compile-time error occurs.

7.7

215



7.7

216

Module Declarations PACKAGES AND MODULES

Every service provider must beaclasstypeor an interfacetype, that ispubl i ¢, and
that istop level or nested st at i ¢, or acompile-time error occurs.

Every service provider must be declared in the current module, or a compile-time
error Occurs.

If a service provider explicitly declares a public constructor with no formal
parameters, or implicitly declares a publ i ¢ default constructor (88.8.9), then that
constructor is called the provider constructor.

If aservice provider explicitly declaresapubl i ¢ st ati ¢ method called pr ovi der
with no formal parameters, then that method is called the provider method.

If aservice provider has a provider method, then its return type must (i) either be
declared in the current module, or be declared in another module and be accessible
to code in the current module; and (ii) be a subtype of the service specified in the
provi des directive; or acompile-time error occurs.

While a service provider that is specified by a pr ovi des directive must be declared in
the current module, its provider method may have areturn type that is declared in another
module. Also, note that when a service provider declares a provider method, the service
provider itself need not be a subtype of the service.

If a service provider does not have a provider method, then that service provider
must have a provider constructor and must be a subtype of the service specified in
the provi des directive, or acompile-time error occurs.

It is a compile-time error if more than one provi des directive in a module
declaration specifies the same service.

Itisacompile-timeerror if thewi t h clause of agiven provi des directive specifies
the same service provider more than once.

7.7.5 Unnamed Modules

An observable ordinary compilation unit that the host system does not associate
with anamed module (87.3) is associated with an unnamed module.

Unnamed modules are provided by the Java SE Platform in recognition of the fact
that programs developed prior to Java SE 9 could not declare named modules.
In addition, the reasons for the Java SE Platform providing unnamed packages
(87.4.2) arelargely applicable to unnamed modules.

An implementation of the Java SE Platform must support at least one unnamed
module. An implementation may support more than one unnamed module, but is
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not required to do so. Which ordinary compilation units are associated with each
unnamed module is determined by the host system.

The host system may associate ordinary compilation unitsin anamed package with
an unnamed module.

Therulesfor unnamed modules are designed to maximize their interoperation with
named modules, as follows:

» An unnamed module reads every observable module (87.7.6).

By virtue of the fact that an ordinary compilation unit associated with an unnamed
module is observable, the associated unnamed module is observable. Thus, if the
implementation of the Java SE Platform supports more than one unnamed module, every
unnamed moduleis observable; and each unnamed modul e reads every unnamed module
including itself.

However, it is important to realize that the ordinary compilation units of an unnamed
module are never visible to a named module (87.3) because nor equi r es directive can
arrange for a named module to read an unnamed module. The Core Reflection API of
the Java SE Platform may be used to arrange for a named module to read an unnamed
module at run time.

» An unnamed module exports every package whose ordinary compilation units
are associated with that unnamed module.

» Anunnamed module opens every package whaose ordinary compilation units are
associated with that unnamed module.

7.7.6 Observability of aModule

A module is observableif at least one of the following is true:

* A modular compilation unit containing the declaration of the module is
observable (87.3).

» Anordinary compilation unit associated with the module is observable.
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Classes

CLASS declarations define new reference types and describe how they are
implemented (88.1).

A top level classisaclassthat is hot a nested class.

A nested class is any class whose declaration occurs within the body of another
class or interface.

This chapter discusses the common semantics of all classes - top level (8§7.6)
and nested (including member classes (88.5, §9.5), local classes (§14.3) and
anonymousclasses (815.9.5)). Detail sthat are specific to particular kinds of classes
are discussed in the sections dedicated to these constructs.

A named class may be declared abst ract (88.1.1.1) and must be declared abstract
if it isincompletely implemented; such a class cannot be instantiated, but can be
extended by subclasses. A classmay bedeclared fi nal (88.1.1.2), in which caseit
cannot have subclasses. If aclassisdeclared publ i ¢, thenit can bereferred to from
codein any package of itsmodule and potentially from codein other modules. Each
class except Qbj ect isan extension of (that is, asubclass of) asingle existing class
(88.1.4) and may implement interfaces (88.1.5). Classes may be generic (88.1.2),
that is, they may declare type variables whose bindings may differ among different
instances of the class.

Classes may be decorated with annotations (89.7) just like any other kind of
declaration.

The body of a class declares members (fields and methods and nested classes
and interfaces), instance and static initializers, and constructors (88.1.6). The
scope (86.3) of amember (88.2) is the entire body of the declaration of the class
to which the member belongs. Field, method, member class, member interface,
and constructor declarations may include the access modifiers (86.6) publi c,
protected, or private. The members of a class include both declared and
inherited members (88.2). Newly declared fields can hide fields declared in a
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superclassor superinterface. Newly declared class membersand interface members
can hide class or interface members declared in a superclass or superinterface.
Newly declared methods can hide, implement, or override methods declared in a
superclass or superinterface.

Field declarations (88.3) describe class variables, which are incarnated once, and
instance variables, which are freshly incarnated for each instance of the class. A
field may be declared fi nal (88.3.1.2), in which case it can be assigned to only
once. Any field declaration may include an initializer.

Member class declarations (88.5) describe nested classes that are members of the
surrounding class. Member classes may be st ati ¢, in which case they have no
access to the instance variables of the surrounding class; or they may be inner
classes (88.1.3).

Member interface declarations (88.5) describe nested interfaces that are members
of the surrounding class.

Method declarations (88.4) describe code that may be invoked by method
invocation expressions (815.12). A class method is invoked relative to the class
type; an instance method is invoked with respect to some particular object that is
an instance of a class type. A method whose declaration does not indicate how
it isimplemented must be declared abst ract . A method may be declared f i nal

(88.4.3.3), in which case it cannot be hidden or overridden. A method may be
implemented by platform-dependent native code (88.4.3.4). A synchroni zed
method (88.4.3.6) automatically locks an object before executing its body and
automatically unlocks the object on return, as if by use of a synchronized
statement (814.19), thus allowing its activities to be synchronized with those of
other threads (817 (Threads and Locks)).

Method names may be overloaded (88.4.9).

Instance initializers (88.6) are blocks of executable code that may be used to help
initialize an instance when it is created (815.9).

Static initializers (88.7) are blocks of executable code that may be used to help
initialize aclass.

Constructors (88.8) are similar to methods, but cannot be invoked directly by a
method call; they are used to initialize new classinstances. Like methods, they may
be overloaded (§8.8.8).



CLASSES Class Declarations

8.1 ClassDeclarations

A class declaration specifies anew named reference type.

There are two kinds of class declarations; normal class declarations and enum
declarations.

ClassDeclaration:
Normal ClassDeclaration
EnumDeclaration

Normal ClassDeclaration:
{ClassModifier} cl ass Typeldentifier [ TypeParameters]
[Superclass] [ uperinterfaces] ClassBody

Therulesinthissection apply to all classdeclarations, including enum declarations.
However, special rules apply to enum declarations with regard to class modifiers,
inner classes, and superclasses; these rules are stated in §8.9.

The Typel dentifier in a class declaration specifies the name of the class.

Itisacompile-timeerror if aclass hasthe same simple name asany of itsenclosing
classes or interfaces.

The scope and shadowing of a class declaration is specified in 86.3 and §86.4.

8.1.1 ClassModifiers

A class declaration may include class modifiers.

ClassModifier:
(one of)
Annotation publ i c protected private
abstract staticfinal strictfp

The rules for annotation modifiers on a class declaration are specified in §9.7.4
and §9.7.5.

The access modifier publ i ¢ (86.6) pertains only to top level classes (87.6) and
member classes (88.5), not to local classes (§14.3) or anonymous classes (815.9.5).

The access modifiers prot ected and private pertain only to member classes
within a directly enclosing class declaration (88.5).
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The modifier st ati ¢ pertains only to member classes (88.5.1), not to top level or
local or anonymous classes.

Itisacompile-timeerror if the same keyword appears more than once asamadifier
for a class declaration, or if a class declaration has more than one of the access
modifierspubl i c, prot ect ed, and pri vat e (86.6).

If two or more (distinct) class modifiers appear in a class declaration, then it is customary,
though not required, that they appear in the order consistent with that shown above in the
production for ClassModifier.

8.1.1.1 abstract Classes
Anabstract classisaclassthat isincomplete, or to be considered incomplete.

Itisacompile-timeerror if an attempt ismade to create an instance of an abst r act
class using a class instance creation expression (815.9.1).

A subclass of an abst ract classthat is not itself abstract may be instantiated,
resulting in the execution of a constructor for the abst ract class and, therefore,
the execution of the field initializers for instance variables of that class.

A normal classmay haveabst r act methods, that is, methods that are declared but
not yet implemented (88.4.3.1), only if itisan abst r act class. Itisacompile-time
error if anormal class that is not abstract hasan abstract method.

A classc hasabst ract methodsif either of the following istrue:

* Any of the member methods (88.2) of C - either declared or inherited - is
abstract.

» Any of C's superclasses has an abst ract method declared with package access,
and there exists no method that overrides the abst ract method from C or from
asuperclass of C.

It is a compile-time error to declare an abstract class type such that it is not
possible to create a subclass that implements all of its abst ract methods. This
situation can occur if the class would have as members two abst ract methods
that have the same method signature (88.4.2) but return types for which no typeis
return-type-substitutable with both (88.4.5).

Example 8.1.1.1-1. Abstract Class Declaration

abstract class Point {
int x =1, y = 1;
voi d move(int dx, int dy) {
X += dx;
y += dy;
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alert();
}
abstract void alert();
;bstract cl ass Col oredPoi nt extends Point {
int color;
}

cl ass Sinpl ePoi nt extends Point {
void alert() { }
}

Here, a class Poi nt is declared that must be declared abst ract, because it contains
a declaration of an abstract method named al ert. The subclass of Poi nt named
Col or edPoi nt inherits the abstract method al ert, so it must also be declared
abst ract . On the other hand, the subclass of Poi nt named Si npl ePoi nt provides an
implementation of al ert , soit need not be abst r act .

The statement:
Point p = new Point();

would result in a compile-time error; the class Poi nt cannot be instantiated because it is
abstract . However, a Poi nt variable could correctly be initialized with a reference to
any subclass of Poi nt , and the class Si npl ePoi nt isnot abst r act , so the statement:

Point p = new Sinpl ePoint();

would be correct. Instantiation of a Si npl ePoi nt causes the default constructor and field
initializersfor x andy of Poi nt to be executed.

Example 8.1.1.1-2. Abstract Class Declaration that Prohibits Subclasses

interface Col orable {
voi d setColor(int color);

}

abstract class Colored inplenments Colorable {
public abstract int setColor(int color);

}

These declarations result in a compile-time error: it would be impossible for any subclass
of class Col or ed to provide an implementation of a method named set Col or , taking one
argument of typei nt , that can satisfy both abstract method specifications, because the one
ininterface Col or abl e requiresthe same method to return no value, whilethe onein class
Col or ed requires the same method to return avalue of typei nt (88.4).

A classtype should bedeclared abst r act only if theintent isthat subclasses can be created
to complete the implementation. If the intent is simply to prevent instantiation of a class,
the proper way to express thisis to declare a constructor (88.8.10) of no arguments, make
it pri vat e, never invoke it, and declare no other constructors. A class of thisform usually
contains class methods and variables.
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The class Mat h is an example of a class that cannot be instantiated; its declaration looks
likethis:

public final class Math {
private Math() { } // never instantiate this class
. declarations of class variables and nethods . . .

}

8.1.1.2 final Classes

A class can be declared fi nal if its definition is complete and no subclasses are
desired or required.

Itisacompile-timeerror if thenameof af i nal classappearsintheext ends clause
(88.1.4) of another class declaration; this implies that afi nal class cannot have
any subclasses.

It isacompile-time error if aclassisdeclared both fi nal and abst r act , because
the implementation of such a class could never be completed (88.1.1.1).

Because af i nal class never has any subclasses, the methods of afi nal classare
never overridden (88.4.8.1).

8.1.1.3 strictfp Classes

The effect of the st ri ctfp modifier isto make all f1 oat or doubl e expressions
within the class declaration (including within variable initializers, instance
initializers, static initializers, and constructors) be explicitly FP-strict (§815.4).

Thisimpliesthat all methods declared in the class, and al nested types declared in
the class, areimplicitly stri ct f p.
8.1.2 Generic Classesand Type Parameters

A classisgenericif it declares one or more type variables (84.4).

These type variables are known as the type parameters of the class. The type
parameter section follows the class name and is delimited by angle brackets.

TypeParameters:
< TypeParameterList >

TypeParameterList:
TypeParameter {, TypeParameter}

The following productions from 84.4 are shown here for convenience:



CLASSES Class Declarations

TypeParameter:
{TypeParameterModifier} Typeldentifier [ TypeBound]

TypeParameterModifier:
Annotation

TypeBound:
ext ends TypeVariable
ext ends ClassOrlInterfaceType { Additional Bound}

Additional Bound:
& InterfaceType

The rules for annotation modifiers on a type parameter declaration are specified
in 89.7.4 and §9.7.5.

In a class's type parameter section, a type variable T directly depends on a type
variable sif sisthebound of T, while T dependson sif either T directly dependson
sor T directly depends on atype variable U that depends on s (using this definition
recursively). It isacompile-time error if atype variable in aclass'stype parameter
section depends on itself.

The scope and shadowing of a classstype parameter is specified in 86.3 and §6.4.

A generic classdeclaration defines a set of parameterized types (84.5), onefor each
possible parameterization of the type parameter section by type arguments. All of
these parameterized types share the same class at run time.

For instance, executing the code:

Vector<String> x = new Vector<String>();
Vector<Integer>y = new Vector<lnteger>();
bool ean b = x.getC ass() == y.getC ass();

will result in the variable b holding the valuet r ue.

It is a compile-time error if a generic class is a direct or indirect subclass of
Throwabl e (811.1.1).

This restriction is needed since the catch mechanism of the Java Virtual Machine works
only with non-generic classes.

It is a compile-time error to refer to a type parameter of a generic class C in any
of the following:

* the declaration of ast ati c member of C (88.3.1.1, 88.4.3.2, §88.5.1).

* thedeclaration of ast ati ¢ member of any type declaration nested within C.
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» astaticinitializer of c(88.7), or
o adtaticinitializer of any class declaration nested within C.

Example 8.1.2-1. Mutually Recursive Type Variable Bounds

interface Converti bl eTo<T> {
T convert();
}
cl ass Repr Change<T extends Converti bl eTo<S>,
S extends Converti bl eTo<T>> {

Tt,;
void set(Ss) { t = s.convert(); }
S get () { return t.convert(); }

Example 8.1.2-2. Nested Generic Classes

cl ass Seq<T> {
T head;
Seq<T> tail;

Seq() { this(null, null); }
Seq(T head, Seq<T> tail) {
thi s. head = head;
this.tail = tail;
}
bool ean i sEnpty() { return tail == null; }

cl ass Zi pper<S> {
Seq<Pai r <T, S>> zi p(Seq<S> that) {
if (isEnpty() || that.isEnpty()) {
return new Seq<Pai r<T, S>>();
} else {
Seq<T>. Zi pper<S> tail Zi pper =
tail.new Zipper<S>();
return new Seqg<Pai r <T, S>>(
new Pai r<T, S>(head, that.head),
tail Zi pper.zip(that.tail));

}
}

}
}
class Pair<T, S>{

T fst; S snd;

Pair(T f, Ss) { fst =f; snd =s; }
}

class Test {
public static void main(String[] args) {
Seq<String> strs =
new Seq<Stri ng>(
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"an
new Seq<String>("b",
new Seq<String>()));
Seq<Number > nunms =
new Seq<Nunber >(
new | nteger (1),
new Seq<Nunber >(new Doubl e(1.5),
new Seq<Nunber>()));

Seq<String>. Zi pper <Nunber > zi pper =
strs. new Zi pper <Number >();

Seq<Pai r <Stri ng, Nunber >> conbi ned
zi pper. zi p(nums) ;

8.1.3 Inner Classes and Enclosing I nstances

Aninner classisanested classthat is not explicitly or implicitly declared st atii c.

Aninner class may be anon-st at i c member class (88.5), alocal class (§814.3), or
an anonymous class (815.9.5). A member class of an interfaceisimplicitly st ati ¢
(89.5) so is never considered to be an inner class.

It isacompile-time error if an inner class declares a static initializer (88.7).

It is a compile-time error if an inner class declares a member that is explicitly or
implicitly st ati ¢, unless the member is a constant variable (84.12.4).

An inner class may inherit st ati ¢ members that are not constant variables even
though it cannot declare them.

A nested class that is not an inner class may declare st ati ¢ members freely, in
accordance with the usual rules of the Java programming language.

Example 8.1.3-1. Inner Class Declarations and Static Members

class HasStatic {
static int j = 100;
}
class Quter {
class I nner extends HasStatic {
static final int x =3; // OK constant variable
static int y = 4; // Conpile-time error: an inner class
}
static class NestedBut Not | nner{
static int z = 5; /1l OK: not an inner class

}

interface Neverlnner {} // Interfaces are never inner

8.1
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}

A statement or expression occurs in a static context if and only if the innermost
method, constructor, instance initializer, static initializer, field initializer, or
explicit constructor invocation statement enclosing the statement or expression is
astatic method, a static initializer, the variable initializer of a static variable, or an
explicit constructor invocation statement (88.8.7.1).

Aninner classcisadirectinner classof aclassor interface Oif oistheimmediately
enclosing type declaration of ¢ and the declaration of C does not occur in a static
context.

A class cisan inner class of class or interface Oif it is either adirect inner class
of oor aninner class of an inner class of O.

It isunusual, but possible, for the immediately enclosing type declaration of an inner class
to be an interface. Thisonly occursif the classis declared in adefault method body (89.4).
Specificaly, it occursif an anonymous or local classis declared in a default method body,
or amember classisdeclared inthe body of an anonymous classthat isdeclared in adefault
method body.

A class or interface Ois the zeroth lexically enclosing type declaration of itself.

A class 0 is the n'th lexically enclosing type declaration of a class c if it is
the immediately enclosing type declaration of the n-1'th lexically enclosing type
declaration of C.

Aninstancei of adirectinner classc of aclassor interface Ois associated with an
instance of O, known as the immediately enclosing instance of i . The immediately
enclosing instance of an object, if any, is determined when the object is created
(815.9.2).

An object o isthe zeroth lexically enclosing instance of itself.

An object o is the n'th lexically enclosing instance of an instance i if it is the
immediately enclosing instance of the n-1'th lexically enclosing instance of i .

An instance of an inner class | whose declaration occurs in a static context has
no lexically enclosing instances. However, if | isimmediately declared within a
static method or static initializer then | does have an enclosing block, which isthe
innermost block statement lexically enclosing the declaration of | .

For every superclass s of cwhich isitself adirect inner class of aclass or interface
SO, thereisan instance of soassociated withi , known astheimmediately enclosing
instance of i with respect to s. The immediately enclosing instance of an object
with respect toitsclass direct superclass, if any, is determined when the superclass
constructor isinvoked via an explicit constructor invocation statement (88.8.7.1).
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When an inner class (whose declaration does not occur in a static context) refersto
an instance variable that isamember of alexically enclosing type declaration, the
variable of the corresponding lexically enclosing instance is used.

Any local variable, formal parameter, or exception parameter used but not declared
inaninner class must either be declared f i nal or be effectively final (84.12.4), or
a compile-time error occurs where the use is attempted.

Any loca variable used but not declared in an inner class must be definitely
assigned (816 (Definite Assignment)) before the body of the inner class, or a
compile-time error occurs.

Similar rules on variable use apply in the body of alambda expression (§15.27.2).

A blank fi nal field (84.12.4) of alexically enclosing type declaration may not be
assigned within an inner class, or a compile-time error occurs.

Example 8.1.3-2. Inner Class Declarations

class Quter {

int i = 100;
static void classMethod() {
final int | = 200;
class Local I nStaticContext {
int k =1i; [/ Conpile-tine error
int m=1,; [/ &K

}

}
voi d foo() {
class Local { // A local class
int j =1i;

}
}

The declaration of classLocal | nSt ati cCont ext occursin a static context due to being
within the static method cl assMet hod. Instance variables of classQut er arenot available
within the body of a static method. In particular, instance variables of Quter are not
availableinside the body of Local I nSt at i cCont ext . However, local variables from the
surrounding method may be referred to without error (provided they are declared f i nal
or are effectively final).

Inner classes whose declarations do not occur in a static context may freely refer to the
instance variablesof their enclosing typedeclaration. Aninstancevariableisawaysdefined
with respect to aninstance. Inthe case of instance variables of an enclosing type declaration,
theinstance variable must be defined with respect to an enclosing instance of that declared
type. For example, the class Local above has an enclosing instance of class Qut er. Asa
further example:

class WthDeepNesting {

8.1
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bool ean t oBe;
W t hDeepNest i ng(bool ean b) { toBe = b; }

cl ass Nested {
bool ean t heQuesti on;
cl ass Deepl yNested {
Deepl yNest ed() {
theQuestion = toBe || !toBe;
}

}

Here, every instance of Wt hDeepNest i ng. Nest ed. Deepl yNest ed has an enclosing
instance of classW t hDeepNest i ng. Nest ed (itsimmediately enclosing instance) and an
enclosing instance of classW t hDeepNest i ng (its 2nd lexically enclosing instance).

8.1.4 Superclasses and Subclasses

The optional extends clause in a normal class declaration specifies the direct
superclass of the current class.

Superclass:
ext ends ClassType

The ext ends clause must not appear in the definition of the class j ect, or a
compile-time error occurs, because it is the primordial class and has no direct
superclass.

The ClassType must name an accessible class type (86.6), or a compile-time error
occurs.

It is a compile-time error if the ClassType names a class that is fi nal , because
final classesarenot alowed to have subclasses (88.1.1.2).

It isacompile-time error if the ClassType names the class Enumor any invocation
of Enum(88.9).

If the ClassType has type arguments, it must denote a well-formed parameterized
type (84.5), and none of the type arguments may be wildcard type arguments, or
a compile-time error occurs.

Given a (possibly generic) class declaration C<F,...,Fp> (n = 0, C # vj ect ), the
direct superclass of the class type C<Fi,...,Fo> is the type given in the ext ends
clause of the declaration of Cif an ext ends clauseis present, or j ect otherwise.

Given a generic class declaration C<F,...,F,> (n > 0), the direct superclass of the
parameterized class type C<Ty,...,T,>, Where T; (L<i < n)isatype, isb<y; 6,...,U
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0>, where D<Uy,...,U> isthedirect superclass of C<Fy,...,F,> and 0 isthe substitution
[F1: :T]_, ey Fn: :Tn] .

A classissaid to be adirect subclass of its direct superclass. The direct superclass
is the class from whose implementation the implementation of the current classis
derived.

Thesubclassrelationship isthetransitive closure of the direct subclassrel ationship.
A classAisasubclass of class cif either of the following istrue:

* Aisthedirect subclassof C

» There exists a class B such that A is a subclass of B, and B is a subclass of C,
applying this definition recursively.

Class cis said to be a superclass of class A whenever A is asubclass of C.

Example 8.1.4-1. Direct Superclasses and Subclasses

class Point { int x, vy; }
final class Col oredPoi nt extends Point { int color; }
cl ass Col or ed3DPoi nt extends ColoredPoint { int z; } [/ error

Here, the relationships are as follows:

¢ Theclass Poi nt isadirect subclass of oj ect .

The class Obj ect isthe direct superclass of the class Poi nt .
e Theclass Col or edPoi nt isadirect subclass of class Poi nt .
¢ TheclassPoi nt isthe direct superclass of class Col or edPoi nt .

The declaration of class Col or ed3dPoi nt causesacompile-time error because it attempts
to extend the final class Col or edPoi nt .

Example 8.1.4-2. Super classes and Subclasses

class Point { int x, y; }
cl ass Col oredPoi nt extends Point { int color; }
final class Col ored3dPoi nt extends Col oredPoint { int z; }

Here, the relationships are as follows:

e TheclassPoi nt isasuperclass of class Col or edPoi nt .

e TheclassPoi nt isasuperclass of class Col or ed3dPoi nt .

e Theclass Col or edPoi nt isasubclass of class Poi nt .

¢ Theclass Col or edPoi nt isasuperclass of class Col or ed3dPoi nt .

¢ Theclass Col or ed3dPoi nt isasubclass of class Col or edPoi nt .
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¢ Theclass Col or ed3dPoi nt isasubclass of class Poi nt .

A class c directly depends on a type T if T is mentioned in the ext ends or
i mpl ement s clause of C either as a superclass or superinterface, or asaqualifierin
the fully qualified form of a superclass or superinterface name.

A class c depends on areference type T if any of the following istrue:
» cdirectly dependsonT.
* cdirectly dependson aninterface | that depends (89.1.3) on T.

e C directly depends on a class D that depends on T (using this definition
recursively).

It isacompile-time error if aclass depends on itself.

If circularly declared classes are detected at run time, as classes are loaded, then a
Cl assGircul arityError isthrown (812.2.1).

Example 8.1.4-3. Class Depends on I tself

class Point extends ColoredPoint { int x, y; }
cl ass Col oredPoint extends Point { int color; }

This program causes a compile-time error because class Poi nt depends on itself.

8.1.5 Superinterfaces

The optional i npl ement s clausein aclass declaration lists the names of interfaces
that are direct superinterfaces of the class being declared.

Superinterfaces:
i npl ement s InterfaceTypeList

InterfaceTypeList:
InterfaceType{, InterfaceType}

Each InterfaceType must name an accessible interface type (86.6), or a compile-
time error occurs.

If an InterfaceType hastype arguments, it must denote awell-formed parameterized
type (84.5), and none of the type arguments may be wildcard type arguments, or
a compile-time error occurs.
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It is a compile-time error if the same interface is mentioned as a direct
superinterface more than once in asingle i npl enent s clause. Thisistrue even if
the interface is named in different ways.

Example 8.1.5-1. lllegal Superinterfaces

cl ass Redundant inplenents java.lang.Cl oneabl e, Coneable {
int x;

}

This program results in a compile-time error because the namesj ava. | ang. d oneabl e
and C oneabl e refer to the same interface.

Given a (possibly generic) class declaration C<Fy,...,F,> (N = 0, C # Obj ect ), the
direct superinterfaces of the class type C<Fy,...,F,> are the types given in the
i mpl enent s clause of the declaration of C, if ani npl enent s clause is present.

Given ageneric class declaration C<F;,...,Fn> (n > 0), the direct superinterfaces of
the parameterized classtype C<Ty,...,To>, Where T; (1<i<n)isatype, areall types
I <y 6,...,U 6>, wherel <u,,...,U> isadirect superinterface of C<Fy,...,F,>and 6 is
the substitution [ F1: =T4, . .., Fn: =Ty] .

Aninterfacetypel isasuperinterface of classtypecif any of thefollowingistrue:
* | isadirect superinterface of C.

* C has some direct superinterface J for which | is a superinterface, using the
definition of "superinterface of an interface” givenin §9.1.3.

* | isasuperinterface of the direct superclass of C.
A class can have a superinterface in more than one way.
A classissaid to implement al its superinterfaces.

A class may not at the same time be a subtype of two interface types which are
different parameterizations of the same generic interface (89.1.2), or a subtype of
a parameterization of ageneric interface and araw type naming that same generic
interface, or acompile-time error occurs.

This requirement was introduced in order to support translation by type erasure (84.6).

Example 8.1.5-2. Superinterfaces

interface Col orable {
voi d setColor(int color);
int getColor();

}
enum Fini sh { MATTE, GLOSSY }

8.1
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interface Paintable extends Col orable {
voi d set Fi ni sh(Finish finish)
Fi ni sh get Fi ni sh()

}

class Point { int x, y; }

cl ass Col oredPoi nt extends Point inplements Col orable {
int color;
public void setColor(int color) { this.color = color; }
public int getColor() { return color; }

}
cl ass Pai nt edPoi nt extends Col oredPoi nt inplenments Paintable {
Fi ni sh finish
public void setFinish(Finish finish) {
this.finish = finish
}
public Finish getFinish() { return finish; }

}
Here, the relationships are as follows:

¢ Theinterface Pai nt abl e isasuperinterface of class Pai nt edPoi nt .

e The interface Col or abl e is a superinterface of class Col or edPoi nt and of class
Pai nt edPoi nt .

¢ TheinterfacePai nt abl e isasubinterface of theinterface Col or abl e, and Col or abl e
is a superinterface of Pai nt abl e, asdefinedin 8§9.1.3.

The class Pai nt edPoi nt has Col orabl e as a superinterface both because it is a
superinterface of Col or edPoi nt and because it is a superinterface of Pai nt abl e.

Example 8.1.5-3. lllegal Multiple Inheritance of an Interface

interface |1<T> {}
class B inplenments |<Integer> {}
class C extends B inplenents I<String> {}

ClassCcausesacompile-timeerror becauseit attemptsto be asubtype of both| <I nt eger >
and | <String>.

Unlessthe class being declared isabst r act , al theabst ract member methods of
each direct superinterface must beimplemented (§8.4.8.1) either by adeclarationin
this class or by an existing method declaration inherited from the direct superclass
or adirect superinterface, because a class that is not abst ract is not permitted to
have abst ract methods (§8.1.1.1).

Each default method (89.4.3) of a superinterface of the class may optionally be
overridden by amethod in the class; if not, the default method istypically inherited
and its behavior is as specified by its default body.
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It is permitted for a single method declaration in a class to implement methods of
more than one superinterface.

Example 8.1.5-4. Implementing M ethods of a Superinterface

interface Col orable {
voi d setCol or(int color);
int getColor();

}

class Point { int x, y; };

cl ass Col oredPoi nt extends Point inplenments Col orable {
int color;

}

This program causes a compile-time error, because Col or edPoi nt is not an abst r act
class but fails to provide an implementation of methods set Col or and get Col or of the
interface Col or abl e.

In the following program:

interface Fish { int getNunberO Scales(); }
interface Piano { int getNunmberOf Scales(); }
class Tuna inplenments Fish, Piano {
/1 You can tune a piano, but can you tuna fish?
public int getNunberOf Scales() { return 91; }
}

themethod get Number OFf Scal es in class Tuna hasaname, signature, and return type that
matches the method declared in interface Fi sh and also matches the method declared in
interface Pi ano; it is considered to implement both.

On the other hand, in a situation such asthis:

interface Fish { int get Nunber O Scal es(); }
interface StringBass { doubl e get Nunber Of Scal es(); }
class Bass inplenents Fish, StringBass {

/1 This declaration cannot be correct,

/1 no matter what type is used.

public ?? getNunmber Of Scales() { return 91; }
}

it is impossible to declare a method named get Nunber O Scal es whose signature and
return type are compatible with those of both the methods declared in interface Fi sh and
in interface St ri ngBass, because a class cannot have multiple methods with the same
signature and different primitive return types (88.4). Therefore, itisimpossible for asingle
class to implement both interface Fi sh and interface St ri ngBass (88.4.8).
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8.1.6 ClassBody and Member Declarations

A classbody may contain declarations of membersof theclass, that is, fields(88.3),
methods (88.4), classes (88.5), and interfaces (88.5).

A class body may also contain instance initializers (88.6), static initializers (88.7),
and declarations of constructors (88.8) for the class.

ClassBody:
{ {ClassBodyDeclaration} }

ClassBodyDeclaration:
ClassMemberDeclaration
Instancel nitializer
Saticlnitializer
ConstructorDeclaration

ClassMemberDeclaration:
FieldDeclaration
MethodDeclaration
ClassDeclaration
InterfaceDeclaration

The scope and shadowing of a declaration of a member mdeclared in or inherited
by aclasstype cis specified in 86.3 and 86.4.

If Citself isanested class, there may be definitions of the same kind (variable, method, or
type) and name as min enclosing scopes. (The scopes may be blocks, classes, or packages.)
In al such cases, the member mdeclared in or inherited by C shadows (86.4.1) the other
definitions of the same kind and name.

8.2 ClassMembers

The members of aclasstype are all of the following:

» Members inherited from its direct superclass (88.1.4), except in class j ect
which has no direct superclass

* Membersinherited from any direct superinterfaces (§8.1.5)
» Members declared in the body of the class (§8.1.6)
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Members of a class that are declared pri vat e are not inherited by subclasses of
that class.

Only members of a class that are declared pr ot ect ed Or publ i ¢ are inherited by
subclasses declared in a package other than the one in which the classis declared.

Constructors, static initializers, and instance initializers are not members and
therefore are not inherited.

We use the phrase the type of a member to denote:
» For afield, itstype.
» For amethod, an ordered 4-tuple consisting of:

— type parameters. the declarations of any type parameters of the method
member.

— argument types: alist of the types of the arguments to the method member.
— return type: the return type of the method member.

— throws clause: exception types declared in the t hr ows clause of the method
member.

Fields, methods, and member types of a class type may have the same name,
since they are used in different contexts and are disambiguated by different lookup
procedures (86.5). However, thisis discouraged as a matter of style.

Example 8.2-1. Use of ClassMembers

class Point {
int x, vy;
private Point() { reset(); }
Point(int x, int y) { this.x =x; this.y =vy; }
private void reset() { this.x = 0; this.y = 0; }
}
cl ass Col or edPoi nt extends Point {
int color;
void clear() { reset(); } [/ error
}
class Test {
public static void main(String[] args) {
Col oredPoi nt ¢ = new Col oredPoint (0, 0); // error
c.reset(); // error

}

This program causes four compile-time errors.
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One error occurs because Col or edPoi nt has no constructor declared with two i nt
parameters, as requested by the use in mai n. This illustrates the fact that Col or edPoi nt
does not inherit the constructors of its superclass Poi nt .

Another error occurs because Col or edPoi nt declares no constructors, and therefore a
default constructor for it is implicitly declared (88.8.9), and this default constructor is
equivaent to:

Col oredPoint () { super(); }

which invokes the constructor, with no arguments, for the direct superclass of the class
Col or edPoi nt . The error is that the constructor for Poi nt that takes no arguments is
pri vat e, and thereforeisnot accessible outside the class Poi nt , even through asuperclass
constructor invocation (88.8.7).

Two moreerrorsoccur becausethemethodr eset of classPoi nt ispri vat e, and therefore
isnotinherited by classCol or edPoi nt . Themethod invocationsin method cl ear of class
Col or edPoi nt and in method nai n of class Test are therefore not correct.

Example 8.2-2. Inheritance of Class M ember swith Package Access

Consider the example where the poi nt s package declares two compilation units:

package points;
public class Point {
int x, vy;
public void nove(int dx, int dy) { x += dx; y +=dy; }

and:

package points;
public class Point3d extends Point {
int z;
public void nove(int dx, int dy, int dz) {
X += dx; y +=dy; z += dz
}
}

and athird compilation unit, in another package, is:

i mport poi nts. Poi nt 3d;
cl ass Poi nt4d extends Point3d {
int w
public void nove(int dx, int dy, int dz, int dw {
X += dx; y +=dy; z +=dz; w+=dw, // conpile-time errors

}
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Here both classes in the poi nt s package compile. The class Poi nt 3d inherits the fields
x andy of class Poi nt, because it is in the same package as Poi nt . The class Poi nt 4d,
which isin a different package, does not inherit the fields x and y of class Poi nt or the
field z of class Poi nt 3d, and so fails to compile.

A better way to write the third compilation unit would be:

i mport poi nts. Poi nt 3d;
cl ass Poi nt4d extends Point3d {
int w
public void nove(int dx, int dy, int dz, int dw {
super. move(dx, dy, dz); w += dw,
}
}

using the nove method of the superclass Poi nt 3d to process dx, dy, and dz. If Poi nt 4d
iswritten in thisway, it will compile without errors.

Example 8.2-3. Inheritance of publ i ¢ and pr ot ect ed Class Members

Given the class Poi nt :

package points;
public class Point {
public int x, vy;
protected int useCount = O;
static protected int total UseCount = O;
public void nove(int dx, int dy) {
X += dx; y += dy; useCount ++; total UseCount ++;
}
}

the publ i ¢ and pr ot ect ed fields x, y, useCount , and t ot al UseCount areinherited in
all subclasses of Poi nt .

Therefore, thistest program, in another package, can be compiled successfully:

class Test extends points. Point {
public void noveBack(int dx, int dy) {
X -= dx; y -= dy; useCount++; total UseCount ++;

}

Example 8.2-4. Inheritance of pri vat e ClassMembers

class Point {
int x, vy;
void nove(int dx, int dy) {
X += dx; y += dy; total Moves++;

}

private static int total Mves;
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voi d printMves() { Systemout.println(total Moves); }

}
cl ass Point3d extends Point {
int z;
void nove(int dx, int dy, int dz) {
super. move(dx, dy); z += dz; total Moves++; // error
}
}

Here, the class variable t ot al Moves can be used only within the class Poi nt ; it is not
inherited by the subclass Poi nt 3d. A compile-time error occurs because method move of
class Poi nt 3d triesto increment t ot al Moves.

Example 8.2-5. Accessing M ember s of I naccessible Classes

Even though aclassmight not be declared publ i ¢, instances of the classmight be available
at run time to code outside the package in which it is declared by means of a publ i c
superclass or superinterface. Aninstance of the class can be assigned to avariable of such a
publ i ¢ type. Aninvocation of apubl i ¢ method of the object referred to by such avariable
may invoke a method of the class if it implements or overrides a method of the publ i ¢
superclass or superinterface. (In this situation, the method is necessarily declared publ i c,
even though it isdeclared in aclassthat is not publ i c.)

Consider the compilation unit:

package poi nts;
public class Point {
public int x, vy;
public void nove(int dx, int dy) {
X +=dx; y += dy;
}
}

and another compilation unit of another package:

package norePoints;
cl ass Poi nt 3d extends points. Point {
public int z;
public void nove(int dx, int dy, int dz) {
super. nmove(dx, dy); z += dz;
}
public void nove(int dx, int dy) {
nove(dx, dy, 0);
}

}
public class OnePoint {

public static points.Point getOne() {
return new Poi nt3d();

}
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An invocation mor ePoi nt s. OnePoi nt . get One() in yet a third package would return
a Poi nt 3d that can be used as a Poi nt, even though the type Poi nt 3d is not available
outsidethe packagenor ePoi nt s. Thetwo-argument version of method nove could then be
invoked for that object, which is permissible because method nove of Poi nt 3d iSpubl i c
(as it must be, for any method that overrides a publ i ¢ method must itself be publ i c,
precisely so that situations such as this will work out correctly). The fieldsx and y of that
object could also be accessed from such athird package.

Whilethefield z of classPoi nt 3d ispubl i ¢, itisnot possibleto accessthisfield from code
outside the package nor ePoi nt s, given only areference to an instance of class Poi nt 3d
in avariable p of type Poi nt . Thisis because the expression p. z is nhot correct, as p has
type Poi nt and class Poi nt hasno field named z; also, the expression (( Poi nt 3d) p) . z
is not correct, because the class type Poi nt 3d cannot be referred to outside package
nor ePoi nt s.

The declaration of the field z as publ i ¢ is not useless, however. If there were to be, in
package mor ePoi nt s, apubl i ¢ subclass Poi nt 4d of the class Poi nt 3d:

package norePoints;
public class Point4d extends Point3d {
public int w
public void nove(int dx, int dy, int dz, int dw) {
super. nmove(dx, dy, dz); w += dw,
}
}

then class Poi nt 4d would inherit thefield z, which, being publ i ¢, could then be accessed
by code in packages other than nor ePoi nt s, through variables and expressions of the
publ i c type Poi nt 4d.

8.3 Field Declarations

The variables of a class type are introduced by field declarations.

FieldDeclaration:
{FieldModifier} UnannType VariableDeclaratorList ;

VariableDeclaratorList:
VariableDeclarator {, VariableDeclarator}

VariableDeclarator:
VariableDeclaratorld [= Variablelnitializer]

VariableDeclaratorld:
Identifier [ Dims]

8.3

241



8.3 Field Declarations CLASSES

Variablelnitializer:
Expression
Arraylnitializer

UnannType:
UnannPrimitiveType
UnannReferenceType

UnannPrimitiveType:
NumericType
bool ean

UnannReferenceType:
UnannClassOr|nterfaceType
UnannTypeVariable
UnannArrayType

UnannClassOr | nterfaceType:
UnannClassType
UnannlnterfaceType

UnannClassType:
Typeldentifier [ TypeArguments]
PackageName . {Annotation} Typeldentifier [ TypeArguments]
UnannClassOrInterfaceType. {Annotation} Typeldentifier
[ TypeArguments)

UnannlinterfaceType:
UnannClassType

UnannTypeVariable:
Typel dentifier

UnannArrayType:
UnannPrimitiveType Dims
UnannClassOrInterfaceType Dims
UnannTypeVariable Dims

The following production from 8§4.3 is shown here for convenience:

Dims:
{Annctation} [ ] {{Annotation} [ ]}
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Each declarator in a FieldDeclaration declares one field. The Identifier in a
declarator may be used in anameto refer to the field.

More than one field may be declared in a single FieldDeclaration by using more
than one declarator; the FieldModifiers and UnannType apply to all the declarators
in the declaration.

The FieldModifier clause is described in §8.3.1.

The declared type of afield is denoted by UnannType if no bracket pairs appear in
UnannType and VariableDeclarator|d, and is specified by 810.2 otherwise.

The scope and shadowing of afield declaration is specified in §6.3 and §6.4.

It is a compile-time error for the body of a class declaration to declare two fields
with the same name.

If aclass declares afield with a certain name, then the declaration of that field is
said to hide any and all accessible declarations of fields with the same name in
superclasses, and superinterfaces of the class.

In this respect, hiding of fields differs from hiding of methods (88.4.8.3), for there is
no distinction drawn between st ati ¢ and non-st ati ¢ fields in field hiding whereas a
distinction is drawn between st at i ¢ and non-st at i ¢ methods in method hiding.

A hidden field can be accessed by using aqualified name (86.5.6.2) if itisst ati c,
or by using afield access expression that contains the keyword super (815.11.2)
or acast to asuperclass type.

In thisrespect, hiding of fieldsis similar to hiding of methods.

If afield declaration hides the declaration of another field, the two fields need not
have the same type.

A class inherits from its direct superclass and direct superinterfaces al the non-
pri vat e fields of the superclass and superinterfaces that are both accessible (86.6)
to code in the class and not hidden by a declaration in the class.

A privat e field of a superclass might be accessible to a subclass - for example, if
both classes are members of the same class. Nevertheless, apri vat e fieldisnever
inherited by a subclass.

It is possible for a class to inherit more than one field with the same name, either
from its superclass and superinterfaces or from its superinterfaces alone. Such a
situation does not initself cause acompile-time error. However, any attempt within
the body of the class to refer to any such field by its simple name will result in a
compile-time error, because the reference is ambiguous.

8.3
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There might be several paths by which the same field declaration isinherited from
an interface. In such a situation, the field is considered to be inherited only once,
and it may be referred to by its simple name without ambiguity.

A value stored in afield of typef | oat isaways an element of the float value set
(84.2.3); similarly, avalue stored in afield of type doubl e is dways an element
of the double value set. It is not permitted for afield of typefl oat to contain an
element of the float-extended-exponent value set that is not also an element of the
float value set, nor for afield of type doubl e to contain an element of the double-
extended-exponent value set that is not also an element of the double value set.

Example 8.3-1. Multiply Inherited Fields

A class may inherit two or more fields with the same name, either from its superclass and
a superinterface or from two superinterfaces. A compile-time error occurs on any attempt
to refer to any ambiguously inherited field by its smple name. A qualified name or afield
access expression that contains the keyword super (815.11.2) may be used to access such
fields unambiguously. In the program:

interface Frob { float v = 2.0f; }
cl ass SuperTest { int v = 3; }
cl ass Test extends SuperTest inplenents Frob {
public static void main(String[] args) {
new Test (). printV();

void printV() { Systemout.printin(v); }
}

the class Test inherits two fields named v, one from its superclass Super Test and one
from its superinterface Fr ob. Thisin itself is permitted, but a compile-time error occurs
because of the use of the simple name v in method pr i nt V: it cannot be determined which
v isintended.

Thefollowing variation usesthefield accessexpression super . v torefer to thefield named
v declared in class Super Test and uses the qualified name Fr ob. v to refer to the field
named v declared in interface Fr ob:

interface Frob { float v = 2.0f; }
cl ass SuperTest { int v = 3; }
cl ass Test extends SuperTest inplenments Frob {
public static void main(String[] args) {
new Test (). printV();
}
void printV() {
Systemout.println((super.v + Frob.v)/2);
}
}

It compiles and prints:
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Even if two distinct inherited fields have the same type, the same value, and are both
fi nal , any reference to either field by simple name is considered ambiguous and results
in acompile-time error. In the program:

interface Col or { int RED=0, GREEN=1, BLUE=2; }

interface TrafficLight { int RED=0, YELLOM1, GREEN=2; }
class Test inplenents Color, TrafficLight {
public static void main(String[] args) {

Systemout.println(GREEN); // conpile-tine error

System out. printl n(RED); /1 conpile-tine error

}

it is not astonishing that the reference to GREEN should be considered ambiguous, because
classTest inheritstwo different declarations for GREEN with different values. The point of
thisexampleisthat the referenceto REDis also considered ambiguous, because two distinct
declarations are inherited. The fact that the two fields named RED happen to have the same
type and the same unchanging value does not affect this judgment.

Example 8.3-2. Re-inheritance of Fields

If the same field declaration is inherited from an interface by multiple paths, the field is
considered to be inherited only once. It may be referred to by its simple name without
ambiguity. For example, in the code:

interface Col orable {
int RED = Oxff0000, GREEN = 0x00ff00, BLUE = 0x0000f f;
}
interface Paintable extends Col orable {
int MATTE = 0, GLOSSY = 1;
}
class Point { int x, y; }
cl ass Col oredPoi nt extends Point inplenments Col orable {}
cl ass Pai nt edPoi nt extends Col oredPoi nt inplenments Paintable {
int p = RED
}

the fields RED, GREEN, and BLUE are inherited by the class Pai nt edPoi nt both through
itsdirect superclass Col or edPoi nt and through its direct superinterface Pai nt abl e. The
simple names RED, GREEN, and BLUE may nevertheless be used without ambiguity within
the class Pai nt edPoi nt to refer to the fields declared in interface Col or abl e.
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8.3.1 Fidd Modifiers

FieldModifier:
(one of)
Annotation publ i c protected private
staticfinal transient volatile

Therulesfor annotation modifiers on afield declaration are specified in 89.7.4 and
§9.7.5.

Itisacompile-timeerror if the same keyword appears more than once asamadifier
for a field declaration, or if a field declaration has more than one of the access
modifierspubl i c, prot ect ed, and pri vat e (86.6).

If two or more (distinct) field modifiers appear in afield declaration, it is customary, though
not required, that they appear in the order consistent with that shown abovein the production
for FieldModifier.

83.1.1 static Fields

If afield is declared st ati ¢, there exists exactly one incarnation of the field, no
matter how many instances (possibly zero) of the class may eventually be created.
A static field, sometimes caled aclass variable, is incarnated when the class is
initialized (812.4).

A field that isnot declared st at i ¢ (sometimes called anon-st at i ¢ field) iscalled
an instance variable. Whenever anew instance of aclassis created (812.5), a new
variable associated with that instanceis created for every instance variable declared
in that class or any of its superclasses.

Example 8.3.1.1-1. st at i ¢ Fields

class Point {
int x, y, useCount;
Point(int x, int y) { this.x = x; this.y =vy; }
static final Point origin = new Point(0, 0);
}
class Test {
public static void main(String[] args) {
Point p = new Point(1,1);
Point q = new Point(2,2);
p.x = 3;
p.y =3;
p. useCount ++;
p.origin. useCount ++;

Systemout.println("(" + g.x +"," +qg.y +")");
System out. println(qg.useCount);
Systemout.printin(qg.origin == Point.origin);
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System out. println(qg.origin.useCount);
}
This program prints:

(2,2)
0
true
1

showing that changing the fields x, y, and useCount of p does not affect the fields of q,
because these fields are instance variables in distinct objects. In this example, the class
variableori gi n of theclassPoi nt isreferenced both using the classnameasaqualifier, in
Poi nt . ori gi n, and using variables of the class type in field access expressions (8§15.11),
asinp.originandqg. origi n. These two ways of accessing the ori gi n class variable
access the same object, evidenced by the fact that the value of the reference equality
expression (§15.21.3):

g.origin==Point.origin
istrue. Further evidenceis that the incrementation:
p. ori gi n. useCount ++;

causes the value of g. ori gi n. useCount to be 1; this is so because p. ori gi n and
qg. ori gi n refer to the same variable.

Example 8.3.1.1-2. Hiding of Class Variables

class Point {
static int x = 2;
}
cl ass Test extends Point {
static double x = 4.7,
public static void main(String[] args) {
new Test (). printX();

}
void printX() {

Systemout.printin(x + " " + super.Xx);
}

}
This program produces the outpuit:

4.7 2

because the declaration of x in class Test hidesthe definition of x in class Poi nt , so class
Test doesnot inherit thefield x from its superclass Poi nt . Within the declaration of class
Test , the simple name x refersto the field declared within class Test . Codein class Test

8.3
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may refer to thefield x of classPoi nt assuper . x (or, becausex isst ati ¢, asPoi nt . x).
If the declaration of Test . x isdeleted:

class Point {
static int x = 2;
}
class Test extends Point {
public static void main(String[] args) {
new Test (). printX();

}
void printX() {

Systemout.printin(x + " " + super.Xx);
}

}

then the field x of class Poi nt isno longer hidden within class Test ; instead, the simple
name x now refers to the field Poi nt . x. Code in class Test may still refer to that same
field assuper . x. Therefore, the output from this variant programiis:

22

Example 8.3.1.1-3. Hiding of Instance Variables

class Point {
int x = 2;
}
class Test extends Point {
double x = 4.7;
void printBoth() {
Systemout.printin(x + " " + super.Xx);
}
public static void main(String[] args) {
Test sanple = new Test();
sanpl e. printBot h();
Systemout.printin(sanple.x + " " + ((Point)sanple).Xx);

}

This program produces the output:

4.7 2

4.7 2

because the declaration of x in class Test hidesthe definition of x in class Poi nt , so class
Test does not inherit the field x from its superclass Poi nt . It must be noted, however,
that while the field x of class Poi nt is not inherited by class Test, it is nevertheless
implemented by instances of class Test . In other words, every instance of class Test
contains two fields, one of type i nt and one of type doubl e. Both fields bear the name
x, but within the declaration of class Test , the simple name x aways refers to the field
declared within class Test . Code in instance methods of class Test may refer to the
instance variable x of class Poi nt assuper. x.
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Code that uses a field access expression to access field x will access the field named x
in the class indicated by the type of reference expression. Thus, the expression sanpl e. x
accesses adoubl e value, theinstance variable declared in class Test , because the type of
the variable sanpl e is Test , but the expression (( Poi nt) sanpl e) . x accesses an i nt
value, the instance variable declared in class Poi nt , because of the cast to type Poi nt .

If the declaration of x is deleted from class Test , asin the program:

class Point {
static int x = 2;

}

cl ass Test extends Point {
void printBoth() {
Systemout.printin(x + " " + super.Xx);

}
public static void main(String[] args) {
Test sanple = new Test();
sanpl e. printBot h();
Systemout.printin(sanple.x + " " + ((Point)sanple).x);

}

then the field x of class Poi nt is no longer hidden within class Test . Within instance
methodsin the declaration of class Test , the simple namex now refersto thefield declared
within class Poi nt . Codein class Test may still refer to that same field assuper . x. The
expression sanpl e. x still refersto the field x within type Test , but that field is now an
inherited field, and so refers to the field x declared in class Poi nt . The output from this
variant programis:

22
22

83.1.2 final Fields

A field can bedeclared fi nal (84.12.4). Both classand instance variables (st ati ¢
and non-st at i ¢ fields) may be declared fi nal .

A blank final class variable must be definitely assigned by a static initializer of
the classin which it is declared, or a compile-time error occurs (88.7, §16.8).

A blank final instance variable must be definitely assigned and moreover not
definitely unassigned at the end of every constructor of the class in which it is
declared, or acompile-time error occurs (88.8, 816.9).

8.3.1.3 transient Fieds

Variables may be marked transi ent to indicate that they are not part of the
persistent state of an object.
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Example 8.3.1.3-1. Persistence of t ransi ent Fields

If an instance of the class Poi nt :

class Point {
int x, vy;
transient float rho, theta;

}

were saved to persistent storage by a system service, then only thefieldsx and y would be
saved. This specification does not specify details of such services; see the specification of
java.io. Serializabl e for an example of such aservice.

83.1.4 volatile Fields

The Java programming language allows threads to access shared variables (817.1).
As arule, to ensure that shared variables are consistently and reliably updated, a
thread should ensure that it has exclusive use of such variables by obtaining alock
that, conventionally, enforces mutual exclusion for those shared variables.

The Java programming language provides a second mechanism, vol ati | e fields,
that is more convenient than locking for some purposes.

A field may be declared vol at i | e, in which case the Java Memory Model ensures
that al threads see a consistent value for the variable (817.4).

It isacompile-time error if afi nal variableisalso declared vol ati | e.

Example 8.3.1.4-1. vol ati | e Fields

If, in the following example, one thread repeatedly callsthe method one (but no more than
I nt eger . MAX_VALUE timesin al), and another thread repeatedly calls the method t wo:

class Test {
static int i =0, j = 0;
static void one() { i++ j++ }
static void two() {
Systemout.println("i=" +i +" j=" +]j);
}
}

then method t wo could occasionally print avalue for j that is greater than the value of i ,
because the exampl e includes no synchronization and, under the rules explained in §17.4,
the shared values of i andj might be updated out of order.

One way to prevent this out-or-order behavior would be to declare methods one and t wo
to be synchr oni zed (§8.4.3.6):

class Test {
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static int i =0, j = 0;

static synchroni zed void one() { i++ j++ }

static synchroni zed void two() {
Systemout.println("i=" +1i + " j=" +]j);

}

}

This prevents method one and method two from being executed concurrently, and
furthermore guarantees that the shared values of i and j are both updated before method
one returns. Therefore method t wo never observes a value for j greater than that for i ;
indeed, it always observes the same valuefori andj .

Another approach would be to declarei andj tobevol atil e:

class Test {
static volatile int i =0, j = 0;
static void one() { i++ j++ }
static void two() {
Systemout.println("i=" +1i + " j=" +]j);
}
}

This allows method one and method t wo to be executed concurrently, but guarantees that
accesses to the shared values for i andj occur exactly as many times, and in exactly the
same order, as they appear to occur during execution of the program text by each thread.
Therefore, the shared value for j is never greater than that for i , because each update to
i must be reflected in the shared value for i before the updatetoj occurs. It is possible,
however, that any given invocation of method t wo might observeavaueforj thatismuch
greater than the value observed for i , because method one might be executed many times
between the moment when method t wo fetchesthevalueof i and the moment when method
two fetchesthevalueof j .

See 817.4 for more discussion and examples.

8.3.2 Fidd Initialization

If adeclarator in a field declaration has a variable initializer, then the declarator
has the semantics of an assignment (815.26) to the declared variable.

If the declarator is for aclass variable (that is, ast at i ¢ field), then the following
rules apply to itsinitializer:

* Itisacompile-time error if areference by simple name to any instance variable
occursin theinitializer.

* Itisacompile-time error if the keyword t hi s (815.8.3) or the keyword super
(815.11.2, 815.12) occurs in theinitializer.

e At run time, the initializer is evaluated and the assignment performed exactly
once, when the classisinitialized (§812.4.2).
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Notethat st at i ¢ fieldsthat are constant variables (84.12.4) areinitialized before
other st ati c fields(812.4.2). Thisalso appliesininterfaces (89.3.1). When such
fields are referenced by simple name, they will never be observed to have their
default initial values (84.12.5).

If the declarator isfor aninstance variable (that is, afield that isnot st at i ¢), then
the following rules apply to itsinitializer:

The initializer may refer by simple name to any class variable declared in or
inherited by the class, even one whose declaration occurs to the right of the
initializer (83.5).

Theinitializer may refer to the current object using the keyword t hi s (815.8.3)
or the keyword super (815.11.2, §15.12).

Atruntime, theinitializer is evaluated and the assignment performed each time
an instance of the classis created (812.5).

References from variable initializers to fields that may not yet be initialized
are subject to additional restrictions, as specified in §8.3.3 and 816 (Definite
Assignment).

Exception checking for a variable initializer in a field declaration is specified in
§11.2.3.

Variable initializers are also used in local variable declaration statements (814.4), where
the initializer is evaluated and the assignment performed each time the local variable
declaration statement is executed.

Example 8.3.2-1. Field I nitialization

class Point {
int x =1, y = 5;

class Test {
public static void main(String[] args) {
Point p = new Point();
Systemout.printin(p.x +", " + p.y);
}
This program produces the output:

1, 5

because the assignmentsto x and y occur whenever anew Poi nt is created.



CLASSES Field Declarations

Example 8.3.2-2. Forward Referenceto a Class Variable

class Test {
float f = j;
static int j = 1;

}

This program compileswithout error; it initializesj to 1 when classTest isinitialized, and
initializesf tothecurrent value of j every time aninstance of class Test is created.

8.3.3 Restrictionson Field Referencesin Initializers

References to afield are sometimes restricted, even through the field is in scope.
Thefollowing rules constrain forward referencesto afield (where the use textually
precedes the field declaration) as well as self-reference (where the field isused in
itsown initializer).

For areference by ssmple nameto aclass variable declared in class or interface
C, itisacompile-time error if:

The reference appears either in a class variable initializer of C or in a static
initializer of ¢ (88.7); and

The reference appears either in the initiaizer of f's own declarator or at a point
to the left of f 's declarator; and

Thereferenceis not on the left hand side of an assignment expression (§15.26);
and

Theinnermost class or interface enclosing the referenceis C.

For areference by simple name to an instance variable f declared in classC, it is
acompile-time error if:

The reference appears either in an instance variable initializer of c or in an
instance initializer of c (88.6); and

The reference appearsin the initializer of f 's own declarator or at a point to the
left of f's declarator; and

The referenceis not on the left hand side of an assignment expression (§15.26);
and

The innermost class enclosing the referenceisc.

Example 8.3.3-1. Restrictions on Field References

A compile-time error occurs for this program:

8.3
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class Testl {
int i =j; /] conpile-time error:
/1 incorrect forward reference

int j 1;

}
whereas the following program compiles without error:

class Test2 {
Test2() { k = 2; }
int j 1;
int i B
int k;

}

even though the constructor for Test 2 (88.8) refers to the field k that is declared three
lines | ater.

The restrictions above are designed to catch, at compile time, circular or otherwise
malformed initializations. Thus, both:

class Z {
static int i =] + 2;
static int j = 4;

}

and:

class Z {
static { i =] + 2; }
static int i, j;
static { j = 4; }

}

result in compile-time errors. Accesses by methods are not checked in thisway, so:

class Z {
static int peek() { returnj; }
static int i = peek();
static int j = 1;

}

class Test {
public static void main(String[] args) {
Systemout.printin(Zi);

}
}
produces the output:
0
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because the variable initializer for i uses the class method peek to access the value of the
variablej beforej hasbeen initialized by its variableinitiaizer, at which point it still has
its default value (84.12.5).

A more elaborate exampleis:

cl ass UseBef oreDecl aration {

}

static {

x = 100;
/1 ok - assignnent
int y=x+1;
/1l error - read before declaration
int v.=x=3;
/1 ok - x at left hand side of assignnment
int z = UseBeforeDeclaration.x * 2;
/1 ok - not accessed via sinple nane

Obj ect o = new hject() {
void foo() { x++ }
/1l ok - occurs in a different class
{ x++; }
/1 ok - occurs in a different class

b
j = 200;

/1 ok - assignnent
=i+ L

/'l error - right hand side reads before declaration
int k=j =j +1;

/1 error - illegal forward reference to j
int n=j = 300;
/1l ok - j at left hand side of assignnent

int h =j++

/'l error - read before declaration
int | =this.j * 3;

/1 ok - not accessed via sinple nane

Object o = new Object() {
void foo(){ j++ }
/Il ok - occurs in a different class
{i=i+11
/1l ok - occurs in a different class

3

int w=x = 3;

/1 ok - x at left hand side of assignnent

int p=x;

/1l ok - instance initializers may access static fields

static int u =

8.3
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(new Qbject() { int bar() { return x; } }).bar();
/1 ok - occurs in a different class

static int x;

int m=j = 4
/Il ok - j at left hand side of assignment
int o=

(new Object() { int bar() { returnj; } }).bar();
/Il ok - occurs in a different class
int j;

8.4 Method Declarations

A method declares executable code that can be invoked, passing a fixed nhumber
of values as arguments.

MethodDeclaration:
{MethodModifier} MethodHeader MethodBody

MethodHeader:
Result MethodDeclarator [ Throws]
TypeParameters { Annotation} Result MethodDeclarator [ Throws]

MethodDeclarator:
Identifier ( [ReceiverParameter , | [FormalParameterList] ) [Dimg]

Receiver Parameter:
{Annotation} UnannType [Identifier . ] thi s

The following production from 8§4.3 is shown here for convenience:

Dims:
{Annotation} [ ] {{Annotation} [ ]}

The Formal Parameter List clauseisdescribed in §8.4.1, the MethodModifier clause
in 88.4.3, the TypeParameters clause in 8§8.4.4, the Result clause in §8.4.5, the
Throws clause in §88.4.6, and the MethodBody in §8.4.7.

The Identifier in aMethodDeclarator may be used in anameto refer to the method
(86.5.7.1, §15.12).

The scope and shadowing of a method declaration is specified in §6.3 and §6.4.
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Thereceiver parameter isan optional syntactic devicefor aninstance method or an
inner class's constructor. For an instance method, the receiver parameter represents
the object for which the method is invoked. For an inner class's constructor, the
receiver parameter represents the immediately enclosing instance of the newly
constructed object. In both cases, the receiver parameter exists solely to allow the
type of the represented object to be denoted in source code, so that the type may
be annotated (89.7.4). The receiver parameter is not a formal parameter; more
precisely, it isnot a declaration of any kind of variable (84.12.3), it is never bound
to any value passed as an argument in a method invocation expression or class
instance creation expression, and it has no effect whatsoever at run time.

A receiver parameter may appear either in the MethodDeclarator of an instance
method or in the ConstructorDeclarator of a constructor of an inner class where
the inner class is not declared in a static context (88.1.3). If areceiver parameter
appears in any other kind of method or constructor, then a compile-time error
OCCUrsS.

The type and name of areceiver parameter are constrained as follows:

* In an instance method, the type of the receiver parameter must be the class or
interfacein which the method isdeclared, and the name of the receiver parameter
must bet hi s; otherwise, a compile-time error occurs.

* In an inner class's constructor, the type of the receiver parameter must be the
classor interfacewhichistheimmediately enclosing type declaration of theinner
class, and the name of the receiver parameter must be Identifier . thi s where
Identifier is the simple name of the class or interface which is the immediately
enclosing type declaration of the inner class; otherwise, a compile-time error
occurs.

Itisacompile-time error for the body of a class declaration to declare as members
two methods with override-equivalent signatures (88.4.2).

The declaration of a method that returns an array is alowed to place some or al
of the bracket pairs that denote the array type after the formal parameter list. This
syntax is supported for compatibility with early versions of the Java programming
language. It isvery strongly recommended that this syntax isnot used in new code.

8.4.1 Formal Parameters

The formal parameters of a method or constructor, if any, are specified by a list
of comma-separated parameter specifiers. Each parameter specifier consists of a
type (optionally preceded by the fi nal modifier and/or one or more annotations)
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and an identifier (optionally followed by brackets) that specifies the name of the
parameter.

If a method or constructor has no formal parameters, and no receiver parameter,
then an empty pair of parentheses appears in the declaration of the method or
constructor.

Formal ParameterList:
Formal Parameter {, FormalParameter}

Formal Parameter:
{VariableModifier} UnannType VariableDeclarator|d
VariableArityParameter

VariableArityParameter:
{VariableModifier} UnannType {Annotation} . . . Identifier

VariableModifier:
Annotation
final

The following productions from §8.3 and §4.3 are shown here for convenience:

VariableDeclaratorld:
Identifier [Dims]
Dims:
{Annotation} [ ] {{Annotation} [ ]}
A formal parameter of amethod or constructor may be avariable arity parameter,
indicated by an ellipsis following the type. At most one variable arity parameter
is permitted for a method or constructor. It is a compile-time error if a variable
arity parameter appears anywhere in the list of parameter specifiers except the last
position.

In the grammar for VariableArityParameter, note that the ellipsis (. . . ) is a token unto
itself (83.11). It ispossibleto put whitespace between it and the type, but thisisdiscouraged
as amatter of style.

If the last formal parameter is a variable arity parameter, the method is a variable
arity method. Otherwise, it is afixed arity method.

The rules for annotation modifiers on a formal parameter declaration and on a
receiver parameter are specifiedin 89.7.4 and §89.7.5.
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Itisacompile-timeerrorif fi nal appearsmorethan onceasamodifier for aformal
parameter declaration.

The scope and shadowing of aformal parameter is specified in §6.3 and 86.4.

It is a compile-time error for a method or constructor to declare two formal
parameters with the same name. (That is, their declarations mention the same
Identifier.)

It is a compile-time error if aformal parameter that is declared fi nal isassigned
to within the body of the method or constructor.

The declared type of aformal parameter depends on whether it is a variable arity
parameter:

 If the forma parameter is not a variable arity parameter, then the declared
type is denoted by UnannType if no bracket pairs appear in UnannType and
VariableDeclaratorld, and specified by §10.2 otherwise.

* If theformal parameter isavariable arity parameter, then the declared typeisan
array type specified by §10.2.

If the declared type of a variable arity parameter has a non-reifiable element
type (84.7), then a compile-time unchecked warning occurs for the declaration
of the variable arity method, unless the method is annotated with @af evar ar gs
(89.6.4.7) or the warning is suppressed by @uppr ess\War ni ngs (89.6.4.5).

When the method or constructor is invoked (815.12), the values of the actua
argument expressions initialize newly created parameter variables, each of the
declared type, before execution of the body of the method or constructor. The
Identifier that appears in the Formal Parameter may be used as a simple name in
the body of the method or constructor to refer to the formal parameter.

Invocations of a variable arity method may contain more actual argument
expressions than formal parameters. All the actual argument expressions that do
not correspond to the formal parameters preceding the variable arity parameter will
be evaluated and the results stored into an array that will be passed to the method
invocation (815.12.4.2).

A method's or constructor's formal parameter of type f | oat always contains an
element of the float value set (84.2.3); similarly, amethod's or constructor's formal
parameter of type doubl e aways contains an element of the double value set. It
is not permitted for a method's or constructor's formal parameter of type 1 oat
to contain an element of the float-extended-exponent value set that is not also an
element of the float value set, nor for amethod's or constructor's formal parameter
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of type doubl e to contain an element of the double-extended-exponent value set
that is not also an element of the double value set.

Where an actual argument expression corresponding to a parameter variable is
not FP-strict (815.4), evaluation of that actual argument expression is permitted to
use intermediate values drawn from the appropriate extended-exponent val ue sets.
Prior to being stored in the parameter variable, the result of such an expression
is mapped to the nearest value in the corresponding standard value set by being
subjected to invocation conversion (85.3).

Here are some examples of receiver parameters in instance methods and inner classes
constructors:

class Test {
Test(/* ?2? 22 *1) {}
/1 No receiver paraneter is permitted in the constructor of
/1 a top level class, as there is no conceivable type or nane.

void m(Test this) {}
/1 OK: receiver paraneter in an instance nethod

static void n(Test this) {}
/1 Illegal: receiver paraneter in a static nethod

class A {
A(Test Test.this) {}
/1 OK: the receiver paranmeter represents the instance
/1 of Test which i mediately encloses the instance
/1 of A being constructed.

void n(A this) {}
/1 OK: the receiver paraneter represents the instance
/1 of A for which A n() is invoked.

class B {
B(Test.A A this) {}
/1l OK: the receiver paranmeter represents the instance
/1 of A which inmmediately encl oses the instance of B
/1 being constructed.

void nm(Test.A B this) {}
/1 OK: the receiver paraneter represents the instance
/1 of B for which B.n() is invoked.

}

B's constructor and instance method show that the type of the receiver parameter may be
denoted with a qualified TypeName like any other type; but that the name of the receiver
parameter in an inner class's constructor must use the simple name of the enclosing class.
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8.4.2 Method Signature

Two methods or constructors, Mand N, have the same signature if they have the
same name, the same type parameters (if any) (88.4.4), and, after adapting the
formal parameter types of Nto the type parameters of M the same formal parameter

types.

The signature of a method m is a subsignature of the signature of a method m if
either:

* m hasthe same signature as m, or
« the signature of m isthe same as the erasure (84.6) of the signature of m.

Two method signatures m and mpy are override-equivalent iff either m is a
subsignature of m, or mp is a subsignature of m.

It is a compile-time error to declare two methods with override-equivalent
signaturesin aclass.

Example 8.4.2-1. Override-Equivalent Signatures

class Point {

int x, vy;

abstract void nove(int dx, int dy)

void nove(int dx, int dy) { x += dx; y += dy; }
}

This program causes a compile-time error because it declares two nove methods with the
same (and hence, override-equivalent) signature. This is an error even though one of the
declarationsisabst ract .

The notion of subsignature is designed to express a relationship between two methods
whose signatures are not identical, but in which one may override the other. Specifically,
it allows a method whose signature does not use generic types to override any generified
version of that method. This is important so that library designers may freely generify
methods independently of clients that define subclasses or subinterfaces of the library.

Consider the example:

class Col I ecti onConverter {
List toList(Collectionc) {...}

}

class Overrider extends Coll ecti onConverter {
List toList(Collectionc) {...}

}

Now, assume this code was written before the introduction of generics, and now the author
of classCol | ecti onConvert er decidesto generify the code, thus:
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class Col |l ecti onConverter {
<T> List<T> tolList(Collection<T>rc) {...}
}

Without special dispensation, Overrider.toList would no longer override
Col | ectionConverter.toList. Instead, the code would be illegal. This would
significantly inhibit the use of generics, since library writers would hesitate to migrate
existing code.

8.4.3 Method Modifiers

MethodModifier:
(one of)
Annotation publ i c protected private
abstract static final synchroni zed nativestrictfp

The rules for annotation modifiers on a method declaration are specified in §9.7.4
and §9.7.5.

Itisacompile-timeerror if the same keyword appears more than once asamadifier
for amethod declaration, or if amethod declaration has more than one of the access
modifierspubl i c, pr ot ect ed, and pri vat e (86.6).

It is a compile-time error if a method declaration that contains the keyword
abst ract aso containsany one of thekeywordspri vat e, stati c,final,native,
strictfp, Or synchroni zed.

Itisacompile-timeerror if amethod declaration that containsthe keyword nat i ve
also containsstri ct fp.

If two or more (distinct) method modifiers appear in amethod declaration, it is customary,
though not required, that they appear in the order consistent with that shown above in the
production for MethodModifier.

84.3.1 abstract Methods

An abst ract method declaration introduces the method as a member, providing
its signature (88.4.2), result (88.4.5), and t hr ows clause if any (§88.4.6), but does
not provide an implementation (88.4.7). A method that is not abst ract may be
referred to as a concrete method.

Thedeclaration of anabst ract method mmust appear directly within an abst r act
class (call it A) unless it occurs within an enum declaration (88.9); otherwise, a
compile-time error occurs.
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Every subclassof Athatisnot abst r act (88.1.1.1) must provide animplementation
for m or acompile-time error occurs.

An abstract class can override an abstract method by providing another
abst ract method declaration.

This can provide a place to put a documentation comment, to refine the return type, or to
declare that the set of checked exceptions that can be thrown by that method, when it is
implemented by its subclasses, isto be more limited.

An instance method that is not abstract can be overridden by an abstract
method.

Example 8.4.3.1-1. Abstract/Abstract Method Overriding

cl ass Buf ferEnpty extends Exception {
Buf f er Enpty() { super(); }
Buf ferEnpty(String s) { super(s); }

}

class BufferError extends Exception {
BufferError() { super(); }
BufferError(String s) { super(s); }

}

interface Buffer {
char get() throws BufferEnpty, BufferError;

}

abstract class InfiniteBuffer inplenents Buffer {
public abstract char get() throws BufferError;

}

The overriding declaration of method get in class I nfi ni t eBuf f er states that method
get in any subclass of I nfiniteBuffer never throws a BufferEnpty exception,
putatively because it generates the data in the buffer, and thus can never run out of data.

Example 8.4.3.1-2. Abstract/Non-Abstract Overriding

We can declare an abstract class Poi nt that requires its subclasses to implement
toString if they are to be complete, instantiable classes:

abstract class Point {

int x, vy;

public abstract String toString();
}

Thisabst ract declaration of t oSt ri ng overridesthe non-abst r act t oSt ri ng method
of class vj ect . (Class Obj ect isthe implicit direct superclass of class Poi nt .) Adding
the code:

cl ass Col oredPoi nt extends Point {
int color;
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public String toString() {
return super.toString() + ": color " + color; [/ error

}
}

results in a compile-time error because the invocation super.toString() refers to
method t oSt ri ng in class Poi nt , which is abst r act and therefore cannot be invoked.
Methodt oSt ri ng of class Obj ect can be made available to class Col or edPoi nt only if
class Poi nt explicitly makesit available through some other method, asiin:

abstract class Point {
int x, vy;
public abstract String toString();
protected String objString() { return super.toString(); }

cl ass Col oredPoi nt extends Point {
int color;
public String toString() {
return obj String() + ": color " + color; // correct

}
}

8.4.3.2 static Methods
A method that is declared st at i ¢ iscalled aclass method.

It is a compile-time error to use the name of atype parameter of any surrounding
declaration in the header or body of a class method.

A class method is aways invoked without reference to a particular object. Itisa
compile-time error to attempt to refer to the current object using the keywordt hi s
(815.8.3) or the keyword super (815.11.2).

A method that is not declared st at i ¢ iscalled an instance method, and sometimes
caled anon-st at i ¢ method.

An instance method is always invoked with respect to an object, which becomes
the current object to which the keywordst hi s and super refer during execution
of the method body.

8.4.3.3 final Methods
A method can bedeclared i nal to prevent subclassesfrom overriding or hidingit.

It isacompile-time error to attempt to override or hide afi nal method.

A private method and al methods declared immediately within afinal class
(88.1.1.2) behave asiif they arefi nal , sinceit isimpossible to override them.
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At run time, a machine-code generator or optimizer can "inline" the body of a fi nal
method, replacing an invocation of the method with the code in its body. The inlining
process must preserve the semantics of the method invocation. In particular, if the target of
an instance method invocation isnul |, then aNul | Poi nt er Except i on must be thrown
evenif themethodisinlined. A Javacompiler must ensure that the exception will bethrown
at the correct point, so that the actual arguments to the method will be seen to have been
evaluated in the correct order prior to the method invocation.

Consider the example:

final class Point {
int x, vy;
void nove(int dx, int dy) { x += dx; y += dy; }
}
class Test {
public static void main(String[] args) {
Point[] p = new Point[100];
for (int i =0; i < p.length; i++) {
p[i] = new Point();
p[i].move(i, p.length-1-i);

}
}
}
Inlining the method nove of class Poi nt in method mai n would transform the f or loop
to the form:
for (int i =0; i < p.length; i++) {

p[i] = new Point();
Point pi = p[il];
int j = p.length-1-i;
pi.x +=1i;
pi.y +=j;

}

The loop might then be subject to further optimizations.

Such inlining cannot be done at compile time unless it can be guaranteed that Test and
Poi nt will always be recompiled together, so that whenever Poi nt - and specifically its
nmove method - changes, the code for Test . mai n will also be updated.

8.4.3.4 native Methods

A method that is nati ve is implemented in platform-dependent code, typically
written in another programming language such as C. The body of anat i ve method
isgiven as asemicolon only, indicating that the implementation is omitted, instead
of ablock (88.4.7).

For example, the class RandomAccessFi | e of the package j ava. i o might declare the
following nat i ve methods:

265



8.4

266

Method Declarations CLASSES

package java.io;
public class RandomAccessFil e
i mpl enents Dat aCut put, Datal nput {

public native void open(String nane, bool ean witeable)
throws | OExcepti on;

public native int readBytes(byte[] b, int off, int |len)
throws | OExcepti on;

public native void witeBytes(byte[] b, int off, int |en)
throws | OExcepti on;

public native long getFilePointer() throws | OException;

public native void seek(long pos) throws | OException;

public native long | ength() throws | CExcepti on;

public native void close() throws | OException;

8.4.35 strictfp Methods

The effect of the stri ct f p modifier isto make al f1 oat or doubl e expressions
within the method body be explicitly FP-strict (§15.4).

8.4.3.6 synchroni zed Methods
A synchroni zed method acquires a monitor (817.1) before it executes.

For aclass (st at i ¢) method, the monitor associated with the d ass object for the
method's class is used.

For an instance method, the monitor associated witht hi s (the object for which the
method was invoked) is used.

Example 8.4.3.6-1. synchr oni zed Monitors
These are the same monitors that can be used by the synchr oni zed statement (814.19).
Thus, the code:

class Test {
int count;
synchroni zed void bump() {
count ++;
}
static int classCount;
static synchroni zed void classBunp() {
cl assCount ++;
}
}

has exactly the same effect as:
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cl ass BunpTest {
int count;

void bump() {
synchroni zed (this) { count++; }
}

static int classCount;
static void classBunmp() {
try {
synchroni zed (C ass. forNanme("BunpTest")) {
cl assCount ++;

} catch (d assNot FoundException e) {}

}
Example 8.4.3.6-2. synchr oni zed Methods

public class Box {

private Object boxContents;

public synchroni zed Object get() {
Obj ect contents = boxContents;
boxContents = nul | ;
return contents;

}

publ i c synchroni zed bool ean put (Object contents) {
if (boxContents != null) return fal se;
boxContents = contents;
return true;

}

This program defines a class which is designed for concurrent use. Each instance of the
class Box has an instance variable boxCont ent s that can hold a reference to any object.
Y ou can put an object in aBox by invoking put , which returnsf al se if the box is aready
full. You can get something out of a Box by invoking get , which returns a null reference
if the box is empty.

If put and get were not synchroni zed, and two threads were executing methods for
the same instance of Box at the same time, then the code could mishehave. It might, for
example, losetrack of an object because two invocationsto put occurred at the sametime.

84.4 Generic Methods

A method is generic if it declares one or more type variables (84.4).

These type variables are known as the type parameters of the method. The form of
the type parameter section of a generic method is identical to the type parameter
section of ageneric class (88.1.2).

A generic method declaration defines a set of methods, one for each possible
invocation of the type parameter section by type arguments. Type arguments may
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not need to be provided explicitly when a generic method is invoked, as they can
often be inferred (818 (Type Inference)).

The scope and shadowing of a method's type parameter is specified in 86.3.

Two methods or constructors Mmand N have the same type parametersif both of the
following aretrue:

» Mand N have same number of type parameters (possibly zero).

* Wherea, ..., A, arethetype parameters of Mand By, ..., B, arethetype parameters
of N, let =[B;:=Ay, ..., By:=A,]. Then, for al i (1 <i < n), the bound of A isthe
same type as 6 applied to the bound of B; .

Where two methods or constructors Mand N have the same type parameters, atype
mentioned in N can be adapted to the type parameter s of Mby applying 6, as defined
above, to the type.

845 Method Result

Theresult of amethod declaration either declares the type of value that the method
returns (the return type), or usesthe keyword voi d to indicate that the method does
not return avalue.

Resullt:
UnannType
voi d

If theresult isnot voi d, then the return type of amethod is denoted by UnannType
if no bracket pairs appear after the formal parameter list, and is specified by §10.2
otherwise.

Return types may vary among methods that override each other if the return types
are reference types. The notion of return-type-substitutability supports covariant
returns, that is, the specialization of the return type to a subtype.

A method declaration d; with return typeR; isreturn-type-substitutable for another
method d, with return type R, iff any of the following istrue:

e |f Ry iSvoidthen R, isvoi d.

 If Ry isaprimitivetypethen R, isidentical to R;.
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 If R, isareference type then one of the following istrue:
— Ry, adapted to the type parameters of d, (88.4.4), is a subtype of R,.
— Ry can be converted to a subtype of R, by unchecked conversion (85.1.9).

— d; does not have the same signature as d, (88.4.2), and R; = |Ry|.

An unchecked conversion is allowed in the definition, despite being unsound, as a specia
allowance to allow smooth migration from non-generic to generic code. If an unchecked
conversion is used to determine that R, is return-type-substitutable for R;, then R, is
necessarily not a subtype of R, and the rules for overriding (88.4.8.3, §9.4.1) will require
a compile-time unchecked warning.

84.6 Method Throws

A t hrows clauseis used to denote any checked exception classes (811.1.1) that the
statementsin amethod or constructor body can throw (811.2.2).

Throws;
t hr ons ExceptionTypeL.ist

ExceptionTypeList:
ExceptionType {, ExceptionType}

ExceptionType:
ClassType
TypeVariable

It isacompile-time error if an ExceptionType mentioned in at hr ows clause is not
asubtype (84.10) of Thr owabl e.

Type variables are allowed in at hr ows clause even though they are not allowed
inacat ch clause (814.20).

It is permitted but not required to mention unchecked exception classes (811.1.1)
inathrows clause.

Therelationship between at hr ows clause and the exception checking for amethod
or constructor body is specified in §11.2.3.

Essentially, for each checked exception that can result from execution of the body of a
method or constructor, acompile-time error occurs unlessits exception type or a supertype
of its exception type is mentioned in at hr ows clause in the declaration of the method or
constructor.
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The requirement to declare checked exceptions allows a Java compiler to ensure that code
for handling such error conditions has been included. Methods or constructors that fail to
handle exceptional conditions thrown as checked exceptions in their bodies will normally
cause compile-time errorsif they lack proper exception typesin their t hr ows clauses. The
Javaprogramming language thus encourages aprogramming stylewhererareand otherwise
truly exceptional conditions are documented in thisway.

The relationship between thet hr ows clause of amethod and thet hr ows clauses of
overridden or hidden methods is specified in §8.4.8.3.

Example 8.4.6-1. Type Variables as Thrown Exception Types

import java.io.Fil eNot FoundExcepti on;
interface Privil egedExcepti onActi on<E extends Exception> {
void run() throws E;
}
cl ass AccessController {
public static <E extends Exception>
Obj ect doPrivil eged(Privil egedExcepti onActi on<E> action) throws E {
action.run();
return "success";
}
}

class Test {
public static void main(String[] args) {

try {
AccessControl | er. doPrivil eged(
new Privil egedExcepti onActi on<Fi | eNot FoundExcepti on>() {
public void run() throws FileNot FoundException {
/1 ... delete a file ...

}
1)
} catch (Fil eNot FoundException f) { /* Do sonething */ }

8.4.7 Method Body

A method body is either a block of code that implements the method or simply a
semicolon, indicating the lack of an implementation.

MethodBody:
Block

The body of a method must be a semicolon if the method isabstract or native
(88.4.3.1, 88.4.3.4). More precisely:
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* Itisacompile-time error if a method declaration is either abstract or native
and has a block for its body.

* Itisacompile-timeerror if amethod declaration isneither abst r act nor nati ve
and has a semicolon for its body.

If animplementation isto be provided for amethod declared voi d, but the implementation
reguires no executable code, the method body should be written as a block that contains
no statements: "{ }".

Therulesfor r et ur n statementsin a method body are specified in §14.17.

If a method is declared to have a return type (88.4.5), then a compile-time error
occursif the body of the method can complete normally (814.1).

In other words, a method with areturn type must return only by using ar et ur n statement
that provides a value return; the method is not allowed to "drop off the end of its body".
See §14.17 for the precise rules about r et ur n statements in a method body.

It is possible for a method to have a return type and yet contain no r et ur n statements.
Hereis one example:

class DizzyDean {
int pitch() { throw new Runti neException("90 mph?!"); }
}

8.4.8 Inheritance, Overriding, and Hiding

A class cinherits from its direct superclass al concrete methods m (both st ati ¢
and instance) of the superclass for which al of the following are true:

» misamember of the direct superclass of C.

* miSpublic, protected, or declared with package access in the same package
ascC.

» No method declared in € has a signature that is a subsignature (88.4.2) of the
signature of m

A classcinheritsfrom itsdirect superclass and direct superinterfacesall abst r act
and default (89.4) methods mfor which all of the following are true:

» misamember of the direct superclass or adirect superinterface, D, of C.

* mispublic, protected, or declared with package access in the same package
ascC.

8.4

271



8.4 Method Declarations CLASSES

» No method declared in C has a signature that is a subsignature (88.4.2) of the
signature of m

» No concrete method inherited by ¢ fromits direct superclass has a signature that
is asubsignature of the signature of m

» There exists no method m that is a member of the direct superclass or a direct
superinterface, D, of c(mdistinct from m, Ddistinct from D), such that m overrides
from D' (88.4.8.1, §9.4.1.1) the declaration of the method m

A class does not inherit pri vat e or st at i ¢ methods from its superinterfaces.

Note that methods are overridden or hidden on a signature-by-signature basis. If, for
example, aclassdeclarestwo publ i ¢ methodswith the same name (§8.4.9), and asubclass
overrides one of them, the subclass still inherits the other method.

Example 8.4.8-1. Inheritance

interface 11 {
int foo();

}

interface 12 {
int foo();

}

abstract class Test inplements 11, 12 {}

Here, theabst r act classTest inheritstheabst ract method f oo frominterface | 1 and
also the abst ract method f oo from interface | 2. The key question in determining the
inheritance of f oo from | 1 is: does the method f oo in | 2 override "from | 2" (89.4.1.1)
the method f oo in1 1? No, because | 1 and | 2 are not subinterfaces of each other. Thus,
from the viewpoint of class Test , the inheritance of f oo from I 1 is unfettered; similarly
for the inheritance of f oo from 1 2. Per 88.4.8.4, class Test can inherit both f oo methods;
obviously it must be declared abst r act, or else override both abst ract f oo methods
with a concrete method.

Note that it is possible for an inherited concrete method to prevent the inheritance of an
abst ract or default method. (The concrete method will overridetheabst r act or default
method "from C", per §8.4.8.1 and §9.4.1.1.) Also, it is possible for one supertype method
to prevent the inheritance of another supertype method if the former "aready" overrides
the latter - this is the same as the rule for interfaces (§89.4.1), and prevents conflicts in
which multiple default methods are inherited and one implementation is clearly meant to
supersede the other.

8.4.8.1 Overriding (by Instance Methods)

An instance method m declared in or inherited by class C, overrides from c another
method m, declared in class A, iff all of the following are true:
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e Cisasubclass of A.

c does not inherit m.
» The signature of m is a subsignature (88.4.2) of the signature of m.

One of the following istrue:
— myiSpublic.
— miSprotect ed.

— my is declared with package access in the same package as C, and either C
declares me or my isamember of the direct superclass of C.

— my is declared with package access and m: overrides my from some superclass
of C.

— m is declared with package access and m: overrides a method m from € (m
distinct from me and my), such that m overrides my from some superclass of C.

If mzisnon-abst ract and overridesfrom Cc an abst ract method m,, then msissaid
to implement my fromcC.

It isacompile-time error if the overridden method, my, isast ati ¢ method.

In this respect, overriding of methods differs from hiding of fields (88.3), for it is
permissible for an instance variable to hide ast at i ¢ variable.

An instance method m: declared in or inherited by class C, overrides from c another
method m declared in interface 1, iff al of the following are true:

* | isasuperinterface of C.

* misnotstatic.

e cdoesnot inheritm.

» Thesignature of my is a subsignature (88.4.2) of the signature of m .

e miSpublic.

The signature of an overriding method may differ from the overridden one if a formal
parameter in one of the methods has araw type, while the corresponding parameter in the
other has a parameterized type. This accommodates migration of pre-existing code to take
advantage of generics.

The notion of overriding includes methods that override another from some subclass of
their declaring class. This can happen in two ways:
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« A concrete method in a generic superclass can, under certain parameterizations, have
the same signature as an abstract method in that class. In this case, the concrete method
is inherited and the abstract method is not (as described above). The inherited
method should then be considered to override its abstract peer from C. (This scenario is
complicated by package access: if Cisin a different package, then my would not have
been inherited anyway, and should not be considered overridden.)

* A method inherited from aclass can override asuperinterface method. (Happily, package
access is not a concern here.)

An overridden method can be accessed by using a method invocation expression
(815.12) that containsthe keyword super . A qualified name or acast to asuperclass
typeis not effective in attempting to access an overridden method.

In this respect, overriding of methods differs from hiding of fields.

The presence or absence of the st ri ct f p modifier has absolutely no effect on the
rules for overriding methods and implementing abstract methods. For example, it
is permitted for a method that is not FP-strict to override an FP-strict method and
it is permitted for an FP-strict method to override a method that is not FP-strict.

Example 8.4.8.1-1. Overriding

class Point {
int x =0, y=0;
void move(int dx, int dy) { x +=dx; y += dy; }

cl ass Sl owPoi nt extends Point {
int xLimt, yLimt;
voi d move(int dx, int dy) {

super.move(limt(dx, xLimt), limt(dy, yLimt));
}
static int limt(int d, int limt) {

returnd > limt 2 limt : d<-limt ? -limt : d;
}

}

Here, the class SI owPoi nt overrides the declarations of method nove of classPoi nt with
its own move method, which limits the distance that the point can move on each invocation
of the method. When the nove method isinvoked for an instance of class SI owPoi nt , the
overriding definition in class S| owPoi nt will alwaysbe called, even if thereferenceto the
Sl owPoi nt object is taken from a variable whose type is Poi nt .

Example 8.4.8.1-2. Overriding

Overriding makesit easy for subclassesto extend the behavior of an existing class, asshown
in this example:

import java.io.QutputStream
import java.io.|OException;
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cl ass BufferQutput {

private QutputStream o;

Buf f er Qut put (Qutput Streamo) { this.o = o; }

protected byte[] buf = new byte[512];

protected int pos = 0;

public void putchar(char c) throws | CException {
if (pos == buf.length) flush();
buf [ pos++] = (byte)c;

public void putstr(String s) throws | OException {

for (int i =0; i <s.length(); i++)
put char (s.charAt(i));

}

public void flush() throws | OException {
o.wite(buf, 0, pos);
pos = 0;

}

}
cl ass LineBufferQutput extends BufferQutput {

Li neBuf f er Qut put (Qut put Stream o) { super(0); }
public void putchar(char c) throws | CException {
super. put char(c);
if (c =="'\n") flush();
}
}

class Test {
public static void main(String[] args) throws | OException {
Li neBuf f er Qut put | bo = new Li neBuf f er Qut put ( Syst em out ) ;
| bo. putstr("l bo\nl bo");
Systemout.print("print\n");
| bo. putstr("\n");

}
This program produces the output:

I bo
print
| bo

The class BufferQutput implements a very simple buffered version of an
Qut put St r eam flushing the output when the buffer is full or f1 ush is invoked. The
subclass Li neBuf f er Qut put declares only a constructor and a single method put char,
which overrides the method put char of Buf f er Qut put . It inherits the methods put st r
and f | ush from class Buf f er Qut put .

In the put char method of a Li neBuf f er Qut put object, if the character argument is a
newline, then it invokes the f1 ush method. The critical point about overriding in this
exampleisthat themethod put st r , whichisdeclared in classBuf f er Qut put , invokesthe
put char method defined by the current object t hi s, which isnot necessarily the put char

method declared in class Buf f er Qut put .
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Thus, when put st r isinvoked in mai n using the Li neBuf f er Qut put object | bo, the
invocation of put char inthe body of the put st r method is an invocation of the put char
of the object | bo, the overriding declaration of put char that checks for a newline. This
allowsasubclass of Buf f er Qut put to changethe behavior of the put st r method without
redefining it.

Documentation for a class such as Buf f er Qut put, which is designed to be extended,
should clearly indicate what is the contract between the class and its subclasses, and
should clearly indicate that subclasses may override the put char method in this way.
The implementor of the Buf f er Qut put class would not, therefore, want to change the
implementation of put str in afuture implementation of Buf f er Qut put not to use the
method put char , because this would break the pre-existing contract with subclasses. See
the discussion of binary compatibility in §13 (Binary Compatibility), especially §13.2.

8.4.8.2 Hiding (by Class Methods)

If aclasscdeclaresor inheritsast at i ¢ method m then mis said to hide any method
m for which al of the following are true:

* n iseither astatic or instance method declared in a superclass of C, or an
instance method declared in a superinterface of C.

* m isaccessibleto C(86.6).
» The signature of mis a subsignature of the signature of m (88.4.2).
Itisacompile-timeerror if ast ati ¢ method hides an instance method.

In this respect, hiding of methods differs from hiding of fields (88.3), for it is permissible
for ast ati c variable to hide an instance variable. Hiding is also distinct from shadowing
(86.4.1) and obscuring (86.4.2).

A hidden method can be accessed by using a qualified name or by using a method
invocation expression (815.12) that contains the keyword super or a cast to a
superclass type.

In this respect, hiding of methodsis similar to hiding of fields.
Example 8.4.8.2-1. Invocation of Hidden Class M ethods

A class (st at i ¢) method that is hidden can be invoked by using a reference whose type
is the class that actually contains the declaration of the method. In this respect, hiding of
st ati ¢ methodsis different from overriding of instance methods. The example:

cl ass Super {
static String greeting() { return "Goodnight"; }
String name() { return "Richard"; }

}

cl ass Sub extends Super {
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static String greeting() { return "Hello"; }
String nane() { return "Dick"; }
}

class Test {
public static void main(String[] args) {
Super s = new Sub();
Systemout.println(s.greeting() + ", " + s.nanme());

}
produces the output:
Goodni ght, Di ck

because the invocation of gr eet i ng uses the type of s, namely Super , to figure out, at
compile time, which class method to invoke, whereas the invocation of name usesthe class
of s, namely Sub, to figure out, at run time, which instance method to invoke.

8.4.8.3 Reguirementsin Overriding and Hiding

If amethod declaration d; with return type R, overrides or hides the declaration of
another method d, with return type Ry, then d; must be return-type-substitutable
(88.4.5) for dy, or a compile-time error occurs.

This rule alows for covariant return types - refining the return type of a method when
overriding it.

If Ry is not asubtype of Ry, then a compile-time unchecked warning occurs, unless
suppressed by @uppr essWar ni ngs (89.6.4.5).

A method that overrides or hides another method, including methods that
implement abst ract methods defined in interfaces, may not be declared to throw
more checked exceptions than the overridden or hidden method.

In this respect, overriding of methods differs from hiding of fields (88.3), for it is
permissible for afield to hide afield of another type.

More precisely, suppose that B is a class or interface, and A is a superclass or
superinterface of B, and a method declaration my in B overrides or hides a method
declaration m in A. Then:

* If m hasathrows clause that mentions any checked exception types, then m
must have at hr ows clause, or a compile-time error occurs.

» For every checked exception type listed in the t hr ows clause of nmp, that same
exception class or one of its supertypes must occur in the erasure (84.6) of the
t hr ows clause of m; otherwise, a compile-time error occurs.
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 If the unerased t hrows clause of m does not contain a supertype of each
exception type in the t hrows clause of mp (adapted, if necessary, to the type
parameters of m), then a compile-time unchecked warning occurs, unless
suppressed by @uppr ess\War ni ngs (89.6.4.5).

Itisacompile-timeerror if atype declaration T has amember method m and there
exists amethod my declared in T or a supertype of T such that all of the following
aretrue:

* m and m have the same name.
* m isaccessible (86.6) from T.
» The signature of m is not a subsignature (88.4.2) of the signature of ny.

» The signature of m or some method m overrides (directly or indirectly) has the
same erasure as the signature of mpy or some method my overrides (directly or
indirectly).

These restrictions are necessary because generics are implemented via erasure. The rule
above implies that methods declared in the same class with the same name must have
different erasures. It also implies that a type declaration cannot implement or extend two
distinct invocations of the same generic interface.

The access modifier of an overriding or hiding method must provide at least as
much access as the overridden or hidden method, as follows:

* If the overridden or hidden method is publ i c, then the overriding or hiding
method must be publ i ¢; otherwise, a compile-time error occurs.

« If the overridden or hidden method is pr ot ect ed, then the overriding or hiding
method must be pr ot ect ed or publ i ¢; otherwise, a compile-time error occurs.

« If the overridden or hidden method has package access, then the overriding or
hiding method must not be pri vat e; otherwise, a compile-time error occurs.

Note that a pri vat e method cannot be overridden or hidden in the technical sense of
those terms. This means that a subclass can declare a method with the same signature as
aprivat e method in one of its superclasses, and there is no requirement that the return
type or t hr ows clause of such a method bear any relationship to those of the pri vat e
method in the superclass.

Example 8.4.8.3-1. Covariant Return Types

The following declarations are legal in the Java programming language from Java SE 5.0
onwards:

class Cinplements C oneable {
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C copy() throws C oneNot SupportedException {
return (Cclone();
}
}

class D extends C inplenments C oneable {
D copy() throws O oneNot SupportedException {
return (D)clone();
}
}

The relaxed rule for overriding also allows one to relax the conditions on abstract classes
implementing interfaces.

Example 8.4.8.3-2. Unchecked Warning from Return Type

Consider:

class StringSorter {
/1 turns a collection of strings into a sorted |ist
Li st tolList(Collectionc) {...}

}

and assume that someone subclasses St ri ngSorter:

class Overrider extends StringSorter {
Li st toList(Collectionc) {...}

}
Now, at some point the author of St ri ngSor t er decidesto generify the code:

class StringSorter {
/1 turns a collection of strings into a sorted |ist
Li st<String> toList(Collection<String>c) {...}

}

An unchecked warning would be given when compiling Overri der against the new
definition of StringSorter because the return type of Overrider.toList isList,
which is not a subtype of the return type of the overridden method, Li st <St ri ng>.

Example 8.4.8.3-3. Incorrect Overriding because of t hr ows

This program uses the usual and conventional form for declaring a new exception type, in
its declaration of the class BadPoi nt Except i on:

cl ass BadPoi nt Excepti on extends Exception {
BadPoi nt Exception() { super(); }
BadPoi nt Exception(String s) { super(s); }
}
class Point {
int x, vy;
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void move(int dx, int dy) { x +=dx; y += dy; }
}
cl ass CheckedPoi nt extends Point {
voi d move(int dx, int dy) throws BadPoi nt Exception {
if ((x +dx) <0]| (y +dy) <0)
t hr ow new BadPoi nt Exception();
X += dx; y += dy;

}

The program results in a compile-time error, because the override of method nove in class
CheckedPoi nt declaresthat it will throw achecked exception that thenove in classPoi nt

has not declared. If this were not considered an error, an invoker of the method nove on
a reference of type Poi nt could find the contract between it and Poi nt broken if this
exception were thrown.

Removing thet hr ows clause does not help:

cl ass CheckedPoi nt extends Point {
void nove(int dx, int dy) {
if ((x +dx) <0 ] (y +dy) <0)
t hr ow new BadPoi nt Excepti on();
x += dx; y += dy;

}

A different compile-time error now occurs, because the body of the method nove cannot
throw a checked exception, namely BadPoi nt Except i on, that does not appear in the
t hr ows clause for nove.

Example 8.4.8.3-4. Erasure Affects Overriding

A class cannot have two member methods with the same name and type erasure:

class C<T> {
Tid (Tx) {...}
}
class D extends C<String> {
Obj ect id(Object x) {...}
}

This is illegal since D.i d( Obj ect) is a member of D, C<String>.id(String) is
declared in a supertype of D, and:

¢ The two methods have the same name, i d

e C<String>.id(String) isaccessibletoD

e The signature of D.id(Cbject) is not a subsignature of that of
C<String>.id(String)

¢ The two methods have the same erasure
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Two different methods of a class may not override methods with the same erasure:

class C<T> {
Tid(Tx) {...}
}

interface |<T> {
Tid(T x);
}

class D extends C<String> inplenents |<Integer> {
public String id(String x) {...}
public Integer id(Integer x) {...}

}

Thisisalsoillegal, sinceD. i d(String) isamember of D, D. i d( | nteger) isdeclared
in D, and:

¢ The two methods have the same name, i d
e D.id(Integer) isaccessibletoD
* Thetwo methods have different signatures (and neither is a subsignature of the other)

e D.id(String) overrides C<String>.id(String) and D.id(Integer) overrides
I.id(Integer) yetthetwo overridden methods have the same erasure

8.4.8.4 Inheriting Methods with Override-Equivalent Sgnatures

It is possible for a class to inherit multiple methods with override-equivalent
signatures (§8.4.2).

It isacompile-time error if aclass Cinherits a concrete method whose signatureis
override-equivalent with another method inherited by C.

It is a compile-time error if a class C inherits a default method whose signature
is override-equivalent with another method inherited by cC, unless there exists an
abst ract method declared in a superclass of c and inherited by C that is override-
equivalent with the two methods.

This exception to the strict default-abst ract and default-default conflict rules is made
whenanabst r act methodisdeclaredinasuperclass: theassertion of abstract-nesscoming
from the superclass hierarchy essentially trumps the default method, making the default
method act asif it wereabst r act . However, theabst r act method from a class does not
override the default method(s), because interfaces are till allowed to refine the signature
of theabst r act method coming from the class hierarchy.

Note that the exception does not apply if al override-equivalent abstract methods
inherited by C were declared in interfaces.
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Otherwise, the set of override-equivalent methods consists of at least oneabst r act
method and zero or more default methods; then the classisnecessarily anabst r act
class and is considered to inherit all the methods.

One of the inherited methods must be return-type-substitutable for every other
inherited method; otherwise, a compile-time error occurs. (Thet hr ows clauses do
not cause errorsin this case.)

There might be several paths by which the same method declaration is inherited
from an interface. This fact causes no difficulty and never, of itself, resultsin a
compile-time error.

8.4.9 Overloading

I two methods of aclass (whether both declared in the same class, or both inherited
by aclass, or one declared and one inherited) have the same name but signatures
that are not override-equivalent, then the method name is said to be overloaded.

This fact causes no difficulty and never of itself results in a compile-time error.
There is no required relationship between the return types or between thet hr ows
clauses of two methods with the same name, unless their signatures are override-
equivalent.

When a method is invoked (§15.12), the number of actual arguments (and any
explicit type arguments) and the compile-time types of the arguments are used,
at compile time, to determine the signature of the method that will be invoked
(815.12.2). If the method that is to be invoked is an instance method, the actual
method to beinvoked will be determined at run time, using dynamic method lookup
(815.12.4).

Example 8.4.9-1. Overloading

class Point {
float x, vy;
void nove(int dx, int dy) { x += dx; y += dy; }
void nove(float dx, float dy) { x += dx; y += dy; }
public String toString() { return "("+x+","+y+")"; }
}

Here, the class Poi nt has two members that are methods with the same name, nove. The
overloaded move method of class Poi nt chosen for any particular method invocation is
determined at compile time by the overloading resolution procedure given in §15.12.

Intotal, the membersof theclassPoi nt arethef | oat instancevariablesx andy declaredin
Poi nt , the two declared nove methods, the declared t oSt r i ng method, and the members
that Poi nt inheritsfromitsimplicit direct superclass Qoj ect (84.3.2), such asthe method
hashCode. Note that Poi nt does not inherit the t oSt ri ng method of class Obj ect
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because that method is overridden by the declaration of the t oSt ri ng method in class
Poi nt .

Example 8.4.9-2. Overloading, Overriding, and Hiding

class Point {
int x =0, y=0;
void move(int dx, int dy) { x +=dx; y += dy; }
int color;
}
cl ass Real Poi nt extends Point {
float x = 0.0f, y = 0.0f;
voi d move(int dx, int dy) { nove((float)dx, (float)dy); }
voi d move(float dx, float dy) { x += dx; y += dy; }
}

Here, the class Real Poi nt hides the declarations of thei nt instance variablesx andy of
classPoi nt withitsownf | oat instancevariablesx andy, and overridesthe method nove
of class Poi nt with its own nove method. It also overloads the name nove with another
method with a different signature (88.4.2).

In this example, the members of the class Real Poi nt include the instance variable
col or inherited from the class Poi nt , the f | oat instance variables x and y declared in
Real Poi nt, and the two nove methods declared in Real Poi nt .

Which of these overloaded nove methods of class Real Poi nt will be chosen for any
particular method invocation will be determined at compile time by the overloading
resolution procedure described in §15.12.

Thisfollowing program is an extended variation of the preceding program:

class Point {
int x =0, y =0, color;
void move(int dx, int dy) { x +=dx; y += dy; }
int getX() { return x; }
int getY() { returny; }
}
cl ass Real Poi nt extends Point {
float x = 0.0f, y = 0.0f;
voi d move(int dx, int dy) { nove((float)dx, (float)dy); }
void nove(float dx, float dy) { x += dx; y += dy; }
float getX() { return x; }
float getY() { returny; }

}

Here, the class Poi nt provides methods get X and get Y that return the values of itsfields
x andy; the class Real Poi nt then overrides these methods by declaring methods with the
same signature. The result istwo errors at compile time, one for each method, because the
return types do not match; the methods in class Poi nt return values of typei nt, but the
wanna-be overriding methods in class Real Poi nt return values of typef | oat .
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This program corrects the errors of the preceding program:

class Point {

int x =0, y=0;

void move(int dx, int dy) { x +=dx; y += dy; }
int getX() { return x; }

int getY() { returny; }

int color;

cl ass Real Poi nt extends Point {

}

float x = 0.0f, y = 0.0f;

void nove(int dx, int dy) { nove((float)dx, (float)dy); }
void nove(float dx, float dy) { x += dx; y += dy; }

int getX() { return (int)Math.floor(x); }

int getY() { return (int)Math.floor(y); }

Here, the overriding methods get X and get Y in class Real Poi nt have the same return
types as the methods of class Poi nt that they override, so this code can be successfully

compiled.

Consider, then, this test program:

class Test {

}

public static void main(String[] args) {
Real Point rp = new Real Point();
Point p = rp;
rp. nove(1. 71828f, 4.14159f);
p. move(1, -1);
show(p. x, p.y);
showm(rp.x, rp.y);
show(p. get X(), p.getY());
show(rp. getX(), rp.getY())

}

static void show(int x, int y) {
Systemout.printin("(" + x + ", " +y +")");

}

static void show(float x, float y) {
Systemout.printIn("(" +x + ", " +y +")");

}

The output from this programis:

(0, 0)
(2.7182798, 3.14159)
(2, 3)
(2, 3)

Thefirst line of output illustrates the fact that an instance of Real Poi nt actually contains
the two integer fields declared in class Poi nt ; it is just that their names are hidden from
code that occurs within the declaration of class Real Poi nt (and those of any subclasses
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it might have). When a reference to an instance of class Real Poi nt in avariable of type
Poi nt isused to accessthe field x, theinteger field x declared in class Poi nt isaccessed.
Thefact that itsvalue is zero indicates that the method invocation p. nove(1, -1) didnot
invoke the method nove of class Poi nt ; instead, it invoked the overriding method nove
of class Real Poi nt .

The second line of output shows that the field accessr p. x refersto the field x declared in
class Real Poi nt . Thisfield is of typef | oat, and this second line of output accordingly
displays floating-point values. Incidentally, this also illustrates the fact that the method
name s howisoverloaded; thetypesof the argumentsin themethod invocation dictatewhich
of the two definitions will be invoked.

The last two lines of output show that the method invocations p. get X() andr p. get X()
each invoke the get X method declared in class Real Poi nt . Indeed, there is no way to
invoke the get X method of class Poi nt for an instance of class Real Poi nt from outside
the body of Real Poi nt, no matter what the type of the variable we may use to hold the
reference to the object. Thus, we see that fields and methods behave differently: hiding is
different from overriding.

8.5 Member Type Declarations

A member class is a class whose declaration is directly enclosed in the body of
another class or interface declaration (88.1.6, §9.1.4).

A member interface is an interface whose declaration is directly enclosed in the
body of another class or interface declaration (88.1.6, §9.1.4).

The accessibility of a member type declaration in aclassis specified by its access
modifier, or by 86.6 if lacking an access modifier.

Itisacompile-timeerror if the same keyword appears more than once asamadifier
for amember type declaration in aclass, or if amember type declaration has more
than one of the access modifierspubl i c, prot ect ed, and pri vat e (86.6.)

The scope and shadowing of a member type is specified in §6.3 and §6.4.

If aclass declares a member type with a certain name, then the declaration of that
type is said to hide any and all accessible declarations of member types with the
same name in superclasses and superinterfaces of the class.

In this respect, hiding of member typesis similar to hiding of fields (88.3).

A class inherits from its direct superclass and direct superinterfaces all the
non-pri vat e member types of the superclass and superinterfaces that are both
accessible to code in the class and not hidden by a declaration in the class.
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Itis possible for aclassto inherit more than one member type with the same name,
either from its superclass and superinterfaces or from its superinterfaces aone.
Such asituation doesnot initself cause acompile-timeerror. However, any attempt
within the body of the class to refer to any such member type by its simple name
will result in a compile-time error, because the reference is ambiguous.

There might be seve