Pernyataan Permintaan¶
Query expressions describe a value or a computation that can be used as part of an update, create, filter, order by, annotation, or aggregate. There are a number of built-in expressions (documented below) that can be used to help you write queries. Expressions can be combined, or in some cases nested, to form more complex computations.
Arimatika didukung¶
Django supports negation, addition, subtraction, multiplication, division, modulo arithmetic, and the power operator on query expressions, using Python constants, variables, and even other expressions.
Dukungan untuk negasi telah ditambahkan.
Beberapa contoh¶
from django.db.models import Count, F, Value
from django.db.models.functions import Length, Upper
# Find companies that have more employees than chairs.
Company.objects.filter(num_employees__gt=F('num_chairs'))
# Find companies that have at least twice as many employees
# as chairs. Both the querysets below are equivalent.
Company.objects.filter(num_employees__gt=F('num_chairs') * 2)
Company.objects.filter(
num_employees__gt=F('num_chairs') + F('num_chairs'))
# How many chairs are needed for each company to seat all employees?
>>> company = Company.objects.filter(
... num_employees__gt=F('num_chairs')).annotate(
... chairs_needed=F('num_employees') - F('num_chairs')).first()
>>> company.num_employees
120
>>> company.num_chairs
50
>>> company.chairs_needed
70
# Create a new company using expressions.
>>> company = Company.objects.create(name='Google', ticker=Upper(Value('goog')))
# Be sure to refresh it if you need to access the field.
>>> company.refresh_from_db()
>>> company.ticker
'GOOG'
# Annotate models with an aggregated value. Both forms
# below are equivalent.
Company.objects.annotate(num_products=Count('products'))
Company.objects.annotate(num_products=Count(F('products')))
# Aggregates can contain complex computations also
Company.objects.annotate(num_offerings=Count(F('products') + F('services')))
# Expressions can also be used in order_by(), either directly
Company.objects.order_by(Length('name').asc())
Company.objects.order_by(Length('name').desc())
# or using the double underscore lookup syntax.
from django.db.models import CharField
from django.db.models.functions import Length
CharField.register_lookup(Length)
Company.objects.order_by('name__length')
Pernyataan Siap-pakai¶
Catatan
These expressions are defined in django.db.models.expressions
and
django.db.models.aggregates
, but for convenience they're available and
usually imported from django.db.models
.
Pernyataan F()
¶
An F()
object represents the value of a model field or annotated column. It
makes it possible to refer to model field values and perform database
operations using them without actually having to pull them out of the database
into Python memory.
Instead, Django uses the F()
object to generate an SQL expression that
describes the required operation at the database level.
Ini adalah paling mudah untuk memahami melalui sebuah contoh. Biasanya, satu mungkin melakukan sesuatu seperti ini:
# Tintin filed a news story!
reporter = Reporters.objects.get(name='Tintin')
reporter.stories_filed += 1
reporter.save()
Here, we have pulled the value of reporter.stories_filed
from the database
into memory and manipulated it using familiar Python operators, and then saved
the object back to the database. But instead we could also have done:
from django.db.models import F
reporter = Reporters.objects.get(name='Tintin')
reporter.stories_filed = F('stories_filed') + 1
reporter.save()
Although reporter.stories_filed = F('stories_filed') + 1
looks like a
normal Python assignment of value to an instance attribute, in fact it's an SQL
construct describing an operation on the database.
When Django encounters an instance of F()
, it overrides the standard Python
operators to create an encapsulated SQL expression; in this case, one which
instructs the database to increment the database field represented by
reporter.stories_filed
.
Whatever value is or was on reporter.stories_filed
, Python never gets to
know about it - it is dealt with entirely by the database. All Python does,
through Django's F()
class, is create the SQL syntax to refer to the field
and describe the operation.
To access the new value saved this way, the object must be reloaded:
reporter = Reporters.objects.get(pk=reporter.pk)
# Or, more succinctly:
reporter.refresh_from_db()
As well as being used in operations on single instances as above, F()
can
be used on QuerySets
of object instances, with update()
. This reduces
the two queries we were using above - the get()
and the
save()
- to just one:
reporter = Reporters.objects.filter(name='Tintin')
reporter.update(stories_filed=F('stories_filed') + 1)
We can also use update()
to increment
the field value on multiple objects - which could be very much faster than
pulling them all into Python from the database, looping over them, incrementing
the field value of each one, and saving each one back to the database:
Reporter.objects.all().update(stories_filed=F('stories_filed') + 1)
F()
karena itu menawarkan keuntungan penampilan oleh:
- mendapatkan basisdata, daripada Python, untuk melakukan pekerjaan
- mengurangi sejumlah permintaan beebrapa tindakan diperlukan
Menghindari kondisi balapan menggunakan F()
¶
Manfaat berguna lainnya dari F()
adalah bahwa memiliki basisdata - daripada Python - memperbaharui sebuah nilai bidang menghindari kondisi balapan.
If two Python threads execute the code in the first example above, one thread could retrieve, increment, and save a field's value after the other has retrieved it from the database. The value that the second thread saves will be based on the original value; the work of the first thread will simply be lost.
If the database is responsible for updating the field, the process is more
robust: it will only ever update the field based on the value of the field in
the database when the save()
or update()
is executed, rather
than based on its value when the instance was retrieved.
F()
diberikan berlanjut setelah Model.save()
¶
F()
objects assigned to model fields persist after saving the model
instance and will be applied on each save()
. For example:
reporter = Reporters.objects.get(name='Tintin')
reporter.stories_filed = F('stories_filed') + 1
reporter.save()
reporter.name = 'Tintin Jr.'
reporter.save()
stories_filed
akan diperbaharui dua kali dalam kasus ini. Jika itu awalannya 1
, nilai akhir akan berupa 3
.
Menggunakan F()
dalam penyaringan¶
F()
is also very useful in QuerySet
filters, where they make it
possible to filter a set of objects against criteria based on their field
values, rather than on Python values.
Ini didokumentasikan dalam using F() expressions in queries.
Menggunakan F()
dengan keterangan¶
F()
dapat digunakan untuk membuat bidang-bidang dinamis pada model anda dengan emmadukan bidang-bidang berbeda dengan aritmatik:
company = Company.objects.annotate(
chairs_needed=F('num_employees') - F('num_chairs'))
If the fields that you're combining are of different types you'll need
to tell Django what kind of field will be returned. Since F()
does not
directly support output_field
you will need to wrap the expression with
ExpressionWrapper
:
from django.db.models import DateTimeField, ExpressionWrapper, F
Ticket.objects.annotate(
expires=ExpressionWrapper(
F('active_at') + F('duration'), output_field=DateTimeField()))
Ketika mengacukan biadng-bidang terkait seperti ForeignKey
, F()
mengembalikan nilai primary key daripada instance model:
>> car = Company.objects.annotate(built_by=F('manufacturer'))[0]
>> car.manufacturer
<Manufacturer: Toyota>
>> car.built_by
3
Menggunakan F()
untuk mengurutkan nilai null¶
Use F()
and the nulls_first
or nulls_last
keyword argument to
Expression.asc()
or desc()
to control the ordering of
a field's null values. By default, the ordering depends on your database.
For example, to sort companies that haven't been contacted (last_contacted
is null) after companies that have been contacted:
from django.db.models import F
Company.object.order_by(F('last_contacted').desc(nulls_last=True))
Pernyataan Func()
¶
Func()
expressions are the base type of all expressions that involve
database functions like COALESCE
and LOWER
, or aggregates like SUM
.
They can be used directly:
from django.db.models import F, Func
queryset.annotate(field_lower=Func(F('field'), function='LOWER'))
atau mereka dapat digunakan untuk membangun pustaka dari fungsi-fungsi basisdata:
class Lower(Func):
function = 'LOWER'
queryset.annotate(field_lower=Lower('field'))
But both cases will result in a queryset where each model is annotated with an
extra attribute field_lower
produced, roughly, from the following SQL:
SELECT
...
LOWER("db_table"."field") as "field_lower"
Lihat Fungsi Basisdata untuk daftar fungsi-fungsi basisdata siap-pakai.
API Func
sebagai berikut:
-
class
Func
(*expressions, **extra)[sumber]¶ -
function
¶ A class attribute describing the function that will be generated. Specifically, the
function
will be interpolated as thefunction
placeholder withintemplate
. Defaults toNone
.
-
template
¶ A class attribute, as a format string, that describes the SQL that is generated for this function. Defaults to
'%(function)s(%(expressions)s)'
.If you're constructing SQL like
strftime('%W', 'date')
and need a literal%
character in the query, quadruple it (%%%%
) in thetemplate
attribute because the string is interpolated twice: once during the template interpolation inas_sql()
and once in the SQL interpolation with the query parameters in the database cursor.
-
arg_joiner
¶ Sebuah atribut kelas yang menyatakan karakter digunakan utuk menggabungkan daftar dari
expressions
bersama-sama. Awalan pada', '
.
-
arity
¶ Sebuah atribut kelas yang menyatakan sejumlah fungsi argumen menerima. Jika atribut ini disetel dan fungsi dipanggil dengan angka berbeda dari pernyataan,
TypeError
akan dimunculkan. Awalan padaNone
.
-
as_sql
(compiler, connection, function=None, template=None, arg_joiner=None, **extra_context)[sumber]¶ Membangkitkan SQL untuk fungsi basisdata.
Metode
as_vendor()
harus menggunakanfunction
,template
,arg_joiner
, dan parameter**extra_context
apapun lainnya untuk menyesuaikan SQL sesuai kebutuhan. Sebagai contoh:class ConcatPair(Func): ... function = 'CONCAT' ... def as_mysql(self, compiler, connection): return super().as_sql( compiler, connection, function='CONCAT_WS', template="%(function)s('', %(expressions)s)", )
To avoid a SQL injection vulnerability,
extra_context
must not contain untrusted user input as these values are interpolated into the SQL string rather than passed as query parameters, where the database driver would escape them.
-
The *expressions
argument is a list of positional expressions that the
function will be applied to. The expressions will be converted to strings,
joined together with arg_joiner
, and then interpolated into the template
as the expressions
placeholder.
Argumen-argumen penempatan dapat berupa pernyataan atau nilai-nilai Python. String dianggap menjadi acuan kolom dan akan dibungkus dalam pernyataan F()
selagi nilai-nilai lain akan dibungkus dalam pernyataan Value()
.
kwarg **extra
adalah pasangan key=value
yang dapat dimasukakn kedalam artibut template
. Untuk menghindari kerentanan suntikan SQL, extra
must not contain untrusted user input sebagai nilai-nilai ini dimasukkan kedalam string SQL daripada dilewatkan sebagai parameter permintaan, dimana pengendali basisdata akan meloloskan mereka.
Kata kunci function
, template
, dan arg_joiner
dapat digunakan untuk mengganti atribut-atribut dari nama sama tanpa harus menentukan kelas anda sendiri. output_field
dapat digunakan untuk menentukkan jenis kembalian yang diharapkan.
Pernyataan Aggregate()
¶
Sebuah pernyataan pengumpulan adalah kasus khusus dari Func() expression yang menginformasikan permintaan bahwa sebuah klausa GROUP BY
diwajibkan. Semua dari aggregate functions, seperti Sum()
dan Count()
, mewarisi dari Aggregate()
.
Karena Aggregate
adalah pernyataan dan membungkus pernyataan, anda dapat mewakili beberapa perhitungan rumit:
from django.db.models import Count
Company.objects.annotate(
managers_required=(Count('num_employees') / 4) + Count('num_managers'))
API `Aggregate
sebagai berikut:
-
class
Aggregate
(*expressions, output_field=None, filter=None, **extra)[sumber]¶ -
template
¶ Sebuah atribut kelas, sebagai sebuah bentuk string, yang menggambarkan SQL yaitu dibangkitkan untuk pengumpulan ini. Awalan pada
'%(function)s( %(expressions)s )'
.
-
The expressions
positional arguments can include expressions or the names
of model fields. They will be converted to a string and used as the
expressions
placeholder within the template
.
Arfumen output_field
membutuhkan contoh sebuah bidang model, seperti IntegerField()
atau BooleanField()
, menjadi Django akan memuat nilai setelah itu diambil dari basisdata. Biasanya tidak ada argumen dibutuhkan ketika menginstansiasi bidang model sebagai argumen apapun terkait pada pengesahan data (max_length
, max_digits
, dll.) tidak akan dipaksa pada nilai keluaran pernyataan.
Catat bahwa output_field
hanya diwajibkan ketika Django tidak dapat menentukan jenis bidang apa hasil seharusnya. Pernyataan rumit yang mencampurkan jenis-jenis bidang harus menentukan output_field
diharapkan. Sebagai contoh, menambahkan sebuah IntegerField()
dan sebuah FloatField()
bersama-sama harus mungkin memiliki output_field=FloatField()
ditentukan.
Argumen filter
mengambil sebuah Q object
yang digunakan untuk menyaring baris yang dikumpulkan. Lihat Pengumpulan bersyarat dan Penyaringan pada keterangan untuk contoh penggunaan.
kwarg **extra
adalah pasangan key=value
yang dapat ditambahkan kedalam atribut template
.
Argumen filter
telah ditambahkan.
Membuat Fungsi-fungsi Pengumpulan anda sendiri¶
Creating your own aggregate is extremely easy. At a minimum, you need
to define function
, but you can also completely customize the
SQL that is generated. Here's a brief example:
from django.db.models import Aggregate
class Count(Aggregate):
# supports COUNT(distinct field)
function = 'COUNT'
template = '%(function)s(%(distinct)s%(expressions)s)'
def __init__(self, expression, distinct=False, **extra):
super().__init__(
expression,
distinct='DISTINCT ' if distinct else '',
output_field=IntegerField(),
**extra
)
Pernyataan Value()
¶
A Value()
object represents the smallest possible component of an
expression: a simple value. When you need to represent the value of an integer,
boolean, or string within an expression, you can wrap that value within a
Value()
.
You will rarely need to use Value()
directly. When you write the expression
F('field') + 1
, Django implicitly wraps the 1
in a Value()
,
allowing simple values to be used in more complex expressions. You will need to
use Value()
when you want to pass a string to an expression. Most
expressions interpret a string argument as the name of a field, like
Lower('name')
.
The value
argument describes the value to be included in the expression,
such as 1
, True
, or None
. Django knows how to convert these Python
values into their corresponding database type.
The output_field
argument should be a model field instance, like
IntegerField()
or BooleanField()
, into which Django will load the value
after it's retrieved from the database. Usually no arguments are needed when
instantiating the model field as any arguments relating to data validation
(max_length
, max_digits
, etc.) will not be enforced on the expression's
output value.
Pernyataan ExpressionWrapper()
¶
ExpressionWrapper
simply surrounds another expression and provides access
to properties, such as output_field
, that may not be available on other
expressions. ExpressionWrapper
is necessary when using arithmetic on
F()
expressions with different types as described in
Menggunakan F() dengan keterangan.
Pernyataan bersyarat¶
Conditional expressions allow you to use if
... elif
...
else
logic in queries. Django natively supports SQL CASE
expressions. For more details see Pernyataan Bersyarat.
Pernyataan Subquery()
¶
You can add an explicit subquery to a QuerySet
using the Subquery
expression.
For example, to annotate each post with the email address of the author of the newest comment on that post:
>>> from django.db.models import OuterRef, Subquery
>>> newest = Comment.objects.filter(post=OuterRef('pk')).order_by('-created_at')
>>> Post.objects.annotate(newest_commenter_email=Subquery(newest.values('email')[:1]))
Pada PostgreSQL, SQL terlihat seperti:
SELECT "post"."id", (
SELECT U0."email"
FROM "comment" U0
WHERE U0."post_id" = ("post"."id")
ORDER BY U0."created_at" DESC LIMIT 1
) AS "newest_commenter_email" FROM "post"
Catatan
The examples in this section are designed to show how to force Django to execute a subquery. In some cases it may be possible to write an equivalent queryset that performs the same task more clearly or efficiently.
Mengacu kolom dari himpunan permintaan terluar¶
Use OuterRef
when a queryset in a Subquery
needs to refer to a field
from the outer query. It acts like an F
expression except that the
check to see if it refers to a valid field isn't made until the outer queryset
is resolved.
Instances of OuterRef
may be used in conjunction with nested instances
of Subquery
to refer to a containing queryset that isn't the immediate
parent. For example, this queryset would need to be within a nested pair of
Subquery
instances to resolve correctly:
>>> Book.objects.filter(author=OuterRef(OuterRef('pk')))
Membatasi sub permintaan pada kolom tunggal¶
There are times when a single column must be returned from a Subquery
, for
instance, to use a Subquery
as the target of an __in
lookup. To return
all comments for posts published within the last day:
>>> from datetime import timedelta
>>> from django.utils import timezone
>>> one_day_ago = timezone.now() - timedelta(days=1)
>>> posts = Post.objects.filter(published_at__gte=one_day_ago)
>>> Comment.objects.filter(post__in=Subquery(posts.values('pk')))
In this case, the subquery must use values()
to return only a single column: the primary key of the post.
Membatasi sub permintaan pada baris tunggal¶
To prevent a subquery from returning multiple rows, a slice ([:1]
) of the
queryset is used:
>>> subquery = Subquery(newest.values('email')[:1])
>>> Post.objects.annotate(newest_commenter_email=subquery)
In this case, the subquery must only return a single column and a single row: the email address of the most recently created comment.
(Using get()
instead of a slice would fail because the
OuterRef
cannot be resolved until the queryset is used within a
Subquery
.)
Subpermintaan Exists()
¶
Exists
is a Subquery
subclass that uses an SQL EXISTS
statement. In
many cases it will perform better than a subquery since the database is able to
stop evaluation of the subquery when a first matching row is found.
For example, to annotate each post with whether or not it has a comment from within the last day:
>>> from django.db.models import Exists, OuterRef
>>> from datetime import timedelta
>>> from django.utils import timezone
>>> one_day_ago = timezone.now() - timedelta(days=1)
>>> recent_comments = Comment.objects.filter(
... post=OuterRef('pk'),
... created_at__gte=one_day_ago,
... )
>>> Post.objects.annotate(recent_comment=Exists(recent_comments))
Pada PostgreSQL, SQL terlihat seperti:
SELECT "post"."id", "post"."published_at", EXISTS(
SELECT U0."id", U0."post_id", U0."email", U0."created_at"
FROM "comment" U0
WHERE (
U0."created_at" >= YYYY-MM-DD HH:MM:SS AND
U0."post_id" = ("post"."id")
)
) AS "recent_comment" FROM "post"
It's unnecessary to force Exists
to refer to a single column, since the
columns are discarded and a boolean result is returned. Similarly, since
ordering is unimportant within an SQL EXISTS
subquery and would only
degrade performance, it's automatically removed.
Anda dapat meminta menggunakan NOT EXISTS
dengan ~Exists()
.
menyaring pada pernyataan Subquery
¶
Itu tidak memungkinkan menyaring langsung menggunakan Subquery
dan Exists
, misalnya:
>>> Post.objects.filter(Exists(recent_comments))
...
TypeError: 'Exists' object is not iterable
You must filter on a subquery expression by first annotating the queryset and then filtering based on that annotation:
>>> Post.objects.annotate(
... recent_comment=Exists(recent_comments),
... ).filter(recent_comment=True)
Using aggregates within a Subquery
expression¶
Aggregates may be used within a Subquery
, but they require a specific
combination of filter()
, values()
, and
annotate()
to get the subquery grouping correct.
Assuming both models have a length
field, to find posts where the post
length is greater than the total length of all combined comments:
>>> from django.db.models import OuterRef, Subquery, Sum
>>> comments = Comment.objects.filter(post=OuterRef('pk')).order_by().values('post')
>>> total_comments = comments.annotate(total=Sum('length')).values('total')
>>> Post.objects.filter(length__gt=Subquery(total_comments))
The initial filter(...)
limits the subquery to the relevant parameters.
order_by()
removes the default ordering
(if any) on the Comment
model. values('post')
aggregates comments by
Post
. Finally, annotate(...)
performs the aggregation. The order in
which these queryset methods are applied is important. In this case, since the
subquery must be limited to a single column, values('total')
is required.
This is the only way to perform an aggregation within a Subquery
, as
using aggregate()
attempts to evaluate the queryset (and if
there is an OuterRef
, this will not be possible to resolve).
Pernyataan SQL mentah¶
Sometimes database expressions can't easily express a complex WHERE
clause.
In these edge cases, use the RawSQL
expression. For example:
>>> from django.db.models.expressions import RawSQL
>>> queryset.annotate(val=RawSQL("select col from sometable where othercol = %s", (someparam,)))
These extra lookups may not be portable to different database engines (because you're explicitly writing SQL code) and violate the DRY principle, so you should avoid them if possible.
Peringatan
Untuk melindungi terhadap SQL injection attacks, anda harus meloloskan parameter apapun yang pengguna dapat mengendalikan menggunakan params
. params
adalah argumen wajib memaksa anda untuk mengakui bahwa anda tidak menambahkan SQL anda dengan data disediakan-pengguna.
You also must not quote placeholders in the SQL string. This example is
vulnerable to SQL injection because of the quotes around %s
:
RawSQL("select col from sometable where othercol = '%s'") # unsafe!
Anda dapat membaca lebih tentang bagaimana SQL injection protection Django bekerja.
Fungsi Windows¶
Window functions provide a way to apply functions on partitions. Unlike a normal aggregation function which computes a final result for each set defined by the group by, window functions operate on frames and partitions, and compute the result for each row.
You can specify multiple windows in the same query which in Django ORM would be equivalent to including multiple expressions in a QuerySet.annotate() call. The ORM doesn't make use of named windows, instead they are part of the selected columns.
-
class
Window
(expression, partition_by=None, order_by=None, frame=None, output_field=None)[sumber]¶ -
filterable
¶ Defaults to
False
. The SQL standard disallows referencing window functions in theWHERE
clause and Django raises an exception when constructing aQuerySet
that would do that.
-
template
¶ Defaults to
%(expression)s OVER (%(window)s)'
. If only theexpression
argument is provided, the window clause will be blank.
-
Kelas Windows
adalah pernyataan utama untuk klausa OVER
.
The expression
argument is either a window function, an aggregate function, or
an expression that's compatible in a window clause.
The partition_by
argument is a list of expressions (column names should be
wrapped in an F
-object) that control the partitioning of the rows.
Partitioning narrows which rows are used to compute the result set.
output_field
ditentukan baik sebagai argumen atau oleh pernyataan.
The order_by
argument accepts a sequence of expressions on which you can
call asc()
and
desc()
. The ordering controls the order in
which the expression is applied. For example, if you sum over the rows in a
partition, the first result is just the value of the first row, the second is
the sum of first and second row.
The frame
parameter specifies which other rows that should be used in the
computation. See Kerangka for details.
For example, to annotate each movie with the average rating for the movies by the same studio in the same genre and release year:
>>> from django.db.models import Avg, F, Window
>>> from django.db.models.functions import ExtractYear
>>> Movie.objects.annotate(
>>> avg_rating=Window(
>>> expression=Avg('rating'),
>>> partition_by=[F('studio'), F('genre')],
>>> order_by=ExtractYear('released').asc(),
>>> ),
>>> )
Ini membuatnya mudah untuk memeriksa jika sebuah film dinilai lebih baik atau buruk daripada rekan-rekannya.
You may want to apply multiple expressions over the same window, i.e., the same partition and frame. For example, you could modify the previous example to also include the best and worst rating in each movie's group (same studio, genre, and release year) by using three window functions in the same query. The partition and ordering from the previous example is extracted into a dictionary to reduce repetition:
>>> from django.db.models import Avg, F, Max, Min, Window
>>> from django.db.models.functions import ExtractYear
>>> window = {
>>> 'partition_by': [F('studio'), F('genre')],
>>> 'order_by': ExtractYear('released').asc(),
>>> }
>>> Movie.objects.annotate(
>>> avg_rating=Window(
>>> expression=Avg('rating'), **window,
>>> ),
>>> best=Window(
>>> expression=Max('rating'), **window,
>>> ),
>>> worst=Window(
>>> expression=Min('rating'), **window,
>>> ),
>>> )
Among Django's built-in database backends, MySQL 8.0.2+, PostgreSQL, and Oracle
support window expressions. Support for different window expression features
varies among the different databases. For example, the options in
asc()
and
desc()
may not be supported. Consult the
documentation for your database as needed.
Kerangka¶
For a window frame, you can choose either a range-based sequence of rows or an ordinary sequence of rows.
-
class
ValueRange
(start=None, end=None)[sumber]¶ -
frame_type
¶ Atribut ini disetel menjadi
'RANGE'
.
PostgreSQL has limited support for
ValueRange
and only supports use of the standard start and end points, such asCURRENT ROW
andUNBOUNDED FOLLOWING
.-
Kedua kelas mengembalikan SQL dengan cetakan:
%(frame_type)s BETWEEN %(start)s AND %(end)s
Frames narrow the rows that are used for computing the result. They shift from some start point to some specified end point. Frames can be used with and without partitions, but it's often a good idea to specify an ordering of the window to ensure a deterministic result. In a frame, a peer in a frame is a row with an equivalent value, or all rows if an ordering clause isn't present.
The default starting point for a frame is UNBOUNDED PRECEDING
which is the
first row of the partition. The end point is always explicitly included in the
SQL generated by the ORM and is by default UNBOUNDED FOLLOWING
. The default
frame includes all rows from the partition to the last row in the set.
The accepted values for the start
and end
arguments are None
, an
integer, or zero. A negative integer for start
results in N preceding
,
while None
yields UNBOUNDED PRECEDING
. For both start
and end
,
zero will return CURRENT ROW
. Positive integers are accepted for end
.
There's a difference in what CURRENT ROW
includes. When specified in
ROWS
mode, the frame starts or ends with the current row. When specified in
RANGE
mode, the frame starts or ends at the first or last peer according to
the ordering clause. Thus, RANGE CURRENT ROW
evaluates the expression for
rows which have the same value specified by the ordering. Because the template
includes both the start
and end
points, this may be expressed with:
ValueRange(start=0, end=0)
If a movie's "peers" are described as movies released by the same studio in the
same genre in the same year, this RowRange
example annotates each movie
with the average rating of a movie's two prior and two following peers:
>>> from django.db.models import Avg, F, RowRange, Window
>>> from django.db.models.functions import ExtractYear
>>> Movie.objects.annotate(
>>> avg_rating=Window(
>>> expression=Avg('rating'),
>>> partition_by=[F('studio'), F('genre')],
>>> order_by=ExtractYear('released').asc(),
>>> frame=RowRange(start=-2, end=2),
>>> ),
>>> )
If the database supports it, you can specify the start and end points based on
values of an expression in the partition. If the released
field of the
Movie
model stores the release month of each movies, this ValueRange
example annotates each movie with the average rating of a movie's peers
released between twelve months before and twelve months after the each movie.
>>> from django.db.models import Avg, ExpressionList, F, ValueRange, Window
>>> Movie.objects.annotate(
>>> avg_rating=Window(
>>> expression=Avg('rating'),
>>> partition_by=[F('studio'), F('genre')],
>>> order_by=F('released').asc(),
>>> frame=ValueRange(start=-12, end=12),
>>> ),
>>> )
Informasi teknis¶
Below you'll find technical implementation details that may be useful to library authors. The technical API and examples below will help with creating generic query expressions that can extend the built-in functionality that Django provides.
API Pernyataan¶
Query expressions implement the query expression API,
but also expose a number of extra methods and attributes listed below. All
query expressions must inherit from Expression()
or a relevant
subclass.
Ketika pernyataan permintaan membungkus pernyataan lain, itu adalah tanggung jawab untuk memanggil metode-metode sesuai pada pernyataan dibungkus.
-
class
Expression
[sumber]¶ -
contains_aggregate
¶ Beritahu Django bahwa pernyataan ini mengandung sebuah pengumpulan dan bahwa sebuah klausa
GROUP BY
butuh ditambahkan ke permintaan.
-
contains_over_clause
¶ - New in Django 2.0:
Beritahu Django bahwa pernyataan ini mengandung pernyataan
Window
. Itu digunakan, sebagai contoh, melarang pernyataan fungsi-fungsi jendela dalam permintaan yang merubah data.
-
filterable
¶ - New in Django 2.0:
Memberitahu Django bahwa pernyataan ini dapat diacukan dalam
QuerySet.filter()
. Awalan keTrue
.
-
window_compatible
¶ - New in Django 2.0:
Beritahu Django bahwa pernyataan ini dapat digunakan sebagai pernyataan sumber dalam
Window
. Awalan menjadiFalse
.
-
resolve_expression
(query=None, allow_joins=True, reuse=None, summarize=False, for_save=False)¶ Provides the chance to do any pre-processing or validation of the expression before it's added to the query.
resolve_expression()
must also be called on any nested expressions. Acopy()
ofself
should be returned with any necessary transformations.query
adalah backend penerapan query.allow_joins
adalah boolean yang mengizinkan atau menolak penggunaan join dalam permintaan.reuse
adalah kumpula dari penggunaan kembali join untuk skenario multi-join.summarize
adalah boolean yang, ketikaTrue
, sinyal-sinyal yang meminta sedang dihitung adalah permintaan keseluruhan terminal.
-
get_source_expressions
()¶ Mengembalikan daftar terurut dari pernyataan paling dalam. Sebagai contoh:
>>> Sum(F('foo')).get_source_expressions() [F('foo')]
-
set_source_expressions
(expressions)¶ Takes a list of expressions and stores them such that
get_source_expressions()
can return them.
-
relabeled_clone
(change_map)¶ Returns a clone (copy) of
self
, with any column aliases relabeled. Column aliases are renamed when subqueries are created.relabeled_clone()
should also be called on any nested expressions and assigned to the clone."change_map" adalah sebuah dictionary memetakan nama lain lama ke nama lain baru.
Contoh:
def relabeled_clone(self, change_map): clone = copy.copy(self) clone.expression = self.expression.relabeled_clone(change_map) return clone
-
convert_value
(value, expression, connection)¶ Sebuah kaitan mengizinkan pernyataan untuk memaksa
value
menjadi lebih jenis yang sesuai.
-
get_group_by_cols
()¶ Bertanggungjawab untuk mengembalikan daftar acuan kolom dengan pernyataan ini.
get_group_by_cols()
harus dipanggil pada pernyataan bersarang apapun. ObyekF()
, khususnya, menahan acuan pada kolom.
-
asc
(nulls_first=False, nulls_last=False)¶ Mengembalikan pernyataan siap untuk diurutkan dalam urutan menaik.
nulls_first
dannulls_last
menentukan bagaimana nilai-nilai null diurutkan. Lihat Menggunakan F() untuk mengurutkan nilai null untuk contoh penggunaan.
-
desc
(nulls_first=False, nulls_last=False)¶ Mengembalikan pernyataan siap untuk diurutkan dalam urutan menurun.
nulls_first
dannulls_last
menentukan bagaimana nilai-nilai null diurutkan. Lihat Menggunakan F() untuk mengurutkan nilai null untuk contoh penggunaan.
-
reverse_ordering
()¶ Mengembalikan
selft
dengan perubahan apapun diwajibkan untuk mengembalikan pilihan pengurutan dalam sebuah panggilanorder_by
. Sebagai sebuah contoh, sebuah pernyataan menerapkanNULLS LAST
akan merubah nilainya menjadiNULLS FIRST
. Perubahan-perubahan hanya diwajibkan untuk pernyataan yang menerapkan pilihat pengurutan sepertiOrderBy
. Metode ini dipanggil ketikareverse()
pada sebuah kumpulan permintaan.
-
menulis Pernyataan Permintaan anda sendiri¶
You can write your own query expression classes that use, and can integrate
with, other query expressions. Let's step through an example by writing an
implementation of the COALESCE
SQL function, without using the built-in
Func() expressions.
Fungsi SQL COALESCE
ditentukan sebagai mengambil daftar kolom atau nilai. Itu akan mengembalikan kolom pertama atau nilai yang bukan NULL
.
Kami akan memulai dengan menentukan cetakan untuk digunakan pembangkitan SQL dan sebuah metode __init__()
untuk mensetel beberapa atribut:
import copy
from django.db.models import Expression
class Coalesce(Expression):
template = 'COALESCE( %(expressions)s )'
def __init__(self, expressions, output_field):
super().__init__(output_field=output_field)
if len(expressions) < 2:
raise ValueError('expressions must have at least 2 elements')
for expression in expressions:
if not hasattr(expression, 'resolve_expression'):
raise TypeError('%r is not an Expression' % expression)
self.expressions = expressions
We do some basic validation on the parameters, including requiring at least
2 columns or values, and ensuring they are expressions. We are requiring
output_field
here so that Django knows what kind of model field to assign
the eventual result to.
Now we implement the pre-processing and validation. Since we do not have any of our own validation at this point, we just delegate to the nested expressions:
def resolve_expression(self, query=None, allow_joins=True, reuse=None, summarize=False, for_save=False):
c = self.copy()
c.is_summary = summarize
for pos, expression in enumerate(self.expressions):
c.expressions[pos] = expression.resolve_expression(query, allow_joins, reuse, summarize, for_save)
return c
Selanjutnya, kami menulis metode yang bertanggungjawab untuk membangkitkan SQL:
def as_sql(self, compiler, connection, template=None):
sql_expressions, sql_params = [], []
for expression in self.expressions:
sql, params = compiler.compile(expression)
sql_expressions.append(sql)
sql_params.extend(params)
template = template or self.template
data = {'expressions': ','.join(sql_expressions)}
return template % data, params
def as_oracle(self, compiler, connection):
"""
Example of vendor specific handling (Oracle in this case).
Let's make the function name lowercase.
"""
return self.as_sql(compiler, connection, template='coalesce( %(expressions)s )')
as_sql()
methods can support custom keyword arguments, allowing
as_vendorname()
methods to override data used to generate the SQL string.
Using as_sql()
keyword arguments for customization is preferable to
mutating self
within as_vendorname()
methods as the latter can lead to
errors when running on different database backends. If your class relies on
class attributes to define data, consider allowing overrides in your
as_sql()
method.
We generate the SQL for each of the expressions
by using the
compiler.compile()
method, and join the result together with commas.
Then the template is filled out with our data and the SQL and parameters
are returned.
We've also defined a custom implementation that is specific to the Oracle
backend. The as_oracle()
function will be called instead of as_sql()
if the Oracle backend is in use.
Akhirnya, kami menerapkan sisa dari metode yang mengizinkan pernyataan permintaan kami bermain bagus dengan pernyataan permintaan lain:
def get_source_expressions(self):
return self.expressions
def set_source_expressions(self, expressions):
self.expressions = expressions
Mari kita lihat bagaimana itu bekerja:
>>> from django.db.models import F, Value, CharField
>>> qs = Company.objects.annotate(
... tagline=Coalesce([
... F('motto'),
... F('ticker_name'),
... F('description'),
... Value('No Tagline')
... ], output_field=CharField()))
>>> for c in qs:
... print("%s: %s" % (c.name, c.tagline))
...
Google: Do No Evil
Apple: AAPL
Yahoo: Internet Company
Django Software Foundation: No Tagline
Menghindari penyuntikan SQL¶
Since a Func
's keyword arguments for __init__()
(**extra
) and
as_sql()
(**extra_context
) are interpolated into the SQL string rather
than passed as query parameters (where the database driver would escape them),
they must not contain untrusted user input.
Sebagai contoh, jika substring
adalah disediakan-pengguna, fungsi ini rentan pada penyuntikan SQL:
from django.db.models import Func
class Position(Func):
function = 'POSITION'
template = "%(function)s('%(substring)s' in %(expressions)s)"
def __init__(self, expression, substring):
# substring=substring is a SQL injection vulnerability!
super().__init__(expression, substring=substring)
This function generates a SQL string without any parameters. Since substring
is passed to super().__init__()
as a keyword argument, it's interpolated
into the SQL string before the query is sent to the database.
Ini adalah tulisan kembali yang sudah diperiksa:
class Position(Func):
function = 'POSITION'
arg_joiner = ' IN '
def __init__(self, expression, substring):
super().__init__(substring, expression)
Dengan substring
bukannya dilewatkan sebagai argumen penempatan, itu akan dilewatkan sebagai parameter dalam permintaan basisdata.
Menambahkan dukungan dalam backend basisdata pihak-ketiga¶
Jika anda sedang menggunakan backend basisdata yang menggunakan sintaksis SQL berbeda untuk fungsi tertentu, anda dapat menambah dukungan untuk itu dengan menambal metode baru kedalam kelas fungsi.
Mari kita katakan kami sedang menulis sebuah backend untuk SQL Server Microsoft yang menggunakan SQL LEN
daripada LENGTH
untuk fungsi Length
. Kami akan membuat penambalan sebuah metode baru disebut as_sqlserver()
ke dalam kelas Length
:
from django.db.models.functions import Length
def sqlserver_length(self, compiler, connection):
return self.as_sql(compiler, connection, function='LEN')
Length.as_sqlserver = sqlserver_length
Anda dapat menyesuaikan SQL menggunakan parameter template
dari as_sql()
.
Kami menggunakan as_sqlserver()
karena django.db.connection.vendor
mengembalikan sqlserver
untuk backend.
Backend pihak-ketiga dapat mendaftarkan fungsi0fungsi mereka dalam berkas __init__.py
tingkat atas dari paket backend atau dalam berkas expressions.py
(atau paket) tingkat atas yang diimpor dari __init__.py
tngkat atas.
Untuk pengguna proyek yang berharap menambal backend yang mereka gunakan, kode ini harus berada dalam sebuah metode AppConfig.ready()
.