THE SET OF DIFFERENCES OF A GIVEN SET
ANDREW GRANVILLE AND FRIEDRICH ROESLER

1. INTRODUCTION

A central problem of combinatorial geometry and additive number theory is to
understand the set of sums or differences of a given set of vectors. For example,
given a set of m arbitrary vectors A, how big is the set A+ A := {a+b: a,be A}, or
theset A—A :={a—b: a,b € A}? By packing the vectors close together on a lattice
one can make these sets small: for example, if A = {a,2a,3aq,...,(m — 1)a, ma}
then A + A and A — A both have 2m — 1 elements. On the other hand, if the
elements of A are appropriately spread out then we can make these sets large: for
example, if A= {2!,22 ... 2™} then A+ A has (m? +m)/2 elements, and A — A
has m? — m + 1 elements.

It may be that the sizes of A — A and A + A are quite different: For example
if A is the set of positive integers smaller than 10* that have only digits 1,2, and
4 in their decimal expansions then A has 3% elements and A + A has 6% elements,
far smaller than A — A, which has 7* elements. Similarly, one can construct A so
that A+ A is far larger than A — A, for example by taking A = Zf:_ol b;100° where
each b; is allowed to take any value from the set {0,2,3,4,7,11,12,14}; see 7] and
[8] for more details. For the more natural example A = {12,22 ... n2} it can be
shown, though with some difficulty, that A — A is about log"™ n times as large as
A+ A, for some constant k > 0.

Some time ago it was realized that if either A+ A or A — A is very small then A
must have some special structure: Indeed, Freiman [5] (but see [9]) showed that A
must then be a subset of a small part of a lattice. There have recently been several
striking and elegant advances in this area of combinatorial additive number theory;
see [1], [2], and [6].

Seemingly unrelated to all this is

Graham’s conjecture. For any set A of m distinct positive integers, we have

a
—_—>m.
aben ged(a, b) — "

FEquality holds only in the following cases:

o A={23,4,6}.

o A={k,2k,...,mk} for some integer k.

o A = {l/1,£/2,...,0/m} for some integer ¢ divisible by the least common
multiple of 1,...,m.

This old chestnut has recently been proved correct in an outstandingly original,
though long and complicated, paper by Balasubramanian and Soundararajan [3].
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Their method involves very careful consideration of prime divisors of linear combi-
nations of numbers from A. In fact Graham’s conjecture had been elegantly proved
for sufficiently large m by Szegedy [10] and Zaharescu [12] a decade earlier, but it
took a wealth of new ideas to extend their result to all integers m.

In search of a more combinatorial proof, one might approach Graham’s conjec-
ture by asking whether there are at least m distinct integers in the set {a/ gcd(a, b) :
a,b € A}? If so, Graham’s conjecture would follow easily. Unfortunately the answer
is “no”, since for

(1) A=1{23,4,6,9,12,18}

one gets the set {1,2,3,4,6,9}.

Unsolved problem. For each integer m > 1, what is the least number of integers
one can have in the set {a/gcd(a,b) : a,b € A}, where A is a set of m distinct
positive integers?

One can relate this problem quite closely to the vector questions asked at the
beginning of the Introduction:

Let p1, po, ..., pn be the set of primes that divide integers in A. Write each a € A
in the form a = p{*p3? ---p%» and associate to it the vector a = (aq, ..., a,); note
that distinct integers are associated with different vectors. Now, given a,b € A,
evidently min{a;, b;} is the ith component of the vector associated with ged(a, b).
Thus a; —min{a;, b;} = max{0, a; —b; } is the ith component of the vector associated
with a/ ged(a, b); we call this vector 6(a, b). Thus we have:

Unsolved problem (restated). For each integer m > 1, what is the least number
of vectors one can have in the set §(A) := {d(a,b): a,b € A}, where A is a set of
m distinct vectors?

Remark. We can claim that this is a restatement of the first unsolved problem only
if we state that the vectors in A all have non-negative integer entries. However,
through a few minor technical tricks one can drop that requirement; we leave this
as a challenge to the reader.

To get the lower bound |6(A)| > m!/? in the unsolved problem, we first note
that, for fixed a € A, the pairs (d(a, b),d(b,a)) must all be distinct since b =
a—d(a,b)+d(b,a), and so there are no less than m distinct pairs. Thus there are
either > m!/? distinct values for {§(a,b): b € A} or for {§(b,a) : b € A}, else
there would be less than m distinct pairs (§(a, b),d(b, a)), giving a contradiction.

One can get a better lower bound for 6(A) if A is a set of vectors in the plane:

Theorem 1. If A C R? is a set of m > 1 distinct vectors then §(A) has at least
(m/2)%/3 wectors. In fact there exists a € A such that there are at least (m/2)%/3
distinct vectors amongst {5(b,a): a € A}.

Perhaps such a lower bound holds in higher dimension. We postpone the proof
of this and other results until subsequent sections.

The example given in (1) is a translation of the set A = {(z,y) € Z?: 0 < z,y <
2, 1 < z+y < 3}, given by Freiman and Lev (taking n = 2, p; = 2, ps = 3).
They generalized this to A = {(x,y) € Z? : 2,y > 0, L < x+y < U} with
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L= ((2m)?/3 — (2m)¥/3)/2 + O(1) and U = ((2m)?/3 + (2m)*/3)/2 + O(1). Then
§(A) ={(z,y) €Z?: z,y>0, z+y<U—L}U{(t0),(0,t)€Z?: 0<t<U},
which has ~ (3/2)(2m)?/3 elements. Thus the lower bound in Theorem 1 is best
possible up to a factor of 3 -2/3. Moreover from these remarks, combined with
those directly above the statement of Theorem 1, we obtain the following partial
result concerning our unsolved problem:

Theorem 2. If A is any set of m > 1 distinct vectors with |0(A)| minimal, then
(3/2)(2m)*/* Z 16(A)] = m'/2.

The function a/gcd(a,b) in the unsolved problem is not symmetric in a and
b. It thus might seem more natural to study the number of distinct values in
{ab/ ged(a,b)? : a,b € A}. In this case we can prove a best possible result:

Theorem 3. For any set of natural numbers A, there are at least |A| natural
numbers in the set {ab/ gcd(a,b)? : a,b e A}.

Remark. We show in Section 3 that the proof of Theorem 4 (which implies The-
orem 3) can be modified to prove that equality holds only for the following sets
A: Let q1,q2,...,qr be positive rational numbers, with each ¢; = r;/s; # 1 and
ged(ri, s;) = 1 such that ged(r;s;,7j8;) = 1if @ # j. Let S be a subgroup of
(Z/2Z)*. Then A is the set of integers bgi' g% - - - ¢/* where the i; satisfy ¢; < i; <
uj, for some lower and upper bounds ¢; and wuj, with (i1,42,...,ix) € S, and b
chosen so that these numbers are indeed all integers.

A simple example is when A = {d : d|n} for any positive integer n. A more
exotic example is A = {md? : d|n,m = 1 or b} where squarefree b > 1 divides n.

We may rewrite the question in Theorem 3 as a problem about sets of vectors:
The ith component of the vector, d(a, b), associated with ab/ ged(a, b)? is

a; +b; — 2min{a¢, bl} = |CL7; — bl‘
Therefore
d(aa b) = (5(&, b) + 6(baa) = (|a1 - b1|v |a2 - b2|a LR |an - bn|)

since a—b = d(a, b) —d(b, a). Thus Theorem 3 is equivalent to the following result
(which we shall prove in the next section):

Theorem 4. If A is a finite set of distinct vectors in R™ then D(A) = {d(a,b) :
a,b € A} has at least as many distinct vectors as A.

These vector questions may all be thought of as problems about the set of distinct
differences {A(a,b) : a,b € A} for some naturally defined “difference” function
A between two vectors. Moreover, each of our questions has a number theoretic
interpretation; the set of values {a — b} corresponds simply to looking at all ratios
a/b of the corresponding integers. It is perhaps of interest to consider other differ-
ence functions that relate elementary number theory to vector problems, though
we have been unable to identify any others that are particularly appealing:

Perhaps the most obvious difference function between two vectors is the Eu-
clidean distance, (la; — b1|? + |az — ba|? + --- + |an, — b,|?)*/2. Unfortunately
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there is no straightforward number theoretic interpretation for the associated prob-
lem about integers. Moreover any set of orthonormal vectors has the property
that the set of distances between pairs of vectors is {0,1}. However, Erdds [4]
restricted his attention to a set A of m distinct points in the plane. He noted
that for the points in the k-by-k integer lattice, where k = /m + O(1), we have
#{la—b|: a,b € A} ~ em/\/logm for some constant ¢ > 0, and asked whether
this is best possible, up to the value of ¢? The best result in this direction, due to
Székely [11], is that there exists some b € A such that #{|a—b|: a € A} > ¢m?*/?,
for some constant ¢’ > 0.

2. PROOFS OF THE THEOREMS

Although we found several proofs of Theorem 1, we decided to present here the
following elegant proof communicated to us by Sudakov:

Proof of Theorem 1 (Sudakov). Let x; be the smallest element of X = {x :
(z,y) € A}, the z-coordinates of points in A, and let Y = {y : (z,y) € A}, the
y-coordinates of points in A. Then §(A) contains points with z-coordinate = — xq
for each x € X, so |6(A)| > |X| (and therefore we take a to be any element of A
with z-coordinate equal to x1) . Similarly |§(A)| > |Y]. Thus our result is proved
true unless | X1, |Y| < (m/2)?/3, which we now assume.

We define a series of sets A1 = A D Ay D --- D A, and then let L; be the set of
lines of A;; that is, the sets of points {(z,y) € A;} foreach z € X, := {z: (z,y) €
A;}, and the sets of points {(z,y) € A;} foreach y € Y; :=={y: (z,y) € A;}. The
average number of points on each line in L; is r; := 2|A;|/(|X;| + |Yi|). Suppose
there is a line in L; that has less than r;/2 points; we obtain the set A;;; by
removing the points of that line from the set A;. Notice that r; < r;y1. We
continue with this process until we reach the set Ay, in which every line in L has
at least 74/2 > r1/2 =m/(|X| + |Y]) > (m/2)'/? points.

Let xy be the smallest element of Xj. Let yy be the smallest element of Yy = {y :
(zo,y) € Ai}, a set that is the same size as the line {(zg,y) : y € Yy} of Ax and
hence has size at least (m/2)'/3. Let B C A C A be the union, over each y € Y,
of the lines {(x,y) € Ax} of Li. Each of these lines contains at least (m/2)'/3
elements, so that B has at least (m/2)?/? elements. Now (b, (zq, 7)) = b— (0, y0)
for each b € B, so that these ¢ values are distinct. Therefore [0(A)| > |d(B)| > | B|
(and a = (z,yo))- |

Proof of theorem 4. We use induction on n and then on the size of the set A. If A
has just one element then D(A) contains only the zero vector, and so has exactly
as many distinct vectors as A. If n=1and A = {a; < as <ag <--- < ap} then
{0,as—ay,a3—ay,...,am —ar} € D(A). This subset of D(A) has exactly as many
distinct vectors as A, so |D(A)| > |A|.

We may now assume that |A| > 1 and n > 1. Define

B ={(x1,...,xpn—1) : there exists x,, with (z1,...,2,_1,2,) € A},

the projection of A onto the first n — 1 dimensions. Since B is a finite, non-empty
set of distinct vectors in R®~!, we can invoke the induction hypothesis to obtain

(2) |D(B)| = |B|.
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Now, for each b € B, let
Ap ={zy, : (b,z,) € A} and let ap, = max{z : z € Ap},

so Ap is the set of numbers that give the nth coordinate of a vector in A when
appended to the n — 1 coordinates of b, and ay, is the largest such number. Finally,
let C = A —{(b,ap) : b € B}. That is, we get C by removing exactly one vector
from A for each b € B, namely the vector (b, ap); in other words by “skimming off
the highest point which projects onto b, for each b € B”. Therefore

3) C| = 4] - |BI.

Since |C] < |A| we deduce, from the induction hypothesis, that

(4) |D(C)| = [C].

We may describe D(A) and D(C) in terms of the elements of D(B) and the
elements of the sets Ayp:

D(A) = Upepm{(D,|a—ad|) : d(b,b’) = D with a € Ay, and a’ € Ay }.
Similarily, since Cy, = Ap — {ap}, we obtain

D(C) = Upepm{(D,|c—¢]) : d(b,b") = D with ¢ € C}, and ¢’ € Cyp/}.

Now comes the key observation in our argument: For any pair b,b’ € B, the
largest difference |a — a’| with a € Ay, and @’ € Ay, must have a = ap or a’ = ap.
Thus this largest difference does not appear among the set of differences {|c — ¢/| :
¢ € Cyp,d € Cy}. We deduce that, for any D € D(B), the set
{le=¢|:d(b,b") = D with c € Cy, and ¢’ € Cp/}

does not contain the largest element of

{la —d'| : d(b,b") = D with a € Ap, and a’ € Ay},

so it is a proper subset, and is thus smaller. Comparing the sizes of D(A) and
D(C), and taking this observation into account, we obtain

D)< > (#{la—d'|:d(b,b') =D with a € A, and @’ € A} — 1)
DeD(B)
(5) < |D(A)[ - |D(B)|.

Combining (2), (3), (4), and (5) gives
|D(A)| = |D(B)|+ [D(O)| = |B| +|C] = |Al,

as required.
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3. WHEN DOES EQUALITY HOLD IN THEOREM 47

As we indicated at the beginning of the Introduction, equality typically holds in
inequalities such as Theorem 4, only when the vectors in A form part of a lattice.
Let I, be the set of all subsets I of Z* of the form RNA, where R is some rectangular
box with sides parallel to the axes, and A is a lattice with (2Z)* C A C ZF. More
specifically the points (i1, 42, ...,ix) € S, with each i; contained in some interval
[¢;,u;], and S a subgroup of (Z/2Z)%. One can easily verify that equality holds
in Theorem 4 for any A € I; in fact equality holds if and only if A is a suitable
translation of some I € I:

Proposition 1. If A C R™ with |D(A)| = |A| then there exist a,vi,va,..., V) €
R™, with the gth component of v; non-zero for at most one j for each g, such that
A={a+ Z?Zl ijvi: (i1,12,...,1,) € I}, where I € I},

Before we indicate how to deduce this from our proof of Theorem 4, we first note
the following results:

Proposition 2. If A and B are two sets of distinct real numbers then #{|a — b| :
a€ A,be B} > min{|A|, |B|}. If equality holds then either

e A = B is an arithmetic progression; or

o B={a+(2i+1)d: 1<2i+1<2N—1} with Ag = {a+2id: 0< 2 < 2N},
and then A is either Ay, or Ag less any one element; or

e A={m—a,m+a} and B={m —b,m+ b} for some a>b>0.

The inequality in Proposition 2 can be proved by taking c¢ to be the smallest
number from either set (say from B), and then by noting that the numbers a—c, a €
A, are distinct, positive real numbers. That the enumerated cases are the only ones
in which equality holds may be proved by induction on min{|A|,|B|}, using the
induction hypothesis on the smaller sets created by removing the largest number
from each of A and B.

Proposition 3. Suppose that I € 1 and that f : I — R is a map for which
|f(1) — f(§)| is a function of d(i,j) only. Then there exist constants o and 3 such
that, for every i € I, either f(i) = o + Bi; for some fized j, or f(i) = a or 8
depending on whether or not i € T, where T is a subgroup of S of index 2.

Proposition 3 is easily proved by induction on k.

Sketch of the proof of proposition 1. If |A| = 1 then clearly |D(A)| =1. If n =1
then A is an arithmetic progression, by Proposition 2. We now proceed with the
same induction as in the proof of Theorem 4, and then by induction on h(= h(A)),
the maximum of |Ay|, b € B. For h = 1, we know that B has the structure stated
in Proposition 1 by induction, since |D(B)| = |B| as in the proof of Theorem 4.
Define f(i) = ap, where b =a + Z§:1 i;v;. The result follows from Proposition 3.

Now suppose h > 1 and write A() = A. By the proof of Theorem 4 we know that
|ID(BM)| = |BMW)| and |D(A®)| = |A®)| where B") = B and A® = C. We now
apply the proof of Theorem 4 to A®) and then to A®), etc., to find a sequence of
sets A1 D A D ... D AW with each h(AY)) = h+1 —j and |D(AD)| = |AU)].
Note that BU) = {b € B : |Ap| > j}.
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We first prove Proposition 1 for A* := {(b,z) : b € B" z € Ap}. From the
proof of Theorem 4 (taking D = 0) we see that there are no more than h elements
in the union of all sets {|a — a'| : a,a’ € Ap}. If |Ap| = h then, by Proposition 2,
Ap must be an arithmetic progression; and the arithmetic progressions for any two
such sets must have the same common difference. Moreover if |Ap| = |Aw/| = h
then #{|a —d’| : a € Ap,a’ € A} < h by the proof of Theorem 4, and so either
Ap = Ay or they are two disjoint, but interwoven, arithmetic progressions, by
Proposition 2. Thus the sets Ay, of size h are either all identical (in which case
A* satisfies Proposition 1 by the induction hypothesis), or there are two possible
such sets Ap. In this case we may write each b = a + Z?:l 1;v; by the induction
hypothesis, and let f(i) be the smallest element in Ay,. By Proposition 3 we deduce
that Proposition 1 holds for A*.

The result thus holds when A* = A, that is, when there are h elements in every
Ay, or equivalently when B = B, If not then there exists b € B(Y) \ BU+D)
for some j, 1 < j < h—1. Let b’ be any point in BU*Y and D := d(b’,b). The
induction hypothesis ensures that each B(*) is a lattice as described in the hypothesis
of Proposition 1, and this particular lattice structure implies that there do not exist
B, € BUtY with d(B3, 8') = D. Therefore #{|la —d'|: a € Ap,d’ € Ap'} = |Ap|,
by the proof of Theorem 4. Using Proposition 2 we deduce that Ay, and Ay,
are interwoven disjoint arithmetic progressions, whose union is also an arithmetic
progression. Thus h(Ap/) = j + 1, so taking b’ € B we see that j = h — 1, and
moreover all such sets Ay, b’ € B must be the identical arithmetic progression.
But the same argument applies to every b € B® =1 and so each such Ay, is the

same arithmetic progression interwoven between the elements in each Ay with
b’ € B®. Thus Proposition 1 holds for A.

4. FURTHER QUESTIONS

Proposition 2 inspires, and provides the answer in one dimension to, the following
open problem: If A and B are finite sets of distinct vectors in R™ then show that the
order of the set D(A, B) = {d(a,b) : a € A,b € B} is at least min{|A|, |B|}. This
translates to finding a lower bound for the order of {ab/ gcd(a,b)? : a € A,b € B}
where A and B are sets of distinct positive integers.

Probably even more difficult would be to find a good lower bound for the order
of {a/gcd(a,b),b/ gcd(a,b) : a € A,b € B}. Generalizing Graham’s Conjecture, we
conjecture that the largest element of this set is > min{|A|, |B|} (the authors of [3]
have informed us that they retract the claim at the end of the introduction to [3],
which would have implied this conjecture).
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