„Diskussion:Regenbogen“ – Versionsunterschied
Zeile 835: | Zeile 835: | ||
== Ursache für den Regenbogen == |
== Ursache für den Regenbogen == |
||
Die Ursache ist die [[Dispersion]] also die wellenlängenabhängige [[Lichtbrechung]]. Das Licht wird in einem kugelförmigen Tropfen bevorzugt in eine bestimmte Richtung (Kegeloberfläche) gestreut unter diesem Winkel ändert sich der Ausfallswinkel nicht bei Variation des Einfallswinkels. |
Die Ursache ist die [[Dispersion_(Physik)|Dispersion]] also die wellenlängenabhängige [[Lichtbrechung]]. Das Licht wird in einem kugelförmigen Tropfen bevorzugt in eine bestimmte Richtung (Kegeloberfläche) gestreut unter diesem Winkel ändert sich der Ausfallswinkel nicht bei Variation des Einfallswinkels. |
||
Ablenkung bei k Reflexionen im Innern des Tropfens |
Ablenkung bei k Reflexionen im Innern des Tropfens |
||
:<math> \delta = 2 |
:<math> \delta = 2 \, (\theta - \theta') + k (\pi - 2\, \theta') </math> |
||
:<math> sin(\theta') = sin(\theta)/n(\lambda)</math> |
:<math> sin(\theta') = sin(\theta)/n(\lambda)</math> |
||
Die maximale Ablenkung ergibt sich beim Einfallswinkel |
Die maximale Ablenkung ergibt sich beim Einfallswinkel aus der Bedingung für die |
||
[[Differentialrechnung|Ableitung]] <math>\frac{d \delta(\theta)}{d\theta} = 0</math> |
|||
:<math> \ |
:<math> \theta_{max} = arcsin \left( \sqrt{ \frac{(k+1)^2 - {n(\lambda)}^2}{(k+1)^2 - 1} } \right)</math> |
||
--[[Spezial:Beiträge/178.203.183.31|178.203.183.31]] 15:51, 21. Aug. 2011 (CEST) |
--[[Spezial:Beiträge/178.203.183.31|178.203.183.31]] 15:51, 21. Aug. 2011 (CEST) |
Version vom 21. August 2011, 20:51 Uhr
Füge neue Diskussionsthemen unten an:
Klicke auf , um ein neues Diskussionsthema zu beginnen.Entfernung des Regenbogens
Jedem aufmerksamen Beobachter ist sicher bereits aufgefallen, dass sich das Phänomen eines Regenbogens keineswegs nur im Unendlichen abspielt, sondern dass sich der Bogen deutlich vor Objekten in der Nähe des Betrachters abzeichnet. Dies wird sehr anschaulich bei der Benutzung eines Gartenschlauches, ist aber auch in der Natur zu beobachten, z.B. vor Erhebungen, Gebäuden oder Bäumen. Ich denke es wäre zum Verständnis wichtig, darauf hinzuweisen, dass es niemals nur einen Regenbogen gibt, sondern grundsätzlich so viele Regenbögen, wie Beobachter. Selbst zwei unmittelbar nebeneinander stehende Betrachter sehen nicht denselben, sondern zwei, wenn auch nur minimal verschobene Bögen, da der optische Winkel der gebrochenen Lichtstrahlen geringfügig unterschiedlich ist. --80.245.147.81 13:25, 5. Apr 2006 (CEST)
Noch einer (... ein Eisregen(bogen))
Daily Mail, Barry Wigmore, 8. Juni 2006 (engl.) (nicht signierter Beitrag von 85.176.163.116 (Diskussion | Beiträge) 00:10, 14. Apr. 2007 (CEST))
Regenbogen über Bingen
Ich habe mir erlaubt, den Regenbogen über Bingen einzusetzen. Bei Regenbogenfotos mangelt es aus meiner Sicht häufig etwas an der Kulisse. Die Amerikaner haben da zum Teil bessere Möglichkeiten.--Manfred Heyde 20:39, 22. Jun. 2007 (CEST)
Violette Ringe
Gestern hab ich auf einer Radtour einen recht speziellen Regenbogen gesehen. Es waren ziemlich gute Bedingungen und der Bogen war entsprechend hell und hatte einen deutlichen Außenbogen. Aber innerhalb des Hauptbogens setzte sich nach violett das Spektrum fort: Es ging weiter nach innen und es erschienen weitere Ringe, die allesamt violett waren und in etwa einen Abstand voneinander hatten wie die Farben des normalen Bogens. Zeitweise konnte ich bis zu vier Ringe ineinander sehen. Hier ist es auch im Ansatz erkennbar (im Scheitel) --Versusray | Diskutiere mich! 11:51, 25. Jul. 2007 (CEST)
Toter Weblink
Bei mehreren automatisierten Botläufen wurde der folgende Weblink als nicht verfügbar erkannt. Bitte überprüfe, ob der Link tatsächlich unerreichbar ist, und korrigiere oder entferne ihn in diesem Fall!
- http://www.goruma.de/meteorologie/regenbogen.html (archive)
- In Regenbogen on 2007-09-21 16:26:11, 404 Not Found
- In Regenbogen on 2007-09-22 14:42:49, 404 Not Found
- In Regenbogen on 2007-09-23 11:41:12, 404 Not Found
- In Regenbogen on 2007-09-24 11:42:27, 404 Not Found
- In Regenbogen on 2007-09-25 16:07:50, 404 Not Found
- In Regenbogen on 2007-09-26 00:59:46, 404 Not Found
- In Regenbogen on 2007-09-27 11:27:42, 404 Not Found
- In Regenbogen on 2007-09-27 23:10:01, 404 Not Found
- In Regenbogen on 2007-09-28 23:42:27, 404 Not Found
Die Webseite wurde vom Internet Archive gespeichert. Bitte verlinke gegebenenfalls eine geeignete archivierte Version: [1]. --ViewerBot 02:39, 29. Sep. 2007 (CEST)
Artikel des Tages
Hallo, der lesenswerte Artikel wurde soeben von mir als Artikel des Tages für den 08.07.2008 vorgeschlagen. Das Datum ist flexibel. Eine Diskussion darüber findet hier statt. --Vux 14:39, 26. Jun. 2008 (CEST)
Verheißung des Noah
Im Artikel Regenbogenfahne steht "diente in vielen Kulturen weltweit als Zeichen der Toleranz, Vielfältigkeit, der Hoffnung und Sehnsucht. Diese Bedeutung geht auf den Regenbogen als Symbol biblischer Verheißung zurück (vgl. Noach)". Das fehlt hier noch, ich fände es wichtig. Bei Noah ist der Regenbogen übrigens gar nicht berücksichtigt. Wer kann das hier in den Artikel einarbeiten oder diskutieren? Danke, --77.4.122.114 13:06, 8. Sep. 2008 (CEST)
Hinweis auf ein paar Mängel, gelesen bis und mit 1.1
mit vielen Spektralfarben in einem charakteristischen Farbverlauf: Eine Aussage, die den Text anreichert, aber eigentlich nichts sagt. Was ist viel? Was ist charakteristisch?
das Wechselspiel: Warum prosaisch, warum nicht physikalisch (Wechselwirkung)? Warum überhaupt Wechsel? Die kausale Kette geht nur vorwärts.
wird das Licht wellenlängenabhängig gebrochen: Warum nicht direkter formuliert? Zugegeben, der Artikel Dispersion sollte hierfür verbessert werden.
unter günstigen Bedingungen: Sagt nichts, s.o.
enthält im sichtbaren Bereich seines Spektrums viele Spektralfarben: Was ist viel, s.o.?
in der Rayleigh-Streuung begründet: Ziemliche Suche im verlinkten Artikel ist nötig.
weißes Licht ähnlich einem gläsernen Prisma ... in die einzelnen Spektralfarben aufzuspalten: Der Bezug aufs Prisma ist zu wenig sorgfältig. gläsern ist nicht das Primäre (Prismen auch aus Kunststoffen, Wasser u.a.), primär ist die brechende Fläche. Auch die "konstante" Ablenkung durchs Prisma ist beim Regenbogen nicht das Wesentliche.
in Abhängigkeit von ihrem Auftreffpunkt auf den Tropfen unterschiedlich stark gebrochen: genauer: Es geht nicht um die Dispersion wie bisher (im Bild mit monochromatischem Licht gezeigt).
vorzugsweise und bevorzugt: Klingt nach Vorlieben o.ä.. Es gibt Gründe für die Häufung des Lichtaustritts in einer bestimmten Richtung.
die eigentliche Form des Regenbogens: Es ist unklar, was hier mit Form gemeint ist.
Analemma 21:48, 21. Mär. 2009 (CET)
Mängel-Einträge
bis Absatz 2 (Vorkommen)
Ich habe die oben angefangene Mängel-Feststellung bis einschließlich Absatz 2 erweitert und in eine Teil-Kopie des momentanen Artikels eingetragen.
Ein Regenbogen ist ein Phänomen der atmosphärischen Optik, das als kreisbogenförmiges Lichtband mit vielen Spektralfarben in einem charakteristischen Farbverlauf wahrgenommen wird.
mit vielen Spektralfarben in einem charakteristischen Farbverlauf: Eine Aussage, die den Text anreichert, aber eigentlich nichts sagt. Was ist viel? Was ist charakteristisch? 8.11: erl.
Er entsteht, wenn die hinter dem Beobachter stehende Sonne eine vor ihm befindliche Regenwand oder -wolke bescheint, verursacht durch das Wechselspiel
das Wechselspiel: Warum prosaisch, warum nicht physikalisch (Wechselwirkung)? Warum überhaupt Wechsel? Die kausale Kette geht nur vorwärts. 8.11: erl.
annähernd kugelförmiger Wassertropfen mit dem Sonnenlicht. Bei Ein- und Austritt aus dem Tropfen wird das Licht wellenlängenabhängig gebrochen
wird das Licht wellenlängenabhängig gebrochen: Warum nicht direkter formuliert? Zugegeben, der Artikel Dispersion sollte hierfür verbessert werden. 8.11: -
und an der rückwärtigen inneren Oberfläche richtungsabhängig reflektiert. Eine extrem seltene Variante des Regenbogens ist der Mondregenbogen, der beim Zusammenspiel von Wassertröpfchen mit Mondlicht unter günstigen Bedingungen
unter günstigen Bedingungen: Sagt nichts, s.o. 8.11: erl.
zu sehen ist. Beide Varianten zählen zu den sogenannten Photometeoren.
Optik des Regenbogens
Charakter des Sonnenlichts und Zusammenfassung der Regenbogenentstehung
Das Sonnenlicht enthält im sichtbaren Bereich seines Spektrums viele Spektralfarben.
enthält im sichtbaren Bereich seines Spektrums viele Spektralfarben: Was ist viel, s.o.? 8.11: erl.
Es handelt sich dabei um elektromagnetische Strahlung unterschiedlicher Wellenlängen. Bei hochstehender Sonne kommt es zu einer Mischung der Spektralfarben entsprechend ihrer natürlichen Intensität, woraus das weißliche Tageslicht resultiert. Bei tiefstehender Sonne ist die Mischfarbe rötlicher, was in der Rayleigh-Streuung
in der Rayleigh-Streuung begründet: Ziemliche Suche im verlinkten Artikel ist nötig. 8.11: erl.
begründet liegt und Effekte wie das Morgenrot bedingt.
Die Ursache für die Entstehung der Farben des Regenbogens ist die Dispersion in einem Wassertropfen, also dessen Fähigkeit weißes Licht ähnlich einem gläsernen Prisma
weißes Licht ähnlich einem gläsernen Prisma ... in die einzelnen Spektralfarben aufzuspalten: Der Bezug aufs Prisma ist zu wenig sorgfältig. gläsern ist nicht das Primäre (Prismen auch aus Kunststoffen, Wasser u.a.), primär ist die brechende Fläche. Auch die "konstante" Ablenkung durchs Prisma ist beim Regenbogen nicht das Wesentliche. 8.11: erl.
(siehe rechts) in die einzelnen Spektralfarben aufzuspalten.
Wenn während oder kurz nach einem Regenereignis Sonnenlicht auf eine Wand von Regentropfen fällt, wird das Licht in ihnen gebrochen und reflektiert. Da jeder Lichtstrahl auf eine andere Stelle des runden Regentropfens fällt, wird das parallele Sonnenlicht in einem Kegel zurückgeworfen, und zwar vorzugsweise in einem Winkel von rund 41°. Diese 41° sind also der bevorzugte Winkel zwischen dem Licht,
vorzugsweise und bevorzugt: Klingt nach Vorlieben o.ä.. 8.11: erl. Es gibt Gründe für die Häufung des Lichtaustritts in einer bestimmten Richtung. 8.11: erl.
das auf den Tropfen trifft, und dem Licht, das den Tropfen verlässt. Da das Sonnenlicht, wie oben dargelegt, aus vielen Spektralfarben zusammengesetzt ist, die im Regentropfen auch unterschiedlich gebrochen werden, ergibt sich für diese jeweils ein ganz bestimmter Winkel, der etwas von den 41° abweicht. Das rote Licht weist einen bevorzugten Winkel von etwa 42° auf, das blaue Licht eher von 40°. Blickt der Beobachter nun zur Regenwand, so erscheinen ihm alle Tropfen farbig, die das von der Sonne kommende Licht genau auf sein Auge umlenken. Der Regenbogen wird also nur sichtbar, wenn der Betrachter mit dem Rücken zur Sonne auf die Regenwand blickt, denn nur dann kann man in Richtung dieses Winkels schauen. Die Breite des Regenbogens entsteht dabei durch die Auffächerung der Farben in die unterschiedlichen Winkel, die eigentliche Form des Regenbogens
die eigentliche Form des Regenbogens: Es ist unklar, was hier mit Form gemeint ist. 8.11: -
aber durch das optische Verhalten der Lichtstrahlen im Regentropfen. Unser Auge kann nur bestimmte Frequenzen des Lichts wahrnehmen (380 bis 780 Nanometer (nm) Wellenlänge). Auch oberhalb der roten Farbe (z. B. Infrarot) und unterhalb der blauen Farbe (z. B. Ultraviolett) des Regenbogens sind "Farben", die das menschliche Auge jedoch nicht wahrnehmen kann.
Reflexionscharakteristik und Farbzerlegung am Wassertropfen
Wo bleibt die Brechung? 8.11: erl.
Wassertröpfchen sind in guter Näherung transparente kleine Kugeln. Die Abbildung rechts verdeutlicht, was mit einem Lichtstrahl geschieht, wenn er auf diese Tropfen trifft.
Das Bild zeigt sowohl Brechung als auch Dispersion. Von Dispersion ist aber erst 2 Absätze später die Rede. 8.11: - Das Bild enthält schon den Winkel 42°: Von maximaler Ablenkung ist erst 1 Absatz später die Rede. 8.11: - Warum 42°, nicht 41° oder 40°? 8.11: -
Bei Ein- und Austritt wird er gemäß dem Brechungsgesetz abgelenkt und an der rückwärtigen inneren Oberfläche reflektiert. Ein Teil des Lichtes wird direkt von der dem einfallenden Licht zugewandten Oberfläche reflektiert,
von der dem einfallenden Licht zugewandten Oberfläche reflektiert, → an der Eintrittsfläche 8.11: erl.
ein anderer Teil tritt durch den Tropfen hindurch, da die innere Oberfläche keine Totalreflexion aufweist.
Warum nicht? 8.11: -
Beides reduziert die Intensität des Regenbogens, hat jedoch davon abgesehen keinen weiteren Einfluss auf dessen Entstehung und soll daher hier vernachlässigt werden.
Wesentlich ist, dass die Tropfenoberfläche gekrümmt ist, denn dadurch werden die einzelnen Lichtstrahlen in Abhängigkeit von ihrem Auftreffpunkt auf den Tropfen unterschiedlich stark gebrochen, was in der Abbildung rechts unten dargestellt ist.
Betonen, dass es noch nicht um Regenbogen-Farben geht: monochromatisches Licht in der Abbildung. 8.11: - Die Abbildung ist eine magere Kopie aus der englischen Wikipedia (dort wenigstens Ein-und Austritt gekennzeichnet) .8.11: - Weder in der Legende noch im folgenden Text ist gesagt, dass nur die obere Hälfte des eintretenden Lichtes dargestellt ist. Was geschieht mit der anderen Hälfte? 8.11: -
Eine geometrische Berechnung ergibt,
Rechnung fehlt, aber mit Hilfe des Bildes erklärbar. 8.11: -
dass die reflektierten Strahlen von einem kugeligen Wassertropfen unabhängig vom Tropfendurchmesser maximal unter einem bestimmten Grenzwinkel von annähernd 42 Grad zurückgeworfen werden.
Falsch: Diesen Winkel haben erst die ausgetretenen Strahlen (nicht die reflektierten). 8.11: erl.
Da größere Ablenkwinkel bei einfacher Reflexion nicht auftreten, häufen sich dort die Beiträge verschiedener Auftreffpunkte und die Intensität des reflektierten Lichtes ist deshalb unter dem Maximalwinkel besonders hoch. Dieser Vorzugswinkel wird als Regenbogenwinkel bezeichnet und ist für die Entstehung des eigentlichen Bogens verantwortlich.
Vorzugswinkel ... für die Entstehung des eigentlichen Bogens verantwortlich. Dafür ist mehr verantwortlich. 8.11: erl.
Da fallende Wassertropfen annähernd kugelförmig sind, treten diese Vorzugsrichtungen rotationssymmetrisch um die Richtung des parallel einfallenden Sonnenlichts auf. Es ergibt sich dadurch eine kegelförmige Abstrahlung.
Dieser Kegel muss vom Kegel, in dessen Spitze sich der Beobachter befindet unterschieden werden. 8.11: -
Der Maximalwinkel ist wegen der bereits oben erwähnten Dispersion von der Wellenlänge des auftreffenden Lichtes abhängig, jede Wellenlänge und somit Farbe hat also ihren eigenen Maximalwinkel. Dieser zeigt folglich eine Verteilung von Rot bei etwa 42° bis Blau bei ungefähr 40°. Es kommt also zu einer Auffächerung der einzelnen Wellenlängen beim Durchtritt des Sonnenlichts durch den Wassertropfen. Auch ohne diese Auffächerung würde aufgrund des Maximums der Lichtintensität um den dann einheitlichen Maximalwinkel herum ein schmaler Regenbogen entstehen, der jedoch weiß erscheinen würde.
Ein weißer Regenbogen ist widersinnig. 8.11: -
Der Teil des Sonnenlichts, der durch den Regentropfen einfach hindurchdringt oder bereits an dessen Oberfläche reflektiert, anstatt gebrochen wird, weist keinen Maximalwinkel auf und erzeugt daher auch keinen Regenbogen.
weist keinen Maximalwinkel auf Eine Erklärung, die unpassend ist, aber sophisticated klingt. Der hinten raus gehende Teil ist verloren, der nicht eintretende wird zurück gestreut (konvexe Fläche). 8.11: erl.
Hauptregenbogen
Dieses Wort erscheint zu spät, erst im 3. Absatz. Vorher wird z.T. eben Gesagtes schon wiederholt. 8.11: -
Um den Regenbogen zu sehen, muss der Beobachter auf einer möglichst freien Ebene mit dem Rücken zur tiefstehenden Sonne stehen und auf eine vom Sonnenlicht angestrahlte Regenwand blicken. In diesem Fall verlaufen alle Sonnenstrahlen annähernd parallel zur Erdoberfläche und zur Blickrichtung des Beobachters. Sie treffen in breiter Front auf die Vielzahl kleiner, im Blickfeld vor dem Beobachter annähernd gleichmäßig verteilter Wassertröpfchen.
Das Licht trifft also zuerst auf diese Regentropfen und folgt dabei dem im letzten Abschnitt beschriebenen Strahlengang. Der Maximalwinkel mit dem das Licht aus jedem Tropfen bei einer bestimmten Wellenlänge und damit Farbe dann austritt, also der Winkel zwischen dem Tropfen und dem ursprünglichen Sonnenstrahl, beträgt wie dargelegt je nach Wellenlänge und damit Farbe 40 bis 42 Grad. Der Beobachter nimmt das Licht nur bei diesem Winkel als intensiv farbig wahr, insofern es direkt auf sein Auge trifft.
Die genaue Position des Regenbogens kann man sich nun über eine verlängerte Linie herleiten, die man sich zwischen dem Kopf des Beobachters und dessen von der Sonne geworfenen Schatten vorstellen muss. Diese Linie ist identisch zur verlängerten Verbindung zwischen Beobachter und Sonne und zeigt in Richtung des Sonnengegenpunktes. Dieser bildet das Zentrum des Regenbogens. Da der Winkel zwischen dieser Linie und dem Regentropfen ein Nachbarwinkel
Nachbarwinkel besser verlinken (mit # etc.) 8.11: -
des Winkels zwischen dem ursprünglichen Sonnenstrahl und dem Austrittsstrahl des Regentropfens ist, sind beide identisch und somit gleich 40 bis 42 Grad. Folglich blickt der Beobachter genau dann in das vom Tropfen im Maximalwinkel abgestrahlte Licht, wenn er den Schatten seines Kopfes fixiert und dann um 40 bis 42 Grad – den so genannten Öffnungswinkel
Falsch: Öffnungswinkel ist in der Geräteoptik eng definiert und hier nicht passend. 8.11: erl.
– in Richtung des Regentropfens nach oben blickt. Hier erscheint für ihn dann, solange er die Sonne genau im Rücken hat, der Scheitelpunkt
Ebenfalls unpassender Link. Viel besser und sicherer ist die umgangssprachliche Bedeutung dieses Begriffs: hier der oberste Punkt. 8.11: -
des so genannten Hauptregenbogens. Dieser stellt den eigentlichen Regenbogen dar und tritt im Vergleich zu anderen Regenbogenphänomenen
Welche sind das? 8.11: -
am deutlichsten hervor. Er erstreckt sich dabei halbkreisförmig
Das ist nicht die allgemeine Form. 8.11: -
um den Sonnengegenpunkt, wobei der Winkel immer gleich bleibt.
Wo und ob
Wieso ob? Fordert nur eine längere Erklärung. 8.11: -
ein Regenbogen dabei letztlich erscheint, ist eine Frage der relativen Position zwischen Beobachter, Sonne und Regentropfen. Wie gezeigt bilden dabei Sonne, Beobachter und das gedachte Zentrum des Regenbogens – der Sonnengegenpunkt – immer eine Linie, so dass jede Bewegung von Sonne oder Beobachter auch eine Veränderung des Regenbogens zur Folge hat. Jeder Beobachter sieht also einen anderen,
Wie unterscheiden sie sich? 8.11: -
eigenen Regenbogen. Dabei reflektiert und bricht nur eine kleine Minderheit richtig positionierter Regentropfen das Licht so, dass der jeweilige Maximalwinkel auf das Auge des Beobachters gerichtet ist. Fehlen die Regentropfen dabei an einer Stelle, zeigt sich dort auch kein Regenbogen.
Es ist unklar, ob das die Antwort auf die vorige Frage ist, oder ob etwas Generelles gesagt werden soll. 8.11: -
In den meisten Fällen nimmt man daher nur einen Ausschnitt des eigentlich möglichen Bogens wahr.
Steht die Sonne genau am Horizont, so gilt dies auch für das Zentrum des Regenbogens, wodurch dieser bei ausreichender Tropfenzahl einen vollständigen Halbkreis einnimmt. Dieser beträgt für den Hauptregenbogen 84 Grad des Sehfeldes,
Das Sehfeld hat nicht nur horizontale Ausdehnung. 8.11: -
also das doppelte des größten Maximalwinkels. Damit erreicht er seine größtmögliche Breite. Er ist umso schmaler und flacher, je höher die Sonne steht und je weiter damit der Sonnengegenpunkt unter den Horizont absinkt. Die Winkel zwischen den Sonnenstrahlen und den vom Beobachter wahrgenommenen farbigen Strahlen bleiben dabei immer unverändert. Falls die Sonne höher als 42° steht, rutscht auch der Scheitelpunkt des Bogens unter den Horizont. In Mitteleuropa erreicht die Sonne bei ihrem mittäglichen Höchststand im Sommer bis zu 60°, weshalb man dann keinen Regenbogen beobachten kann. Ein solches Szenario ist jedoch aus meteorologischen Gründen eher selten, da die Sonne dann meist von den Regenwolken verdeckt wird. Im Winter ist der Höchststand aber durchweg unter 42° und somit sind Regenbögen dann zu jeder Tageszeit zwischen Sonnenauf- und Sonnenuntergang möglich.
Der Widerspruch, dass laut der Skizze „Strahlengang im Regentropfen“ eigentlich blau die oberste Farbe im Hauptbogen sein müsste, ist nur scheinbar – da Blau unter einem kleineren Winkel reflektiert wird, sind die Tropfen, die die blauen Anteile reflektieren, der Erde näher; überspitzt formuliert, reflektiert ein fallender Regentropfen alle Farben des Sonnenlichts, von rot nach blau gehend, während er durch den Winkelbereich von 42° bis 40° fällt.
Nebenregenbogen
Bisher wurden Strahlen betrachtet, die genau einmal im Inneren der Tröpfchen reflektiert werden. Der Nebenregenbogen dagegen wird von zweifach reflektierten Strahlen gebildet.
Im allgemeinen Fall mehr als zweimalige Reflektion. 8.11: -
Er ist deutlich lichtschwächer als der Hauptregenbogen, da bei jeder Reflexion ein Teil des Sonnenlichtes unreflektiert den Regentropfen verlässt. Außerdem verteilt sich das verbleibende Licht auf einen größeren Winkelbereich, da der Nebenbogen breiter
Wieso breiter? 8.11: -
als der Hauptbogen ist und sich die Farben zudem stärker überlagern.
Warum und wie überlagern? 8.11: -
Er kann daher nur bei sehr guten Sichtverhältnissen
Was sind gute Verhältnisse? 8.11: -
beobachtet werden und kommt nicht so häufig wie der Hauptregenbogen vor. Die rechnerische Auswertung
Quantitative Ergebnisse folgen nicht zwangsläufig aus Rechnungen. 8.11: -
der Maximumbedingung ergibt einen Winkel von circa 50 Grad für rotes und 53 Grad für blaues Licht. Der aus einem Regenbogen austretende Lichtstrahl reflektiert beim Nebenregenbogen gegen den Uhrzeigersinn, statt mit dem Uhrzeigersinn
Ob Uhrzeigersinn oder das Gegenteil ist eine Standpunkt-Frage. Linkshänder zeichnen möglicherweise die hier vorkommenden Abbildungen spiegelbildlich. 8.11: erl.
wie beim Hauptregenbogen. Aufgrund der zusätzlichen Reflexion kehrt sich außerdem der Farbverlauf im Vergleich zum Hauptregenbogen um. Die nebenstehende Grafik veranschaulicht den Strahlverlauf in der Nähe des Intensitätsmaximums.
in der Nähe des Intensitätsmaximums Bisher war von maximaler Ablenkung die Rede. 8.11: -
Lichtstrahlen, die mehr als zweimal reflektiert werden, sind bereits so schwach, dass sie nur in den seltensten Fällen noch weitere sichtbare Regenbögen erzeugen.
Im oberen Bild mit einem Haupt- und Nebenregenbogen fällt auf, dass der Himmel im Innern des Hauptbogens deutlich heller als außerhalb erscheint und insbesondere der Bereich zwischen Haupt- und Nebenregenbogen deutlich dunkler als seine Umgebung ist. Dieser Helligkeitskontrast entsteht, weil bei Winkeln unterhalb des Maximalwinkels beim Hauptregenbogen sich die Farben überlagern und so ein weißes Licht erzeugen. Da beim Nebenregenbogen der Farbverlauf umgekehrt ist, zeigt sich das etwas dunklere weiße Licht bei Winkeln oberhalb des Maximalwinkels des Nebenregenbogens. Dadurch entsteht zwischen diesen beiden Regenbogen ein dunkles Band, welches zu Ehren seines Entdeckers Alexander von Aphrodisias als Alexanders dunkles Band bezeichnet wird.
Geschlossener Regenbogen
Um einen zum Kreis geschlossenen Hauptregenbogen sehen zu können, muss das Reflexionsmedium seiner Ausdehnung, d.h. über 2 mal 42°, komplett in das Blickfeld des Beobachters passen. Dazu ist es notwendig, dass beim Blick nach unten, also relativ zur Waagerechten, ebenfalls freie Sicht auf die von der Sonne angestrahlten Reflexionselemente herrscht, denn nur über Regionen in denen das Medium ist kann sich der Regenbogen weiter fortsetzen.
Diese Möglichkeit besteht im Allgemeinen nur von einem Flugzeug oder einem Ballon aus. Künstlich kann dies zum Beispiel mit einem Wasserschlauch mit Düse oder einer Sprühflasche realisiert werden, wenn die Wasserfläche
Wasserfläche → Wassertropfen 8.11: -
sehr dicht vor dem Beobachter entsteht. Eine Lücke im unteren Bereich durch den Schatten des Beobachters bleibt jedoch im Allgemeinen unvermeidlich.
Bei geeigneten Witterungsbedingungen kann man in der Tat vor allem während der Start- oder Landephase, d.h. in Bodennähe, einen vollständigen Regenbogenkreis beobachten. Ein denkbarer Beobachtungsort wäre auch ein sehr hoher Turm, da so die angestrahlte Regenwand nah genug wäre. Berge hingegen kommen kaum in Frage, da diese immer zum Teil zwischen Sonne und Regenwand stünden, wodurch kein ganzer Kreis zustande kommen kann.
Es sei nochmals ausdrücklich auf die Größe des Kreises verwiesen. Insbesondere ist dieses Phänomen nicht mit den viel kleineren Glorien zu verwechseln, die zwar dem Phänomen und den benötigten Umgebungsbedingungen nach verwandt sind jedoch einer anderen Theorie
Im Link gibt es keine andere Theorie. 8.11: erl.
für ihr Zustandekommen zugeordnet werden.
Eine gänzlich andere Möglichkeit zur Sichtung eines Regenbogenkreises eröffnet sich, wenn man sich an oder auf einem großen, ruhigen Gewässer befindet. Bei diesigem Wetter lässt sich dann unter günstigen Umständen
Was sind bei diesige Wetter günstige Umstände? 8.11: -
ein geschlossener Regenbogen beobachten. Dieser wird von der in der Wasserfläche gespiegelten Sonne komplettiert
Halbkreis zu Halbkreis?? 8.11: -
oder erzeugt und hat deshalb das Spiegelbild des Sonnengegenpunktes als Zentrum. Der über dem Beobachter befindliche Dunst muss bereits Regentropfen enthalten
Wieso bereits? Ohne Tropfen entsteht schon nicht der zu komplettierende Bogen. 8.11: -
und von dem die Sonne spiegelnden See her beleuchtet werden. Steht die Sonne beispielsweise 50 Grad hoch im Süden, so befindet sich das Zentrum dieses Regenbogenkreises 50 Grad hoch im Norden,
Sehen wir jetzt einen hängenden Bogen? 8.11: -
denn der Sonnengegenpunkt steht 50 Grad unter dem Horizont, sein Spiegelbild also 50 Grad darüber.
Insbesondere muss die Sonne für dieses Szenario höher als 42 Grad am Himmel stehen. Tut sie dies nicht, bleibt zumindest die Chance, das nicht minder seltene Schauspiel zweier gleichzeitig auftretender Hauptregenbögen mit verschiedenen Zentren zu erleben.
Was sahen wir eigentlich bei höherer Sonne? 8.11: -
Farbverlauf und Polarisation
Der Inhalt des folgenden Absatz steht in anderen, einschlägigen Artikeln. 8.11: -
Die einzelnen Farben entstehen durch die Brechung des Lichtes. Beim Hauptregenbogen verlaufen die Farben von außen nach innen von Rot über Orange, Gelb, Grün und Blau zu Violett. Beim Nebenregenbogen ist die Reihenfolge aufgrund der zusätzlichen Reflexion umgekehrt. Dieser Farbverlauf ist dabei kontinuierlich, das heißt ein Regenbogen hat keine feste Menge diskreter Farben, die sprunghaft ineinander übergehen. Die Anzahl der Farben in einem Regenbogen ist lediglich durch die Farbwahrnehmung begrenzt, also die Fähigkeit verschiedene Wellenlängen auch als unterschiedliche Farben wahrzunehmen. Da auch die Regenbögen selbst hier teilweise große Unterschiede besitzen, ist die ihnen zugerechnete Farbabfolge eher eine Konvention als eine tatsächlich beobachtbare Eigenschaft. So lassen sich zum Beispiel sehr kurz vor oder auch noch sehr kurz nach Sonnenaufgang Regenbögen beobachten, die beinahe ausschließlich rotgefärbt sind. Ein Foto eines solchen nahezu idealen Halbkreisbogens, genauer: einer halbkreisförmigen Scheibe, mit erläuternder Theorie ist in der angegeben Quelle veröffentlicht.
Welche Quelle? 8.11: erl.
Das von einem Regenbogen reflektierte Licht hat einen sehr hohen Polarisationsgrad.
Polarisationsgrad Was ist das? 8.11: -
Mit Hilfe eines Polarisators kann ein Regenbogen, je nach Drehung des Polarisationsfilters, vollständig für das Auge bzw. die Kamera gelöscht oder aber im Kontrast deutlich gesteigert werden. Die Kontrasterhöhung lässt sich dadurch erklären, dass das polarisierte Licht des Regenbogens den Filter nahezu vollständig passieren kann, während das „normale“ unpolarisierte Licht zu über 50% absorbiert wird.
Fotografien von Regenbögen zeigen zu einem gewissen Prozentsatz ein stark unterschiedliches Licht-Verhältnis zwischen dem Innenbereich und dem Aussenbereich des Hauptbogens. Während der Innenbereich oftmals eher hell leuchtend und teils leicht dunstig verschleiert wirkt präsentiert sich der Aussenbereich dagegen dunkler, klarer und mit gesättigteren Farben. In wie weit hier die nur mit Foto-Apparat und Filter oder speziellen Brillen-Gläsern sichtbare Polarisation eine Rolle spielt oder ein generelles Phänomen des massgeblichen Brechungs- und Reflexionsvorgangs im Kontext mit dem einfallenden Licht zu Grunde liegt muss heute an dieser Stelle offen bleiben.
Warum diese offen bleibende Bemerkung? Es gab doch bereits eine Erklärung für die unterschiedliche Helligkeit der beiden Bereiche. 8.11: -
Sonderformen, Einfluss der Tröpfchengröße und Interferenzeffekte
Bei guten Beobachtungsbedingungen
guten Beobachtungsbedingungen Wie sind die, genauer? 8.11: erl.
sind innerhalb des Hauptbogens ein oder mehrere zusätzliche oder überzählige farbige Bögen erkennbar, die mit stetig abnehmendem Kontrast die Farbreihenfolge des Hauptbogens wiederholen. Diese zusätzlichen Farbbänder erklärte Thomas Young 1804 mit der Interferenz: Für Beobachtungswinkel kleiner als der Maximalwinkel gibt es für einen Strahl einer bestimmten Farbe verschiedene, unterschiedlich lange Strahlengänge durch den Tropfen, die sich im Auge des Betrachters überlagern. Beträgt der von der Tröpfchengröße abhängige Gangunterschied entlang dieser Wege die Hälfte der Wellenlänge, oder ein ungeradzahliges Vielfaches davon, so ist die Interferenz zwischen ihnen destruktiv und ihre Amplituden löschen sich gegenseitig aus. Dazwischen liegen jedoch Winkel, bei denen Gangunterschiede auftreten, die ganzzahligen Vielfachen der Wellenlänge entsprechen: Hier kommt es zur konstruktiven Interferenz und dadurch zu einem Nebenmaximum der Intensität.
Die Erklärung diese schwierigeren Physik (nach Airy) gelingt besser mit einer Abbildung. 8.11: erl.
Abhängig von den Beobachtungsbedingungen
Wie abhängig? 8.11: erl.
kann die Reinheit der Farben sehr unterschiedlich ausfallen, auch sind häufig die Enden des Bogens besonders hell. Diese Effekte werden ebenfalls durch Interferenz verursacht, die sowohl von der Tröpfchengröße als auch von Abweichungen von der Kugelform abhängt.
Generell lässt sich feststellen, dass große Tropfen mit Durchmessern von mehreren Millimetern besonders helle Regenbögen mit wohldefinierten Farben erzeugen. Bei einer Tröpfchengröße unter 1,5 mm wird zunächst die Rotfärbung immer schwächer. Sehr kleine Tropfen, wie beispielsweise in Nebelschwaden, wo der Durchmesser oft nur etwa ein Hundertstel Millimeter beträgt, liefern nur noch verschmierte Farben. Bei Tröpfchengrößen unter 50 Mikrometern überlagern sich die Farben derart, dass der Regenbogen nur noch weiß erscheint. Diese spezielle Form wird als Nebelbogen bezeichnet.
Eine weitere Sonderform bilden die Taubögen,
Was ist das? 8.11: erl.
die viel schwerer und seltener zu beobachten sind als ein gewöhnlicher Regenbogen.
Mondregenbogen heißt ein Regenbogen bei Nacht, der das Mondlicht als Grundlage hat. Er ist ebenfalls wesentlich seltener
Wieso seltener? 8.11: -
als ein gewöhnlicher Regenbogen und erscheint dem Beobachter aufgrund seiner Lichtschwäche weiß, weil das menschliche Auge beim Nachtsehen keine Farben wahrnimmt. Bei guten Bedingungen
guten Bedingungen Wann sind sie gut? 8.11: -
oder auf fotografischen Aufnahmen kann man aber auch hier die Spektralfarben beobachten.
Besondere Erscheinungsformen bilden die sehr seltenen Gespaltenen Regenbögen und Spiegelbögen. Wenn das Sonnenlicht an einer Wasserfläche gespiegelt wird, bevor es auf die Regentropfen trifft, kann ein zweiter Bogen entstehen, der am Horizont mit dem Hauptbogen zusammentrifft, weiter oben aber wie ein zweiter, den Hauptbogen kreuzender Bogen erscheint.[1][2] Darüber hinaus gibt es Beobachtungen von seitlich versetzten, sich überschneidenden Regenbögen, deren Entstehung bislang unklar ist.[3]
Der seltene Eisbogen [4] entsteht in kalten Gegenden, wo er von Eispartikeln statt Wasser gebildet wird.
Scheinbare Entfernung des Regenbogens
Der Regenbogen wird von beiden Augen des Beobachters stets unter demselben Beobachtungswinkel (dem Regenbogenwinkel) gesehen. Vom stereoskopischen (räumlichen) Sehen wird er deshalb als ein Objekt in unendlicher Entfernung interpretiert. Diese Täuschung wirkt insbesondere dann irritierend, wenn sich „hinter“ einem „nahen“ Regenbogen (beispielsweise im Sprühnebel eines Gartenschlauches) noch Objekte im Gesichtsfeld befinden, deren Entfernung aufgrund des stereoskopischen Sehens als kleiner als unendlich eingeschätzt werden können. Ebenso irritierend wirkt die Tatsache, dass sich der Regenbogen mit dem Beobachter mitbewegt: man kann deshalb bekanntlich nie zum Ende des Regenbogens gelangen.
- "Erfolgskontrolle": 8.11: erl. und 8.11: - [in irgend einer Weise beachtet oder noch bestehend]
mfG Analemma 16:47, 6. Aug. 2011 (CEST)
- "Erfolgskontrolle": 8.11: erl. und 8.11: - [in irgend einer Weise beachtet oder noch bestehend]
Vorkommen
Natürliche Regenbögen entstehen meist dann, wenn nach einem Regenschauer der Himmel schnell aufklart und die tiefstehende Sonne das abziehende Niederschlagsgebiet beleuchtet. Demzufolge werden Regenbögen entweder vormittags im Westen oder gegen Abend im Osten beobachtet.
Demzufolge werden Regenbögen entweder vormittags im Westen oder gegen Abend im Osten beobachtet. Triviale Feststellung, die sogar noch Links für die Himmelsrichtungen benutzt.
In gemäßigten Klimazonen mit einer westlichen Vorzugswindrichtung wie in Mitteleuropa sind diese Bedingungen häufig am späten Nachmittag im Anschluss an ein Wärmegewitter erfüllt. Zu diesen kommt es meist bei Kaltfrontaufzügen, wobei am Vormittag im Mittel weniger Regen fällt als am Nachmittag, was auch die dann höhere Wahrscheinlichkeit bedingt auf einen Regenbogen zu treffen.
Im Sommer ist um die Mittagszeit herum kein Regenbogen zu beobachten, da die Sonne hierfür zu hoch steht. Im Winter besteht aber auch hier die Möglichkeit zumindest einen flachen Regenbogen anzutreffen.
Unabhängig davon kann ein Regenbogen recht häufig in einem Sprühnebel
Sprühnebel Was ist gemeint? Es gab bereits den Nebel-Regenbogen.
beobachtet werden, vor allem bei Springbrunnen, Sprinklern und Wasserfällen. Da Regenbögen hier nicht auf ein Niederschlagsereignis angewiesen sind, kann man sie auch viel einfacher und regelmäßiger vorfinden.
Bei gutem Wetter ohne bewölkten Himmel kann somit jeder selbst einen Regenbogen machen. Diese künstlich gemachten Regenbögen sind genau dieselben wie die natürlich vorkommenden, mit dem einzigen Unterschied der Größe auf der Reflexionsfläche. Um den Scheitelpunkt des Regenbogens zu finden, muss man dabei seinen Blick in Richtung des eigenen Schattens richten.
Unter besonders günstigen Bedingungen
besonders günstigen Bedingungen Muss besonders erklärt werden, was diese sind.
ist sogar die Beobachtung von Regenbogen-Fragmenten in der Gischt von Wellen möglich.
Analemma, 23.3., 1:06
Fortsetzung ab Absatz 3
Abgrenzung zu anderen Phänomenen
4 dieser Erscheinungen sind unter Halo gemeinsam dargestellt. Hier nicht zerpflückt wiederholen. Die 2 anderen Erscheinungen sind durch Beugung verursacht, also geringer mit dem Regenbogen verwandt.
Der optische Effekt der Dispersion des Sonnenlichts lässt sich auch bei anderen Phänomenen beobachten, die jedoch nicht mit einem Regenbogen verwechselt werden sollten.
- Ein 22°-Halo bildet einen kreisrunden Kranz um die Sonne, ein Regenbogen jedoch meist nur einen Bogen mit der Sonne im Rücken.
- Nebensonnen als ein weiteres Halophänomen stehen waagerecht zum Beobachter neben der Sonne. Sie sind recht klein und haben keine Bogenform.
- Glorien treten meist nur auf, wenn man von oben auf eine Wolke blickt. Sie sind vergleichsweise klein und kreisförmig und sollten nicht mit einem viel größeren geschlossenen Regenbogen verwechselt werden.
- Zirkumzenitalbögen bilden nur sehr kleine Ausschnitte und dies aus einem konkaven, also nach oben gewölbten Bogen.
- Zirkumhorizontalbögen entstehen, wenn die Sonne in einem Winkel von mindestens 57,8° über dem Horizont steht und sich in sehr hoch schwebenden sechseckigen Eiskristallen bricht.
- Irisierende Wolken besitzen zwar mitunter die Farbgebung eines Regenbogens, jedoch keinen Bogen.
Chronologie der theoretischen Erklärungsmodelle Der Regenbogen beflügelt nicht nur die Fantasie des Menschen, die verschiedenen Erklärungsversuche haben auch den Erkenntnisprozess in der Physik und dort speziell in der Optik wesentlich vorangetrieben.
Eine befremdliche Feststellung, nachdem der Artikel beginnt mit: Ein Regenbogen ist ein Phänomen der atmosphärischen Optik
Die physikalische Erklärung der Entstehung des Regenbogens, wie sie oben skizziert wurde, geht im Wesentlichen auf eine von René Descartes im Rahmen seiner Essais Philosophiques 1637 veröffentlichte Abhandlung zurück.
Quelle zugänglich machen.
Er griff darin die bereits um 1300 von Dietrich von Freiberg entwickelte Idee auf,
Quelle zugänglich machen.
wonach ein Regenbogen durch die Brechung von Sonnenstrahlen innerhalb einzelner Tröpfchen erklärbar sein muss. Descartes beschrieb den korrekten Strahlengang und formulierte die Maximumsbedingung unter Verwendung des zuvor
kurz zuvor, denn beide waren Zeitgenossen
von Willebrord Snell entdeckten Brechungsgesetzes. Er versuchte sich auch an einer Herleitung des Snellius'schen Gesetzes, die aber – wie viele seiner naturwissenschaftlichen Beiträge – im Ergebnis richtig, im Vorgehen jedoch grundlegend falsch war.
Verlangt ein paar Worte darüber, wie man zu richtigen Ergebnissen kommt, wenn man grundlegend falsch vorgeht.
Der korrekte Beweis
welcher Sache, Brechungsgesetz oder Erklärung des Regenbogens?
wurde kurze Zeit später sowohl von Christiaan Huygens als auch von Pierre de Fermat nachgeliefert. Aus dem Jahre 1700 stammt eine den Regenbogen betreffende Arbeit von Edmond Halley[5]. Hingegen brachte erst Isaac Newtons Theorie des Lichtes von 1704 die Dispersion ins Spiel und machte so die Farbenpracht verständlich.
War es zu Newtons Zeiten noch Thema kontroverser Diskussionen, ob Licht nun korpuskularen oder wellenartigen Charakter besitze, so war auch hier der Regenbogen ein wichtiger Ideengeber. Das Rätsel der überzähligen Bögen veranlasste 1801 Thomas Young zur Durchführung seines berühmten
berühmt klingt nach Idole verherrlichendem Journalismus.
Doppelspaltexperimentes. Er wies damit die Wellennatur des Lichtes nach und konnte im Gegenzug
Im Gegenzug wozu?
1804 das Geheimnis durch die Betrachtung von Interferenzerscheinungen lüften.
Welches Geheimnis lüften? Nachweis der Wellennatur ist doch schon gesagt.
Youngs Theorie wurde 1849 von George Biddell Airy weiter verfeinert.
Von Young ist bisher keine Theorie den Regenbogen betreffend erwähnt.
Er erklärte die Abhängigkeit des exakten Farbverlaufs von der Tröpfchengröße. Die eigens entwickelten mathematischen Verfahren spielen im Rahmen der WKB-Näherung
Es ist sehr unwahrscheinlich, dass an dieser mathematischen Spezialität interessierte Leser auf die Erwähnung hier angewiesen sind. Die Mehrheit wird es als Wichtigtuerei registrieren.
noch heute eine wichtige Rolle für die moderne Quantenmechanik.
Moderne physikalische Beschreibungen des Regenbogens und ähnlich gearteter Probleme basieren im Wesentlichen auf der von Gustav Mie 1908 entwickelten und nach ihm benannten Theorie der Mie-Streuung.
Bei der Mie-Streuung werden gemäß Link Partikel betrachtet, deren Ausdehnung die Größenordnung der Wellenlänge des Lichtes hat. Wassertropfen sind größer.
Anwendung in der optischen Messtechnik
Der Regenbogenwinkel hängt – wie oben beschrieben – bei kugeligen Flüssigkeitströpfchen nicht von der Tropfengröße ab, sondern lediglich von der Brechzahl. Diese wiederum ist bei einer bestimmten Wellenlänge eine temperaturabhängige Materialkonstante der tropfenbildenden Flüssigkeit.
Deshalb kann durch Messung des Regenbogenwinkels, unter dem monochromatische Laserstrahlung von einem Nebel reflektiert wird, die Temperaturverteilung innerhalb des Nebels berührungslos bestimmt werden, falls – wie in technischen Anlagen meist der Fall – bekannt ist, welche Flüssigkeit den Nebel bildet.
Diese Anwendung sollte nachprüfbar sein: Quelle angeben.
Kulturelle Bedeutung
Es ist grundsätzlich fraglich, ob alles, was nicht mit der Physik des Regenbogens zu tun hat, hierher gehört. Regenbogen wird sonst immer als Symbol (im weitesten Sinne) gebraucht. Einige solche Anwendungen sind über Begriffsklärungen schon z.T. ausgelagert: in Politik, Heraldik, Musiker-Vereinigungen, im Radio, im Krieg. Es ist keine Logik erkennbar, warum hier dennoch einige Bereiche abgehandelt werden, warum z.B. erneut Musik-Bands erwähnt werden. Ein besonderer und umfassender Artikel über den Regenbogen als Symbol scheint überfällig zu sein. Dahinein gehört dann auch sein kommerzieller Gebrauch, was bisher nirgends steht.
Als ein nicht alltägliches und beeindruckendes Naturschauspiel haben Regenbögen ihre Spuren in der Kulturgeschichte der Menschheit hinterlassen und sind zudem ein in unzähligen Kunstwerken dargestelltes Bildmotiv. Da der Regenbogen weltweit bekannt und mit zahlreichen positiven Attributen versehen ist, hat er auch immer wieder Einzug in die Symbolik gehalten.
Rolle in Religion und Mythologie
Ein ordnendes Kriterium im folgenden Sammelsurium fehlt. Kann man unterscheiden zwischen religiöser und mythischer Rolle?
Der Regenbogen ist von jeher ein wichtiges Element zahlreicher Mythologien und Religionen über alle Kulturen und Kontinente hinweg. Die Mythen sprechen ihm dabei oft die Rolle eines Mittlers oder einer Brücke zwischen Götter- und Menschenwelt zu. Mythologien ohne Regenbogen sind selten.
Das verführt zu der Annahme, dass Mythos und Regenbogen Synonyme seien.
Der Regenbogen als Mythos findet sich auch in den Erzählungen relativ isolierter Kulturen; daraus lässt sich schließen, dass dieser Mythos auf der Erde an verschiedenen Orten und zu verschiedenen Zeiten eigenständig erdacht und überliefert worden ist. Es geht nicht allein auf den Verkehr und den Austausch unter den großen Kulturen der Menschheit zurück, wenn der Regenbogen-Mythos heute überall auf der Erde aufgefunden werden kann.
Die australischen Ureinwohner, die Aborigines, verehren in ihrer Schöpfungsgeschichte eine Regenbogenschlange als den Schöpfer der Welt und aller Lebewesen. Die chinesische Mythologie deutete den Regenbogen als einen Riss im Himmel, der von der Göttin Nüwa mit farbigen Steinen versiegelt wurde. Die griechische Mythologie sah ihn als Verbindungsweg, auf dem die Göttin Iris zwischen Himmel und Erde reist. Nach der irischen Mythologie hat der Leprechaun seinen Goldschatz am Ende des Regenbogens vergraben. In der germanischen Mythologie war er die Brücke Bifröst, welche Midgard, die Welt der Menschen, und Asgard, den Sitz der Götter, miteinander verband. Während des Ragnarök, des Weltuntergangs der nordischen Mythologie, wird der Regenbogen zerstört. Regenbogen tauchen auch in der Schöpfungsgeschichte der Diné auf. Sie spielen eine Rolle bei der religiösen Initiation der Fang, die, wie auch in manch anderen Kulturen üblich, ihren Kindern verbieten, einen Regenbogen zu betrachten. Bei den Inka vertrat der Regenbogen die Erhabenheit der Sonne.
Im Alten Testament der Bibel, 1. Mose 9, ist der Regenbogen ein Zeichen des Bundes, den Gott mit Noah und den Menschen schloss. Laut biblischer Erzählung versprach Gott nach dem Ende der Sintflut: „Ich will hinfort nicht mehr die Erde verfluchen um der Menschen willen, denn das Dichten und Trachten des menschlichen Herzens ist böse von Jugend auf.“ (1.Mose 8,21)
In diesem Zitat fehlt aber der Regenbogen.
Der Regenbogen als Zeichen des Friedens zwischen Mensch und Gott nimmt damit eine altorientalische Tradition auf, nach der das Phänomen als abgesenkter, also nicht schussbereiter Bogen Gottes interpretiert wurde:
- „Und wenn es kommt, dass ich Wetterwolken über die Erde führe, so soll man meinen Bogen sehen in den Wolken. Alsdann will ich gedenken an meinen Bund zwischen mir und euch und allem lebendigen Getier unter allem Fleisch, dass hinfort keine Sintflut mehr komme, die alles Fleisch verderbe.“ (1. Mose 9, 14–15)
Aufgrund dieser Stelle ist der Regenbogen im Judentum bis heute ein wichtiges religiöses Symbol. Wer einen Regenbogen sieht, spricht:
- „Gepriesen seist du, Ewiger, unser Gott; du regierst die Welt. Du erinnerst dich an den Bund und bleibst ihm treu. Du stehst zu deinem Wort.“ (zit. nach Seder ha-Tefillot – Das jüdische Gebetbuch S. 539; vgl. bBer 59a).
Der mittelalterliche jüdische Bibelausleger Nachmanides erklärte zu 1. Mose 9,12: Der Bogen in den Wolken symbolisiere, dass Gottes Zorn zu Ende sei, denn er habe wie ein Krieger seinen Bogen gesenkt, um Frieden zu erklären.
Die Vorstellung des Regenbogens als eines in die Wolken gehängten göttlichen Kriegsbogens ist sehr alt. Es findet sich bereits in der assyrisch-babylonischen Mythologie. In der babylonischen Schöpfungsgeschichte Enuma Elisch („Als oben…“, im Folgenden Ee) wird davon erzählt, dass der Schöpfergott Marduk das Leben auf der Erde ermöglichte, indem er die Urflut, die Göttin Tiamat, tötete. Dieser Kampf geschah mit einem Bogen (Ee IV,35-40). Um das dauerhafte Bestehen der Schöpfung zu gewährleisten, nahm der höchste Gott, der Himmelsgott Anu, den Bogen Marduks und setzte ihn als „Bogenstern“ an den Himmel. Im babylonischen Mythos wird der Bogen vergöttlicht: Er darf in der Versammlung der Götter Platz nehmen und wird ewig erfolgreich sein (Ee VI,87-94). Der Bogen am Himmel ist in der altorientalischen Vorstellungswelt also ein kriegerisches Symbol für die göttliche Macht, Störungen auf der Erde zu bekämpfen und zu besiegen und so das Leben zu sichern. Assyrisches Rollsiegel: Eine Gottheit bekämpft mit dem Bogenstern eine dämonische Macht. (1. Jahrtausend v.d.Z.)
Im Christentum wird ein anderer Traditionsstrang wichtig. In Ezechiel 1 sieht der Prophet einen gewaltigen Thronwagen. Oben auf dem Thron ist ein heller Schein
- „wie der Anblick des Bogens, der sich an einem Regentag in den Wolken zeigt. … So etwa sah die Herrlichkeit Gottes aus (1,28).“
Im griechisch verfassten Neuen Testament kommt der Regenbogen nur ein einziges Mal vor.
Na sowas. Das ist aber kontraproduktiv.
In der Offenbarung des Johannes 10,1 erscheint ein Engel mit einem Buch vom Himmel herab, er ist in eine Wolke gehüllt und über seinem Kopf ist ein Regenbogen. Dieses Bild basiert auf Ezechiel 1,28. Das griechische Wort für diese Erscheinung heißt „iris“, und hier wird deutlich, dass die antike Vorstellung des Kriegsbogens vergessen ist. Wichtig an der Erscheinung ist die schillernde Farbenpracht, die Himmel und Erde verbindet. Das griechische Wort bezeichnet neben dem Regenbogen auch ganz allgemein einen farbigen Ring (oder Halbring). In Offenbarung 4,3 steht in vielen deutschen Übersetzungen zwar Regenbogen, aber hier heißt es ausdrücklich, dass es sich um einen grünlich schimmernden Lichtkranz handelt – also einen Heiligenschein, der Gottes Gegenwart anzeigt. In der folgenden christlichen Tradition lebt das Symbol auf Ikonen und in der mittelalterlichen Malerei und Bildhauerei.
Warum hier erwähnt? Ein Absatz über Vorkommen in der Kunst folgt später.
Auf Altären und auf den Darstellungen des Jüngsten Gerichts über dem Eingangsportal einer Kirche wird Christus manchmal als der auf (oder in) einem Regenbogen sitzende Richter dargestellt werden – eine freie Aufnahme der Stellen in der Offenbarung vermischt mit Ezechiel. Der Regenbogen symbolisiert hier die Göttlichkeit Christi. Seit dem 12. Jh. wird auch Maria in einem Regenbogen oder auf einem Regenbogen sitzend dargestellt und dadurch ihre Heiligkeit zum Ausdruck gebracht.
Dieses Motiv als göttlicher Bogen existiert auch in der indischen Mythologie. Hier nutzt Indra den Regenbogen, hier als Indradhanush bezeichnet, um die Dämonenschlange Vrta (eine Asura) mit Blitzen zu töten.
Legendenbildung ist auch der historische Grund für die Bezeichnung der Regenbogenschüsselchen. Im heutigen Süddeutschland nannte so der Volksmund die gewölbten keltischen Münzen, die des Öfteren nach starken Regenfällen auf dem gepflügten Acker gefunden wurden. Man konnte sich die Herkunft nicht anders erklären, als dass die Goldstücke am Ende des Regenbogens hinterlassen worden sein mussten.
Regenfall und Regenbogen gehören nicht zwingend zusammen.
Regenbogen als Symbol
Alles, was nicht Physik ist, ist Symbol, s.o.. Geht es hier nur um bildliche Symbole? Dazu würde die darstellende Kunst auch gehören. Flaggen gehören nahe zu Heraldik. Bei Durchsicht dieses Absatzes drängt sich die Frage deutlich auf, ob die symbolische Bedeutung hier vollständig besprochen (s.o.) und wie eigentlich alles andere Nicht-Physikalische zu bewerten ist.
In Anlehnung an eine indianische Prophezeiung, derzufolge nach der Verwüstung der Erde Krieger des Regenbogens („Menschen vieler Farben, Klassen und Glaubensrichtungen“) die Welt bevölkern werden, erkor Greenpeace den Regenbogen zu seinem Erkennungszeichen und taufte sein Flaggschiff auf den Namen Rainbow Warrior.
Die Regenbogenfahne ist ein in der Geschichte wiederkehrendes Symbol, das meist Vielfalt zum Ausdruck brachte. Sie war die Flagge der alten südamerikanischen Hochkultur der Inkas. Während der Bauernkriege symbolisierte sie die Hoffnung auf Veränderung. Heutige Homosexuelle sehen die Regenbogenfahne mit 6 Farben als Zeichen für Toleranz und sexuelle Freiheit. In jüngerer Zeit, insbesondere seit den Demonstrationen gegen den Irak-Krieg 2003, führte die italienische Friedensbewegung eine Regenbogenfahne mit 7 Farben mit dem Aufdruck Pace, italienisch für Frieden, ein. Sie dient inzwischen der internationalen Friedensbewegung als Symbol. Die offizielle Flagge des Jüdischen Autonomen Gebiets zeigt einen ebenfalls siebenfarbigen Regenbogen vor weißem Hintergrund.[6] Die Farbreihenfolge ist gegenüber der italienischen Friedensfahne wiederum umgekehrt.
In der New Age Bewegung erschien der Regenbogen als Logo für die erste Buchreihe der Bewegung „New Age, Modelle für morgen“ und ziert seitdem zahlreiche esoterische Publikationen und Produkte. Hier hat der Regenbogen seine Symbolik jedoch verloren und dient lediglich zur Schaffung positiver Gefühle, Harmonie und Ganzheit.
Teile der Hamburger Grün-Alternativen Liste, die nach der Bielefelder Bundesdelegiertenkonferenz von Bündnis 90/Die Grünen Anfang 1999 aus der Partei ausgetreten waren, nannten sich in der Folgezeit Regenbogen – Für eine neue Linke. Ihre Abgeordneten im Landesparlament, der Bürgerschaft, wurden als Regenbogenfraktion bezeichnet.
Auch auf die Sprache hat der Regenbogen abgefärbt, wovon Begriffe wie Regenbogenpresse und Regenbogenforelle zeugen. Ein baden-württembergischer privater Radiosender nennt sich Radio Regenbogen. Auch der Name der Hilfsorganisation AIDA e.V. setzt sich aus den jeweiligen Anfangsbuchstaben aus dem portugiesischen Arco Iris do Amor (zu Deutsch: Regenbogen der Liebe) zusammen.
Regenbogen als Kunstmotiv
Regenbogen über dem Künstlerort Collioure: Was hat dieses Bild mit dem Thema gemein?
Der Regenbogen als Bildmotiv findet sich früher oder später bei nahezu allen Landschaftsmalern, stellt aber auch ein begehrtes Ziel vieler Naturfotografen dar. Zu nennen sind hier beispielsweise Caspar David Friedrich, Joseph Anton Koch oder Peter Paul Rubens.
Sind das Maler oder Fotografen?
Dabei ist der Regenbogen auch ein beliebtes Laienmotiv und in künstlerischen Lehreinrichtungen
Was sind künstlerische Lehreinrichtungen?
aller Altersstufen zu finden.
Eine Darstellung eines Regenbogens, allerdings reduziert auf die Lichtbrechung an einem einfachen Prisma, findet sich auf dem Plattencover des Albums Dark Side of the Moon von Pink Floyd.
Im verlinkten Artikel ist nicht einmal diese Reduzierung enthalten. Es gibt dort nur ein beliebiges Bild mit einem Prisma ohne Regenbogen.
Siehe auch: Bildergalerie Regenbögen in der Malerei
Diese Galerie enthält kein einziges gemaltes Bild.
Regenbogen in der Musik
Musik → Liedtexte. (Fremdkörper bleibt hier der Regenbogen-Name einer Band, s.o.).
Auch in der Musik finden sich viele Motive rund um den Regenbogen. So singt Judy Garland 1939 in Das zauberhafte Land, einer Verfilmung des Zauberers von Oz, von einem „Land irgendwo über dem Regenbogen“ (Over the Rainbow), in dem die „Träume wahr werden“. Dieses Lied wurde 1994 durch eine Coverversion von Marusha zu einer Techno-Hymne. In das gleiche Genre fiel auch Rainbow To The Stars von Dune.
Im Bereich des Metal ist z.B. der Hammerfall-Song At The End Of The Rainbow zu nennen, wo man am „Ende des Regenbogens mit Gold in den Händen“ stehen will.
Rainbow war eine Hardrockband, die 1975 vom Gitarristen Ritchie Blackmore gegründet wurde. Und die Deutsche Beatgruppe The Rainbows hatte in den 60er Jahren den Hit My Baby Baby Balla Balla.
Die Rolling Stones schilderten 1967 in ihrem Song "She's A Rainbow" diverse Drogenerfahrungen und bedienten sich dabei der Farbenpracht des Regenbogens als Metapher für die Weiblichkeit.
Bezugnehmend auf den sprichwörtlichen Topf mit Gold am Ende des Regenbogens sang die Gruppe ABC um Martin Fry 1982 in dem Titel "All Of My Heart": "No I won't be told there's a crock of gold at the end of the rainbow".
Der französische Komponist Olivier Messiaen, der mit der Fähigkeit der Synästhesie begabt war, komponierte in seinem 1944 entstandenen "Quartett auf das Ende der Zeit" (Quatuor pour la fin du temps) einen Satz mit dem Titel "Tanz der Regenbogen für den Engel, der das Ende der Zeit ankündigt" (Fouillis d'arc-en-ciel, pour l'Angel qui annonce la fin du temps).
Siehe auch: Naturerscheinung, Phänomenologie und Luftfeuchtigkeit
Literatur
- Marcel G. Minnaert: Licht und Farbe in der Natur. Birkhäuser Verlag, Basel 1992, ISBN 3-7643-2496-1.
- Herch M. Nussenzveig: The theory of the rainbow. In: Scientific American, Vol. 236, No. 4, April 1977, S. 116–127
- Kristian Schlegel: Vom Regenbogen zum Polarlicht. Leuchterscheinungen in der Atmosphäre. Spektrum Akademischer Verlag, Heidelberg 2001, ISBN 3-8274-1174-2.
- Michael Vollmer: Lichtspiele in der Luft. Atmosphärische Optik für Einsteiger. Spektrum Akademischer Verlag, Heidelberg 2005, ISBN 3-8274-1361-3.
Weblinks
- Unterrichtseinheit zum Thema Regenbogen (Gymnasium)
- Fotos von Regenbögen
- Informationen und Bilder des Arbeitskreises Meteore e.V.
- Regenbogenseite mit Entwicklung der Erklärungsmodelle
- Überzählige Regenbögen/Interferenzregenbögen (englisch)
- Animation zum Strahlengang innerhalb eines Wassertropfens (englisch)
- mathematische Herleitung des Regenbogenwinkels (englisch)
- Das Zeichen in den Wolken. Zeitschriftenartikel
- Computersimulationen – auch innere Regenbögen und Veröffentlichung Veröffentlichung aus Wege in der Physikdidaktik Band 5
Einzelnachweise
- ↑ Kreuzende Regenbögen Wilhelm-Foerster-Sternwarte Berlin, Bild der Woche, Oktober 2000
- ↑ Der Regenbogen des gespiegelten Sonnenlichts Fachgruppe „Atmosphärische Erscheinungen“ der Vereinigung der Sternfreunde e.V.
- ↑ Ungeklärte Regenbogenerscheinungen, Fachgruppe „Atmosphärische Erscheinungen“ der Vereinigung der Sternfreunde e.V.
- ↑ Eisbogen (PDF, 2. Seite)
- ↑ Edmond Halley: De Iride, Sive de Arcu Caelesti, Differtatio Geometrica, qua Methodo Directa Iridis Ntriusq. Philosophical transactions 22, 1700/1701, S. 714-725
- ↑ Flagge des Jüdischen Autonomen Gebiets im Flaggenlexikon.
Analemma 15:25, 25. Mär. 2009 (CET)
Seltsamer Regenbogen
Vorgestern, etwa eine Stunde vor Sonnenuntergang sah ich im südlichen Sachsen-Anhalt einen seltsamen Regenbogen. Es war nur ein kurzes dickes senkrechtes Stück, nicht mehr als 10° über dem östlichen Horizont. Ja, östlichen! Dieses Stück befand sich vor einer Wolke, aber höchstens 20° von meiner verlängerten Schattenlinie aus versetzt. Aber es hätte doch viel mehr sein müssen (42°)? Kann der Regenbogen durch etwas anderes hervorgerufen worden sein? Etwa in derselben Richtung sah ich auch - höher über dem Horizont - einige schwache "Sonnenstrahlen", so als wenn die Sonne durch die Wolken scheint. Die Sonne befand sich aber in der entgegengesetzten Richtung! Kann sowas durch eine Nebensonne hervorgerufen worden sein? Ich war leider im Auto und hatte keine volle Umsicht... Saxo 11:02, 18. Aug. 2010 (CEST)
Radfahrt und Beleuchtungseffekte
Radfahrt bietet besondere Beobachtungsvorteile: Genügend rasch, dass sich Details von naher Wiese oder Strasse "hinter" den beleuchtungswinkelfixen Lichterscheiningen verwischen und damit verschwinden. Der Kopf wandert - bei glatter Fahrbahn - ohne der Nickbewegung des Gehens. Luftzug, der sich bei geruhsamer Fahrt noch gut ohne Brillen, Helmvisier oder Fensterscheiben samt Schmutz darauf aushalten lässt. Keine Sichtwinkeleinschränkung durch Fensterrahmen von Bahnwagen oder Autos. Blick am Rennrad gerne leicht nach unten gerichtet. Das stabile Selbstfahren des Fahrrads erlaubt mindestens gleich lang dauernde Seitenblicke wie beim Gehen.
Regelmässig sichtbar: Heiligenschein ( http://www.meteoros.de/heilig/heilig.htm ) als Retroreflexunschärfe rund um den Kopfschatten (weil in der Winkel-Nähe der Augen) im Sonnenlicht von schräg hinten auf betautem Gras, Klee; trockenen Getreideblättern, verschiedenen Pflanzen mit geeigneten Zellstrukturen, Wachs oder Harztröpfchen an der Oberfläche sowie Asfaltstrasse mit Staubbelag (oder Korn"anschliff"?)
Lichtquelle kann sein: die Sonne, Mond, Strassenleuchte - bei eigener Fahrt nahe dem rechten Fahrbahnrand am besten von links hinten und eher flach oben. Scheinwerfer nachfolgender Fahrzeuge liegen tiefer als die eigenen Augen und brauchen daher als Schirm höher aufragendes wie etwa eine Wiesenböschun, die Baumstämme eines Waldes oder Verkehrstafeln, oder das glatte Heck eines vorausfahrenden Lkw.
Retroreflexphänomene treten auch an technischen Reflexmaterialien auf: Bodenmarkierung mit Mikroglasperlen, überflüssige Glasperlen von der Markierungsherstellung, Verkehrstafeln (mit Alufolie in Retroreflexprägung oder Glasperlen), Lkw-Hecks mit Reflexfolie. Je nach Folienmaterial ergeben sich aus schrägem Lichteinfall auf diese planen Flächen zusätzliche geometrische und farbliche Effekte. Tautropfen oder ein Wasserfilm auf diesen Flächen überlagert oder stört die Retroreflexivität der Folie.
Orientierte Strukturen, wie bevorzugt senkrecht stehende Halme von hartem Sumpfgras oder Getreide, bewirken auch an dieser Senkrechten orientierte Muster..
Ein Taubogen ist wegen des grossen Winkels um den Beleuchtungsgegenpunkt schwerer erkennbar.
Nebelbögen erzeugt durch die Scheinwerfer eines nachfolgenden Kfz werden bei seiner Annäherung heller und schwenken beginnend mit dem Links-Ausscheren des Fahrzeugs zum Überholen mit dem Gegenpunkt nach rechts. --Helium4 22:04, 6. Feb. 2011 (CET)
Bildvorschlag (hierher verschoben)
- Vorweg: Ich schreibe hier (noch) nicht oft und bin nicht sicher, ob ich jetzt an der richtigen Stelle mit korrekter Einrückung, Syntax und Trennung zum vorhergehenden Beitrag Analemmas schreibe. Aber mein Anliegen bezieht sich auf die letzte Zeile dieses Beitrags: Ein Beispiel für ein Regenbogenfragment in der Wellengischt ist bereits vorhanden, sowie generell bereits zahlreiche Regenbogenphotos. Ich würde gern wissen, ob ein weiteres gewünscht ist; kein gleiches, aber ein verwandtes. Es handelt sich um eine Art Regenbogenteppich, der sich im Wasserdunst des patagonischen Lago Nordenskjöld bildet, weil der Wind das Gletscherwasser aufpeitscht. Innerhalb des Teppiches hebt sich jede Woge grün mit ihrer Luv-Seite enpor und jeglicher farbiger Nebel weht offensichtlich nach hinten von der Lee-Seite weg: http://wxyz.de/bilder/orte/Chile/6460_g.jpg ... Gewünscht, oder nicht? Falls ja, lade ich es auf die Wikimedia. -- RitterRunkel 13:31, 10. Mär. 2011 (CET)
- Du hättest Deinen Beitrag ganz unten einfügen sollen. Fortsetzungen sehr alter Diskussionen sind immer problematisch. Solche Einschübe findet man schlecht. Allenfalls macht man einen Bezug (Link) darauf, was aber hier nicht nötig ist. Damals ging es nicht um den Inhalt des Bildes. Meine Kritik bezog sich auf die Floskel "Unter besonders günstigen Bedingungen" (jetzt steht ebenso nichtssagend "Bei entsprechendem Sonnenstand").
Dein Bild ist schön, aber nicht erklärbar für mich. Der Blickwinkel zwischen blauer und roter Seite eines (Haupt-)Regenbogens ist kleiner als 2°. Dein Foto müsste eine extreme Teleaufnahme aus mehreren Kilometern Entfernung sein, was ich für unwahrscheinlich halte (die Perspektive des Bildes spricht dagegen). Hast Du weitere Aufnahmen gemacht, stand die Sonne sehr hoch?
mfG Analemma 14:52, 10. Mär. 2011 (CET)
- Du hättest Deinen Beitrag ganz unten einfügen sollen. Fortsetzungen sehr alter Diskussionen sind immer problematisch. Solche Einschübe findet man schlecht. Allenfalls macht man einen Bezug (Link) darauf, was aber hier nicht nötig ist. Damals ging es nicht um den Inhalt des Bildes. Meine Kritik bezog sich auf die Floskel "Unter besonders günstigen Bedingungen" (jetzt steht ebenso nichtssagend "Bei entsprechendem Sonnenstand").
- Danke für die Info und tschuldige für die unpassende Stelle! Nächstes mal also unten ... Dann mit „Fortsetzung zu xy“ als Überschrift?
Mein Bild muß etwas Besonderes sein, wenn man es nicht erklären kann. =) Das ist in der Tat eine Teleaufnahme (400 mm an Kleinbild), aber keine extreme. Wieso sollte denn die Perspektive dagegensprechen? Nur weil es von schräg oben fotografiert wurde? Vielmehr sprechen die homogene Wogengröße von vorne bis hinten und die Raffung für eine Teleaufnahme aus einem erhöhten Standpunkt. Wie hoch die Sonne genau stand müßte ich in den Bildern um dieses herum nachsehen, wenn etwas mal deutlichere Schatten wirft. Oder nachsehen, was die Exifs sagen und dann rechnen mit Zeitverschiebung und falsch laufender Kamerauhr. Daß sie hoch am Himmel stand vermute ich aber schon, denn das war so in der Mitte unserer Tagestour, eher schon leichter Nachmittag. -- RitterRunkel 15:29, 10. Mär. 2011 (CET) - Ah, ich hab doch sogar eines, ohne im Archiv wühlen zu müssen. Dieses hier wurde nur wenig zuvor aufgenommen und zeigt einen Schatten: http://wxyz.de/bilder/orte/Chile/6455.jpg Übrigens wieder Tele, ähnlicher Standpunkt. -- RitterRunkel 15:36, 10. Mär. 2011 (CET)
- Das Bild ist stimmig, ein kleiner Regenbogenausschnitt mit extremem Zoom aufgenommen, der Schattenwurf der Felsen im Hintergrund spricht für eine 20-30Grad Abweichung nach rechts zur Senkrechten des Sonnengegenpunkts. Allerdings dienen Bilder in der Wikipedia der Veranschaulichung und Artikel sollten nicht überladen damit sein. Wenn du dein Bild mit dem dem hier vergleichst, welches würdest du nehmen um den Sachverhalt am besten dazustellen? Gruß --Andys / ☎ 16:10, 10. Mär. 2011 (CET)
- Trotzdem finde ich dein Bild sehenswert! Stell es doch hier rein! Das ist die Bildersammlung für die Wikipedia und dort können alle Bilder hier eingebunden werden. Die richtige Kategorie "Rainbow" nicht vergessen. Gruß --Andys / ☎ 16:17, 10. Mär. 2011 (CET)
- Ah, herzlichen Dank für's Verschieben und Zurückkschreibseln! Eben weil die Artikel nicht überladen werden sollen, wollte ich zunächst fragen, ob es als neu (abweichend) und inhaltlich erweiternd eingeschätzt wird. Welches ich nun nehmen würde weiß ich nicht, denn meiner Meinung nach ist mein Regenbogen etwas anders als jener in der Wellengischt. Die Wellengischt schillert für mich eher wie Perlmutt und zeigt das Farbspektrum weniger typisch. Es ist eine Welle, die ans Ufer schwappt, weil die Wasserenergie am flachen Ufer ja irgendwo hin muß. Bei mir ist der Wind direkter die Ursache. Aber ja, das Prinzip mag dasselbe sein. Das andere Bild wirkt zudem dynamischer und weniger langweilig. Die Qualität wird egal sein (derjenige welche hat es mit dem Entrauschen vermutlich zu gut gemeint). Da mein Bild also kein allzu abweichendes Schauspiel ist, bin ich eher für ein Verbleiben des ersteingestellten Bildes.
Ich sehe mir das mit den Bildern auf Wikimedia mal an. Aber grundsätzlich gibt es für schöne Ansichten ja Bildergalerien zu Hauf. Sollte ich also keinen Nutzen meines Bildes sehen, behalte ich es und zeige es eher anderswo. Bin schließlich selbst gegen Redundanzen und aufgeblähte Speicherfresser. Allenfalls freut mich, daß mein Bild Gefallen fand! Viele Grüße, Robin -- RitterRunkel 16:29, 10. Mär. 2011 (CET)- Ja dein Bild zeigt alle Farben sehr gut und ist deswegen schon etwas besonderes, schau mal hier rein, da würde es schon reinpassen, Zur Schau stellen kannst du das Bild schon auch woanders, gerade wenn du der einzige Autor bist, musst du dann nicht auf Wikipedia commons verweisen. --Andys / ☎ 16:36, 10. Mär. 2011 (CET)
- Ah, herzlichen Dank für's Verschieben und Zurückkschreibseln! Eben weil die Artikel nicht überladen werden sollen, wollte ich zunächst fragen, ob es als neu (abweichend) und inhaltlich erweiternd eingeschätzt wird. Welches ich nun nehmen würde weiß ich nicht, denn meiner Meinung nach ist mein Regenbogen etwas anders als jener in der Wellengischt. Die Wellengischt schillert für mich eher wie Perlmutt und zeigt das Farbspektrum weniger typisch. Es ist eine Welle, die ans Ufer schwappt, weil die Wasserenergie am flachen Ufer ja irgendwo hin muß. Bei mir ist der Wind direkter die Ursache. Aber ja, das Prinzip mag dasselbe sein. Das andere Bild wirkt zudem dynamischer und weniger langweilig. Die Qualität wird egal sein (derjenige welche hat es mit dem Entrauschen vermutlich zu gut gemeint). Da mein Bild also kein allzu abweichendes Schauspiel ist, bin ich eher für ein Verbleiben des ersteingestellten Bildes.
- Danke für die Info und tschuldige für die unpassende Stelle! Nächstes mal also unten ... Dann mit „Fortsetzung zu xy“ als Überschrift?
Die Erklärung kommt: Der Bildwinkel für die 36mm-Seite des Fotos ist bei 400mm Brennweite etwa 5°. Dazu passt die Entfernung zwischen blau und rot (von links unten nach rechts oben). Mit der Perspektive hatte ich mich geirrt, weil ich annahm, dass Du auf einem Schiff und damit näher beim Wasserspiegel warst. Dein 2. Bild bestätigt außer den hohen Aufnahmepunkt auch die Vermutung vom hohen Sonnenstand (Bildausschnitt nahe am Scheitelpunkt des Regenbogens und trotzdem nahe am Horizont). Wie Du siehst, ist das eine besondere Aufnahme, die einer sehr ausführlichen Legende bedarf und deshalb in einer nicht besonderen Beschreibung à la Wikipedia keinen Platz hat. Sie hochzuladen (inkl. ausführlicher Beschreibung) wie oben empfohlen, wäre trotzdem nett.
mfG Analemma 17:25, 10. Mär. 2011 (CET)
mögliche verbesserungen
Mir erscheinen einige kleine Änderungen am Artikelanfang als Verbesserungen sinnvoll:
- Bei tiefstehender Sonne ist die Lichtfarbe rötlicher, da der kurzwellige blaue Anteil der Sonnenstrahlen in der Atmosphäre einer stärkeren Streuung unterliegt und Effekte wie das Morgenrot bedingt. Ist es tatsächlich der blaue Anteil, der Effekte wie das Morgenrot bedingt oder denn nicht eher die durch die Streuung bedingte Differenz? – Vorschlag: "... und diese Differenz Effekte wie das Morgenrot bedingt."
- Der Regenbogen zählt zu den sogenannten Photometeoren. Könnte nicht der kategorische Bezug angegeben werden, der diesen Begriff zuordnet? – Vorschlag: "Meteorologisch wird der Regenbogen zu den Photometeoren gezählt."
- Jeder Regenbogen ist auf seiner „blauen Seite“ von schmalen Lichtstreifen begleitet (Interferenz-Regenbögen), die man manchmal an der inneren Seite des Hauptregenbogens erkennen kann. Wie kann ein jedes der Phänomene durch etwas gekennzeichnet werden, das man nur manchmal erkennen kann? – Vorschlag: "Jeder Regenbogen wird auf seiner „blauen Seite“ von weiteren schmalen Lichtstreifen (Interferenz-Regenbögen) begleitet, die dann an der inneren Seite des Hauptregenbogens auffallen können."
- Über dem kräftigen Hauptregenbogen ist gelegentlich ein schwächerer Nebenregenbogen mit umgekehrter Farbfolge zu sehen. Was heißt kräftig? Und wäre es dann nur 1 Nebenregenbogen (1.Ordnung)? Schwächer reicht doch hin – Vorschlag: "Manchmal erscheint über dem Hauptregenbogen noch ein schwächerer Nebenregenbogen mit umgekehrter Farbfolge."
- ... Farbverlauf wahrgenommen wird. Er entsteht durch Spiegelung und wellenlängenabhängige Brechung des Sonnenlichts in den ... Welch er, Farbverlauf? Ein Phänomen, das? Ein Regenbogen ist? Der grammatische Bezug quietscht etwas, ein eigenständiges Subjekt wäre wohl besser. – Vorschlag: " ... Die Erscheinung entsteht durch die Spiegelung und eine wellenlängenabhängige Brechung in den ..."
- Dazu hat der Beobachter die Regenwand vor und die Sonne hinter sich. Stellt er sich nun dazu, oder nimmt er sich die Wand vor? – Vorschlag: " Der Beobachter hat dabei die Regenwand vor und die Sonne hinter sich."
- ... Phänomen, das als kreisbogenförmiges Lichtband mit radialem und für Spektralfarben charakteristischem Farbverlauf wahrgenommen wird. Hat eine Spektralfarbe einen Farbverlauf? Hätten den nicht Spektralfaben in einem Spektrum? Das nach Wellenlänge charakterisierte Spektrum von Spektralfarben nach einer prismatischer Zerlegung ist nicht dasselbe und wird weiter unten zum Unterschied vorgestellt. – Vorschlag: " Phänomen, das wahrgenommen wird als kreisbogenförmiges Lichtband, dessen radialer Farbverlauf die Abfolge der Spektralfarben wiedergibt."
mit Gruß--nanu diskuss 18:11, 24. Mai 2011 (CEST)
- Hallo R*elation,
- zu 1. Es ist nicht der blaue Anteil, der Effekte wie das Morgenrot bedingt, sondern wie beschrieben der einer stärkeren Streuung unterliegenden blaue (und damit fehlende) Anteil. Die Differenz an dieser Stelle zu erwähnen, so wie du es getan hast, ist für den Leser nicht einsichtig und eher verwirrend, da aus dem ersten Teil des Satzes nicht klar ist ob sich die Differenz jetzt auf den blauen oder roten Anteil bezieht. Im Gegenteil der Leser wird aus "diese Differenz den Effekt der Morgenröte bedingt" fälschlicherweise auf den roten Anteil schliessen, da er meint hier die Differenz sehen zu müssen.
- zu 2. Der kategorische Bezug von Photometeoren ist "Atmosphärische Optik" und ein Teilgebiet der Physik, bzw der Optik und auch der Meteorologie. Nicht nur meteorologisch wird der Regenbogen also zu den Photometeoren gezählt, eine nähere Ausführung aus welchen Teilgebieten der Naturwissenschaft heraus er als Photometeor betrachtet wird ist in der Einleitung nicht notwendig und zuviel.
- zu 3. "Jeder Regenbogen wird auf seiner „blauen Seite“ von weiteren schmalen Lichtstreifen (Interferenz-Regenbögen) begleitet" ist falsch, da der Regenbogen eine phänomenologische Erscheinung ist und als Phänomen nur durch seine Erkennbarkeit Bedeutung erlangt. Die Interferenzbögen kann man aber nur manchmal erkennen und "fehlen" meistens und sind dann phänomenologisch nicht vorhanden.
- zu 5. Der schwächere Nebenbogen ist gelegentlich und wenn dann in der Regel nur über einem kräftigen Hauptregenbogen zu sehen, und nicht ganz von der starken Sichtbarketit des Hauptregenbogen unabhängig, nichts anders sollte auch da stehen.
- zu 5. ok
- zu 6. ein Stilfrage: "dazu" oder "dabei", auf die Erscheinung des Regenbogens bezogen ist "bei einer Erscheinung besser" als "zu einer Erscheinung", also ok!
- zu 7. "Der Regenbogen gibt in seinem Farbverlauf die Abfolge der Spektralfarben wieder", dies suggeriert Regenbogenfarben wären Spektralfarben, was falsch wäre! Der charakteristischem Farbverlauf der Spektralfarben bildet demgegenüber nicht anderes als das sichtbare Spektrum. Nicht wirklich ein Verbesserung.
- Gruß --Andys / ☎ 20:07, 24. Mai 2011 (CEST) und Nachtrag --Andys / ☎ 08:43, 25. Mai 2011 (CEST)
- Hallo Andys,
- Danke für Deine rasche Antwort auf die meisten der genannten Punkte. Allerdings verwundert mich Deine Zählweise etwas.
- ad 1: 'Es ist nicht der blaue Anteil, der Effekte wie das Morgenrot bedingt, sondern ...' - Dann sollte es im Artikel auch nicht so heißen, sondern kausal korrekt beschrieben werden; damit den Leser nicht verwirrt, dass das Rötliche als ein Effekt unter Bedingungen des Blauen dargestellt wird. Meine Einfügung der Differenz gefällt Dir nicht, wegen des unklaren vorangegangenen Satzteils. Nun, 7-6=1, Differenz ist ein Term und so weder im Minuenden noch im Subtrahenden zu sehen, der Wert das Resultat einer Operation. Falls Du wirklich fürchtest, der Leser vermöchte "die Differenz" nur als Orakel aufzufassen, könnte man denn auch "die damit auftretende Subtraktion" an dieser Stelle einfügen. Noch besser finde ich dann – Vorschlag: Bei tiefstehender Sonne ist die Lichtfarbe rötlicher, da der kurzwellige blaue Anteil der Sonnenstrahlen in der Atmosphäre einer stärkeren Streuung unterliegt und die dadurch veränderte Strahlungsverteilung nun Effekte wie das Morgenrot bedingt.
- ad 2: Photometeore zählen (neben Elektro-, Hydro-, Litho-) zu den Meteoren. Und diese sind Gegenstand der sogenannten Meteorologie (neben Wetterdynamik, Klimaten etc.). Die Atmosphärische Optik nimmt interdisziplinär Bezug, wenn sie sich mit dem Regenbogen befasst. Geben wir den Bezug "meteorologisch" an, sind daher nähere Ausführungen nicht notwendig. Im übrigen können wir uns so sogenannt sparen, da schon eines Teils ersichtlich ist, warum Photometeore so genannt werden. Womöglich erschrecken den Leser dann auch die Brockengespenster weniger, mit denen die verlinkte Liste anfängt; denn man könnte Regenbogen ja auch anders als naturwissenschaftlich zu etwas zählen. Also statt Der Regenbogen zählt zu den sogenannten Photometeoren. - Vorschlag: "Meteorologisch wird der Regenbogen zu den Photometeoren gezählt." - Das wäre dMn aber zuviel?
- ad 3: Hier scheint mir einiges verdreht. Jeder Regenbogen ist auf seiner „blauen Seite“ von schmalen Lichtstreifen begleitet (Interferenz-Regenbögen), ... steht doch im Artikel; ist das nun falsch? Regenbogen als Phänomen, phänomenologisch das, was auch zu sehen ist: d'accord. Und Interferenzregenbögen sind dies (wie Nebenregenbögen auch) eben nicht jedes Mal. Soweit klar. Ich stoße mich am "erkennen" . Machst Du keine Unterschiede zwischen sinnlicher Wahrnehmung (eines Phänomens) und einem anschließenden kognitiven Prozess? Dass jedes Phänomen R. von etwas anderm I. begleitet ist(!), das man manchmal erkennen(!) kann, erscheint mir unglücklich formuliert. Umgestülpt wird ein Handschuh daraus, oder ein Begriff.
- ad 4 (5.1): Es steht aber etwas anderes da. Weder 'einem' noch die Verschiedenheit der Erscheinungen. - Vorschlag: "Manchmal erscheint über einem kräftigen Hauptregenbogen noch ein schwächerer Nebenregenbogen mit umgekehrter Farbfolge."
- ad 7: Dem für Spektralfarben charakteristischem Farbverlauf entspricht wohl ein Farbverlauf, der für Spektralfarben charakteristisch ist. Eben diesen haben aber die Regenbogenfarben nicht. Die Formulierung im Artikel suggeriert nicht nur Spektralfarben, sondern behauptet darüber hinaus deren Verlauf auch für den Regenbogen – was falsch ist! Es wäre schon wirklich eine Verbesserung, allein wenn 'charakteristisch' für diesen Zusammenhang verabschiedet würde. – Vorschlag: " ... Phänomen, das wahrgenommen wird als kreisbogenförmiges Lichtband, dessen radialer Farbverlauf eine den Spektralfarben ähnliche Abfolge zeigt."
- mit Gruß --nanu diskuss 13:11, 26. Mai 2011 (CEST)
- zu1)"dadurch veränderte Strahlungsverteilung" erübrigt sich einerseits, wenn man vorher schreibt dass ein Teil herausgestreut wird, andererseits auch nicht gerade OMA-tauglich. Außerdem geht es hier nicht darum die Morgenröte zu erklären sondern den Regenbogen. Sollte so bleiben wie es ist.
- zu2) Nein, stimme ich dir nicht zu, außerdem hat die Kategorisierung in der Einleitung nichts zu suchen. Des Weiteren wird die Bezeichnung "Photometeore" in den Fachbüchern zu diesen Erscheinungen extrem selten verwendet, ich habe es in keinem einzigen gefunden. Von dem wäre hier auch eine Referenz nicht einfach zu finden. Eher sollte es aus der Einleitung ganz entfernt werden. sogenannt kann man sich allerdings sparen, gebe ich dir recht.
- zu3) ja ist falsch. Erkennen wird hier sicherlich nicht erkenntnistheoretisch verwendet, sondern bezieht sich auf die visuelle Wahrnehmung, von daher wäre "sichtbar" besser. Außerdem wird phänomenologisch damit nicht jeder Regenbogen von Interferenzstreifen begleitet. Des Weiteren ist "Interferenz-Regenbögen" ein unbekannter Begriff und entspringt der Wortschöpfung unseres Freundes "Analemma". Also richtig und weniger umständlich formuliert: "Auch werden auf der blauen inneren Seite des Regenbogens manchmal schmale Lichtstreifen, die Interferenzstreifen, sichtbar."
- zu4) ja so ist es richtig.
- zu7) Wäre ich so auch einverstanden. Aber bedenke z.B. die Wahrnehmung der Farbe "grün" kann von einer einzigen Spektralfarbe stammen oder von einer Überlagerung mehrere Spektralfarben. Die Farbwahrnehmung hat hier nichts mit seiner spektralen Zusammensetzung zu tun.
- PS: Die meisten Punkte, die du angesprochen hast, kamen durch Änderungen unseres "gemeinsamen Freundes" Analemma zustande, leider habe ich damals versäumt gegen diese Verschlimmbesserungen frühzeitig Einspruch anzumelden.
- --Andys / ☎ 09:04, 27. Mai 2011 (CEST)
- ad 1) Wenn zuvor "heraus" gestreut beschrieben wäre, dann ja. Mit der möglicherweise nicht hinreichenden OMA-Tauglichkeit magst Du recht haben; vielleicht wäre doch "Subtraktion" oder denn "dadurch unterschiedlich verteilte Strahlung" besser. Klar geht es um den Regenbogen, doch (1) hängen dessen intrinsische Farben von dem je einstrahlenden Licht ab und (2) werden die dann vor einem (farblich getönten) Hintergrund beobachtet - und so gesehen sollten wir die zur Bläuung oder Rötung führenden Umstände schon sorgfältig behandeln. Und ein relativer Unterschied in der Verteilung der Strahlung ist doch nicht das gleiche wie mal einer ihrer Anteile. "Bei tiefstehender Sonne ist die Lichtfarbe rötlicher, da der kurzwellige blaue Anteil ... unterliegt und Effekte wie das Morgenrot bedingt." hätte bei meiner Oma nur zur Verwirrung getaugt. – Vorschlag: "Bei tiefstehender Sonne ist die Lichtfarbe rötlicher, da der kurzwellige blaue Anteil der Sonnenstrahlen in der Atmosphäre einer stärkeren Streuung unterliegt als der langwellige rote und die dadurch unterschiedlich verteilte Strahlung nun Effekte wie das Morgenrot bedingt."
- ad 2) Mir geht es hier darum, dass bitte auch der Bezug angegeben werden soll, wenn man meint Kategorien zuordnen zu müssen – insbesondere bei einer so wenig geläufigen wie Photometeor. Der Link liefert wohl eine Liste, in der einige Phänomene auftauchen, die man vielleicht mit einem Regenbogen verwechseln könnte; leider sind die da aber so - ohne jede Erläuterung - kaum einem Vergleich zugänglich. Insofern wäre der Verlust gering, wenn die Erwähnung entfernt würde.
- ad 3) Deinen Vorschlag finde ich besser. Allerdings können diese überzähligen Regenbögen durch Interferenz (1st, 2nd,. .. supernumary rainbows) ihrem Prinzip nach nicht nur auf der blauen Seite eines Hauptregenbogens (primary r.) - also nach innen hin - auftreten, sondern auch - aussen hin - auf der blauen eines Nebenregenbogens (secondary r.) – wenn sie denn zu beobachten sind. - Daher vielleicht: "Auch können auf der blauen Seite des Regenbogens manchmal weitere schmale Lichtbänder sichtbar werden, die Interferenzstreifen oder überzähligen Regenbögen."
- ad 7) Deinen Hinweis auf die grundsätzliche Differentiation von Farbwahrnehmung und spektraler Zusammensetzung des Lichts bzw. eine mögliche additive Farbmischung finde ich durchaus angebracht. Doch bei einer Formulierung mit "ähnlich" (anstelle von gleich oder charakteristisch) und "Abfolge" (anstatt Verlauf) entsteht aus meiner Sicht keine unzutreffende Aussage.
- PS: Tja. Die Versionsgeschichte durchsehend habe ich verwundert einige Formulierungen gefunden, die mMn schon mal deutlich treffender waren; und die waren meist von Dir.
- --nanu diskuss 18:21, 27. Mai 2011 (CEST)
- zu 1) "die dadurch unterschiedlich verteilte Strahlung" überladet den Satz und macht in schlussendlich unverständlich. Sollte so bleiben aus gesagten Gründen, aber bitte hol dir vielleicht eine dritte Meinung bei z.B. Portal Physik.
- zu 2) Die Kategorie Photometeor sollte überhaupt nicht in die Einleitung stehen, da einerseits auch in der Fachliteratur der Begriff so gut wie nie verwendet wird (ich habe keine gefunden, bitte also einen Aufruf an dich eine Referenz zu finden, aber bitte keine Internetseite. Es scheint überdies ein veralteter Begriff zu sein, der heute nicht mehr verwendet wird). Schon gar nicht eine einseitige Einschränkung auf Meteorologie. Der Begriff hat erst "Analemma" hier reingesetzt und ich werde ihn wieder rückgängig machen.
- zu 3) ok
- zu 7) " dessen radialer Farbverlauf eine den Spektralfarben ähnliche Abfolge zeigt" kann man so ändern, für mich ok.
- Gruß --Andys / ☎ 08:35, 31. Mai 2011 (CEST)
- Zu 1) Naja, ist es nicht so das, da die Sonne mittags direkt über der Erde steht(parallel zum beobachter) und dadurch das licht einen sehr kurzen weg in die atmosphäre hat, wodurch die wahrscheinlichkeit gering ist das das langwellige rote licht gestreut wird(blaue ja, weil hohe frequenz). Bei sonnenuntergang ist die strecke des lichtes zum beobachter nun länger, und dadurch die wahrscheinlichkeit hoch das auch das langwellige licht gestreut wird?! Die Farben des lichts kommen ja erst dadurch zustanden DAS sie viel gestreut werden, und nicht das die die am meisten gestreut werden unsichtbar sind.--Lexikon-Duff 19:57, 2. Jul. 2011 (CEST)
Synästhesie - Euphemismus?
Unter "Regenbogen in der Musik" lautet ein Teil "Der französische Komponist Olivier Messiaen, der mit der Fähigkeit der Synästhesie begabt war, ...". Das macht die Synästhesie quasi zu einer erstrebenswerten musischen Gabe. Wenn ich mir so den Inhalt des Artikels zur Synästhesie durchlese, stimmt das aber nur bedingt, da sie je nach Grad die Wahrnehmung der Betroffenen auch empfindlich stören kann. Vielleicht neutraler formulieren? Z.B. "Der französische Komponist Olivier Messiaen, ein Synästhetiker, ..."? (nicht signierter Beitrag von 89.13.117.175 (Diskussion) 21:08, 29. Mai 2011 (CEST))
- soeben entspr. dem Einwand geändert --Andys / ☎ 10:36, 2. Jun. 2011 (CEST)
Tropfenform
Hier wird generell geschrieben, dass der Regentropfen rund ist. Laut http://www.wdr.de/tv/quarks/sendungsbeitraege/2003/0408/003_regen.jsp ist dies aber nur bei Nieselregen der Fall. (nicht signierter Beitrag von 85.181.26.170 (Diskussion) 11:08, 19. Jul 2011 (CEST))
Fotos von Regenbogen
Regenbögen?? ka^^ Auf jedenfall gibt es auch der Seite astrodicticum-simplex eine Menge fantastischer Bilder. Ich denke mal das es auch kein Problem für die Fotographen wäre diese für Wikipedia freizugeben, man müsste nur nachfragen, die würden sich eher freuen denk ich mal. Falls jemand interesse daran hab könnte ich mal einige anschreiben ! gruß--Lexikon-Duff 16:00, 19. Jul. 2011 (CEST)
Revert auf den Stand vom 2. August 2011
Eben habe ich diese Bearbeitung des Artikels rückgängig gemacht. Anders als der zugehörige Editkommentar suggeriert, handelt es sich dabei um deutlich mehr als eine Ergänzung von Bildern. Vielmehr wurde das erste Kapitel des Haupttextes, der knapp die Hälfte des Artikels ausmacht, umstrukturiert und in großen Teilen umgeschrieben. Das Ergebnis ist leider keine offensichtliche Verbesserung: Es fängt mit der Anordnung der Bilder an, die gegen die in WP:Bild aus gutem Grund gegebenen Empfehlungen verstößt und geht weiter mit einer unlexikalischen Erzählhaltung und Stilblüten (Reflektionen finden statt), bis zur mehr als fragwürdigen Aussage, dass "Das Sonnenlicht (...) genauso wie in einem Prisma (...) in seine Spektralfarben zerlegt" werde. Nein, die Farben des Regenbogens entstehen nicht "genauso". Das fürs Verständnis der Farben wesentliche Konzept des Grenzwinkels ist der Bearbeitzung zum Opfer gefallen.
Dieser Artikel trägt die Auszeichnung "lesenswert". Außerdem befasst er sich mit einem sehr häufig aufgerufenen Thema. Entsprechend intensiv ist er begutachtet worden und befindet sich auf der Beobachtungsliste vieler Autoren. Bitte daher für eine großflächige Bearbeitung vorher hier auf der Diskussionsseite die Probleme benennen, die gelöst werden sollen, die konkreten Änderungen vorstellen und erst dann zur Tat schreiten, wenn es zumindest keinen Einwand gibt. Vielen Dank für das Verständnis.---<)kmk(>- 06:21, 5. Aug. 2011 (CEST)
- Reflektionen finden statt stand nirgends. Oder soll das eine orthographische Reflexion sein?
mfG Analemma 14:28, 5. Aug. 2011 (CEST)
- Suche in Deinem Edit nach dem Verb "stattfinden". Du wirst mehr als einmal fündig werden.---<)kmk(>- 17:36, 5. Aug. 2011 (CEST)
Im folgenden Kapitel “Bemerkungen zum Stand ...” habe ich die wesentlichen Gründe vermerkt, die mich zum revertierten Überarbeitungsvorschlag veranlassten. Die darin verwirklichte Grundidee lautet:
Die Darstellung der Optik des Regenbogens ist analog zu seiner Erklärungsgeschichte in zwei Schritten möglich:
1. die einfarbigen (monochromatischen) hellen Lichtbögen am Regenhimmel und darauf aufbauend
2. die Farbigkeit der Regenbögen.
Der bisherige Ansatz, den Regenbogen von vorn herein komplett inkl. seiner Farben zu erklären, ist aufwändiger und weniger übersichtlich, wie am Ergebnis zu erkennen. Das ist unabhängig davon, dass einige der vermerkten Mängel (jeder für sich) reparierbar sind und ein verständlicher, lückenfreier, widerspruchfreier und jeweils aufs vorher Gesagte aufbauender Text möglich ist. Das grundsätzliche, nicht nur fürs Verständnis der Farben wesentliche Konzept des Grenzwinkels ist ziemlich schlecht dargestellt (s. die mehrmalige Frage, um welchen Winkel es denn gehe).
Ich kam mit etwa 6000 Bytes weniger aus, verwendete aber mehr Abbildungen. Das ist bei Darstellungen geometrischer Zusammenhänge (Strahlenoptik = Geometrische Optik) vorteilhaft, angemessen und üblich. Die relativ hohe Zahl von Abbildungen ist somit wesentlicher Bestandteil des Artikels. Eine regelkonformes Layout wird sich finden lassen.
Die Kritik zur Aussage, dass "Das Sonnenlicht (...) genauso wie in einem Prisma (...) in seine Spektralfarben zerlegt" werde. ist nur eine Detailangelegenheit. Der ganze Satz lautete
Das Sonnenlicht wird in einem Regentropfen (Bild links) genau so wie in einem Prisma (Bild rechts) durch zweimalige wellenlängenabhängige Brechung (Dispersion) in seine Spektralfarben zerlegt.
Beide Bilder sind in der momentanen Fassung auch enthalten. Beide sind richtig, denn sie zeigen die Zerlegung eines schmalen Lichtbündels, eines Strahls (beim Tropfen sollte allerdings - wie unten auch vermerkt - nicht ein Strahl in Nähe der Kaustik benutzt werden). Ich präzisiere meinen Text durch Austausch von “Das Sonnenlicht” gegen “Ein Sonnenstrahl”.
Falls hier auf Details eingegangen werden werden sollte, dann müsste erwähnt werden, dass ein Prismenspektroskop mehr als ein Prisma enthält. Ohne z.B. seinen engen Spalt liefert es nicht den hoch aufgelösten Farbstreifen, an den oft ausschließlich gedacht wird, wenn von Spektralfarben die Rede ist. Manche Autoren bezeichnen die im Regentropfen entstehende Kaustik als einseitigen Spalt, der ohne Zutun vorhanden ist.
Man sollte den Artikel gegenwärtig mit "lesens- und verbesserungswert" auszeichnen.
mfG Analemma 17:11, 6. Aug. 2011 (CEST)
- Deinen Ausführungen kann man so nicht zustimmen. Nur als Beispiel deine oben und deiner Änderungen im Artikel beschriebene „Grundidee“ (die selbst nichts in einem Artikel zu suchen hat) ist konfus und unverständlich: Was ist eine „Erklärungsgeschichte“? Ich finde dieses Unwort in keinem Duden noch ist mir wirklich klar wie es zu verstehen wäre und was es bedeuten möge. Ist es einer „Weihnachtsgeschichte“ ähnlichem? oder meinst du die Geschichte der theoretischen Erklärungsmodelle?
- Weiter: Was ist ein „einfarbiger monochromatischer heller Lichtbogen am Regenhimmel“. Sorry nie gehört und nie gesehen und unmöglich vorzustellen. Davon abgesehen was ist ein Regenhimmel? Was anderes als eine Regenwand? Wenn aber der Himmel mit Regen bedeckt sein sollte, wäre gerade dann kein Regenbogen sichtbar, oder? Dem noch kein Ende: Die Farbigkeit der Regenbögen (ach so der eine ist rot der andere grün usw.) oder vielleicht: „die Farbigkeit des Regenbogens“ gemeint? Fragen über Fragen.
- Sinnvoll wäre hier zunächst die heutige naturwissenschaftliche Erklärung des Regenbogens ohne Berücksichtigung der vielen Irrwege in der Vergangenheit zu beschreiben, bevor auf die Wissenschaftsgeschichte des Regenbogens einzugehen wäre. Es ist sicherlich nicht die Absicht des Artikels den Regenbogen von vornherein komplett inkl. seiner Farben zu erklären, allerdings sollte zuerst eine Zusammenfassung gegeben werde, bevor tiefere Zusammenhänge erklärt werden..
- Du hast nicht einmal die eigene Stilblüte in „Reflektionen finden statt“ bemerkt, abgesehen von dem rein orthografischen Fehler, den du zwar nicht hier aber an anderem Ort gemacht hast.
- Analemma, ich bin ehrlich gesagt schon erschrocken ob diesen vehementen Unvermögen richtige Formulierungen für einfache physikalische Zusammenhänge zu verwenden, dies als „Detailangelegenheit“ abzutun ist mit Verlaub - abstrus. Zu deinen Kommentaren unten zu dem Artikel (einige sind berechtigt, die meisten vorgeschoben) in jetziger Fassung später mehr.
- Grüße --Andys / ☎ 19:16, 7. Aug. 2011 (CEST)
Bemerkungen zum Stand vom 2. August 2011 (Kapitel: Optik des Regenbogens)
Charakter des Sonnenlichts und Zusammenfassung der Regenbogenentstehung
Das Lichtspektrum des Sonnenlichts ist ein winziger Teil des elektromagnetischen Spektrums und besteht aus elektromagnetischer Strahlung unterschiedlicher Wellenlänge. Bei hochstehender Sonne ist die natürliche Mischung der Strahlung am besten sichtbar, die dann als weißliches Tageslicht wahrgenommen wird. Bei tiefstehender Sonne ist die Lichtfarbe rötlicher, da der kurzwellige blaue Anteil der Sonnenstrahlen in der Atmosphäre einer stärkeren Streuung unterliegt als der langwellige rote und dadurch Effekte wie das Morgenrot bedingt werden.
Grundlage für die Entstehung der wahrgenommenen Farben, also der Buntheit des Regenbogens, ist die Dispersion in einem Wassertropfen, in dem weißes Licht wie in einem Prisma (siehe rechts) wellenlängenabhängig unterschiedlich stark gebrochen wird. Im Regenbogen sind im Allgemeinen die Farben weniger rein und deutlich voneinander getrennt als im Lichtspektrum, das zum Beispiel mit Hilfe eines Prismenspektroskops beobachtbar ist. Ursache ist die Interferenz und teilweise Mischung der Lichtwellen innerhalb des Regenbogens.[1]
Genaueres schreiben, wenn bei Vollmer vorhanden, übernehmen.
Wenn während oder kurz nach einem Regenereignis das Sonnenlicht auf eine Vielzahl (wie auf eine Wand) von Regentropfen fällt, wird das Licht in ihnen gebrochen und reflektiert. Jeder Lichtstrahl fällt auf eine andere Stelle der vielen runden Regentropfen und die „parallelen Strahlen“ des Sonnenlichts werden in einem Kegel zurückgeworfen.
Worauf bezieht sich Kegel, auf die Tropfen (damit den Regenbogen) oder auf einen Tropfen? s.u.
Beim Hauptregenbogen mit einem maximalen und bevorzugten Winkel von rund 41°,
Wo gibt es diesen Winkel? s.o.
bedingt durch eine Kombination aus Brechung beim Eintritt in den Regentropfen und der Reflexion an dessen Rückwand.
Brechung auch beim Austritt.
Da Sonnenlicht ein Spektrum unterschiedlicher Wellenlängen besitzt, die im Regentropfen auch unterschiedlich stark gebrochen werden, ergibt sich für diese jeweils auch unterschiedliche maximale Grenzwinkel,
Grenzwinkel? s.o.
die etwas von den 41° abweichen. Das rote Licht weist einen maximalen Winkel von rund 42,4° auf, das blaue Licht von 40,7°. Blickt der Beobachter nun zur „Regenwand“, so erscheinen ihm all jene Tropfen farbig, welche das Sonnenlicht in diesem Winkel genau auf sein Auge lenken.
in diesem Winkel? s.o.
Der Regenbogen ist also nur sichtbar, wenn der Betrachter mit dem Rücken zur Sonne auf die Regenwand blickt, denn nur dann sieht er in Richtung der Strahlen mit diesem Winkel. Die Breite des Regenbogens entsteht durch die wellenlängenabhängige Auffächerung des Lichts, die kreisrunde Form des Regenbogens aber durch den konstanten Blickwinkel bezüglich der optischen Achse des Auges zum parallel einfallenden Sonnenlicht.
optische Achse des Auges?
Auch jenseits der roten Farbe (im Infrarot) und jenseits der blauen Farbe (im Ultraviolett) des Regenbogens sind weitere Lichtanteile vorhanden, die das menschliche Auge jedoch nicht wahrnehmen kann. Da der Ablenkwinkel von der Wellenlänge abhängig ist, besitzen die „theoretischen verschiedenfarbigen Bögen“ auch unterschiedliche Kreisdurchmesser die im Gesamteindruck ein Farbband ergeben.
Reflexionscharakteristik, Brechung und Dispersion am Wassertropfen
Wassertropfen sind in guter Näherung transparente kleine Kugeln. Die Abbildung rechts verdeutlicht, was mit einem Lichtstrahl geschieht, wenn er auf diese Tropfen trifft.
Warum nicht beliebiger Strahl im Bild? Bisher 41°, jetzt 42°, warum?
Bei Ein- und Austritt wird ein Teil des Strahls gemäß dem Brechungsgesetz abgelenkt und an der rückwärtigen inneren Oberfläche teilweise reflektiert. Der andere Teil der Strahlen wird direkt an der Ein- und Austrittsfläche reflektiert,
und an der Rückseite durchgelassen
sie reduzieren die Intensität des Regenbogens, haben aber keinen weiteren Einfluss auf die Entstehung des Regenbogens und sind deswegen nicht eingezeichnet. Einfallende Strahlen in der unteren Hälfte des Tropfens (hier nicht gezeigt) werden entsprechend dem oberen Lichtstrahl spiegelbildlich reflektiert und gebrochen, und der Austritt der Strahlen erfolgt somit spiegelbildlich nach oben. Ein Beobachter weit oben, vom Berg oder in einem Flugzeug) kann so auch einen unteren (unter dem Bodenniveau) normalerweise fehlenden Teil des Regenbogens sehen.
Wie führt diese Beschreibung am Tropfen zum Regenbogen? s.o.
Wesentlicher Grund des gebogenen Farbbandes ist die gekrümmte Tropfenoberfläche,
Was hat die Biegung des Farbbandes (Regenbogen) mit der Krümmung der Tropfenoberfläche zu tun?
denn dadurch werden die einzelnen Lichtstrahlen in Abhängigkeit von ihrem Auftreffpunkt auf den Tropfen unterschiedlich stark gebrochen, was in der Abbildung rechts unten dargestellt ist.
Welche Abbildung ist gemeint? Doch die darüber?
Die geometrische Darstellung der verschiedenen einfallenden Strahlengänge zeigt, dass die austretenden Strahlen von dem kugeligen Wassertropfen unabhängig vom Tropfendurchmesser maximal unter einem bestimmten Grenzwinkel von annähernd 42 Grad zurückgeworfen werden.
42° ↔ 41°
Da größere Ablenkwinkel bei der hier gezeigten einfachen Reflexion nicht auftreten, häuft sich dort der Anteil verschiedener Auftreffpunkte,
Häuft sich Licht?
und die Intensität des reflektierten Lichtes ist deshalb unter dem Grenzwinkel besonders hoch.
“Lichtes ... unter dem Grenzwinkel”; was ist das? “unter einem bestimmten Grenzwinkel von annähernd 42 Grad” (oben)
Dieser ist abhängig von der Wellenlänge des einfallenden Lichts und wird als Regenbogenwinkel bezeichnet. Da fallende Wassertropfen annähernd kugelförmig sind, tritt der Grenzwinkel rotationssymmetrisch um die Richtung des parallel einfallenden Sonnenlichts auf.
Gibt es eine Rotationssymmetrie um eine Richtung?
Es ergibt sich dadurch eine kegelförmige Abstrahlung vom Regentropfen (Kegelspitze etwa an der Rückseite des Tropfens).
“Kegel”: s. Frage oben
Der Grenzwinkel ist wegen der bereits oben erwähnten Dispersion von der Wellenlänge des auftreffenden Lichtes abhängig, jede Wellenlänge und somit Farbe hat ihren eigenen Grenzwinkel: etwa 42° bei Rot bis etwa 40° bei Blau. Es kommt zu einer wellenlängenabhängigen Auffächerung des Sonnenlichts im Wassertropfen. Ohne diese Auffächerung würde um den dann wellenlängenunabhängigen Grenzwinkel herum ein schmalerer und farbloser Lichtbogen entstehen.
Durch die Kugelform des fallenden Regentropfens kommen zusätzliche schwache, sogenannte Interferenzbögen zustande,
“Kugelform”: als Erklärung für Interferenz nicht ausreichend, s. Frage oben bei Vollmer-Quelle
die die dominierenden Regenbögen auf der blauen Seite begleiten. Es gibt zwei verschiedene geometrisch-optische Strahlengänge (siehe Bild rechts unten), die unter dem gleichen Beobachtungswinkel zurückgeworfen werden und sich somit überlagern. Mit abnehmendem Winkelabstand zum Sonnengegenpunkt wird der Wegunterschied zwischen den beiden Strahlen immer größer, und es kommt zusätzlich abwechselnd zur gegenseitigen Verstärkung oder Abschwächung der Farben, auch Interferenz genannt.
Welches Bild ist gemeint? Widerspruch: “Wegeunterschiede” im Tropfen ↔ “Sonnengegenpunkt” bei Bogen-Beobachtung
Das von einem Regenbogen reflektierte Licht hat einen sehr hohen Polarisationsgrad. Mit Hilfe eines Polarisationsfilters kann ein Regenbogen, je nach Drehwinkel des Filters vor dem Beobachterauge oder der Kamera, entweder weitgehend gelöscht, oder im Kontrast gesteigert werden.
Der Widerspruch, dass laut der Skizze „Strahlengang im Regentropfen“
Bild schlecht findbar
eigentlich Blau die oberste Farbe im Hauptbogen sein müsste, ist nur scheinbar – da Blau unter einem kleineren Winkel reflektiert wird, sind die Tropfen, die für einen Beobachter das Blau liefern, dem Zentrum des Regenbogens somit näher (siehe Bild rechts).
Hauptregenbogen
Der sogenannte Hauptregenbogen entsteht aus der im vorigen Kapitel beschriebenen einfachen Reflexion und Brechung der Sonnenstrahlen in den Regentropfen.
einfache Reflexion, mehrfache Brechung
Die Strahlen treffen in breiter Front auf die Vielzahl kleiner, im Blickfeld vor dem Beobachter annähernd gleichmäßig verteilter Wassertropfen. Fehlen die Wassertropfen dabei an einer Stelle, zeigt sich dort auch kein Regenbogen.
triviale Aussage
In den meisten Fällen nimmt man daher nur einen Abschnitt des vollen Bogens wahr.
Die genaue Position des Hauptregenbogens kann man sich nun über eine verlängerte Linie herleiten, die man sich zwischen dem Kopf des Beobachters und dessen von der Sonne geworfenen Schatten vorstellen muss. Diese Linie ist identisch zur verlängerten Verbindung zwischen Beobachter und Sonne und zeigt in Richtung des Sonnengegenpunktes. Dieser bildet das Zentrum des Regenbogens. Da der Winkel zwischen dieser Linie und dem Regentropfen ein Z-Winkel des Winkels zwischen dem ursprünglichen Sonnenstrahl und dem Austrittsstrahl des Regentropfens ist, sind beide identisch und somit gleich 40 bis 42 Grad. Folglich blickt der Beobachter genau dann in das vom Tropfen im Maximalwinkel abgestrahlte Licht, wenn er den Schatten seines Kopfes fixiert und dann um 40 bis 42 Grad – den so genannten halben Öffnungswinkel – in Richtung des Regentropfens nach oben blickt. Hier erscheint für ihn dann, solange er die Sonne genau im Rücken hat, der Scheitelpunkt des Hauptregenbogens. Dieser stellt den eigentlichen Regenbogen dar und tritt am deutlichsten hervor. Er erstreckt sich dabei halbkreisförmig um den Sonnengegenpunkt.
Steht die Sonne genau am Horizont, so gilt dies auch für das Zentrum des Regenbogens, wodurch dieser bei ausreichender Tropfenzahl einen vollständigen Halbkreis einnimmt. Dieser beträgt für den Hauptregenbogen dann eine maximale Höhe von 42 Grad
da mit Winkelmaß angegeben, vom üblichen Begriff Höhenwinkel abgrenzen
und einer maximalen Breite von 84 Grad, also das doppelte des Regenbogenwinkels. Er ist umso niedriger und flacher, je höher die Sonne steht und je tiefer dadurch der Sonnengegenpunkt unterhalb des Horizonts absinkt. Die Winkel zwischen den Sonnenstrahlen und den vom Beobachter wahrgenommenen farbigen Strahlen bleiben dabei immer unverändert. Falls die Sonne höher als 42° steht, rutscht auch der Scheitelpunkt des Bogens unter den Horizont und wäre nur unterhalb der Position des Beobachters sichtbar, zum Beispiel von der Spitze eines Berges oder Turmes (siehe Bild rechts).
Um einen zum Kreis geschlossenen Hauptregenbogen sehen zu können, muss das Reflexionsmedium Wassertropfen in voller radialer Ausdehnung um den Sonnengegenpunkt vorhanden sein und von der Sonne beschienen werden. Diese Möglichkeit besteht im Allgemeinen nur von einem Flugzeug oder einem Ballon aus. Bei geeigneten Witterungsbedingungen kann man in der Tat vor allem während der Start- oder Landephase, d.h. in Bodennähe, einen vollständigen Regenbogenkreis beobachten.
Bis hier geometrische Einzelheiten, die die Erwartungen an die allg. formulierte Zw.überschrift nicht erfüllen.
Die oben beschriebene Dispersion
ist bisher verstreut, nicht zusammenhängend beschrieben; wohin soll der Hinweis “oben” führen?
im Regenbogen bewirkt eine Auffächerung des Hauptbogens von etwa 1,8° zwischen Rot und Blau. Bedingt durch eine räumliche Ausdehnung der Sonne am Himmel von ungefähr 0,5° beträgt die Breite jeder Farbe im Hauptbogen etwa 0,5°. Diese Unschärfe liegt deutlich unter der Aufspaltung durch Dispersion,
“Aufspaltung durch Dispersion”: Was ist gemeint? Ist doch der Vorgang, der zu den Regenbogenfarben führt.
weswegen der Beobachter noch eine relativ reine rote äußere Farbe sieht, während die anderen Farben durch
additive
Mischung eine geringere Sättigung und Reine aufweisen. Kombiniert man die Einflüsse der endlichen Sonnenausdehnung und der Dispersion, beträgt die Gesamtbreite des Hauptregenbogens ungefähr 2,2°. Wäre ein Regenschauer etwa 1 km entfernt, entspräche das somit einer Strecke von ungefähr 35 m.
Nebenregenbogen
Bisher wurden Strahlen betrachtet, die genau einmal im Inneren der Tröpfchen reflektiert werden. Der direkt oberhalb des Hauptbogens gelegene (schwächere) Nebenregenbogen entsteht aus der Wahrnehmung der zweifach reflektierten Strahlen. Mögliche weitere Nebenbögen durch entsprechend mehrfache Reflexion im Tropfen.
unvollständiger Satz; weitere Nebenbögen sind theoretisch, dabei nicht einmal bei beliebiger Zahl von Reflexionen
Nebenbögen sind deutlich lichtschwächer als der Hauptregenbogen, da bei jeder Reflexion ein Teil des Sonnenlichtes unreflektiert den Regentropfen verlässt. Außerdem wird der Lichtstrahl aufgrund des kleineren Ein- und Ausfallwinkels am Tropfen etwas stärker wellenabhängig gebrochen und somit aufgefächert,
Auffächerung wächst auch mit dem Weg im Tropfen.
was ebenso zu einer weiteren Abschwächung führt. Nebenregenbögen können daher nur bei sehr guten Lichtverhältnissen oberhalb und unterhalb des Hauptregenbogens beobachtet werden.
Der Nebenbogen mit zweifacher Reflexion im Tropfen besitzt einen Winkel
Winkel? s.o.
von circa 50 Grad für rotes und 53 Grad für blaues Licht. Entgegen der einfachen Reflexion am Hauptregenbogen, dessen obere Hälfte von den einfallenden Strahlen an der oberen Hälfte des Tropfens gebildet werden, sind es beim Nebenregenbogen mit zweifacher Reflexion Lichtstrahlen, die am unteren Teil des Tropfens eintreten. “ Entgegen der ... des Tropfens eintreten.” unverständlicher Satz Mit jeder zusätzlichen Reflexion innerhalb des Bogens kehrt sich außerdem der Farbverlauf ein weiteres Mal um.
weitere Nebenbögen: s.o.
Die nebenstehende Grafik veranschaulicht den Strahlverlauf für den Nebenbogen mit zweimaliger Reflexion in der Nähe der maximalen Ablenkung. Weitere Nebenregenbögen höherer Ordnung, also mit mehr als zwei Reflexionen innerhalb des Tropfens, sind wegen der oben beschriebenen zusätzlichen Abschwächung extrem selten zu beobachten und wurden erstmals von Félix Billet (1808-1882) beschrieben, der auch die zugehörigen Winkelabstände vom Sonnengegenpunkt dafür berechnete[2]
Im oberen Bild mit einem Haupt- und Nebenregenbogen fällt auf, dass der Himmel im Innern des Hauptbogens deutlich heller als außerhalb erscheint und insbesondere der Bereich zwischen Haupt- und Nebenregenbogen deutlich dunkler als seine Umgebung ist. Dieser Helligkeitskontrast entsteht, weil bei Winkeln unterhalb des Maximalwinkels beim Hauptregenbogen sich die Farben überlagern und so ein weißes Licht erzeugen. Da beim Nebenregenbogen der Farbverlauf umgekehrt ist, zeigt sich das etwas hellere weiße Licht bei Winkeln oberhalb des Maximalwinkels des Nebenregenbogens. Dadurch entsteht zwischen diesen beiden Regenbogen ein dunkles Band, welches zu Ehren seines Entdeckers Alexander von Aphrodisias als Alexanders dunkles Band bezeichnet wird.
Wo ist dieses “obere Bild” mit deutlichem Alexanders dunklem Band?
Sonderformen, Einfluss der Tröpfchengröße und Interferenzeffekte
Unter bestimmten Bedingungen
welche Bedingungen?
sind innerhalb des Hauptbogens ein oder mehrere zusätzliche oder überzählige farbige Bögen erkennbar, siehe linkes Bild, die mit stetig abnehmendem Kontrast die Farbreihenfolge des Hauptbogens zu wiederholen scheinen. Diese zusätzlichen Farbbänder erklärte zuerst Thomas Young 1803 mit der Wellennatur des Lichts: Für Beobachtungswinkel kleiner als der Maximalwinkel gibt es für einen Strahl einer bestimmten Farbe verschiedene, unterschiedlich lange Strahlengänge durch den Tropfen, die sich im Auge des Betrachters überlagern.
Wellennatur: Begriff “Welle” dem Begriff “Strahl” vorziehen
Beträgt der von der Tröpfchengröße abhängige Gangunterschied entlang dieser Wege die Hälfte der Wellenlänge, oder ein ungeradzahliges Vielfaches davon, so ist die Interferenz zwischen ihnen destruktiv und ihre Amplituden löschen sich gegenseitig aus. Dazwischen liegen jedoch Winkel, bei denen Gangunterschiede auftreten, die ganzzahligen Vielfachen der Wellenlänge entsprechen: Hier kommt es zur konstruktiven Interferenz und dadurch zu einem Nebenmaximum der Intensität (siehe Bild rechts).
Erst George Biddell Airy lieferte 1837 ein mathematisches Modell
letztlich Airy-Funktion, aber für den Regenbogen ein geometrisches Vorgehen geliefert
zur Darstellung der überzähligen Bögen. Im Gegensatz zur Young'schen Theorie hängt die von Airy
Wo hat uns Young eine Ausarbeitung seiner Wellentheorie des Lichts auf den Regenbogen hinterlassen?
berechnete Verteilung von der Tropfengröße ab, und ist auch nur bei einer bestimmten Tropfengröße besonders gut sichtbar. Die Abfolge der Regenbogenfarben wiederholen sich in den überzähligen Bögen nur scheinbar, durch die zusätzliche Überlagerung der Nebenmaxima der verschiedenen Farben mit unterschiedlicher Periodenlänge, sind in der Regel nur ein Teil der Farben des Hauptbogens sichtbar.[3]
Die Reinheit der Farben kann sehr unterschiedlich ausfallen, auch sind häufig die Enden des Bogens besonders hell. Dieser Effekt wird ebenfalls durch Interferenz verursacht, die sowohl von der Tröpfchengröße als auch von Abweichungen von der Kugelform abhängt. Generell lässt sich feststellen, dass große Tropfen mit Durchmessern von mehreren Millimetern besonders helle Regenbögen mit wohldefinierten Farben erzeugen. Bei einer Tröpfchengröße unter 1,5 mm wird zunächst die Rotfärbung immer schwächer.
Genauer, was passiert an den Enden des Bogens?
Sehr kleine Tropfen, wie beispielsweise in Nebelschwaden, wo der Durchmesser oft nur etwa ein Hundertstel Millimeter beträgt, liefern nur noch verwaschene Farben.[4]
Bei Tröpfchengrößen unter 50 Mikrometern überlagern sich die Farben derart, dass der Regenbogen nur noch weiß erscheint. Diese spezielle Form wird als Nebelbogen bezeichnet.
- Taubogen
- Beim Taubogen findet entsprechend dem Regenbogen die Lichtbrechung an Tautropfen statt,
Was ist gemeint? beim Regenbogen Regentropfen in der Luft, hier Tautropfen auf dem Boden (oder auf Gras)?
beispielsweise dem Tau auf einer Wiese [5] oder an Spinnweben. Der Taubogen erscheint aber dem Beobachter nicht als Kreis, sondern elliptisch oder hyperbelförmig, je nach Sonnenstand und Neigung der Ebene in der sich die Tautropfen befinden. Der Effekt ergibt sich dadurch, daß sich der 42° Kegel des zurückgeworfenen Lichts an der Oberfläche des Bodens in einer Hyperbel oder Ellipse schneidet.
Beim Regenbogen Kreis als Kegelschnitt
Durch den schräg verlaufende Kegelschnitt ergibt sich die Vorstellung, die Lichterscheinung erstrecke sich in horizontaler Ebene, was nur scheinbar richtig ist, tatsächlich ist der Bogen im Auge des Betrachters immer in einem 42° Winkel vom Sonnengegenpunkt entfernt.[6]
- Mondregenbogen
- Mondregenbogen heißt ein Regenbogen bei Nacht, der das Mondlicht als Grundlage hat.
Grundlage → im Mondlicht
Er ist wesentlich naturgemäß seltener
naturgemäß wesentlich seltener
als ein Regenbogen und erscheint dem Beobachter aufgrund seiner Lichtschwäche weiß. Zu sehen ist er, weil das menschliche Auge Helligkeitsunterschiede viel empfindlicher wahrnimmt als Farben (siehe Nachtsehen). Bei klarer Luft und ausgeprägtem Vollmond können Spektralfarben erkennbar sein. Außerdem sieht man sie prinzipbedingt
prinzipbedingt
immer bei farbfotografischen Aufnahmen, wenn das Verfahren lichtempfindlich genug ist, so dass die Abbildung des Mondregenbogens gelingt.
- Spiegelbogen
- Besondere Erscheinungsformen bilden die sehr seltenen gespaltenen Regenbögen und Spiegelbögen (siehe Bild rechts). Wenn das Sonnenlicht an einer Wasserfläche gespiegelt wird, bevor es auf die Regentropfen trifft, kann ein zweiter Bogen entstehen, der am Horizont mit dem Hauptbogen zusammentrifft, weiter oben aber wie ein zweiter, den Hauptbogen kreuzender Bogen erscheint.[7][8] Darüber hinaus gibt es Beobachtungen von seitlich versetzten, sich überschneidenden Regenbögen, deren Entstehung bislang unklar ist.[9]
- Eisbogen
- Der seltene Eisbogen [10] entsteht in kalten Gegenden, wo er von Eispartikeln statt Wasser gebildet wird.
- ↑ Michael Vollmer: Lichtspiele in der Luft. Atmosphärische Optik für Einsteiger, Spektrum Akademischer Verlag, Heidelberg 2005, Seite 116f und Seite 124ff
- ↑ Felix Billet: Titel: Mémoire sur les Dix-neuf premiers arcs-en-ciel de l'eau In: Annales scientifiques de l'École Normale Supérieure Nr. 1/5, 1868, S. 67–109.
- ↑ Werner Schnedier: Wege in der Physikdidaktik, Band 5, Naturphänomene und Astronomie. Palm & Enke, Erlangen und Jena 2002
- ↑ Beverly T. Lynds: About Rainbows
- ↑ http://www.meteoros.de/tau/tau.htm
- ↑ [Marcel Minnaert: Licht und Farbe in der Natur, Birkhäuser Verlag 1992, S. 257]
- ↑ Kreuzende Regenbögen Wilhelm-Foerster-Sternwarte Berlin, Bild der Woche, Oktober 2000
- ↑ Der Regenbogen des gespiegelten Sonnenlichts Fachgruppe „Atmosphärische Erscheinungen“ der Vereinigung der Sternfreunde e.V.
- ↑ Ungeklärte Regenbogenerscheinungen, Fachgruppe „Atmosphärische Erscheinungen“ der Vereinigung der Sternfreunde e.V.
- ↑ Eisbogen (PDF, 2. Seite)
mfG Analemma 17:09, 6. Aug. 2011 (CEST)
Konzept des Grenzwinkels
Wer kann es mit Hilfe des Begriffs Kaustik (Optik) beschreiben?
mfG Analemma 14:35, 5. Aug. 2011 (CEST)
Polarisation beim Regenbogen
Wer kann den Regenbogen unter Einbezug der Polarisation beschreiben?
mfG Analemma 14:44, 5. Aug. 2011 (CEST)
Ursache für den Regenbogen
Die Ursache ist die Dispersion also die wellenlängenabhängige Lichtbrechung. Das Licht wird in einem kugelförmigen Tropfen bevorzugt in eine bestimmte Richtung (Kegeloberfläche) gestreut unter diesem Winkel ändert sich der Ausfallswinkel nicht bei Variation des Einfallswinkels.
Ablenkung bei k Reflexionen im Innern des Tropfens
Die maximale Ablenkung ergibt sich beim Einfallswinkel aus der Bedingung für die Ableitung