Adolescence, a critical period of developmental period, is marked by neurobiological changes infl... more Adolescence, a critical period of developmental period, is marked by neurobiological changes influenced by environmental factors. Here, we show how exposure to sucrose, which is ubiquitously available in modern diets, results in changes in behavioural response to cocaine as an adult. Rats were given daily access to either 10% sucrose or water during the adolescent period (PND28–42). Following this period, rats are left undisturbed until they reach adulthood. In adulthood, rats were tested for (i) acquisition of a low dose of cocaine, (ii) progressive ratio (PR) test, and (iii) resistance to punished cocaine taking. Sucrose exposure resulted in significant alterations in all behavioural measures. To determine the neurobiological mechanisms leading to such behavioural adaptations, we find that adolescent sucrose exposure results in an upregulation of the transcription factor Smad3 in the nucleus accumbens (NAc) when compared with water‐exposed controls. Transiently blocking the active...
Cocaine addiction is a lifelong relapsing disorder that results from long-term adaptations within... more Cocaine addiction is a lifelong relapsing disorder that results from long-term adaptations within the brain. We find that Activin-receptor signaling, including the transcription factor Smad3, is upregulated in the rat nucleus accumbens shell following withdrawal from cocaine. Direct genetic and pharmacological manipulations of this pathway bidirectionally alter cocaine seeking, while governing morphological plasticity in nucleus accumbens neurons. These findings reveal that Activin/Smad3 signaling is induced following withdrawal from cocaine, and such regulation may be a key molecular mechanism underlying behavioral and cellular plasticity in the brain following cocaine self-administration. Addiction is a lifelong affliction manifested by episodes of relapse despite prolonged abstinence. It is thought that the neuroadaptations that result from drug exposure represent a neurobiological mechanism for long-term behavioral changes, highlighting the need to more fully understand the long-term molecular changes mediating drug craving and relapse 1. Activin, a member of the Transforming Growth Factor-β superfamily, signals via serine/ threonine kinase receptors, type II and type I, which then phosphorylate Smad3 and induce translocation into the nucleus to regulate gene expression 2. Activin signaling governs cellular and morphological plasticity associated with psychiatric disorders through both a canonical transcriptional pathway and a more direct mediation of mechanisms associated Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Background-Light onset can be both a sensory reinforcer (SR) with intrinsic reinforcing propertie... more Background-Light onset can be both a sensory reinforcer (SR) with intrinsic reinforcing properties, and a conditioned reinforcer (CR) which predicts a biologically important reinforcer. Stimulant drugs, such as methamphetamine (METH), may increase the reinforcing effectiveness of CRs by enhancing the predictive properties of the CR. In contrast, METH-induced increases in the reinforcing effectiveness of SRs, are mediated by the immediate sensory consequences of the light. Methods-The effects of novelty (on SRs) and METH (on both CRs and SRs) were tested. Experiment 1: Rats were pre-exposed to 5 s light and water pairings presented according to a variable-time (VT) 2 min schedule or unpaired water and light presented according to independent, concurrent VT 2 min schedules. Experiment 2: Rats were pre-exposed to 5 s light presented according to a VT 2 min schedule, or no stimuli. In both experiments, the pre-exposure phase was followed by a test phase in which 5 s light onset was made response-contingent on a variable-interval (VI) 2 min schedule and the effects of METH (0.5 mg/kg) were determined. Results-Novel light onset was a more effective reinforcer than familiar light onset. METH increased the absolute rate of responding without increasing the relative frequency of responding for both CRs and SRs. Conclusion-Novelty plays a role in determining the reinforcing effectiveness of SRs. The results are consistent with the interpretation that METH-induced increases in reinforcer effectiveness of CRs and SRs may be mediated by immediate sensory consequences, rather than prediction.
Background-The human personality trait of sensation seeking (SS) indicates an attraction to novel... more Background-The human personality trait of sensation seeking (SS) indicates an attraction to novel sensations and experiences, and is associated with greater likelihood of drug abuse. In rodents, locomotor activity in a novel environment (Loco) has been found to predict drug selfadministration (SA), and has been hypothesized to be a translational model of human SS. Previously, we reported (Gancarz et al., 2011 [12]) that high responder (HR) animals responded more than low responder (LR) animals to produce a response contingent light onset. The primary goal of this paper was a detailed analysis of the association between Loco and light contingent responding in a large sample of rats (n = 93). Methods-Male rats were pre-exposed to dark operant test chambers for ten 30 min sessions and baseline levels of responding (snout poking) were determined. The pre-exposure phase was followed by 6 sessions during which active responding produced a visual sensory reinforcer (VSR; 5 s light onset) according to a variable interval 1 min schedule of reinforcement. After completion of the VSR phase, Loco was tested. Results-The activating effects (total responding) of light were associated with Loco, but the response guiding effects (proportion of active responding) of the light were not. In addition, HR rats habituated more slowly in both the VSR and Loco tests than LR rats. Conclusions-These data indicate that VSR measures aspects of the rodent's response to novel sensations and experiences that are not detected by Loco. These data provide some evidence for the use of light reinforcement as an animal model of SS.
Drug addiction is a long-lasting disease characterized by compulsive drug intake mediated in part... more Drug addiction is a long-lasting disease characterized by compulsive drug intake mediated in part by neuronal and biological adaptations in key brain areas, such as the nucleus accumbens (NAc). While we previously demonstrated involvement of the activin 2a receptor in drug taking, the role of its ligand, activin A, in cocaine relapse is unknown. Activin A levels in the NAc were assessed via ELISA and immunohistochemistry (in neurons, astrocytes, and microglia) following a cocaine binge paradigm. Cocaine exposure significantly increased the levels of activin A in the NAc of animals that had self-administered cocaine prior to the 14-day withdrawal compared with levels in saline controls. This was accompanied by an increase in the proportion of IBA1 + microglia in the NAc that were immunopositive for activin A. In contrast, the proportions of NeuN + neurons and GFAP + astrocytes that were immunopositive for activin A remained unaltered. In conclusion, these data suggest that increased secretion of activin A, particularly from microglia, in the NAc represents a novel potential target for the treatment of cocaine relapse.
Page 25. Chapter 2 Animal Models of Behavioral Processes that Underlie the Occurrence of Impulsiv... more Page 25. Chapter 2 Animal Models of Behavioral Processes that Underlie the Occurrence of Impulsive Behaviors in Humans Jerry B. Richards, Amy M. Gancarz, and Larry W. Hawk, Jr. Abstract In this chapter, we describe a systematic ...
Rationale-A between-session progressive ratio (BtwPR) procedure was tested in rats responding for... more Rationale-A between-session progressive ratio (BtwPR) procedure was tested in rats responding for cocaine and water reinforcers. Objectives-Experiment 1 evaluated the sensitivity of the BtwPR procedure to the magnitude of cocaine and water reinforcers. Experiment 2 compared BtwPR performance to within-session progressive ratio (WinPR) performance. Methods-In experiment 1, rats were tested on a BtwPR procedure with three doses of cocaine (0.1, 0.3, and 1.0 mg/kg/inf) or volumes of water (0.01, 0.03, and 0.1 mL/reinforcer). BtwPR test sessions began with a seeking phase, during which the animal is required to complete a fixed ratio in order to initiate a 2-h consumption phase, where the reinforcer was available according to a fixed ratio 1 (FR1) schedule. Failure to complete the seeking ratio, which was increased after each test session, determined the breakpoint (BP). In experiment 2, the same BtwPR procedure was used except that the consumption phase was a WinPR schedule of reinforcement for cocaine (1.0 mg/kg/inf) or water (0.1 mL) reinforcers. Results and conclusions-BtwPR BPs increased as a function of the magnitude of both cocaine and water reinforcers. The BtwPR produced smaller BPs than the WinPR for cocaine reinforcers. In contrast, the BtwPR produced larger BPs than the WinPR for water reinforcers. One possible explanation is that priming and response activating effects of the cocaine reinforcer increased the WinPR BP. BtwPR and WinPR procedures may measure different aspects of drugseeking.
Background-Drug addiction is defined as a chronic disease characterized by compulsive drug seekin... more Background-Drug addiction is defined as a chronic disease characterized by compulsive drug seeking and episodes of relapse despite prolonged periods of drug abstinence. Neurobiological adaptations, including transcriptional and epigenetic alterations in the nucleus accumbens, are thought to contribute to this lifelong disease state. We previously demonstrated that transcription factor SMAD3 is increased following seven days of withdrawal from cocaine self-administration. However, it is still unknown which additional factors participate in the process of chromatin remodeling and facilitate the binding of SMAD3 to promoter regions of target genes. Here we examined the possible interaction of BRG1-also known as SMARCA4, an ATPase-containing chromatin remodeler-and SMAD3 in response to cocaine exposure. Methods-The expression of BRG1, as well as its binding to SMAD3 and target gene promoter regions, was evaluated in the nucleus accumbens and dorsal striatum of rats using Western blotting, co-immunoprecipitation, and chromatin immunoprecipitation techniques, respectively, following withdrawal from cocaine self-administration. Rats were assessed for cocaine-seeking behaviors following either intra-accumbal injections of the BRG1 inhibitor PFI3 or viral-mediated overexpression of BRG1. Results-Following withdrawal from cocaine self-administration, BRG1 expression and complex formation with SMAD3 are increased in the nucleus accumbens, resulting in increased
The term "sensory reinforcer" has been used to refer to sensory stimuli (e.g. light onset) that a... more The term "sensory reinforcer" has been used to refer to sensory stimuli (e.g. light onset) that are primary reinforcers in order to differentiate them from other more biologically important primary reinforcers (e.g. food and water). Acquisition of snout poke responding for a visual stimulus (5 s light onset) with fixed ratio 1 (FR 1), variable-interval 1 minute (VI 1 min), or variable-interval 6 minute (VI 6 min) schedules of reinforcement was tested in three groups of rats (n = 8/group). The VI 6 min schedule of reinforcement produced a higher response rate than the FR 1 or VI 1 min schedules of visual stimulus reinforcement. One explanation for greater responding on the VI 6 min schedule relative to the FR 1 and VI 1 min schedules is that the reinforcing effectiveness of light onset habituated more rapidly in the FR 1 and VI 1 min groups as compared to the VI 6 min group. The inverse relationship between response rate and the rate of visual stimulus reinforcement is opposite to results from studies with biologically important reinforcers which indicate a positive relationship between response and reinforcement rate. Rapid habituation of reinforcing effectiveness may be a fundamental characteristic of sensory reinforcers that differentiates them from biologically important reinforcers, which are required to maintain homeostatic balance.
The nucleus accumbens (NAc) is a primary brain reward region composed predominantly of medium spi... more The nucleus accumbens (NAc) is a primary brain reward region composed predominantly of medium spiny neurons (MSNs). In response to early withdrawal from repeated cocaine administration, de novo dendritic spine formation occurs in NAc MSNs. Much evidence indicates that this new spine formation facilitates the rewarding properties of cocaine. Early withdrawal from repeated cocaine also produces dramatic alterations in the transcriptome of NAc MSNs, but how such alterations influence cocaine's effects on dendritic spine formation remain unclear. Studies in non-neuronal cells indicate that actin cytoskeletal regulatory pathways in nuclei have a direct role in the regulation of gene transcription in part by controlling the access of co-activators to their transcription factor partners. In particular, actin state dictates the interaction between the serum response factor (SRF) transcription factor and one of its principal co-activators, MAL. Here we show that cocaine induces alterations in nuclear F-actin signaling pathways in the NAc with associated changes in the nuclear subcellular localization of SRF and MAL. Using in vivo optogenetics, the brain region-specific inputs to the NAc that mediate these nuclear changes are investigated. Finally, we demonstrate that regulated SRF expression, in turn, is critical for the effects of cocaine on dendritic spine formation and for cocaine-mediated behavioral sensitization. Collectively, these findings reveal a mechanism by which nuclear-based changes influence the structure of NAc MSNs in response to cocaine.
There is evidence that visual stimuli used to signal drug delivery in self-administration procedu... more There is evidence that visual stimuli used to signal drug delivery in self-administration procedures have primary reinforcing properties, and that drugs of abuse enhance the reinforcing properties of such stimuli. Here, we explored the relationships between locomotor activity, responding for a visual stimulus, and self-administration of methamphetamine (METH). Rats were classified as high or low responders based on activity levels in a novel locomotor chamber and were subsequently tested for responding to produce a visual stimulus followed by self-administration of a low dose of METH (0.025 mg/kg/infusion) paired with the visual stimulus. High responder rats responded more for the visual stimulus than low responder rats indicating that the visual stimulus was reinforcing and that operant responding for a visual stimulus has commonalities with locomotor activity in a novel environment. Similarly, high responder rats responded more for METH paired with a visual stimulus than low responder rats. Because of the reinforcing properties of the visual stimulus, it was not possible to determine if the rats were responding to produce the visual stimulus, METH or the combination. We speculate that responding to produce sensory reinforcers may be a measure of sensation seeking. These results indicate that visual stimuli have unconditioned reinforcing effects which may have a significant role in acquisition of drug self-administration, a role that is not yet well understood.
Exposure to psychostimulants results in structural and synaptic plasticity in striatal medium spi... more Exposure to psychostimulants results in structural and synaptic plasticity in striatal medium spiny neurons (MSNs). These cellular adaptations arise from alterations in genes that are highly implicated in the rearrangement of the actin-cytoskeleton, such as T-lymphoma invasion and metastasis 1 (Tiam1). Previous studies have demonstrated a crucial role for dopamine receptor 1 (D1)-containing striatal MSNs in mediating psychostimulant induced plasticity changes.These D1-MSNs in the nucleus accumbens (NAc) positively regulate drug seeking, reward, and locomotor behavioral effects as well as the morphological adaptations of psychostimulant drugs. Here, we demonstrate that rats that actively self-administer cocaine display reduced levels ofTiam1 in the NAc. To further examine the cell type-specific contribution to these changes in Tiam1 we used optogenetics to selectively manipulate NAc D1-MSNs or dopamine receptor 2 (D2) expressing MSNs. We find that repeated channelrhodopsin-2 activation of D1-MSNs but not D2-MSNs caused a down-regulation of Tiam1 levels similar to the effects of cocaine. Further, activation of D2-MSNs, which caused a late blunted cocaine-mediated locomotor behavioral response, did not alter Tiam1 levels. We then examined the contribution of D1-MSNs to the cocaine-mediated decrease ofTiam1. Using the light activated chloride pump, eNpHR3.0 (enhanced Natronomonas pharaonis halorhodopsin 3.0), we selectively inhibited D1-MSNs during cocaine exposure, which resulted in a behavioral blockade of cocaine-induced locomotor sensitization. Moreover, inhibiting these NAc D1-MSNs during cocaine exposure reversed the down-regulation of Tiam1 gene expression and protein levels. These data demonstrate that altering activity in specific neural circuits with optogenetics can impact the underlying molecular substrates of psychostimulant-mediated behavior and function.
Rationale An important facet of cocaine addiction is a high propensity to relapse, with increasin... more Rationale An important facet of cocaine addiction is a high propensity to relapse, with increasing research investigating factors that predispose individuals toward uncontrolled drug use and relapse. A personality trait linked to drug addiction is high sensation seeking, i.e., a preference for novel sensations/experiences. In an animal model of sensation seeking, operant novelty seeking predicts the acquisition of drug self-administration. Objective The primary goal of this research was to evaluate the hypothesis that sensitivity to the reinforcing effects of novel sensory stimuli predicts more intensive aspects of drug-taking behaviors, such as relapse. Methods Rats were first tested for Operant Novelty Seeking, during which responses resulted in complex visual/auditory stimuli. Next, rats were trained to respond to water/cocaine reinforcers signaled by a cue light. Finally, rats were exposed to extinction in the absence of discrete cues and subsequently tested in a single session ...
Organisms must regulate their behavior flexibly in the face of environmental challenges. Failure ... more Organisms must regulate their behavior flexibly in the face of environmental challenges. Failure can lead to a host of maladaptive behavioral traits associated with a range of neuropsychiatric disorders, including attention deficit hyperactivity disorder, autism, and substance use disorders. This maladaptive dysregulation of behavior is influenced by genetic and environmental factors. For example, environmental enrichment produces beneficial neurobehavioral effects in animal models of such disorders. The present study determined the effects of environmental enrichment on a range of measures related to behavioral regulation using a large cohort of male, outbred heterogeneous stock (HS) rats as subjects to mimic the genetic variability found in the human population. Subjects were reared from late adolescence onwards either in pairs in standard housing with minimal enrichment (n=200) or in groups of 16 in a highly enriched environment consisting of a large multi-level cage filled with ...
Choice behavior requires animals to evaluate both short- and long-term advantages and disadvantag... more Choice behavior requires animals to evaluate both short- and long-term advantages and disadvantages of all potential alternatives. Impulsive choice is traditionally measured in laboratory tasks by utilizing delay discounting (DD), a paradigm that offers a choice between a smaller immediate reward, or a larger more delayed reward. This study tested a large sample of Heterogeneous Stock (HS) male (n = 896) and female (n = 898) rats, part of a larger genetic study, to investigate whether measures of reward maximization overlapped with traditional models of delay discounting via the patch depletion model using a Sequential Patch Depletion procedure. In this task, rats were offered a concurrent choice between two water “patches” and could elect to “stay” in the current patch or “leave” for an alternative patch. Staying in the current patch resulted in decreasing subsequent reward magnitudes, whereas the choice to leave a patch was followed by a delay and a resetting to the maximum reward...
Abstract Substance abuse disorder is a chronically relapsing disease that is characterized in par... more Abstract Substance abuse disorder is a chronically relapsing disease that is characterized in part by compulsion to seek and take drug in the presence of adverse consequences and in inappropriate situations. Compulsivity develops progressively, and is hypothesized to derive from dysfunction in motivational and reward processing. Preclinical models have been developed that recapitulate endophenotypes of compulsive drug behaviors to study the pathophysiology and etiology of compulsivity. These models have been used to identify adaptations in brain circuitry, neurotransmission, and epigenetics that underlie compulsive drug use, and have provided a framework for theories that describe the development and expression of compulsivity.
Proceedings of the National Academy of Sciences, 2020
Significance Achieving abstinence is difficult for individuals with cocaine use disorder but the ... more Significance Achieving abstinence is difficult for individuals with cocaine use disorder but the greater challenge is avoiding relapse. Relapse vulnerability is provoked by exposure to drug-associated cues that evoke drug craving. Cue-induced drug craving persists during prolonged abstinence and is mediated by neuroadaptations in the brain. We found that activin A is increased in the dorsal hippocampus (DH) during prolonged, but not acute, abstinence and regulates phosphorylation of NMDA receptor subunit GluN2B. Both activin A and GluN2B-containing NMDA receptors in the DH regulate cocaine seeking during prolonged abstinence. Hippocampal synaptic strength is increased during prolonged abstinence and DH projections to lateral septum regulate cocaine seeking. Together, the DH acquires an abstinent-dependent role in regulating cocaine seeking during prolonged abstinence.
Adolescence, a critical period of developmental period, is marked by neurobiological changes infl... more Adolescence, a critical period of developmental period, is marked by neurobiological changes influenced by environmental factors. Here, we show how exposure to sucrose, which is ubiquitously available in modern diets, results in changes in behavioural response to cocaine as an adult. Rats were given daily access to either 10% sucrose or water during the adolescent period (PND28–42). Following this period, rats are left undisturbed until they reach adulthood. In adulthood, rats were tested for (i) acquisition of a low dose of cocaine, (ii) progressive ratio (PR) test, and (iii) resistance to punished cocaine taking. Sucrose exposure resulted in significant alterations in all behavioural measures. To determine the neurobiological mechanisms leading to such behavioural adaptations, we find that adolescent sucrose exposure results in an upregulation of the transcription factor Smad3 in the nucleus accumbens (NAc) when compared with water‐exposed controls. Transiently blocking the active...
Cocaine addiction is a lifelong relapsing disorder that results from long-term adaptations within... more Cocaine addiction is a lifelong relapsing disorder that results from long-term adaptations within the brain. We find that Activin-receptor signaling, including the transcription factor Smad3, is upregulated in the rat nucleus accumbens shell following withdrawal from cocaine. Direct genetic and pharmacological manipulations of this pathway bidirectionally alter cocaine seeking, while governing morphological plasticity in nucleus accumbens neurons. These findings reveal that Activin/Smad3 signaling is induced following withdrawal from cocaine, and such regulation may be a key molecular mechanism underlying behavioral and cellular plasticity in the brain following cocaine self-administration. Addiction is a lifelong affliction manifested by episodes of relapse despite prolonged abstinence. It is thought that the neuroadaptations that result from drug exposure represent a neurobiological mechanism for long-term behavioral changes, highlighting the need to more fully understand the long-term molecular changes mediating drug craving and relapse 1. Activin, a member of the Transforming Growth Factor-β superfamily, signals via serine/ threonine kinase receptors, type II and type I, which then phosphorylate Smad3 and induce translocation into the nucleus to regulate gene expression 2. Activin signaling governs cellular and morphological plasticity associated with psychiatric disorders through both a canonical transcriptional pathway and a more direct mediation of mechanisms associated Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
Background-Light onset can be both a sensory reinforcer (SR) with intrinsic reinforcing propertie... more Background-Light onset can be both a sensory reinforcer (SR) with intrinsic reinforcing properties, and a conditioned reinforcer (CR) which predicts a biologically important reinforcer. Stimulant drugs, such as methamphetamine (METH), may increase the reinforcing effectiveness of CRs by enhancing the predictive properties of the CR. In contrast, METH-induced increases in the reinforcing effectiveness of SRs, are mediated by the immediate sensory consequences of the light. Methods-The effects of novelty (on SRs) and METH (on both CRs and SRs) were tested. Experiment 1: Rats were pre-exposed to 5 s light and water pairings presented according to a variable-time (VT) 2 min schedule or unpaired water and light presented according to independent, concurrent VT 2 min schedules. Experiment 2: Rats were pre-exposed to 5 s light presented according to a VT 2 min schedule, or no stimuli. In both experiments, the pre-exposure phase was followed by a test phase in which 5 s light onset was made response-contingent on a variable-interval (VI) 2 min schedule and the effects of METH (0.5 mg/kg) were determined. Results-Novel light onset was a more effective reinforcer than familiar light onset. METH increased the absolute rate of responding without increasing the relative frequency of responding for both CRs and SRs. Conclusion-Novelty plays a role in determining the reinforcing effectiveness of SRs. The results are consistent with the interpretation that METH-induced increases in reinforcer effectiveness of CRs and SRs may be mediated by immediate sensory consequences, rather than prediction.
Background-The human personality trait of sensation seeking (SS) indicates an attraction to novel... more Background-The human personality trait of sensation seeking (SS) indicates an attraction to novel sensations and experiences, and is associated with greater likelihood of drug abuse. In rodents, locomotor activity in a novel environment (Loco) has been found to predict drug selfadministration (SA), and has been hypothesized to be a translational model of human SS. Previously, we reported (Gancarz et al., 2011 [12]) that high responder (HR) animals responded more than low responder (LR) animals to produce a response contingent light onset. The primary goal of this paper was a detailed analysis of the association between Loco and light contingent responding in a large sample of rats (n = 93). Methods-Male rats were pre-exposed to dark operant test chambers for ten 30 min sessions and baseline levels of responding (snout poking) were determined. The pre-exposure phase was followed by 6 sessions during which active responding produced a visual sensory reinforcer (VSR; 5 s light onset) according to a variable interval 1 min schedule of reinforcement. After completion of the VSR phase, Loco was tested. Results-The activating effects (total responding) of light were associated with Loco, but the response guiding effects (proportion of active responding) of the light were not. In addition, HR rats habituated more slowly in both the VSR and Loco tests than LR rats. Conclusions-These data indicate that VSR measures aspects of the rodent's response to novel sensations and experiences that are not detected by Loco. These data provide some evidence for the use of light reinforcement as an animal model of SS.
Drug addiction is a long-lasting disease characterized by compulsive drug intake mediated in part... more Drug addiction is a long-lasting disease characterized by compulsive drug intake mediated in part by neuronal and biological adaptations in key brain areas, such as the nucleus accumbens (NAc). While we previously demonstrated involvement of the activin 2a receptor in drug taking, the role of its ligand, activin A, in cocaine relapse is unknown. Activin A levels in the NAc were assessed via ELISA and immunohistochemistry (in neurons, astrocytes, and microglia) following a cocaine binge paradigm. Cocaine exposure significantly increased the levels of activin A in the NAc of animals that had self-administered cocaine prior to the 14-day withdrawal compared with levels in saline controls. This was accompanied by an increase in the proportion of IBA1 + microglia in the NAc that were immunopositive for activin A. In contrast, the proportions of NeuN + neurons and GFAP + astrocytes that were immunopositive for activin A remained unaltered. In conclusion, these data suggest that increased secretion of activin A, particularly from microglia, in the NAc represents a novel potential target for the treatment of cocaine relapse.
Page 25. Chapter 2 Animal Models of Behavioral Processes that Underlie the Occurrence of Impulsiv... more Page 25. Chapter 2 Animal Models of Behavioral Processes that Underlie the Occurrence of Impulsive Behaviors in Humans Jerry B. Richards, Amy M. Gancarz, and Larry W. Hawk, Jr. Abstract In this chapter, we describe a systematic ...
Rationale-A between-session progressive ratio (BtwPR) procedure was tested in rats responding for... more Rationale-A between-session progressive ratio (BtwPR) procedure was tested in rats responding for cocaine and water reinforcers. Objectives-Experiment 1 evaluated the sensitivity of the BtwPR procedure to the magnitude of cocaine and water reinforcers. Experiment 2 compared BtwPR performance to within-session progressive ratio (WinPR) performance. Methods-In experiment 1, rats were tested on a BtwPR procedure with three doses of cocaine (0.1, 0.3, and 1.0 mg/kg/inf) or volumes of water (0.01, 0.03, and 0.1 mL/reinforcer). BtwPR test sessions began with a seeking phase, during which the animal is required to complete a fixed ratio in order to initiate a 2-h consumption phase, where the reinforcer was available according to a fixed ratio 1 (FR1) schedule. Failure to complete the seeking ratio, which was increased after each test session, determined the breakpoint (BP). In experiment 2, the same BtwPR procedure was used except that the consumption phase was a WinPR schedule of reinforcement for cocaine (1.0 mg/kg/inf) or water (0.1 mL) reinforcers. Results and conclusions-BtwPR BPs increased as a function of the magnitude of both cocaine and water reinforcers. The BtwPR produced smaller BPs than the WinPR for cocaine reinforcers. In contrast, the BtwPR produced larger BPs than the WinPR for water reinforcers. One possible explanation is that priming and response activating effects of the cocaine reinforcer increased the WinPR BP. BtwPR and WinPR procedures may measure different aspects of drugseeking.
Background-Drug addiction is defined as a chronic disease characterized by compulsive drug seekin... more Background-Drug addiction is defined as a chronic disease characterized by compulsive drug seeking and episodes of relapse despite prolonged periods of drug abstinence. Neurobiological adaptations, including transcriptional and epigenetic alterations in the nucleus accumbens, are thought to contribute to this lifelong disease state. We previously demonstrated that transcription factor SMAD3 is increased following seven days of withdrawal from cocaine self-administration. However, it is still unknown which additional factors participate in the process of chromatin remodeling and facilitate the binding of SMAD3 to promoter regions of target genes. Here we examined the possible interaction of BRG1-also known as SMARCA4, an ATPase-containing chromatin remodeler-and SMAD3 in response to cocaine exposure. Methods-The expression of BRG1, as well as its binding to SMAD3 and target gene promoter regions, was evaluated in the nucleus accumbens and dorsal striatum of rats using Western blotting, co-immunoprecipitation, and chromatin immunoprecipitation techniques, respectively, following withdrawal from cocaine self-administration. Rats were assessed for cocaine-seeking behaviors following either intra-accumbal injections of the BRG1 inhibitor PFI3 or viral-mediated overexpression of BRG1. Results-Following withdrawal from cocaine self-administration, BRG1 expression and complex formation with SMAD3 are increased in the nucleus accumbens, resulting in increased
The term "sensory reinforcer" has been used to refer to sensory stimuli (e.g. light onset) that a... more The term "sensory reinforcer" has been used to refer to sensory stimuli (e.g. light onset) that are primary reinforcers in order to differentiate them from other more biologically important primary reinforcers (e.g. food and water). Acquisition of snout poke responding for a visual stimulus (5 s light onset) with fixed ratio 1 (FR 1), variable-interval 1 minute (VI 1 min), or variable-interval 6 minute (VI 6 min) schedules of reinforcement was tested in three groups of rats (n = 8/group). The VI 6 min schedule of reinforcement produced a higher response rate than the FR 1 or VI 1 min schedules of visual stimulus reinforcement. One explanation for greater responding on the VI 6 min schedule relative to the FR 1 and VI 1 min schedules is that the reinforcing effectiveness of light onset habituated more rapidly in the FR 1 and VI 1 min groups as compared to the VI 6 min group. The inverse relationship between response rate and the rate of visual stimulus reinforcement is opposite to results from studies with biologically important reinforcers which indicate a positive relationship between response and reinforcement rate. Rapid habituation of reinforcing effectiveness may be a fundamental characteristic of sensory reinforcers that differentiates them from biologically important reinforcers, which are required to maintain homeostatic balance.
The nucleus accumbens (NAc) is a primary brain reward region composed predominantly of medium spi... more The nucleus accumbens (NAc) is a primary brain reward region composed predominantly of medium spiny neurons (MSNs). In response to early withdrawal from repeated cocaine administration, de novo dendritic spine formation occurs in NAc MSNs. Much evidence indicates that this new spine formation facilitates the rewarding properties of cocaine. Early withdrawal from repeated cocaine also produces dramatic alterations in the transcriptome of NAc MSNs, but how such alterations influence cocaine's effects on dendritic spine formation remain unclear. Studies in non-neuronal cells indicate that actin cytoskeletal regulatory pathways in nuclei have a direct role in the regulation of gene transcription in part by controlling the access of co-activators to their transcription factor partners. In particular, actin state dictates the interaction between the serum response factor (SRF) transcription factor and one of its principal co-activators, MAL. Here we show that cocaine induces alterations in nuclear F-actin signaling pathways in the NAc with associated changes in the nuclear subcellular localization of SRF and MAL. Using in vivo optogenetics, the brain region-specific inputs to the NAc that mediate these nuclear changes are investigated. Finally, we demonstrate that regulated SRF expression, in turn, is critical for the effects of cocaine on dendritic spine formation and for cocaine-mediated behavioral sensitization. Collectively, these findings reveal a mechanism by which nuclear-based changes influence the structure of NAc MSNs in response to cocaine.
There is evidence that visual stimuli used to signal drug delivery in self-administration procedu... more There is evidence that visual stimuli used to signal drug delivery in self-administration procedures have primary reinforcing properties, and that drugs of abuse enhance the reinforcing properties of such stimuli. Here, we explored the relationships between locomotor activity, responding for a visual stimulus, and self-administration of methamphetamine (METH). Rats were classified as high or low responders based on activity levels in a novel locomotor chamber and were subsequently tested for responding to produce a visual stimulus followed by self-administration of a low dose of METH (0.025 mg/kg/infusion) paired with the visual stimulus. High responder rats responded more for the visual stimulus than low responder rats indicating that the visual stimulus was reinforcing and that operant responding for a visual stimulus has commonalities with locomotor activity in a novel environment. Similarly, high responder rats responded more for METH paired with a visual stimulus than low responder rats. Because of the reinforcing properties of the visual stimulus, it was not possible to determine if the rats were responding to produce the visual stimulus, METH or the combination. We speculate that responding to produce sensory reinforcers may be a measure of sensation seeking. These results indicate that visual stimuli have unconditioned reinforcing effects which may have a significant role in acquisition of drug self-administration, a role that is not yet well understood.
Exposure to psychostimulants results in structural and synaptic plasticity in striatal medium spi... more Exposure to psychostimulants results in structural and synaptic plasticity in striatal medium spiny neurons (MSNs). These cellular adaptations arise from alterations in genes that are highly implicated in the rearrangement of the actin-cytoskeleton, such as T-lymphoma invasion and metastasis 1 (Tiam1). Previous studies have demonstrated a crucial role for dopamine receptor 1 (D1)-containing striatal MSNs in mediating psychostimulant induced plasticity changes.These D1-MSNs in the nucleus accumbens (NAc) positively regulate drug seeking, reward, and locomotor behavioral effects as well as the morphological adaptations of psychostimulant drugs. Here, we demonstrate that rats that actively self-administer cocaine display reduced levels ofTiam1 in the NAc. To further examine the cell type-specific contribution to these changes in Tiam1 we used optogenetics to selectively manipulate NAc D1-MSNs or dopamine receptor 2 (D2) expressing MSNs. We find that repeated channelrhodopsin-2 activation of D1-MSNs but not D2-MSNs caused a down-regulation of Tiam1 levels similar to the effects of cocaine. Further, activation of D2-MSNs, which caused a late blunted cocaine-mediated locomotor behavioral response, did not alter Tiam1 levels. We then examined the contribution of D1-MSNs to the cocaine-mediated decrease ofTiam1. Using the light activated chloride pump, eNpHR3.0 (enhanced Natronomonas pharaonis halorhodopsin 3.0), we selectively inhibited D1-MSNs during cocaine exposure, which resulted in a behavioral blockade of cocaine-induced locomotor sensitization. Moreover, inhibiting these NAc D1-MSNs during cocaine exposure reversed the down-regulation of Tiam1 gene expression and protein levels. These data demonstrate that altering activity in specific neural circuits with optogenetics can impact the underlying molecular substrates of psychostimulant-mediated behavior and function.
Rationale An important facet of cocaine addiction is a high propensity to relapse, with increasin... more Rationale An important facet of cocaine addiction is a high propensity to relapse, with increasing research investigating factors that predispose individuals toward uncontrolled drug use and relapse. A personality trait linked to drug addiction is high sensation seeking, i.e., a preference for novel sensations/experiences. In an animal model of sensation seeking, operant novelty seeking predicts the acquisition of drug self-administration. Objective The primary goal of this research was to evaluate the hypothesis that sensitivity to the reinforcing effects of novel sensory stimuli predicts more intensive aspects of drug-taking behaviors, such as relapse. Methods Rats were first tested for Operant Novelty Seeking, during which responses resulted in complex visual/auditory stimuli. Next, rats were trained to respond to water/cocaine reinforcers signaled by a cue light. Finally, rats were exposed to extinction in the absence of discrete cues and subsequently tested in a single session ...
Organisms must regulate their behavior flexibly in the face of environmental challenges. Failure ... more Organisms must regulate their behavior flexibly in the face of environmental challenges. Failure can lead to a host of maladaptive behavioral traits associated with a range of neuropsychiatric disorders, including attention deficit hyperactivity disorder, autism, and substance use disorders. This maladaptive dysregulation of behavior is influenced by genetic and environmental factors. For example, environmental enrichment produces beneficial neurobehavioral effects in animal models of such disorders. The present study determined the effects of environmental enrichment on a range of measures related to behavioral regulation using a large cohort of male, outbred heterogeneous stock (HS) rats as subjects to mimic the genetic variability found in the human population. Subjects were reared from late adolescence onwards either in pairs in standard housing with minimal enrichment (n=200) or in groups of 16 in a highly enriched environment consisting of a large multi-level cage filled with ...
Choice behavior requires animals to evaluate both short- and long-term advantages and disadvantag... more Choice behavior requires animals to evaluate both short- and long-term advantages and disadvantages of all potential alternatives. Impulsive choice is traditionally measured in laboratory tasks by utilizing delay discounting (DD), a paradigm that offers a choice between a smaller immediate reward, or a larger more delayed reward. This study tested a large sample of Heterogeneous Stock (HS) male (n = 896) and female (n = 898) rats, part of a larger genetic study, to investigate whether measures of reward maximization overlapped with traditional models of delay discounting via the patch depletion model using a Sequential Patch Depletion procedure. In this task, rats were offered a concurrent choice between two water “patches” and could elect to “stay” in the current patch or “leave” for an alternative patch. Staying in the current patch resulted in decreasing subsequent reward magnitudes, whereas the choice to leave a patch was followed by a delay and a resetting to the maximum reward...
Abstract Substance abuse disorder is a chronically relapsing disease that is characterized in par... more Abstract Substance abuse disorder is a chronically relapsing disease that is characterized in part by compulsion to seek and take drug in the presence of adverse consequences and in inappropriate situations. Compulsivity develops progressively, and is hypothesized to derive from dysfunction in motivational and reward processing. Preclinical models have been developed that recapitulate endophenotypes of compulsive drug behaviors to study the pathophysiology and etiology of compulsivity. These models have been used to identify adaptations in brain circuitry, neurotransmission, and epigenetics that underlie compulsive drug use, and have provided a framework for theories that describe the development and expression of compulsivity.
Proceedings of the National Academy of Sciences, 2020
Significance Achieving abstinence is difficult for individuals with cocaine use disorder but the ... more Significance Achieving abstinence is difficult for individuals with cocaine use disorder but the greater challenge is avoiding relapse. Relapse vulnerability is provoked by exposure to drug-associated cues that evoke drug craving. Cue-induced drug craving persists during prolonged abstinence and is mediated by neuroadaptations in the brain. We found that activin A is increased in the dorsal hippocampus (DH) during prolonged, but not acute, abstinence and regulates phosphorylation of NMDA receptor subunit GluN2B. Both activin A and GluN2B-containing NMDA receptors in the DH regulate cocaine seeking during prolonged abstinence. Hippocampal synaptic strength is increased during prolonged abstinence and DH projections to lateral septum regulate cocaine seeking. Together, the DH acquires an abstinent-dependent role in regulating cocaine seeking during prolonged abstinence.
Uploads
Papers by Amy Gancarz