Zero Knowledge Proofs:

Challenges, Applications, and Real-world Deployment

NIST Workshop on Privacy Enhancing Cryptography
September 26", 2024

Tjerand Silde & Akira Takahashi

®@NTNU JPMorgan ———

AT Research

This talk

1) Introduction to Zero Knowledge Proof (Akira)
2) Technical Challenges (Akira)

3) Real-World Applications (Tjerand)

4) Insights from ZKP Workshop (Tjerand)

5) Resources and Standards (Tjerand)

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

What Is Zero Knowledge Proof?

Basics

* Z/KP is a two-party protocol, consisting of
Prover and Verifier

* With ZKP, Prover can convince Verifier that
she has some secret information without
disclosing the secret

| know a secret! Are you sure?

* Example: “I know sk corresponding to pk”

* Long history of research starting from the
< ‘80s [GMR85]. Lots of efficiency
Improvements during the last decade

) o .
(o) : o cf. ZK-SNARK (Succinct Non-

> — interactive Argument of Knowledge)
Prover(secret) Verifier

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Proof%20Systems/The_Knowledge_Complexity_Of_Interactive_Proof_Systems.pdf

Syntax of ZKP

x: statement (i.e. public input)

w: witness (i.e. secret input)

R: relation function, outputting 1 or 0

“I know w s.t. R(z,w)=1"

o

Prover(z, w)

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

b: decision bit

o

Verifier(x)

Completeness

* |f Prover and Verifier honestly follow the
protocol, then Verifier halts by outputting

b=1

b=1: "accept”
>

b=0: “reject”

Security Goals of Zero Knowledge Proof

x: statement (i.e. public input)

w: witness (i.e. secret input)

R: relation function, outputting 1 or 0

“I know w s.t. R(xz,w)=1"

Zero Knowledge (ZK)

* Protecting against malicious verifier

* Verifier learns nothing about Prover’s secret

e Tries to steal w . . :
* Formally, ZK is guaranteed by showing the existence of

“Simulator”

o

~‘¢

Prover(z, w)

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

. O

Verifier(x)

Security Goals of Zero Knowledge Proof

e Maliciously interacts with Verifier

e Might use an “invalid” input

You lied!
R(z*,w") =0
>
o -
o
>
Prover(x*, w") Verifier(x*)

Zero Knowledge (ZK)

* Protecting against malicious verifier
* Verifier learns nothing about Prover’s secret

* Formally, ZK is guaranteed by showing the existence of
“Simulator”

Knowledge Soundness (KSND)

* Protecting against malicious prover

* |f Prover uses an invalid secret, then Verifier catches it
with high probability

* Formally, knowledge soundness is guaranteed by
showing the existence of “Knowledge Extractor”

l b=0: "reject”

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Non-interactive Zero Knowledge Proof (NIZK)

% Removing Interactions

* |deally, Prover should create a one-shot
* Verifier checks 1 asynchronously

* Such Tt is reusable and can be checked
by potentially many verifiers

Types of Trusted Setup

' _ ' » Structured Reference String (SRS)

9 > —‘ * Hash function modeled as Random Oracle
Prover(z, w) Verifier(x,) * Or both!

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Non-interactive Zero Knowledge Proof (NIZK)

% Removing Interactions

* |deally, Prover should create a one-shot
(G,7-G,1%-G,...) =srs + Gen(1%) proof string
* Verifier checks 1 asynchronously

* Such Tt is reusable and can be checked
by potentially many verifiers

Types of Trusted Setup

' _ ' * Structured Reference String (SRS)

9 > —‘ * Hash function modeled as Random Oracle
Prover(z, w) Verifier(x,) * Or both!

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Non-interactive Zero Knowledge Proof (NIZK)

% Removing Interactions

* |deally, Prover should create a one-shot
H(") proof string m

* Verifier checks 1 asynchronously

* Such Tt is reusable and can be checked
by potentially many verifiers

= Types of Trusted Setup
_:@ ! * Structured Reference String (SRS)
o m > ‘g‘ * Hash function modeled as Random Oracle
Prover(z, w) Verifier(x,) * Or both!

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Non-interactive Zero Knowledge Proof (NIZK)

% % Removing Interactions

* |deally, Prover should create a one-shot
Srs — Gen 1>\ proof string 1
* Verifier checks 1 asynchronously

* Such Tt is reusable and can be checked
by potentially many verifiers

Types of Trusted Setup

' _ ' * Structured Reference String (SRS)

L > ‘n * Hash function modeled as Random Oracle
Prover(xz, w) Verifier(x,) « Or both!

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Paradigm of NIZK I: Fiat-Shamir [FS87]

o

Prover(z, w)

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Modular Design of NIZK

* Step 1. Construct a “public-coin” interactive protocol
* \Verifier does not require a secret state
C1 <% Ch1 * 7K against semi-honest Verifier (Honest-Verifier ZK)

* Step 2. NI Prover and Verifier obtain challenge by locally
hashing a partial transcript so far

* Bonus: By hashing the message, FS-NIZK gives rise to a
digital signature

* Example: Schnorr/EdDSA, CRYSTALS-Dilithium, PLONK
family, Bulletproofs, etc.

* Many modern SNARKs are constructed from (Polynomial)
Interactive Oracle Proofs converted to NIZK via Fiat-Shamir
[BCS16, CHMMVW19, BFS19, GWC19, CFFQR?20,...]

Verifier(z)

11

https://eprint.iacr.org/2016/116.pdf
https://eprint.iacr.org/2019/1047.pdf
https://eprint.iacr.org/2019/1229.pdf
https://eprint.iacr.org/2019/953.pdf
https://eprint.iacr.org/2020/1069.pdf
https://mit6875.github.io/PAPERS/Fiat-Shamir.pdf

Paradigm of NIZK I: Fiat-Shamir [FS87]

ai

c1 c1=H(r,a1)

Ar41

Modular Design of NIZK

* Step 1. Construct a “public-coin” interactive protocol
* \Verifier does not require a secret state
* 7K against semi-honest Verifier (Honest-Verifier ZK)

* Step 2. NI Prover and Verifier obtain challenge by locally
hashing a partial transcript so far

* Bonus: By hashing the message, FS-NIZK gives rise to a
digital signature

* Example: Schnorr/EdDSA, CRYSTALS-Dilithium, PLONK
family, Bulletproofs, etc.

* Many modern SNARKSs are constructed from (Polynomial)
Interactive Oracle Proofs converted to NIZK via Fiat-Shamir
[BCS16, CHMMVW19, BFS19, GWC19, CFFQR?20,...]

Prover (z, w)

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Verifier™ (z)

12

https://eprint.iacr.org/2016/116.pdf
https://eprint.iacr.org/2019/1047.pdf
https://eprint.iacr.org/2019/1229.pdf
https://eprint.iacr.org/2019/953.pdf
https://eprint.iacr.org/2020/1069.pdf
https://mit6875.github.io/PAPERS/Fiat-Shamir.pdf

Paradigm of NIZK I: Fiat-Shamir [FS87]

ai

> Modular Design of NIZK

c1 c1 = H(vk,a1, ms . .
< . (9850 5 053] « Step 1. Construct a “public-coin” interactive protocol

* \Verifier does not require a secret state

s 7K against semi-honest Verifier (Honest-Verifier ZK)
c¢i = H(vk,aq,c1,...,a;,msg) g

* Step 2. NI Prover and Verifier obtain challenge by locally
hashing a partial transcript so far
Ar41

» o= (ai,c1,...,0r11) * Bonus: By hashing the message, FS-NIZK gives rise to a
digital signature

* Example: Schnorr/EdDSA, CRYSTALS-Dilithium, PLONK
family, Bulletproofs, etc.

* Many modern SNARKSs are constructed from (Polynomial)
Interactive Oracle Proofs converted to NIZK via Fiat-Shamir
[BCS16, CHMMVW19, BFS19, GWC19, CFFQR?20,...]

o

o

Signer™ (vk, sk, msg) Verifier” (vk, o, msg)

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

https://eprint.iacr.org/2016/116.pdf
https://eprint.iacr.org/2019/1047.pdf
https://eprint.iacr.org/2019/1229.pdf
https://eprint.iacr.org/2019/953.pdf
https://eprint.iacr.org/2020/1069.pdf
https://mit6875.github.io/PAPERS/Fiat-Shamir.pdf

Paradigm of NIZK I: Fiat-Shamir [FS87]

Interactive Oracle Proof

(No computational assumption)

l + Cryptographic Commitment

Interactive Zero Knowledge Proof

(Often only secure against computationally bounded adversaries)

l + Fiat-Shamir

Non-interactive Zero Knowledge Proof

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Modular Design of NIZK

* Step 1. Construct a “public-coin” interactive protocol
* \Verifier does not require a secret state
* 7K against semi-honest Verifier (Honest-Verifier ZK)

* Step 2. NI Prover and Verifier obtain challenge by locally
hashing a partial transcript so far

* Bonus: By hashing the message, FS-NIZK gives rise to a
digital signature

* Example: Schnorr/EdDSA, CRYSTALS-Dilithium, PLONK
family, Bulletproofs, etc.

* Many modern SNARKs are constructed from (Polynomial)
Interactive Oracle Proofs converted to NIZK via Fiat-Shamir
[BCS16, CHMMVW19, BFS19, GWC19, CFFQR?20,...]

14

https://mit6875.github.io/PAPERS/Fiat-Shamir.pdf
https://eprint.iacr.org/2016/116.pdf
https://eprint.iacr.org/2019/1047.pdf
https://eprint.iacr.org/2019/1229.pdf
https://eprint.iacr.org/2019/953.pdf
https://eprint.iacr.org/2020/1069.pdf

Paradigm of NIZK II: Linear Interactive Proofs [GGPR13,BCI+13]

NIZK without Fiat-Shamir

. A
0 1= SIS < Gen<1) R) * Step 1. srs generator outputs a relation-dependent
vector
o T + Test(R,x) * Step 2. NI Prover applies linear transformation to
M < ProofMatrix(R, z, w) SIS

o Check T'(o,m) =1

* Step 3. NI Verifier derives a testing function,
allowing to check whether correct linear
transformation has been applied

* Example: [Groth16]

* Important: Prover and Verifier should never learn
internal randomness of Gen; otherwise, malicious
prover can easily prove a false statement

2 >

Prover(z, w) Verifier ()

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

15

https://eprint.iacr.org/2012/215.pdf
https://eprint.iacr.org/2012/718.pdf
https://eprint.iacr.org/2016/260.pdf

Technical Challenges

1) Balancing Generality, Efficiency and Assumptions

2)Advanced Security

3)Interoperability

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

16

Types of ZKP

General-Purpose ZKP

* Supports arbitrary NP relation R

* Relation Is often described using an arithmetic circuit
RC = {(xﬁ/w) : C(ZC,UJ) = 1}
* Pros:
* (Can prove correct execution of any program
* Suitable for verifiable and outsourced computation

* Cons:

* circuit gets complex for certain non-linear computations

* E.g, elliptic curve arithmetic, comparison, table lookup, etc.

L
@/
\ Y/

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography @

w3

Specialized ZKP

* Designed for particular type of NP relation R
RpL ={(X,w): X =w-G}
Rsis = {(x,w) : x = Aw mod q, |w]| < 5}

Riookup = {(x, W) : w is a subvector of x}

* Pros:
* Can prove and verify designated relations efficiently

* Sufficient for some useful applications, e.g., proof of
correct encryption, distributed key generation,
signatures, etc.

* Cons:

* Requires careful integration with general-purpose ZKP
to support more complex statements

Types of ZKP

General-Purpose ZKP

* Supports arbitrary NP relation R

* Relation Is often described using an arithmetic circuit
RC = {(xﬁ/w) : C(ZC,UJ) = 1}
* Pros:
* (Can prove correct execution of any program
* Suitable for verifiable and outsourced computation

* Cons:

* circuit gets complex for certain non-linear computations

* E.g, elliptic curve arithmetic, comparison, table lookup, etc.

L
@/
\ Y/

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography @

w3

Specialized ZKP

* Designed for particular type of NP relation R
RpL ={(X,w): X =w-G}
Rsis = {(x,w) : x = Aw mod q, |w]| < 5}

Riookup = {(x, W) : w is a subvector of x}

* Pros:
* Can prove and verify designated relations efficiently

* Sufficient for some useful applications, e.g., proof of
correct encryption, distributed key generation,
signatures, etc.

* Cons:

* Requires careful integration with general-purpose ZKP
to support more complex statements

Desiderata

Proof Size
* Smaller proof saves storage and communication

bandwidth

* Groth16 requires only 3 group elements from pairing-
friendly curves

* State-of-the-art Polymath [Lip24] and PARI [DMS24]
achieve even smaller proof sizes!

Assumptions

* To minimize a trust assumption, SRS should be avoided

* Better alternative: only trust the security of hash
function modeled as RO (aka transparent setup), e.g,,
Bulletproofs, Brakedown, STARK, LaBRADOR, MPC/VOLE-
in-the-Head, etc.

* Middle-ground solution: allows different parties to
update SRS (aka updatable SRS) [GKMMM18]

Setup, Prover and Verifier Cost

* Universal Setup: Setup outputs SRS once and for all
for arbitrary circuits [GKMMM18]

srs <— Setup; srsc < Derive(srs, C)
* Verifier sub-linear in |C|

* Prover time linear in #non-linear gates

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Scalability

* How can we prove a large statement efficiently?

* Proof Aggregation: aggregate many,
asynchronously generated proofs, e.g., SnarkPack

* Incrementally Verifiable Computation [Valiant08]:
succinct proof of incremental computations via
recursion or folding, e.g., Halo2, Nova, etc.

https://eprint.iacr.org/2024/916.pdf
https://eprint.iacr.org/2024/1245.pdf

Desiderata

Proof Size
* Smaller proof saves storage and communication

bandwidth

* Groth16 requires only 3 group elements from pairing-
friendly curves

* State-of-the-art Polymath [Lip24] and PARI [DMS24]
achieve even smaller proof sizes!

Assumptions

* To minimize a trust assumption, SRS should be avoided

* Better alternative: only trust the security of hash
function modeled as RO (aka transparent setup), e.g,,
Bulletproofs, Brakedown, STARK, LaBRADOR, MPC/VOLE-
in-the-Head, etc.

* Middle-ground solution: allows different parties to
update SRS (aka updatable SRS) [GKMMM18]

Setup, Prover and Verifier Cost

* Universal Setup: Setup outputs SRS once and for all
for arbitrary circuits [GKMMM18]

srs <— Setup; srsc < Derive(srs, C)
* Verifier sub-linear in |C|

* Prover time linear in #non-linear gates

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Scalability

* How can we prove a large statement efficiently?

* Proof Aggregation: aggregate many,
asynchronously generated proofs, e.g., SnarkPack

* Incrementally Verifiable Computation [Valiant08]:
succinct proof of incremental computations via
recursion or folding, e.g., Halo2, Nova, etc.

https://eprint.iacr.org/2018/280.pdf

Desiderata

Proof Size
* Smaller proof saves storage and communication

bandwidth

* Groth16 requires only 3 group elements from pairing-
friendly curves

* State-of-the-art Polymath [Lip24] and PARI [DMS24]
achieve even smaller proof sizes!

Assumptions

* To minimize a trust assumption, SRS should be avoided

* Better alternative: only trust the security of hash
function modeled as RO (aka transparent setup), e.g,,
Bulletproofs, Brakedown, STARK, LaBRADOR, MPC/VOLE-
in-the-Head, etc.

* Middle-ground solution: allows different parties to
update SRS (aka updatable SRS) [GKMMM18]

Setup, Prover and Verifier Cost

* Universal Setup: Setup outputs SRS once and for all
for arbitrary circuits [GKMMM18]

srs <— Setup; srsc < Derive(srs, C)
* Verifier sub-linear in |C|

* Prover time linear in #non-linear gates

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Scalability

* How can we prove a large statement efficiently?

* Proof Aggregation: aggregate many,
asynchronously generated proofs, e.g., SnarkPack

* Incrementally Verifiable Computation [Valiant08]:
succinct proof of incremental computations via
recursion or folding, e.g., Halo2, Nova, etc.

Desiderata

Proof Size
* Smaller proof saves storage and communication

bandwidth

* Groth16 requires only 3 group elements from pairing-
friendly curves

* State-of-the-art Polymath [Lip24] and PARI [DMS24]
achieve even smaller proof sizes!

Assumptions

* To minimize a trust assumption, SRS should be avoided

* Better alternative: only trust the security of hash
function modeled as RO (aka transparent setup), e.g,,
Bulletproofs, Brakedown, STARK, LaBRADOR, MPC/VOLE-
in-the-Head, etc.

* Middle-ground solution: allows different parties to
update SRS (aka updatable SRS) [GKMMM18]

Setup, Prover and Verifier Cost

* Universal Setup: Setup outputs SRS once and for all
for arbitrary circuits [GKMMM18]

srs <— Setup; srsc < Derive(srs, C)
* Verifier sub-linear in |C|

* Prover time linear in #non-linear gates

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Scalability

* How can we prove a large statement efficiently?

* Proof Aggregation: aggregate many,
asynchronously generated proofs, e.g., SnarkPack

* Incrementally Verifiable Computation [Valiant08]:
succinct proof of incremental computations via
recursion or folding, e.g., Halo2, Nova, etc.

https://iacr.org/archive/tcc2008/49480001/49480001.pdf

Technical Challenges

1) Balancing Generality, Efficiency and Assumptions

2)Advanced Security

3)Interoperability

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

23

ZK and Knowledge Soundness are not Enough: Malleability Attacks

| have > $10k in my account

's a proof, m
Here

®. =
2
‘n‘ /

Pamela

| have > $15k in my account

Here's a proof, ms

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

| only have $5k in my account. ..
But | claim to have > $25k!

Here's a proof, 7* <— Maul(7m, 72)

Mallory

| trust Mallory...

24

Combined Notion: Simulation-Extractability [Sah99]

=] SIM-EXT Security
=

T 1. Prover® obtains fresh proof from Oracle
Oracle(x) .
2. Prover™ outputs “forgery” (z*,7*)
3. If (z*,n*) is accepting and not recorded by Oracle,
i

then Prover®™ must know the corresponding witness "

* Intuitively, SIM-EXT guarantees non-malleability: a
cheating prover cannot maul existing proofs to create a
new one, without knowing a valid witness

* Cf. (S)EUF-CMA for signature and IND-CCA for PKE

* Crucial property NIZK should satisfy if used as a
subroutine of another protocol

w* * Many practical NIZK schemes turn out to be SIM-EXT [
> GKKNZ22] [GOPTT22] [DG23] [FFKR23] [KPT23] [Lib24] [FFR24]

* Some schemes satisfy UC security [CanettiO1] accepting
Knowledge Extractor some idealized setup [CF24] [BFKT24]

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

http://www.ai.mit.edu/projects/ntt/projects/9807-12-26/documents/NMNIZK.pdf
https://eprint.iacr.org/2021/511.pdf
https://eprint.iacr.org/2023/147.pdf
https://eprint.iacr.org/2023/494
https://eprint.iacr.org/2023/569
https://eprint.iacr.org/2023/1067
https://eprint.iacr.org/2024/854
https://eprint.iacr.org/2024/721.pdf
https://eprint.iacr.org/2000/067.pdf
https://eprint.iacr.org/2024/724
https://eprint.iacr.org/2024/818

Technical Challenges

1) Balancing Generality, Efficiency and Assumptions

2)Advanced Security

3)Interoperability

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

26

Example: Anonymous Credentials (High Level)

Generate a compact proof m:

“l know a valid cred on usk, A"

cm < Com(uskl||A)

>

2 -
User(usk, A) cred <— Sign(isk, cm)

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

Protocol

* Issuer initially binds attributes and usk to secret credentials

* The owner of attributes produces a proof string in the form of
ZKP

* By examining the proof string, Verifier gets convinced that User
has valid attributes signed by Issuer

* Thanks to ZKP, the proof string only leaks minimum info about
Prover's identity

Issuer(isk .
(isk) * Eg, Verifier learns “User is => 21 years old” but nothing else

e isk: issuer secret key e usk: user secret key

e ipk: issuer public key e /. user attributes

Verifier

Example: Anonymous Credentials (High Level)

Interoperability

Generate a compact proof 7:
* Central ZKP for AC: Proof-of-Knowledge of valid signature

“I know a valid cred on usk, A”
* Verification algorithms of widely deployed signatures, e.g, RSA-

PSS, ECDSA, EdDSA, etc. are not ZK-friendly

e Two directions:

cm < Com(uskl||A
(uskl}-4) * Design more specialized and efficient ZKP for existing

standardized schemes to retain interoperability

o
-«
User(usk, A) cred « Sign(isk, cm) * Design and standardize “ZK-friendly” primitives: Cf. BBS(+)
) ’ signature
T e isk: issuer secret key e usk: user secret key
e ipk: issuer public key e /. user attributes

Verifier

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography

28

https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html

Takeaways

* ZKP allows Prover to prove the knowledge of a secret, while Verifier learns nothing about the secret
* Basic Security Properties: Knowledge Soundness and Zero Knowledge

e What kind statement do you want to prove?
* General-purpose ZKP, Specialized ZKP, Composition of both

*Which setup assumption is suitable for deployment?
* Trusted, Transparent, Updatable, ...

e What should you optimize?
* Proof Size, Assumptions, Setup/Prover/Verifier Costs, Scalability.

* Advanced Security: Does the application need SIM-EXT or UC security?

e Interoperability: Standardize ZK-friendly primitives, or design standardization-friendly ZK

WPEC 2024: NIST Workshop on Privacy-Enhancing Cryptography Credits: icons have been retrieved from Flaticon.com

290

https://flaticon.com/

Zero-Knowledge Proofs: Technical
Challenges, Applications, and
Real-world Deployment

NIST Workshop on Privacy-Enhancing Cryptography
Tjerand Silde & Akira Takahashi, September 26 — 2024

Norwegian University of Science and Technology

I
Z,
—
Z,
=

Content

Introduction to ZKP
Technical Challenges
Real-World Applications e
nsights from ZKP Workshop <
Resources and Standards g

Verifiable and Outsourced Computation

Ensure that computation
IS conducted properly
(server is the prover)

Might include secret data E/
or algorithms, but does @

not have to do so

il e e

PIE

Use ZKP for compliance

®@NTNU

Efficient (Post-Quantum) Digital Signatures

Quantum computers can
break schemes based on
factoring and DLOG

Can design signature
schemes from zero-
knowledge proofs and the
Fiat-Shamir transform

Efficient (Post-Quantum) Digital Signatures

Dilithium is a NIZK
based on the quantum-
safe LWE/SIS-problems

Follows a similar
structure as Schnorr-
signatures for DLOG

®@NTNU

Private information: s, € [3]™,s; € [B]™
Public information: A € R;‘A’;m,t =Asi+s2€R];

Prover Verifier

yi e [y+ 8™
ya [y + A"
w = Ay; +y2

c—C

3++

yi
y
o ¢ 1

then (21,22) =

e? 8"
(21,22)

—_—

Accept iff 7, € [E}m and z, € [B]"
and Az +zy —ct=w

Figure 5: The basic Zero-Kno 1dg Proof System in which the prover knows s; €
(B]™, 82 € [B]" satisfying () an a ZKPoK of knowledge of 5 € [Zﬁ}m 82 € [26]",

https://eprint.iacr.org/2024/1287.pdf

Proof Systems in Electronic Voting

Need to break the
connection between votes

{a™) ({dsia})
and voters by shuffling (\
L0 D o
{L}@L@{_j“‘ @ (5)7}))' {(mi}
Ensure correct encryption % o

and decryption of votes

®@NTNU

Blockchain Rollup and Private Transactions

For privacy: encrypt to make

transactions private, use = I |

ZKP to ensure correctness T R
and compliance to bank laws =

For efficiency: batch many [ODDDQ@]
transactions togetherand = oo
prove that all were correct [CJDDDDh]
without checking each U

®@NTNU

Content

Introduction to ZKP

Technical Challenges gi’;??ﬁ“?;‘t& e
: : Q§€==="9' ICMS) Mathematical
Real-World Applications - Sciences
nsights from ZKP Workshop ===
«é INPUT | QUTPUT @ACT %ﬁ SRl
Resources and Standards -

®@NTNU

ICMS Workshop on Foundations and
Applications of Zero-Knowledge Proofs

A one-week workshop about ZKPs: going from the
basics to some of the most advanced applications.

All the slides and recordings are available online.

Organized w/ Elizabeth Crites and Markulf Kolwelss.

icms.org.uk/ZeroKnowledgeProofs

®@NTNU

Speakers

Jonathan Katz (UMD) Arantxa Zapico (Ethereum)
Michele Ciampi (UoE) Anca Nitulescu (10G)
Carsten Baum (DTU) Lisa Kohl (CWI Amsterdam)
Peter Scholl (AU) Ngoc Khanh Nguyen (KCL)
Carla Rafols (UPF) Dario Fiore (IMDEA)

®@NTNU

Topics

» Introduction to ZKPs and their Security

» Sigma-Protocols and their Applications

» MPC-in-the-Head Techniques for ZKP and Signatures
» Group/pairing-based zkSNARK Constructions

» Polynomial Commitments for zkSNARKS

» Lattice-Based ZKPs and Polynomial Commitments

» ZKPs for Blockchain Applications

» ZKP for Machine Learning and Verifiable Computation

®@NTNU

. essons Learned

Recent advances in ZKP rely heavily on earlier works, and it is
worthwhile to go in-depth on the foundations.

ZKP is a fast-moving field, and several invited speakers talked
about new constructions published after we reached out.

ZKP has until recently been considered a theoretical field, but
nowadays we see new and efficient implementations every week.

New constructions are quite complex, and it might be hard to
keep up with the technical details and get a proper overview.

®@NTNU

Content

Introduction to ZKP O
Technical Challenges = ‘
Real-World Applications
nsights from ZKP Workshop
Resources and Standards

®@NTNU

Zero-Knowledge Proofs MOOC

Instructors

Dan Boneh Shafi Goldwasser Dawn Song Justin Thaler Yupeng Zhang
Georgetown Texas A&M

Stanford UC Berkeley UC Berkeley) &)))
University University

zk-learning.org
®NTNU

ZKProof Standards

About ZKProof

ZKProof is an open-industry academic initiative that seeks to mainstream zero-knowledge proof
(ZKP) cryptography through an inclusive, community-driven standardization process that

focuses on interoperability and security.

Annually-held ZKProof workshops, attended by world-renowned cryptographers, practitioners
and industry leaders, are the optimal forum for discussing new proposals, reviewing cutting edge
projects and advancing a community reference document that will ultimately serve as a trusted

specification for the implementation of ZKP schemes and protocols.

zkproof.oro
@ NTNU

blog

Blog-posts by Matthew Green

Zero Knowledge Proofs: An
illustrated primer

One of the best things about modern cryptography is the
beautiful terminology. You could start any number of

punk bands (or Tumblrs) named after cryptography
terms like ‘hard-core predicate’, ‘trapdoor function’, ‘or
‘impossible differential cryptanalysis’. And of course, I

Matthew Green

haven’t even mentioned the one term that surpasses all

of these. That term is ‘zero knowledge". I'm a cryptographer and professor at
Johns Hopkins University. I've designed

.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer

Zero-Knowledge Podcast

/K Podcast

Episode 340: Is Cosmos Dead? A critical look with
Zaki Manian

zeroknowledge.fm
@ NTNU

Zero-Knowledge Summit

zkSummit12

October 8th 2024 - Lisbon

zksummit.com
© NTNU

DARPA-Funded ZKP Research

Generating Zero-Knowledge Proofs for Defense
Capabilities

Program aims to advance method for making public statements without compromising
sensitive underlying information

OUTREACH@DARPA.MIL
7/18/2019

dara.miI/news-events/2019-07-18
©@ NTNU

ZKP In EU Digital Identity Wallet

Cryptographers’ Feedback on the EU Digital Identity’s ARF

Carsten Baum Olivier Blazy Jan Camenisch
Technical University of Denmark Ecole Polytechnique Dfinity
Jaap-Henk Hoepman Eysa Lee Anja Lehmann
Karlstad University Brown University Hasso-Plattner-Institute,
& Radboud University University of Potsdam
Anna Lysyanskaya René Mayrhofer Hart Montgomery™
Brown University Johannes Kepler University Linz
Ngoc Khanh Nguyen Bart Preneel abhi shelat
King’s College London KU Leuven Northeastern University
Daniel Slamanig Stefano Tessaro
Universitat der Bundeswehr Miinchen University of Washington
Sgren Eller Thomsen Carmela Troncoso
Partisia EPFL
June 2024

github.com/eu-digital-identity-wallet/eudi-doc-architecture-and-reference-framework/discussions/211

®@NTNU

Least Authority

Building the Zero-Knowledge
Community: Engagement, Events,

and Advocacy

i September 18,2024 @ Least Authority Team

leastauthority.com/blog/building-the-zero-knowledge-community-engagement-events-and-advocacy

®@NTNU

zkSecurity

M ZKSECURITY Audits ~ Development

in ZKP, MPC, FHE,
and advanced

cryptography...
zksecurity.xyz

®@NTNU

Trail of Bits

Serving up zero-knowledge
proofs

4 COMMENTS

By Jim Miller, Senior Cryptography Analyst

Zero-knowledge (ZK) proofs are gaining popularity, and exciting new
applications for this technology are emerging, particularly in the
blockchain space. So we’d like to shine a spotlight on an interesting source
of implementation bugs that we’ve seen—the Fiat Shamir transformation.

blog.trailofbits.com/2021/02/19/serving-up-zero-knowledge-proofs

®@NTNU

Cryptography 10 Years Later:
Obfuscation, Proof Systems,
and Secure Computation

Monday, May 19 - Friday, Aug. 15, 2025

Thank you! Questions?

NIST Workshop on Privacy-Enhancing Cryptography
Tjerand Silde & Akira Takahashi, September 26 - 2024

Norwegian University of Science and Technology

|
Z
—
Z
=

	wpec2004-3b1-ZKP-Overview--slides-part1-akira
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

	wpec2004-3b1-ZKP-Overview--slides-part2-tjerand
	Slide 1: Zero-Knowledge Proofs: Technical Challenges, Applications, and Real-world Deployment
	Slide 2: Content
	Slide 3: Verifiable and Outsourced Computation
	Slide 4: Efficient (Post-Quantum) Digital Signatures
	Slide 5: Efficient (Post-Quantum) Digital Signatures
	Slide 6: Proof Systems in Electronic Voting
	Slide 7: Blockchain Rollup and Private Transactions
	Slide 8: Content
	Slide 9: ICMS Workshop on Foundations and Applications of Zero-Knowledge Proofs
	Slide 10: Speakers
	Slide 11: Topics
	Slide 12: Lessons Learned
	Slide 13: Content
	Slide 14: Zero-Knowledge Proofs MOOC
	Slide 15: ZKProof Standards
	Slide 16: Blog-posts by Matthew Green
	Slide 17: Zero-Knowledge Podcast
	Slide 18: Zero-Knowledge Summit
	Slide 19: DARPA-Funded ZKP Research
	Slide 20: ZKP in EU Digital Identity Wallet
	Slide 21: Least Authority
	Slide 22: zkSecurity
	Slide 23: Trail of Bits
	Slide 24: Workshop at Simons Institute
	Slide 25: Thank you! Questions?

