Overview of Fully Homomorphic Encryption: functionality and security models

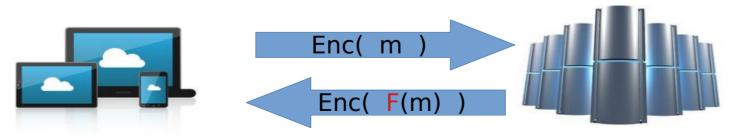
Daniele Micciancio (UC San Diego)

Presented at NIST WPEC 2024 on September 25

Fully Homomorphic Encryption

• Encryption: used to protect data at rest or in transit

 Fully Homomorphic Encryption: supports arbitrary computations (F) on encrypted data



FHE Timeline

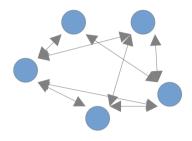
- 1978 Rivest, Adleman, Dertouzos:
 - pose problem
- 2009 Gentry:
 - first candidate solution
 - bootstrapping technique
- 2011 Brakerski, Vaikuntanathan:
 - first solution based on standard lattice problems
- [BGV12,GHS12,GSW13,AP13/14,DM15,CGGI17,CKKS18,..., 2024]
 - new schemes, major efficiency improvements
 - Implementations: [SEAL, HElib, PALISADE, OpenFHE, HEAAN, Lol, FHEW, TFHE, LattiGo, ...]
 - all based on lattices and use bootstrapping technique

This talk

- Question: is FHE a good fit for a given application?
- Functionality
 - exact vs approximate computations
 - composability properties
- Security properties
 - passive vs active attacks
 - impact of decryption failures
- Advanced properties:
 - Verifiability, distributed decryption, etc.

FHE vs MPC

- Same problem: secure computation
- MPC (secure Multi Party Computation)
 - Data is "secret shared" among partecipants
 - Secure computation is done interactively
- FHE (Fully Homomorphic Encryption)
 - Data is protected using encryption scheme
 - Computation on encrypted data does not require interaction
 - Decryption key may be "secret shared"



Use cases for FHE

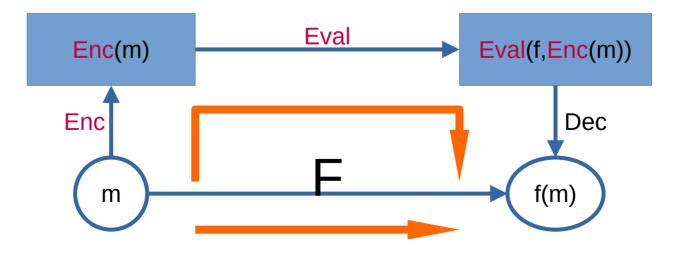
- Public Key FHE scheme
- Workflow:
 - Multiple parties encrypt their data locally, under the same public key
 - Encrypted data is collected in encrypted form
 - Computation is performed on encrypted data
 - Final result is decrypted and shared with participants
- Examples:
 - Hospitals sharing patient data for join medical study
 - Similarly for financial, or other sensitive data

Encryption Scheme

- Syntax: (Gen, Enc, Dec)
- Correctness:
 - (pk,sk) ← Gen
 - $\text{Dec}_{sk}(\text{Enc}_{pk}(m)) = m$

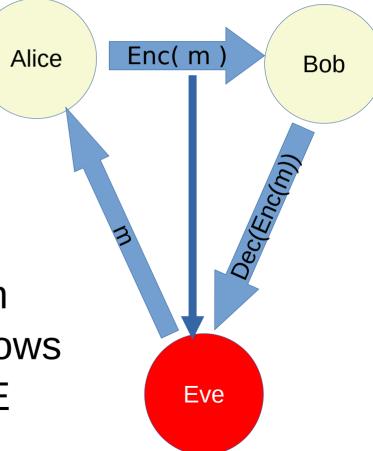
Fully Homomorphic Encryption

- FHE Scheme: (Gen, Enc, Dec, Eval)
 - (pk,sk) ← Gen
 - $Dec_{sk}(Eval_{pk}(F,Enc_{pk}(m)) = F(m)$



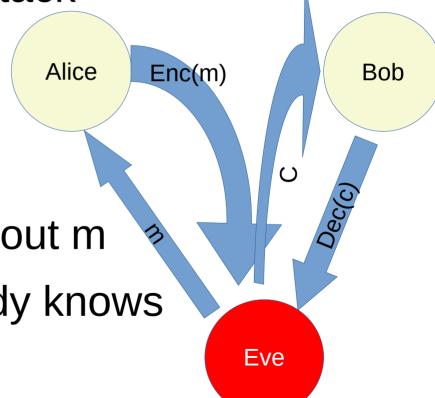
Passive attack model

- CPA: Chosen Plaintest Attack
- Adversary (eve) can:
 - Choose/influence message m
 - See the encryption Enc(m)
 - See result of decryption
 Dec(Enc(m))=m
- Still, cannot tell anything about m other than what she already knows
- Security definition applies to FHE



Active attack model

- CCA: Chosen Ciphertext Attack
- Adversary (eve) can:
 - See Enc(m) of any m
 - See Dec(c) of any c
- Still, cannot tell anything about m
 other than what she already knows



CPA/CCA security in Practice

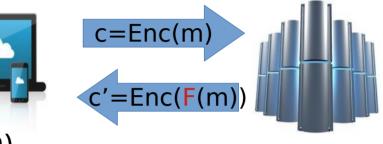
- Remarks
 - Most applications require Active security
 - Active security implies Passive security
 - Active security can be achieved at reasonable cost (e.g., Fujisaki-Okamoto transform)
 - Standards (NIST, etc.) require Active security
 - All this is for regular (non-homomorphic) encryption
- What about Homomorphic Encryption?

CCA security vs Non-Malleability

- CCA (active) security equivalent to <u>non-malleability</u>
 - Given c = Enc(m), adversary cannot compute encryption c' of related message Dec(c')=F(m)
 - Intuition: If adversary <u>cannot change c into c'</u>, then active attack reduces to passive attack
- But this is exactly the opposite of FHE:
 - ability to change $Enc(m) \rightarrow Enc(F(m))$ is a useful feature!
 - FHE is <u>perfectly malleable</u>, and cannot be CCA secure

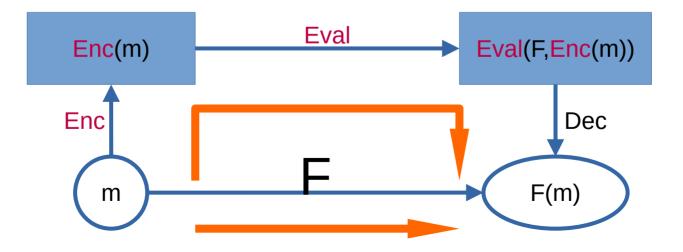
Concrete scenario

- Application:
 - Store c = Enc(m) on server
 - Server computes c'=Eval(F,c))
 - User decrypts final result Dec(c') = F(m)
- Questions:
 - How do you know F was applied on correct c ?
 - How do you know the server evaluated the correct F?
- Problem: verifiable FHE
 - Can be addressed using zero-knowledge proofs, etc.
 - Active research area, but not as mature as basic FHE
- Rest of this talk: focus on passive security



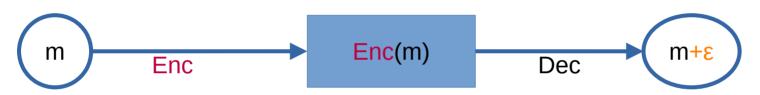
Fully Homomorphic Encryption

- FHE Scheme: (Gen, Enc, Dec, Eval)
 - (pk,sk) ← Gen
 - $Dec_{sk}(Eval_{pk}(F,Enc_{pk}(m)) = F(m)$

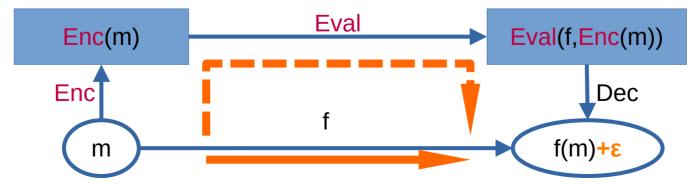


Approximate Encryption Scheme

• $Dec_{sk}(Enc_{pk}(m)) = m + \epsilon$



• $Dec_{sk}(Eval_{pk}(f, Enc_{pk}(m)) = f(m) + \varepsilon$



Why approximate FHE?

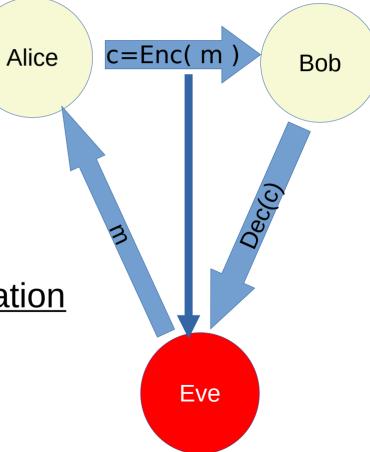
- Lattice cryptography (underlying FHE) is noisy:
 - ⁻ In its most basic form Dec'(Enc'(m)) = $m + \epsilon$
 - Solution: use an error correcting code
 - Enc(m) = Enc'(encode(m))
 - Dec(c) = decode(Dec'(c))
 - $Dec(Enc(m)) = decode(encode(m)+\epsilon) = m$
- In FHE, homomorphic computations increase $\boldsymbol{\epsilon}$
 - Skipping encode/decode makes FHE much faster
 - In many applications, approximate results are acceptable (e.g., machine learning, statistics, etc.)

Approximate FHE

- [CKKS17]: Homomorphic Encryption for Arithmetics on Approximate Numbers
 - Much more efficient than exact FHE
 - Satisfies standard CPA security definition
- Widely implemented and applied to machine learning, genome analysis, etc.
- [LM21]: CKKS insecure under passive attacks!

Passive attack model

- CPA: Chosen Plaintest Attack
- Adversary (eve) can:
 - Choose/influence message m
 - See the encryption c = Enc(m)
 - See result of decryption Dec(c)
- For exact schemes
 - Dec(c) = m gives <u>no useful information</u>
- For approximate schemes
 - Dec(c) = m+ε may leak secret key



Securing Approximate FHE

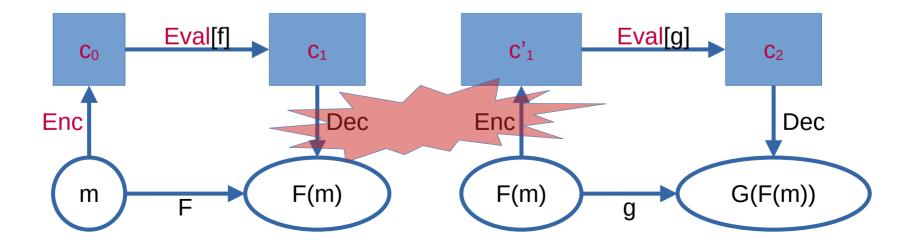
- [LM21]: new CPA-D security definition
 - Equivalent to CPA for exact schemes
 - Captures passive attacks when $Dec(c) = m + \epsilon$
- [LMSS22]:
 - Add extra noise to decryption $Dec(c) = Dec'(c) + \varepsilon'$
 - Calibrate $\varepsilon' \ge \varepsilon$ to achieve CPA-D security
 - Reasonable cost, still more efficient than exact FHE

Composability

- $c_0 = Enc(m)$
- $c_1 = Eval(F, C_0)$
- $c_2 = Eval(G, c_1)$

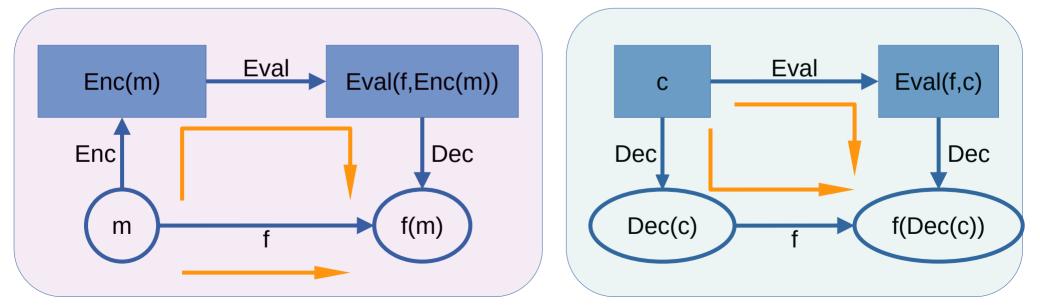
Question: Is $Dec(c_2) = g(f(m))$?

Answer: **not** necessarily



Standard vs Composable FHE

- Standard FHE: Dec(Eval(F,Enc(m))) = F(m)
- Composable FHE: Dec(Eval(F,c)) = F(Dec(c))



FHE Taxonomy

- Gentry: historical, but bootstrapping still relevant
- [BGV/BFV]:
 - Exact, operates on integer vectors (large message space)
 - Slow bootstrapping, but high bandwidth (SIMD)
- [DM/CGGI] (FHEW/TFHE):
 - Exact, fast, composable, single bit operations
 - Active research on SIMD extensions
- [CKKS]:
 - Approximate, operates on real vectors (large message space)
 - Faster than BGV/BFV at cost of approximate results
 - Requires LMSS noise padding to achieve security

Noise estimation / padding

- [LMSS]: securing CKKS requires adding noise
 - $Dec(c) = Dec'(c) + \varepsilon'$
- How much noise?
 - Larger ɛ' gives more security
 - Smaller ɛ' gives more accurate results
 - $-\epsilon' \ge \epsilon$: should be larger than c's noise Dec'(c)=m+ ϵ
- Question: how big is ϵ ?

Estimating ciphertext noise

- $Dec(Enc(m)) = m + \epsilon$, for small ϵ chosen by Enc
- Eval(F,Enc(m)) = F(m) + ε, for larger ε, dependent on f
- In (lattice-based) FHE:
 - Parameters (encode/decode) should be set large enough to correct ciphertext ε noise
 - Large ε has negative effect on efficiency
 - Even more so for Approximate FHE, which requires adding extra $\epsilon' \gg \epsilon$

Application-aware FHE [AAMP24]

- In many applications,
 - function F is fixed, and known in advance
 - E.g., common statistics: mean, average, standard deviation of encrypted data set
- Good trade-off between security and efficiency:
 - [–] Use function F to estimate ciphertext noise ϵ
 - Generate FHE parameters specific to f,
- Warning: if c' = Eval(F',c) is called with different F':
 - Dec(c') may be incorrect
 - Dec(c') may leak information about secret key

Distributed FHE decryption

- FHE: $c=Enc(m) \rightarrow c'=Enc(F(m))$
 - both input and output are encrypted
 - Good and bad at the same time
- Secret (decryption) key sk:
 - Needed to recover final result $F(m) = Dec_{sk}(c')$
 - It also allows to decrypt original input $m=Dec_{sk}(c)$
 - Single point of failure
- Solution: <u>secret share</u> sk, and decrypt using MPC

Threshold FHE

- FHE with specialized distributed Dec protocol
 - Lattice-based encryption is "key homomorphic"
 - $Dec'(sk_1+...+sk_n,c) = Dec'(sk_1,c)+...+Dec'(sk_n,c)$
- How to share/use secret key sk:
 - Pick random sk_1 +...+ sk_n such that sk_1 +...+ sk_n =sk
 - Each share holder computes d_i=Dec'(sk_i,c)
 - Results are combined into decode(d₁+...+d_n) = m
- Problem: d_i are noisy and may leak information about sk_i
- Solution, similar to approx. FHE:
 - Add noise $Dec(sk_i,c) = Dec'(sk_i,c) + \varepsilon_i$

Concluding Remarks

- Current FHE implementations:
 - promising technology, potentially useful in many critical applications
 - major efficiency gains during the last 15 years
 - reasonably efficient to be used in practice
- FHE is a technical tool, to be used with care
 - Current schemes target passive security
 - Even passive security can already be quite tricky for approximate/threshold schemes
 - Current FHE research is about much more than just efficiency improvements

Some References

- [BGV] https://ia.cr/2011/277
- [DM] https://ia.cr/2014/816
- [CKKS] https://ia.cr/2016/421
- [CGGI] https://ia.cr/2018/421
- [LM] https://ia.cr/2020/1533
- [LMSS] https://ia.cr/2022/816
- [AAMP] https://ia.cr/2024/203