
Multiparty Private Set Intersection and Beyond

Speaker: Ni Trieu

Presented at NIST WPEC, September 2024

Joint work with: Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike

Rosulek, Ofri Nevo, Avishay Yanai, Jiahui Gao

1 / 34



Outline

Introduction

History of MPSI

Public-key Based MPSI

Symmetric-key Based MPSI

MPSI-Extension

Conclusion and Open Problems

2 / 34



Multi-party Private Set Intersection(MPSI)

P1

X1

P2

X2

...

Pn

Xn

f = Intersection

X1 ∩ . . . ∩ Xn

⇒ MPSI does not reveal any items beyond intersection.
⇒ Circuit MPSI: Computing a function on intersection items.
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MPSI – Challenges

▶ The partial intersection must remain hidden from all parties

▶ Colluding parties should gain no additional information

A B

C
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MPSI Applications

▶ Ad Tech and Marketing: In targeted advertising, multiple
advertisers or platforms may wish to compare customer lists
to optimize campaigns
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MPSI Applications

▶ Collaborative Threat Detection: Different organizations (such
as banks or cybersecurity firms) may want to identify common
security threats, such as malware signatures or suspicious IP
addresses, without revealing their entire dataset to others.
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MPSI Applications

▶ Heatmap Detection: the generation of heatmaps from
sensitive data while ensuring that individual data points
remain confidential.
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MPSI History

Symmetric-key Based Protocols
Public-key Based Protocols
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MPSI Constructions

Public-key based Construction

▶ Polynomial roots.

▶ Polynomial with payloads

▶ Bit set for small universe

▶ Bloom filter

Symmetric-key based Construction

▶ Sorted multisets
▶ Oblivious key-value store (OKVS), including

▶ Garble Bloom filter
▶ Programmable OPRF
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MPSI Constructions

Public-Key Based Constructions
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Public-Key Based Construction

Polynomial-Based MPSI [KS05]

▶ A common approach for public-key based constructions
⇒ Computational expensive

▶ Key ideas:
▶ Represent each set as a polynomial whose roots are the items.
▶ Use homomorphic encryption to eliminate non-intersection

items from the roots of the global polynomial.
▶ Decrypt the encrypted polynomial to extract the intersection

items from the roots.

PA : (x − 1)(x − 2)(x − 3)

PB : (x − 2)

PC : (x − 2)(x − 4)

Enc(P) = Enc(r · (PA + PB + PC ))

Homomorphic Encryption

Decrypt Roots indicate intersection
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Public-Key Based Construction

Bloom Filter-Based MPSI [VCE22]

▶ Applicable only for small input domains.
▶ Key ideas:

▶ Insert item sets into a Bloom filter (BF).
▶ Obliviously compute the BF for the intersection set.
▶ Check each element against the obtained BF to learn the

intersection.
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MPSI Constructions

Symmetric-Key Based Constructions
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Symmetric-Key Based Construction

Sorting Based MPSI [BA12]

▶ Utilizes MPC to implement the framework
⇒ Communication-expensive

▶ Key ideas:
▶ Obliviously combine and sort the union of sets.
▶ Eliminate non-intersection items.

Set X: {1, 2, 3} Set Y: {1, 3, 5} Set Z: {3, 4}

Union: {1, 2, 3, 3, 3, 4, 5}

Sorted: {1, 2, 3, 3, 3, 4, 5}

Intersection: {3}
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Symmetric-Key Based Construction

OKVS-Based
Construction [KMP+17, GPR+21, NTY21, CDG+21, WYC24]

▶ Among the fastest protocols available.
▶ Key Concepts:

▶ Use OKVS to encode input sets.
▶ Generate zero shares for each item.
▶ If all parties have the same item, the corresponding shares

remain the share of zero after the OKVS executions.
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Symmetric-Key Based Construction

OKVS-Based Constructions
▶ Initial/Baseline construction: [KMP+17] (in the semi-honest

setting)
▶ Enhanced constructions:

▶ [GPR+21]: Proposes a malicious MPSI
▶ [NTY21]: Considers a subset of t corrupted malicious parties
▶ [CDG+21]: Extends to circuit MPSI in the semi-honest setting
▶ [WYC24]: Proposes an efficient MPSI using O-Ring and

K-Star communication in the semihonest setting
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Symmetric-Key Based Construction

OKVS-Based Construction
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Preliminary: OKVS [GPR+21]

Definition
An Oblivious Key-Value Store (OKVS) consists of two algorithms:

▶ Encode: Takes a list of key-value pairs (ki , vi ) and outputs an
abstract data structure S .

▶ Decode: Takes the data structure S and a key k as input,
returning an output. If called with ki (used to generate S), it
returns the corresponding value vi .

Key Property

The fundamental property of an OKVS is that the structure S
hides the keys ki when the values vi are chosen randomly.

Key-Value Pairs (ki , vi )

Encode → S Decode(S , k) → v
v = vi if k = ki ,

otherwise v is random
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Preliminary: Zero Sharing

Functionality

▶ For n parties, generate random values s1, . . . , sn such that:

n⊕
i=1

si = 0

▶ Output the share si to party Pi .

Construction

P2 P3

P1

r1,2 r1,3

r2,3

Each party Pi picks random seeds ri,j for j = i + 1, . . . , n
and sends seed ri,j to Pj .
General Formula:

Si (ind) =

 i−1⊕
j=1

F (rj,i , ind)

⊕

 n⊕
j=i+1

F (ri,j , ind)


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OKVS-Based MPSI Construction

[KMP+17, GPR+21]’s Construction
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[KMP+17, GPR+21]’s Construction

▶ Considering a simple case where each party has only 1 item

▶

▶

P2 P3 P4

P1

(x2, s2) (x3, s3) (x4, s4)

(x1, s1)

OKVS OKVS OKVS

s ′2
s ′3 s ′4

▶ si is the zero share i.e.,
s1 ⊕ ...⊕ s4 = 0

▶ P1 and Pi execute OKVSa:
▶ Pi∈[2,4] inputs (xi , si )
▶ P1 inputs x1
▶ P1 receives the s ′i

▶ P1 checks whether
s1 ⊕ s ′2 ⊕ s ′3 ⊕ s ′4 = 0

aIndeed, [KMP+17] uses Oblivious
Programmable PRF (OPPRF) instead of
OKVS, both functionalities are
“somewhat” similar
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[KMP+17, GPR+21]’s Construction

▶ Considering a simple case where each party has only 1 item

▶ When P1,P2,P3 collude, they can locally compute s4
⇒ learn whether P4 has x1 or not

▶
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[KMP+17, GPR+21]’s Construction

▶ Considering a simple case where each party has only 1 item
▶ When P1,P2,P3 collude, they can locally compute s4

⇒ learn whether P4 has x1 or not
▶ This leakage is acceptable in a slightly weaker variant of

security (aka. augmented semi-honest model)
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[KMP+17, GPR+21]’s Construction

▶ Augmented semi-honest model: the corrupt parties are
assumed to run the protocol honestly, but the simulator in the
ideal world is allowed to change the inputs of corrupt parties.

▶ [GPR+21] shows that the augmented semi-honest protocol is
secure against malicious adversaries despite not being secure
in the semi-honest model.

▶ To achieve semi-honest protocol, we introduce Conditional
Zero Sharing: If all parties hold the same value x , they obtain
the “correct” zero shares.
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[KMP+17]’s Construction – Conditional Zero Sharing

Functionality

▶ Each of the n parties provides an input xi .

▶ Generates random values s1, . . . , sn such that if all xi are
equal, the following holds:

n⊕
i=1

si = 0

▶ Gives Pi its corresponding share si .
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[KMP+17]’s Construction – Conditional Zero Sharing

P2 P3 P4

P1

x2 x3 (x4, s
′
4,i )

x1

OKVS

OKVS

OKVS

s4,3

s4,1

s4,2

▶

▶ P4 performs OKVS with P1, P2,
and P3.

▶ Each party Pi ∈ [3] receives its
share s4,i .

▶ P4 computes its share:
s4,4 = s ′4,1 ⊕ s ′4,2 ⊕ s ′4,3.

▶ If all values of xi are the same,
then s4,4 ⊕ s4,1 ⊕ s4,2 ⊕ s4,3 = 0.
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P2 P3 P4

P1

x2 x3 (x4, s
′
4,i )

x1

OKVS

OKVS

OKVS

s4,3

s4,1

s4,2

▶ To prevent collusion attacks for
any subset of parties, a pairwise
OKVS must be implemented
between each pair of parties.
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[KMP+17]’s Construction

▶ MPSI with multiple items can be managed within OKVS (or
cuckoo-simple hashing).

▶ Secure in a semi-honest setting with a dishonest majority

▶ Execute OKVS between each pair of parties.

P1 P2

P3P4
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[GPR+21]’s Construction

▶ Secure in a malicious setting with a dishonest majority
▶ The augmented semi-honest protocol is secure against

malicious adversaries

▶ Follow the star network communication structure.

P1 P2 P3 P4 P5

P6Leader
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[NTY21]’s Construction

▶ Secure against up to t colluding parties in a malicious setting1

▶ Distribute n parties into n − t clients, 1 pivot, t − 1 servers.
▶ Achieve efficient costs on the client’s side
▶ Distribute the computational burden of a single leader server

from the previous protocol across multiple servers.

P1 P2 P3 P4 P5

P6

P7P8

Pivot

Clients: P1, P2, P3, P4, P5

Servers: P7, P8

1Recently, [WYC24] showed an attack on this protocol; the fix is simple: replace
the direct transmission of PRF keys from clients to servers with OPRF.
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[WYC24]’s Construction

▶ Secure against up to any t colluding parties in a semi-honest
setting.

▶ Follow the O-Ring and K-Star communication structure.

Figure: The workflow of O-Ring [WYC24]
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MPSI Extension

▶ Compute arbitrary functions over intersecting elements
(Circuit PSI)

▶ Output only the number of intersecting items
(PSI-Cardinality)
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Circuit MPSI [CDG+21]

▶ Output secret shares of bits indicated the intersecting items
(rather than the items themselves).

▶ Key concept:
▶ Introduce an efficient private set membership protocol.
▶ Converting between Boolean secret shares and arithmetic

shares for efficient computation
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MPSI-Cardinality (PSI-CA) [GTY24]

▶ Secure in the semi-honest setting with an honest majority.
▶ Key concept:

▶ Propose an efficient server-aided Oblivious Programmable PRF
(OPPRF).

▶ Reduce the problem to a 2-party PSI-CA.
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Open Problems

▶ Improve the performance of MPSI and MPSI extensions.

▶ Implement MPSI-CA with a dishonest majority and/or ensure
security against malicious servers.

▶ Tailor existing MPSI protocols for different applications.
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Thank You
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