
Multiparty Private Set Intersection and Beyond

Speaker: Ni Trieu

Presented at NIST WPEC, September 2024

Joint work with: Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike

Rosulek, Ofri Nevo, Avishay Yanai, Jiahui Gao

1 / 34



Outline

Introduction

History of MPSI

Public-key Based MPSI

Symmetric-key Based MPSI

MPSI-Extension

Conclusion and Open Problems

2 / 34



Multi-party Private Set Intersection(MPSI)

P1

X1

P2

X2

...

Pn

Xn

f = Intersection

X1 ∩ . . . ∩ Xn

⇒ MPSI does not reveal any items beyond intersection.
⇒ Circuit MPSI: Computing a function on intersection items.

3 / 34



MPSI – Challenges

▶ The partial intersection must remain hidden from all parties

▶ Colluding parties should gain no additional information

A B

C

4 / 34



MPSI Applications

▶ Ad Tech and Marketing: In targeted advertising, multiple
advertisers or platforms may wish to compare customer lists
to optimize campaigns

5 / 34



MPSI Applications

▶ Collaborative Threat Detection: Different organizations (such
as banks or cybersecurity firms) may want to identify common
security threats, such as malware signatures or suspicious IP
addresses, without revealing their entire dataset to others.

6 / 34



MPSI Applications

▶ Heatmap Detection: the generation of heatmaps from
sensitive data while ensuring that individual data points
remain confidential.

7 / 34



MPSI History

Symmetric-key Based Protocols
Public-key Based Protocols

CDGOS
NTY
GPRTY
KMS BEHSV

KMPRT BEAV VCE

FNP KS SSTX LW SS CJS BA HV IOP GN PKYDPH GHL WYC

2004 2005 2006 2007 2009 2012 2016 2017 2018 2019 2021 2022 2024

8 / 34



MPSI Constructions

Public-key based Construction

▶ Polynomial roots.

▶ Polynomial with payloads

▶ Bit set for small universe

▶ Bloom filter

Symmetric-key based Construction

▶ Sorted multisets
▶ Oblivious key-value store (OKVS), including

▶ Garble Bloom filter
▶ Programmable OPRF

9 / 34



MPSI Constructions

Public-key based Construction

▶ Polynomial roots.

▶ Polynomial with payloads

▶ Bit set for small universe

▶ Bloom filter

Symmetric-key based Construction

▶ Sorted multisets
▶ Oblivious key-value store (OKVS), including

▶ Garble Bloom filter
▶ Programmable OPRF

9 / 34



MPSI Constructions

Public-Key Based Constructions

10 / 34



Public-Key Based Construction

Polynomial-Based MPSI [KS05]

▶ A common approach for public-key based constructions
⇒ Computational expensive

▶ Key ideas:
▶ Represent each set as a polynomial whose roots are the items.
▶ Use homomorphic encryption to eliminate non-intersection

items from the roots of the global polynomial.
▶ Decrypt the encrypted polynomial to extract the intersection

items from the roots.

PA : (x − 1)(x − 2)(x − 3)

PB : (x − 2)

PC : (x − 2)(x − 4)

Enc(P) = Enc(r · (PA + PB + PC ))

Homomorphic Encryption

Decrypt Roots indicate intersection

11 / 34



Public-Key Based Construction

Polynomial-Based MPSI [KS05]

▶ A common approach for public-key based constructions
⇒ Computational expensive

▶ Key ideas:
▶ Represent each set as a polynomial whose roots are the items.
▶ Use homomorphic encryption to eliminate non-intersection

items from the roots of the global polynomial.
▶ Decrypt the encrypted polynomial to extract the intersection

items from the roots.

PA : (x − 1)(x − 2)(x − 3)

PB : (x − 2)

PC : (x − 2)(x − 4)

Enc(P) = Enc(r · (PA + PB + PC ))

Homomorphic Encryption

Decrypt Roots indicate intersection

11 / 34



Public-Key Based Construction

Bloom Filter-Based MPSI [VCE22]

▶ Applicable only for small input domains.
▶ Key ideas:

▶ Insert item sets into a Bloom filter (BF).
▶ Obliviously compute the BF for the intersection set.
▶ Check each element against the obtained BF to learn the

intersection.

12 / 34



Public-Key Based Construction

Bloom Filter-Based MPSI [VCE22]

▶ Applicable only for small input domains.
▶ Key ideas:

▶ Insert item sets into a Bloom filter (BF).
▶ Obliviously compute the BF for the intersection set.
▶ Check each element against the obtained BF to learn the

intersection.

12 / 34



MPSI Constructions

Symmetric-Key Based Constructions

13 / 34



Symmetric-Key Based Construction

Sorting Based MPSI [BA12]

▶ Utilizes MPC to implement the framework
⇒ Communication-expensive

▶ Key ideas:
▶ Obliviously combine and sort the union of sets.
▶ Eliminate non-intersection items.

Set X: {1, 2, 3} Set Y: {1, 3, 5} Set Z: {3, 4}

Union: {1, 2, 3, 3, 3, 4, 5}

Sorted: {1, 2, 3, 3, 3, 4, 5}

Intersection: {3}

14 / 34



Symmetric-Key Based Construction

Sorting Based MPSI [BA12]

▶ Utilizes MPC to implement the framework
⇒ Communication-expensive

▶ Key ideas:
▶ Obliviously combine and sort the union of sets.
▶ Eliminate non-intersection items.

Set X: {1, 2, 3} Set Y: {1, 3, 5} Set Z: {3, 4}

Union: {1, 2, 3, 3, 3, 4, 5}

Sorted: {1, 2, 3, 3, 3, 4, 5}

Intersection: {3}

14 / 34



Symmetric-Key Based Construction

OKVS-Based
Construction [KMP+17, GPR+21, NTY21, CDG+21, WYC24]

▶ Among the fastest protocols available.
▶ Key Concepts:

▶ Use OKVS to encode input sets.
▶ Generate zero shares for each item.
▶ If all parties have the same item, the corresponding shares

remain the share of zero after the OKVS executions.

15 / 34



Symmetric-Key Based Construction

OKVS-Based
Construction [KMP+17, GPR+21, NTY21, CDG+21, WYC24]

▶ Among the fastest protocols available.
▶ Key Concepts:

▶ Use OKVS to encode input sets.
▶ Generate zero shares for each item.
▶ If all parties have the same item, the corresponding shares

remain the share of zero after the OKVS executions.

15 / 34



Symmetric-Key Based Construction

OKVS-Based Constructions
▶ Initial/Baseline construction: [KMP+17] (in the semi-honest

setting)
▶ Enhanced constructions:

▶ [GPR+21]: Proposes a malicious MPSI
▶ [NTY21]: Considers a subset of t corrupted malicious parties
▶ [CDG+21]: Extends to circuit MPSI in the semi-honest setting
▶ [WYC24]: Proposes an efficient MPSI using O-Ring and

K-Star communication in the semihonest setting

16 / 34



Symmetric-Key Based Construction

OKVS-Based Constructions
▶ Initial/Baseline construction: [KMP+17] (in the semi-honest

setting)
▶ Enhanced constructions:

▶ [GPR+21]: Proposes a malicious MPSI
▶ [NTY21]: Considers a subset of t corrupted malicious parties
▶ [CDG+21]: Extends to circuit MPSI in the semi-honest setting
▶ [WYC24]: Proposes an efficient MPSI using O-Ring and

K-Star communication in the semihonest setting

16 / 34



Symmetric-Key Based Construction

OKVS-Based Construction

17 / 34



Preliminary: OKVS [GPR+21]

Definition
An Oblivious Key-Value Store (OKVS) consists of two algorithms:

▶ Encode: Takes a list of key-value pairs (ki , vi ) and outputs an
abstract data structure S .

▶ Decode: Takes the data structure S and a key k as input,
returning an output. If called with ki (used to generate S), it
returns the corresponding value vi .

Key Property

The fundamental property of an OKVS is that the structure S
hides the keys ki when the values vi are chosen randomly.

Key-Value Pairs (ki , vi )

Encode → S Decode(S , k) → v
v = vi if k = ki ,

otherwise v is random

18 / 34



Preliminary: OKVS [GPR+21]

Definition
An Oblivious Key-Value Store (OKVS) consists of two algorithms:

▶ Encode: Takes a list of key-value pairs (ki , vi ) and outputs an
abstract data structure S .

▶ Decode: Takes the data structure S and a key k as input,
returning an output. If called with ki (used to generate S), it
returns the corresponding value vi .

Key Property

The fundamental property of an OKVS is that the structure S
hides the keys ki when the values vi are chosen randomly.

Key-Value Pairs (ki , vi )

Encode → S Decode(S , k) → v
v = vi if k = ki ,

otherwise v is random

18 / 34



Preliminary: Zero Sharing

Functionality

▶ For n parties, generate random values s1, . . . , sn such that:

n⊕
i=1

si = 0

▶ Output the share si to party Pi .

Construction

P2 P3

P1

r1,2 r1,3

r2,3

Each party Pi picks random seeds ri,j for j = i + 1, . . . , n
and sends seed ri,j to Pj .
General Formula:

Si (ind) =

 i−1⊕
j=1

F (rj,i , ind)

⊕

 n⊕
j=i+1

F (ri,j , ind)


19 / 34



OKVS-Based MPSI Construction

[KMP+17, GPR+21]’s Construction

20 / 34



[KMP+17, GPR+21]’s Construction

▶ Considering a simple case where each party has only 1 item

▶

▶

P2 P3 P4

P1

(x2, s2) (x3, s3) (x4, s4)

(x1, s1)

OKVS OKVS OKVS

s ′2
s ′3 s ′4

▶ si is the zero share i.e.,
s1 ⊕ ...⊕ s4 = 0

▶ P1 and Pi execute OKVSa:
▶ Pi∈[2,4] inputs (xi , si )
▶ P1 inputs x1
▶ P1 receives the s ′i

▶ P1 checks whether
s1 ⊕ s ′2 ⊕ s ′3 ⊕ s ′4 = 0

aIndeed, [KMP+17] uses Oblivious
Programmable PRF (OPPRF) instead of
OKVS, both functionalities are
“somewhat” similar

21 / 34



[KMP+17, GPR+21]’s Construction

▶ Considering a simple case where each party has only 1 item

▶ When P1,P2,P3 collude,

▶

P2 P3 P4

P1

(x2, s2) (x3, s3) (x4, s4)

(x1, s1)

OKVS OKVS OKVS

s ′2
s ′3 s ′4

▶ si is the zero share i.e.,
s1 ⊕ ...⊕ s4 = 0

▶ P1 and Pi execute OKVSa:
▶ Pi∈[2,4] inputs (xi , si )
▶ P1 inputs x1
▶ P1 receives the s ′i

▶ P1 checks whether
s1 ⊕ s ′2 ⊕ s ′3 ⊕ s ′4 = 0

aIndeed, [KMP+17] uses Oblivious
Programmable PRF (OPPRF) instead of
OKVS, both functionalities are
“somewhat” similar

21 / 34



[KMP+17, GPR+21]’s Construction

▶ Considering a simple case where each party has only 1 item

▶ When P1,P2,P3 collude, they can locally compute s4
⇒ learn whether P4 has x1 or not

▶

P2 P3 P4

P1

(x2, s2) (x3, s3) (x4, s4)

(x1, s1)

OKVS OKVS OKVS

s ′2
s ′3 s ′4

▶ si is the zero share i.e.,
s1 ⊕ ...⊕ s4 = 0

▶ P1 and Pi execute OKVSa:
▶ Pi∈[2,4] inputs (xi , si )
▶ P1 inputs x1
▶ P1 receives the s ′i

▶ P1 checks whether
s1 ⊕ s ′2 ⊕ s ′3 ⊕ s ′4 = 0

aIndeed, [KMP+17] uses Oblivious
Programmable PRF (OPPRF) instead of
OKVS, both functionalities are
“somewhat” similar

21 / 34



[KMP+17, GPR+21]’s Construction

▶ Considering a simple case where each party has only 1 item
▶ When P1,P2,P3 collude, they can locally compute s4

⇒ learn whether P4 has x1 or not
▶ This leakage is acceptable in a slightly weaker variant of

security (aka. augmented semi-honest model)

P2 P3 P4

P1

(x2, s2) (x3, s3) (x4, s4)

(x1, s1)

OKVS OKVS OKVS

s ′2
s ′3 s ′4

▶ si is the zero share i.e.,
s1 ⊕ ...⊕ s4 = 0

▶ P1 and Pi execute OKVSa:
▶ Pi∈[2,4] inputs (xi , si )
▶ P1 inputs x1
▶ P1 receives the s ′i

▶ P1 checks whether
s1 ⊕ s ′2 ⊕ s ′3 ⊕ s ′4 = 0

aIndeed, [KMP+17] uses Oblivious
Programmable PRF (OPPRF) instead of
OKVS, both functionalities are
“somewhat” similar

21 / 34



[KMP+17, GPR+21]’s Construction

▶ Augmented semi-honest model: the corrupt parties are
assumed to run the protocol honestly, but the simulator in the
ideal world is allowed to change the inputs of corrupt parties.

▶ [GPR+21] shows that the augmented semi-honest protocol is
secure against malicious adversaries despite not being secure
in the semi-honest model.

▶ To achieve semi-honest protocol, we introduce Conditional
Zero Sharing: If all parties hold the same value x , they obtain
the “correct” zero shares.

22 / 34



[KMP+17, GPR+21]’s Construction

▶ Augmented semi-honest model: the corrupt parties are
assumed to run the protocol honestly, but the simulator in the
ideal world is allowed to change the inputs of corrupt parties.

▶ [GPR+21] shows that the augmented semi-honest protocol is
secure against malicious adversaries despite not being secure
in the semi-honest model.

▶ To achieve semi-honest protocol, we introduce Conditional
Zero Sharing: If all parties hold the same value x , they obtain
the “correct” zero shares.

22 / 34



[KMP+17, GPR+21]’s Construction

▶ Augmented semi-honest model: the corrupt parties are
assumed to run the protocol honestly, but the simulator in the
ideal world is allowed to change the inputs of corrupt parties.

▶ [GPR+21] shows that the augmented semi-honest protocol is
secure against malicious adversaries despite not being secure
in the semi-honest model.

▶ To achieve semi-honest protocol, we introduce Conditional
Zero Sharing: If all parties hold the same value x , they obtain
the “correct” zero shares.

22 / 34



[KMP+17]’s Construction – Conditional Zero Sharing

Functionality

▶ Each of the n parties provides an input xi .

▶ Generates random values s1, . . . , sn such that if all xi are
equal, the following holds:

n⊕
i=1

si = 0

▶ Gives Pi its corresponding share si .

23 / 34



[KMP+17]’s Construction – Conditional Zero Sharing

P2 P3 P4

P1

x2 x3 (x4, s
′
4,i )

x1

OKVS

OKVS

OKVS

s4,3

s4,1

s4,2

▶

▶ P4 performs OKVS with P1, P2,
and P3.

▶ Each party Pi ∈ [3] receives its
share s4,i .

▶ P4 computes its share:
s4,4 = s ′4,1 ⊕ s ′4,2 ⊕ s ′4,3.

▶ If all values of xi are the same,
then s4,4 ⊕ s4,1 ⊕ s4,2 ⊕ s4,3 = 0.

24 / 34



[KMP+17]’s Construction – Conditional Zero Sharing

P2 P3 P4

P1

x2 x3 (x4, s
′
4,i )

x1

OKVS

OKVS

OKVS

s4,3

s4,1

s4,2

▶ To prevent collusion attacks for
any subset of parties, a pairwise
OKVS must be implemented
between each pair of parties.

▶ P4 performs OKVS with P1, P2,
and P3.

▶ Each party Pi ∈ [3] receives its
share s4,i .

▶ P4 computes its share:
s4,4 = s ′4,1 ⊕ s ′4,2 ⊕ s ′4,3.

▶ If all values of xi are the same,
then s4,4 ⊕ s4,1 ⊕ s4,2 ⊕ s4,3 = 0.

24 / 34



[KMP+17]’s Construction

▶ MPSI with multiple items can be managed within OKVS (or
cuckoo-simple hashing).

▶ Secure in a semi-honest setting with a dishonest majority

▶ Execute OKVS between each pair of parties.

P1 P2

P3P4

25 / 34



[GPR+21]’s Construction

▶ Secure in a malicious setting with a dishonest majority
▶ The augmented semi-honest protocol is secure against

malicious adversaries

▶ Follow the star network communication structure.

P1 P2 P3 P4 P5

P6Leader

26 / 34



[NTY21]’s Construction

▶ Secure against up to t colluding parties in a malicious setting1

▶ Distribute n parties into n − t clients, 1 pivot, t − 1 servers.
▶ Achieve efficient costs on the client’s side
▶ Distribute the computational burden of a single leader server

from the previous protocol across multiple servers.

P1 P2 P3 P4 P5

P6

P7P8

Pivot

Clients: P1, P2, P3, P4, P5

Servers: P7, P8

1Recently, [WYC24] showed an attack on this protocol; the fix is simple: replace
the direct transmission of PRF keys from clients to servers with OPRF.

27 / 34



[NTY21]’s Construction

▶ Secure against up to t colluding parties in a malicious setting1

▶ Distribute n parties into n − t clients, 1 pivot, t − 1 servers.
▶ Achieve efficient costs on the client’s side
▶ Distribute the computational burden of a single leader server

from the previous protocol across multiple servers.

P1 P2 P3 P4 P5

P6

P7P8

Pivot

Clients: P1, P2, P3, P4, P5

Servers: P7, P8

1Recently, [WYC24] showed an attack on this protocol; the fix is simple: replace
the direct transmission of PRF keys from clients to servers with OPRF.

27 / 34



[NTY21]’s Construction

▶ Secure against up to t colluding parties in a malicious setting1

▶ Distribute n parties into n − t clients, 1 pivot, t − 1 servers.
▶ Achieve efficient costs on the client’s side
▶ Distribute the computational burden of a single leader server

from the previous protocol across multiple servers.

P1 P2 P3 P4 P5

P6

P7P8

Pivot

Clients: P1, P2, P3, P4, P5

Servers: P7, P8

1Recently, [WYC24] showed an attack on this protocol; the fix is simple: replace
the direct transmission of PRF keys from clients to servers with OPRF.

27 / 34



[WYC24]’s Construction

▶ Secure against up to any t colluding parties in a semi-honest
setting.

▶ Follow the O-Ring and K-Star communication structure.

Figure: The workflow of O-Ring [WYC24]

28 / 34



MPSI Extension

▶ Compute arbitrary functions over intersecting elements
(Circuit PSI)

▶ Output only the number of intersecting items
(PSI-Cardinality)

29 / 34



Circuit MPSI [CDG+21]

▶ Output secret shares of bits indicated the intersecting items
(rather than the items themselves).

▶ Key concept:
▶ Introduce an efficient private set membership protocol.
▶ Converting between Boolean secret shares and arithmetic

shares for efficient computation

30 / 34



MPSI-Cardinality (PSI-CA) [GTY24]

▶ Secure in the semi-honest setting with an honest majority.
▶ Key concept:

▶ Propose an efficient server-aided Oblivious Programmable PRF
(OPPRF).

▶ Reduce the problem to a 2-party PSI-CA.

31 / 34



Open Problems

▶ Improve the performance of MPSI and MPSI extensions.

▶ Implement MPSI-CA with a dishonest majority and/or ensure
security against malicious servers.

▶ Tailor existing MPSI protocols for different applications.

32 / 34



Thank You

33 / 34



References

Nishanth Chandran, Nishka Dasgupta, Divya Gupta, Sai
Lakshmi Bhavana Obbattu, Sruthi Sekar, and Akash Shah.
Efficient linear multiparty PSI and extensions to
circuit/quorum PSI.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021,
pages 1182–1204. ACM Press, November 2021.

Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and
Avishay Yanai.
Oblivious key-value stores and amplification for private set
intersection.
In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part II, volume 12826 of LNCS, pages 395–425, Virtual Event,
August 2021. Springer, Heidelberg.

Jiahui Gao, Ni Trieu, and Avishay Yanai.
Multiparty private set intersection cardinality and its
applications.
PETS, 2024.

Vladimir Kolesnikov, Naor Matania, Benny Pinkas, Mike
Rosulek, and Ni Trieu.
Practical multi-party private set intersection from
symmetric-key techniques.
In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and
Dongyan Xu, editors, ACM CCS 2017, pages 1257–1272. ACM
Press, October / November 2017.

Ofri Nevo, Ni Trieu, and Avishay Yanai.
Simple, fast malicious multiparty private set intersection.
In Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021,
pages 1151–1165. ACM Press, November 2021.

Mingli Wu, Tsz Hon Yuen, and Kwan Yin Chan.
O-ring and k-star: Efficient multi-party private set intersection.

In Proceedings of the 33rd USENIX Security Symposium.
USENIX Association, 2024.

34 / 34


	Introduction
	History of MPSI
	Public-key Based MPSI
	Symmetric-key Based MPSI
	MPSI-Extension
	Conclusion and Open Problems

