
Private Set Intersection for Small Sets

Mike Rosulek, Oregon State University
NIST WPEC, September 24, 2024

Joint work with: Yeongjin Jang, Stanislav Lyakhov, Lawrence Roy, Ni Trieu

what is private set intersection (PSI)?

Alice

p x o

n r e

s u m

Bob

s o n

i a y

w r u

⁇ ⁇ ⁇

⁇ ⁇

⁇ ⁇

⁇

⁇ ⁇

what is private set intersection (PSI)?

Alice

p x o

n r e

s u m

Bob

s o n

i a y

w r u

⁇ ⁇ ⁇

⁇ ⁇

⁇ ⁇

⁇

⁇ ⁇

what is private set intersection (PSI)?

Alice

p x o

n r e

s u m

Bob

s o n

i a y

w r u

⁇ ⁇ ⁇

⁇ ⁇

⁇ ⁇

⁇

⁇ ⁇

what is private set intersection (PSI)?

Alice

p x o

n r e

s u m

Bob

s o n

i a y

w r u

⁇ ⁇ ⁇

⁇ ⁇

⁇ ⁇

⁇

⁇ ⁇

why use PSI?

{my phone contacts} ∩ {users of your service}

my passwords passwords found in breachesmy availability your availabilitypeople who saw ad customers who made purchasesvoters registered in OR voters registered in NY

why use PSI?

my phone contacts users of your service

{my passwords} ∩ {passwords found in breaches}

my availability your availabilitypeople who saw ad customers who made purchasesvoters registered in OR voters registered in NY

why use PSI?

my phone contacts users of your servicemy passwords passwords found in breaches

{my availability} ∩ {your availability}

people who saw ad customers who made purchasesvoters registered in OR voters registered in NY

why use PSI?

my phone contacts users of your servicemy passwords passwords found in breachesmy availability your availability

{people who saw ad} ∩ {customers who made purchases}

voters registered in OR voters registered in NY

why use PSI?

my phone contacts users of your servicemy passwords passwords found in breachesmy availability your availabilitypeople who saw ad customers who made purchases

{voters registered in OR} ∩ {voters registered in NY}

motivating PSI for small sets

PSI for small sets = PSI for personal privacy

@ USENIX Security 2021

[92] = Stute, Narain, Mariotto, Heinrich, Kreitschmann, Noubir, Hollick @ USENIX 2019

motivating PSI for small sets

PSI for small sets = PSI for personal privacy

@ USENIX Security 2021

[92] = Stute, Narain, Mariotto, Heinrich, Kreitschmann, Noubir, Hollick @ USENIX 2019

motivating PSI for small sets

PSI for small sets = PSI for personal privacy

@ USENIX Security 2021

[92] = Stute, Narain, Mariotto, Heinrich, Kreitschmann, Noubir, Hollick @ USENIX 2019

motivating PSI for small sets

PSI for small sets = PSI for personal privacy

@ USENIX Security 2021

[92] = Stute, Narain, Mariotto, Heinrich, Kreitschmann, Noubir, Hollick @ USENIX 2019

motivating PSI for small sets

@ USENIX Security 2022

different applications
⇓

different techniques

PSI on small sets (hundreds)
▶ private availability poll
▶ key agreement techniques

PSI on large sets (millions)
double-registered voters
OT extension; combinatorial tricks

PSI on asymmetric sets (100 : billion)
contact discovery; password checkup
ofÒine phase; leakage

computing on the intersection
sales statistics about intersection
generic MPC

Not to mention:
approximate/fuzzy matching

more than 2 parties/sets

private set union

PSI on small sets (hundreds)
▶ private availability poll
▶ key agreement techniques

PSI on large sets (millions)
▶ double-registered voters
▶ OT extension; combinatorial tricks

PSI on asymmetric sets (100 : billion)
contact discovery; password checkup
ofÒine phase; leakage

computing on the intersection
sales statistics about intersection
generic MPC

Not to mention:
approximate/fuzzy matching

more than 2 parties/sets

private set union

PSI on small sets (hundreds)
▶ private availability poll
▶ key agreement techniques

PSI on large sets (millions)
▶ double-registered voters
▶ OT extension; combinatorial tricks

PSI on asymmetric sets (100 : billion)
▶ contact discovery; password checkup
▶ ofÒine phase; leakage

computing on the intersection
sales statistics about intersection
generic MPC

Not to mention:
approximate/fuzzy matching

more than 2 parties/sets

private set union

PSI on small sets (hundreds)
▶ private availability poll
▶ key agreement techniques

PSI on large sets (millions)
▶ double-registered voters
▶ OT extension; combinatorial tricks

PSI on asymmetric sets (100 : billion)
▶ contact discovery; password checkup
▶ ofÒine phase; leakage

computing on the intersection
▶ sales statistics about intersection
▶ generic MPC

Not to mention:
approximate/fuzzy matching

more than 2 parties/sets

private set union

PSI on small sets (hundreds)
▶ private availability poll
▶ key agreement techniques

PSI on large sets (millions)
▶ double-registered voters
▶ OT extension; combinatorial tricks

PSI on asymmetric sets (100 : billion)
▶ contact discovery; password checkup
▶ ofÒine phase; leakage

computing on the intersection
▶ sales statistics about intersection
▶ generic MPC

Not to mention:
▶ approximate/fuzzy matching

▶ more than 2 parties/sets

▶ private set union

PSI techniques for small sets
ru
nn

in
g
tim

e

set size (n)

}

base OTs

500 1000

OT-based PSI:
▶ 128 base OTs
▶ O(n) symm-key ops

KA-based PSI:
O n pub-key ops

PSI techniques for small sets
ru
nn

in
g
tim

e

set size (n)

base OTs

500 1000

OT-based PSI:
▶ 128 base OTs
▶ O(n) symm-key ops

KA-based PSI:
▶ O(n) pub-key ops

PSI techniques for small sets
ru
nn

in
g
tim

e

set size (n)

base OTs

500 1000

OT-based PSI:
▶ 128 base OTs
▶ O(n) symm-key ops

KA-based PSI:
▶ O(n) pub-key ops

Compact and Malicious
Private Set Intersection

for Small Sets

Mike Rosulek, Oregon State University

Ni Trieu, Arizona State University

appeared at ACM CCS 2021

PSI cost: 256 items per party:

128 256 512
8

16

32

64

this work

DKT10
PRTY20 (“PaXoS”)

PRTY19 (“spot-low”)

this work

CM20
KKRT16

HFH99 (“classic DH-PSI”)

� semi-honest
N malicious

running time (milliseconds)

co
m
m
u
n
ic
at
io
n
(K
B
)

our semi-honest PSI:

I 45% ↓ communication

I 20% ↓ runtime

our malicious PSI:

I 10% ↓ communication

I 20% ↓ runtime

vs. best semi-honest PSI!

I 75% ↓ communication

I 55% ↓ runtime

vs. best malicious PSI

Alice Bob(random oracle H : {0, 1}∗ → G)

x1, x2, . . . y1, y2, . . .

[HubermanFranklinHogg99]

Alice Bob(random oracle H : {0, 1}∗ → G)

x1, x2, . . . y1, y2, . . .H (y1)
b
,H (y2)

b
, . . .

[HubermanFranklinHogg99]

Alice Bob(random oracle H : {0, 1}∗ → G)

x1, x2, . . . y1, y2, . . .H (y1)
b
,H (y2)

b
, . . .

H (y1)
ab
,H (y2)

ab
, . . .

[HubermanFranklinHogg99]

Alice Bob(random oracle H : {0, 1}∗ → G)

x1, x2, . . . y1, y2, . . .H (y1)
b
,H (y2)

b
, . . .

H (y1)
ab
,H (y2)

ab
, . . .

H (y1)
a
,H (y2)

a
, . . .

compute

[HubermanFranklinHogg99]

Alice Bob(random oracle H : {0, 1}∗ → G)

x1, x2, . . . y1, y2, . . .H (y1)
b
,H (y2)

b
, . . .

H (y1)
ab
,H (y2)

ab
, . . .

H (y1)
a
,H (y2)

a
, . . .

compute

H (x1)
a
,H (x2)

a
, . . .

compare H (·)a values

[HubermanFranklinHogg99]

Alice Bob(random oracle H : {0, 1}∗ → G)

x1, x2, . . . y1, y2, . . .H (y1)
b
,H (y2)

b
, . . .

H (y1)
ab
,H (y2)

ab
, . . .

H (y1)
a
,H (y2)

a
, . . .

compute

H (x1)
a
,H (x2)

a
, . . .

compare H (·)a values

Semi-honest security:

I x ↦→ H (x)a is a PRF (DDH assumption + random oracle)

I �rst two messages are an oblivious PRF protocol

[HubermanFranklinHogg99]

Alice Bob(random oracle H : {0, 1}∗ → G)

x1, x2, . . . y1, y2, . . .

OPRF
a

y1, y2, . . .

PRFa(y1), . . .

PRFa(x1), PRFa(x2), . . .
compare PRFa (·) values

Semi-honest security:

I x ↦→ H (x)a is a PRF (DDH assumption + random oracle)

I �rst two messages are an oblivious PRF protocol

I standard OPRF→PSI paradigm [FreedmanIshaiPinkasReingold05]

[HubermanFranklinHogg99]

Alice Bob

x1, x2, . . . y1, y2, . . .

3n group elements

H (y1)
b
,H (y2)

b
, . . .

H (y1)
ab
,H (y2)

ab
, . . .

H (x1)
a
,H (x2)

a
, . . .

Alice Bob

x1, x2, . . . y1, y2, . . .

3n group elements

H (y1)
b
,H (y2)

b
, . . .

H (y1)
ab
,H (y2)

ab
, . . .

H (x1)
a
,H (x2)

a
, . . .

how could you possibly reduce communication?

Alice Bob

x1, x2, . . . y1, y2, . . .

3n group elements

H (y1)
b
,H (y2)

b
, . . .

H (y1)
ab
,H (y2)

ab
, . . .

H (x1)
a
,H (x2)

a
, . . .

compute:

H (y1)
a
= (H (y1)

ab)b
−1

H (y2)
a
= (H (y2)

ab)b
−1

· · ·

how could you possibly reduce communication?

Alice Bob

x1, x2, . . . y1, y2, . . .

3n group elements

H (y1)
b
,H (y2)

b
, . . .

H (y1)
ab
,H (y2)

ab
, . . .

H (x1)
a
,H (x2)

a
, . . .

compute:

H (y1)
a
= (H (y1)

ab)b
−1

H (y2)
a
= (H (y2)

ab)b
−1

· · ·

how could you possibly reduce communication?

Alice Bob

x1, x2, . . . y1, y2, . . .

3n group elements

H (y1)
b
,H (y2)

b
, . . .

H (y1)
ab
,H (y2)

ab
, . . .

H (x1)
a
,H (x2)

a
, . . .

compute:

H (y1)
a
= (H (y1)

ab)b
−1

H (y2)
a
= (H (y2)

ab)b
−1

· · ·

how could you possibly reduce communication?

Alice Bob

x1, x2, . . . y1, y2, . . .

3n group elements

H (y1)
b
,H (y2)

b
, . . .

H (y1)
ab
,H (y2)

ab
, . . .

H (x1)
a
,H (x2)

a
, . . .

compute:

H (y1)
a
= (H (y1)

ab)b
−1

H (y2)
a
= (H (y2)

ab)b
−1

· · ·

H (y1) r = H (y2)

how could you possibly reduce communication?

replace random oracle with some “trapdoored” function
. . . where Bob knows dlog relationships between outputs

Alice Bob

x1, x2, . . . y1, y2, . . .

3n group elements

H (y1)
b
,H (y2)

b
, . . .

H (y1)
ab
,H (y2)

ab
, . . .

H (x1)
a
,H (x2)

a
, . . .

compute:

H (y1)
a
= (H (y1)

ab)b
−1

H (y2)
a
= (H (y1)

a)r

· · ·

H (y1) r = H (y2)

how could you possibly reduce communication?

replace random oracle with some “trapdoored” function
. . . where Bob knows dlog relationships between outputs

our approach:

polynomial interpolation!

Alice Bob

x1, x2, . . . y1, y2, . . .

Alice Bob

x1, x2, . . . y1, y2, . . .

interpolate poly P :

P (yi) = gbi

Alice Bob

x1, x2, . . . y1, y2, . . .

interpolate poly P :

P (yi) = gbicoe�cients of P

Alice Bob

x1, x2, . . . y1, y2, . . .

interpolate poly P :

P (yi) = gbicoe�cients of P

ga

P (yi)
a
= (ga)bi

compute

Alice Bob

x1, x2, . . . y1, y2, . . .

interpolate poly P :

P (yi) = gbicoe�cients of P

ga

P (yi)
a
= (ga)bi

compute

P (x1)
a
, P (x2)

a
, . . .

compare P (·)a values

Alice Bob

x1, x2, . . . y1, y2, . . .

interpolate poly P :

P (yi) = gbicoe�cients of P

ga

P (yi)
a
= (ga)bi

compute

P (x1)
a
, P (x2)

a
, . . .

compare P (·)a values

correctness: Bob knows dlog of P (y) for programmed pointsX

Alice Bob

x1, x2, . . . y1, y2, . . .

interpolate poly P :

P (yi) = gbicoe�cients of P

ga

P (yi)
a
= (ga)bi

compute

P (x1)
a
, P (x2)

a
, . . .

compare P (·)a values

correctness: Bob knows dlog of P (y) for programmed pointsX

obliviousness: description of P doesn’t leak choice of programmed pointsX

Alice Bob

x1, x2, . . . y1, y2, . . .

interpolate poly P :

P (yi) = gbi

2n + 1 group elements

coe�cients of P

ga

P (yi)
a
= (ga)bi

compute

P (x1)
a
, P (x2)

a
, . . .

compare P (·)a values

correctness: Bob knows dlog of P (y) for programmed pointsX

obliviousness: description of P doesn’t leak choice of programmed pointsX

e�ciency: |description of P | = n group elementsX

Alice Bob

x1, x2, . . . y1, y2, . . .

interpolate poly P :

P (yi) = gbi

2n + 1 group elements

coe�cients of P

ga

P (yi)
a
= (ga)bi

compute

P (x1)
a
, P (x2)

a
, . . .

compare P (·)a values

correctness: Bob knows dlog of P (y) for programmed pointsX

obliviousness: description of P doesn’t leak choice of programmed pointsX

e�ciency: |description of P | = n group elementsX

P (·)a is PRF: Bob cannot know dlog of any other P (x) ??

interpolate so that:

P (yi) = gbi

⇒

? ? ? ?

other P (x) outputs

have unknown dlog

interpolate so that:

P (yi) = gbi

⇒

? ? ? ?

other P (x) outputs

have unknown dlog

Ideal permutation model: all parties have oracle access to random Π,Π
−1

interpolate so that:

P (yi) = gbi

⇒

? ? ? ?

other P (x) outputs

have unknown dlog

interpolate so that:

P (yi) = Π
−1(gbi)

⇒

X

simulator can program

other Π(P (x)) outputs

Ideal permutation model: all parties have oracle access to random Π,Π
−1

our real protocol:
Alice Bob

x1, x2, . . . y1, y2, . . .

interpolate poly P :

P (yi) = Π
−1 (gbi)

2n + 1 group elements

coe�cients of P

ga

Π(P (yi))
a
= (ga)bi

compute

Π(P (x1))
a
,Π(P (x2))

a
, . . .

compare Π (P (·))a values

our real protocol (�ne print):
Alice Bob

x1, x2, . . . y1, y2, . . .

interpolate poly P :

P (yi) = Π
−1 (gbi)

2n + 1 group elements

coe�cients of P

ga

Π(P (yi))
a
= (ga)bi

compute

Π(P (x1))
a
,Π(P (x2))

a
, . . .

compare Π (P (·))a values

semi-honest: Alice’s group elements can be truncated

our real protocol (�ne print):
Alice Bob

x1, x2, . . . y1, y2, . . .

interpolate poly P :

P (yi) = Π
−1 (gbi)

2n + 1 group elements

coe�cients of P

ga

Π(P (yi))
a
= (ga)bi

compute

Π(P (x1))
a
,Π(P (x2))

a
, . . .

compare Π (P (·))a values

semi-honest: Alice’s group elements can be truncated

malicious: a few more strategic RO calls (to help simulator extract)

Practical Privacy-Preserving
Authentication for SSH

Lawrence Roy

Stanislav Lyakhov

Yeongjin Jang

Mike Rosulek

appeared at USENIX Security 2022

SSH client SSH server

should I authenticate

with pub key 6c6c6568...?

no

SSH client SSH server

should I authenticate

with pub key 6c6c6568...?

no

should I authenticate

with pub key 73616664...?

no

SSH client SSH server

should I authenticate

with pub key 6c6c6568...?

no

should I authenticate

with pub key 73616664...?

no

.

.

.

yes

SSH client SSH server

should I authenticate

with pub key 6c6c6568...?

no

should I authenticate

with pub key 73616664...?

no

.

.

.

yes

signature

SSH client SSH server

should I authenticate

with pub key 6c6c6568...?

no

should I authenticate

with pub key 73616664...?

no

.

.

.

problem: server can �ngerprint client:

I refuse all advertisements⇒ learn all keys

SSH client SSH server

should I authenticate

with pub key 6c6c6568...?

no

should I authenticate

with pub key 73616664...?

no

.

.

.

problem: server can �ngerprint client:

I refuse all advertisements⇒ learn all keys

Filippo Valsorda https://words.filippo.
io/ssh-whoami-filippo-i

o/

https://words.filippo.io/ssh-whoami-filippo-io/

SSH client SSH server

should I authenticate

with pub key 6c6c6568...?

no

should I authenticate

with pub key 73616664...?

no

.

.

.

problem: server can �ngerprint client:

I refuse all advertisements⇒ learn all keys

SSH client SSH server

should I authenticate

with pub key 6c6c6568...?

no

should I authenticate

with pub key 73616664...?

no

.

.

.

problem: server can �ngerprint client:

I refuse all advertisements⇒ learn all keys

SSH client SSH server

should I authenticate

with pub key 6c6c6568...?

no

should I authenticate

with pub key 73616664...?

no

.

.

.

problem: server can �ngerprint client:

I refuse all advertisements⇒ learn all keys

I can con�gure client to send only “correct” key

SSH client SSH server

should I authenticate

with Bob’s pub key?

yes/no

problem: server can �ngerprint client:

I refuse all advertisements⇒ learn all keys

I can con�gure client to send only “correct” key

problem: client can probe server:

I o�er someone else’s pub key, observe response

I pre-emptive signatures possible (in principle)

SSH client SSH server

should I authenticate

with pub key 6c6c6568...?

no

should I authenticate

with pub key 73616664...?

no

.

.

.

yes

signature

problem: server can �ngerprint client:

I refuse all advertisements⇒ learn all keys

I can con�gure client to send only “correct” key

problem: client can probe server:

I o�er someone else’s pub key, observe response

I pre-emptive signatures possible (in principle)

problem: server sees which key was used:

I and can prove it! ⇒ authentication not deniable

I fundamental to protocol

SSH client SSH server

should I authenticate

with pub key 6c6c6568...?

yes

problem: server can �ngerprint client:

I refuse all advertisements⇒ learn all keys

I can con�gure client to send only “correct” key

problem: client can probe server:

I o�er someone else’s pub key, observe response

I pre-emptive signatures possible (in principle)

problem: server sees which key was used:

I and can prove it! ⇒ authentication not deniable

I fundamental to protocol

problem: server can act as honeypot:

I accept any key, even ones never seen before

I fundamental to protocol

goals of this work

1 server & client should learn minimal information

https://github.blog/2021-09-01-improving-git-protocol-security-github/

goals of this work

1 server & client should learn minimal information

2 authenticate with respect to existing SSH keys

https://github.blog/2021-09-01-improving-git-protocol-security-github/

goals of this work

1 server & client should learn minimal information

2 authenticate with respect to existing SSH keys

https://github.blog/2021
-09-01-improving-git-pr

otocol-security-github/

https://github.blog/2021-09-01-improving-git-protocol-security-github/

goals of this work

1 server & client should learn minimal information

2 authenticate with respect to existing SSH keys

3 minimize reliance on per-site con�guration

https://github.blog/2021-09-01-improving-git-protocol-security-github/

our new authentication method: big picture

client server

our protocol

sk1, sk4, sk9 pk1, pk2, . . . , pk6

I any mixture of existing RSA, ECDSA, EdDSA keys,

in a single authentication attempt

our new authentication method: big picture

client server

our protocol

sk1, sk4, sk9 pk1, pk2, . . . , pk6

client has 3 keys, including

at least one of {sk1, . . . , sk6}

I any mixture of existing RSA, ECDSA, EdDSA keys,

in a single authentication attempt

our new authentication method: big picture

client server

our protocol

sk1, sk4, sk9 pk1, pk2, . . . , pk6

server has 6 keys,

including pk1 and pk4

client has 3 keys, including

at least one of {sk1, . . . , sk6}

I any mixture of existing RSA, ECDSA, EdDSA keys,

in a single authentication attempt

our new authentication method: big picture

client server

our protocol

sk1, sk4, sk9 pk1, pk2, . . . , pk6

server has 6 keys,

including pk1 and pk4

client has 3 keys, including

at least one of {sk1, . . . , sk6}

I any mixture of existing RSA, ECDSA, EdDSA keys,

in a single authentication attempt

I does not depend on site-speci�c con�guration;

safe to use all keys in every authentication attempts

our new authentication method: big picture

client server

our protocol

sk1, sk4, sk9 pk1, pk2, . . . , pk6

server has 6 keys,

including pk1 and pk4

client has 3 keys, including

at least one of {sk1, . . . , sk6}

I any mixture of existing RSA, ECDSA, EdDSA keys,

in a single authentication attempt

I does not depend on site-speci�c con�guration;

safe to use all keys in every authentication attempts

I client won’t connect unless server knows and explicitly

includes one of client’s keys

technical overview

client (with {ski}i): server (with {pkj}j):

technical overview

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

)
address ciphertext to {pkj}j ;

skj decrypts c to mj ;

c hides pkj recipients

1. anonymous multi-KEM

technical overview

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

)
address ciphertext to {pkj}j ;

skj decrypts c to mj ;

c hides pkj recipients

1. anonymous multi-KEM

c

technical overview

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

)
address ciphertext to {pkj}j ;

skj decrypts c to mj ;

c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

technical overview

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

)
address ciphertext to {pkj}j ;

skj decrypts c to mj ;

c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

2. private set intersection

technical overview

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

)
address ciphertext to {pkj}j ;

skj decrypts c to mj ;

c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;

2. private set intersection

{m̂i}i ∩ {mj}j

technical overview

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

)
address ciphertext to {pkj}j ;

skj decrypts c to mj ;

c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;

server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

technical overview & contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

)
address ciphertext to {pkj}j ;

skj decrypts c to mj ;

c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;

server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, &
EdDSA

technical overview & contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

)
address ciphertext to {pkj}j ;

skj decrypts c to mj ;

c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;

server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, &
EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

technical overview & contributions

client (with {ski}i): server (with {pkj}j):

c, {mj}j ← Enc
(
{pkj}j

)
address ciphertext to {pkj}j ;

skj decrypts c to mj ;

c hides pkj recipients

1. anonymous multi-KEM

c{
m̂i := Dec(ski, c)

}
i

PSI

{mj}j
{m̂i}i each party has set of items;

client learns intersection;

server learns whether empty

2. private set intersection

{m̂i}i ∩ {mj}j ∩ = ∅?

single MKEM construction sup-

porting RSA, ECDSA, &
EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis

concrete performance (in OpenSSH):

of keys RSA keys only {EC,Ed}DSA keys only

(worst case for us) (best case for us)

client server time comm time comm

github.com/osu-crypto/PSIPK-ssh 2 commodity desktop computers on LAN

https://github.com/osu-crypto/PSIPK-ssh

concrete performance (in OpenSSH):

of keys RSA keys only {EC,Ed}DSA keys only

(worst case for us) (best case for us)

client server time comm time comm

5 10 60 ms 12 kB 9 ms 8 kB

github.com/osu-crypto/PSIPK-ssh 2 commodity desktop computers on LAN

https://github.com/osu-crypto/PSIPK-ssh

concrete performance (in OpenSSH):

of keys RSA keys only {EC,Ed}DSA keys only

(worst case for us) (best case for us)

client server time comm time comm

5 10 60 ms 12 kB 9 ms 8 kB

20 100 320 ms 53 kB 28 ms 12 kB

github.com/osu-crypto/PSIPK-ssh 2 commodity desktop computers on LAN

https://github.com/osu-crypto/PSIPK-ssh

concrete performance (in OpenSSH):

of keys RSA keys only {EC,Ed}DSA keys only

(worst case for us) (best case for us)

client server time comm time comm

5 10 60 ms 12 kB 9 ms 8 kB

20 100 320 ms 53 kB 28 ms 12 kB

20 1000 1200 ms 460 kB 214 ms 41 kB

github.com/osu-crypto/PSIPK-ssh 2 commodity desktop computers on LAN

https://github.com/osu-crypto/PSIPK-ssh

client server

our protocol

set of secret keys set of “authorized” public keys

of server keys;

identity of authorized keys

of client keys;

were any of them authorized?

X e�cient, practical

X mixture of existing RSA & EC keys

X safe without special per-site con�guration

github.com/osu-crypto/PSIPK-ssh ia.cr/2022/740

https://github.com/osu-crypto/PSIPK-ssh
https://ia.cr/2022/740

client server

our protocol

set of secret keys set of “authorized” public keys

of server keys;

identity of authorized keys

of client keys;

were any of them authorized?

X e�cient, practical

X mixture of existing RSA & EC keys

X safe without special per-site con�guration

github.com/osu-crypto/PSIPK-ssh ia.cr/2022/740

thanks!

https://github.com/osu-crypto/PSIPK-ssh
https://ia.cr/2022/740

(backup slides)

github over SSH:

client github.com

authenticate server

username = git

negotiate choice of pk

authenticate

commit to repositoryname

github over SSH:

client github.com

authenticate server

username = git

negotiate choice of pk

authenticate

commit to repositoryname

??

github over SSH:

client github.com

authenticate server

username = git

negotiate choice of pk

authenticate

commit to repositoryname

??

I server must decide set of authorized keys

before running our protocol!

github over SSH:

client github.com

authenticate server

username = git

negotiate choice of pk

authenticate

commit to repositoryname

??

I server must decide set of authorized keys

before running our protocol!

I server does not know repository name yet!

github over SSH:

client new.github.com

authenticate server

username = repositoryname

negotiate choice of pk

authenticate

commit

our
protocol X

I server must decide set of authorized keys

before running our protocol!

I server does not know repository name yet!

I use repository name as username

anonymous multi-KEM

address ciphertext to {pkj}j ;

skj decrypts c to mj ;

c hides pkj recipients

1. anonymous multi-KEM

the case of EdDSA/ECDSA

Alice: pkA = ga

Bob: pkB = gb

Charlie: pkC = gc address ciphertext to {pkj}j ;

skj decrypts c to mj ;

c hides pkj recipients

1. anonymous multi-KEM

the case of EdDSA/ECDSA

Alice: pkA = ga

Bob: pkB = gb

Charlie: pkC = gc

ciphertext = gr
address ciphertext to {pkj}j ;

skj decrypts c to mj ;

c hides pkj recipients

1. anonymous multi-KEM

the case of EdDSA/ECDSA

Alice: pkA = ga

Bob: pkB = gb

Charlie: pkC = gc

ciphertext = gr

Alice will decrypt to (pkA)
r

Bob will decrypt to (pkB)
r

Charlie will decrypt to (pkC)
r

address ciphertext to {pkj}j ;

skj decrypts c to mj ;

c hides pkj recipients

1. anonymous multi-KEM

the case of EdDSA/ECDSA

Alice: pkA = ga

Bob: pkB = gb

Charlie: pkC = gc

ciphertext = gr

Alice will decrypt to (pkA)
r

Bob will decrypt to (pkB)
r

Charlie will decrypt to (pkC)
r

address ciphertext to {pkj}j ;

skj decrypts c to mj ;

c hides pkj recipients

1. anonymous multi-KEM

ciphertext hides set of recipients; even # of them!

the case of RSA

Alice: pkA = (NA, eA)

Bob: pkB = (NB, eB)

Charlie: pkC = (NC, eC)

address ciphertext to {pkj}j ;

skj decrypts c to mj ;

c hides pkj recipients

1. anonymous multi-KEM

the case of RSA

Alice: pkA = (NA, eA)

Bob: pkB = (NB, eB)

Charlie: pkC = (NC, eC)
encrypt (rA)

eA mod NA

encrypt (rB)
eB mod NB

encrypt (rC)
eC mod NC

address ciphertext to {pkj}j ;

skj decrypts c to mj ;

c hides pkj recipients

1. anonymous multi-KEM

the case of RSA

Alice: pkA = (NA, eA)

Bob: pkB = (NB, eB)

Charlie: pkC = (NC, eC)
encrypt (rA)

eA mod NA

encrypt (rB)
eB mod NB

encrypt (rC)
eC mod NC

interpolate poly P :

P (NA) = (rA)
eA

P (NB) = (rB)
eB

P (NC) = (rC)
eC

address ciphertext to {pkj}j ;

skj decrypts c to mj ;

c hides pkj recipients

1. anonymous multi-KEM

the case of RSA

Alice: pkA = (NA, eA)

Bob: pkB = (NB, eB)

Charlie: pkC = (NC, eC)
encrypt (rA)

eA mod NA

encrypt (rB)
eB mod NB

encrypt (rC)
eC mod NC

interpolate poly P :

P (NA) = (rA)
eA

P (NB) = (rB)
eB

P (NC) = (rC)
eC

ciphertext = P

address ciphertext to {pkj}j ;

skj decrypts c to mj ;

c hides pkj recipients

1. anonymous multi-KEM

PSI with proof of nonempty intersection

each party has set of items;

client learns intersection;

server learns whether empty

2. private set intersection

oblivious PRF (OPRF) paradigm for PSI
[FreedmanIshaiPinkasReingold05]

Alice:

X = {x1, x2, . . .}

Bob:

Y = {y1, y2, . . .}

oblivious PRF (OPRF) paradigm for PSI
[FreedmanIshaiPinkasReingold05]

Alice:

X = {x1, x2, . . .}

Bob:

Y = {y1, y2, . . .}

OPRF

x1, x2, . . .

oblivious PRF (OPRF) paradigm for PSI
[FreedmanIshaiPinkasReingold05]

Alice:

X = {x1, x2, . . .}

Bob:

Y = {y1, y2, . . .}

OPRF

x1, x2, . . .

F (x1), F (x2), . . .

random F (·)

oblivious PRF (OPRF) paradigm for PSI
[FreedmanIshaiPinkasReingold05]

Alice:

X = {x1, x2, . . .}

Bob:

Y = {y1, y2, . . .}

OPRF

x1, x2, . . .

F (x1), F (x2), . . .

random F (·)

F (y1), F (y2), . . .

oblivious PRF (OPRF) paradigm for PSI
[FreedmanIshaiPinkasReingold05]

Alice:

X = {x1, x2, . . .}

Bob:

Y = {y1, y2, . . .}

OPRF

x1, x2, . . .

F (x1), F (x2), . . .

random F (·)

F (y1), F (y2), . . .

oblivious PRF (OPRF) paradigm for PSI
[FreedmanIshaiPinkasReingold05]

Alice:

X = {x1, x2, . . .}

Bob:

Y = {y1, y2, . . .}

OPRF

x1, x2, . . .

F (x1), F (x2), . . .

random F (·)

F (y1), F (y2), . . .

Enc
(

F (x1), r
)

, Enc
(

F (x2), r
)

, . . .

H (r)

oblivious PRF (OPRF) paradigm for PSI
[FreedmanIshaiPinkasReingold05]

Alice:

X = {x1, x2, . . .}

Bob:

Y = {y1, y2, . . .}

OPRF

x1, x2, . . .

F (x1), F (x2), . . .

random F (·)

F (y1), F (y2), . . .

Enc
(

F (x1), r
)

, Enc
(

F (x2), r
)

, . . .

H (r)

r

