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our semi-honest PSI:

I 45% ↓ communication

I 20% ↓ runtime

our malicious PSI:

I 10% ↓ communication

I 20% ↓ runtime

vs. best semi-honest PSI!

I 75% ↓ communication

I 55% ↓ runtime

vs. best malicious PSI
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Alice Bob(random oracle H : {0, 1}∗ → G)

x1, x2, . . . y1, y2, . . .

OPRF
a

y1, y2, . . .

PRFa(y1), . . .

PRFa(x1), PRFa(x2), . . .
compare PRFa ( ·) values

Semi-honest security:

I x ↦→ H (x)a is a PRF (DDH assumption + random oracle)

I �rst two messages are an oblivious PRF protocol

I standard OPRF→PSI paradigm [FreedmanIshaiPinkasReingold05]

[HubermanFranklinHogg99]
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correctness: Bob knows dlog of P (y) for programmed pointsX

obliviousness: description of P doesn’t leak choice of programmed pointsX

e�ciency: |description of P | = n group elementsX

P (·)a is PRF: Bob cannot know dlog of any other P (x) ??
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interpolate so that:

P (yi) = gbi

⇒

? ? ? ?

other P (x) outputs

have unknown dlog

interpolate so that:

P (yi) = Π
−1(gbi)

⇒

X

simulator can program

other Π(P (x)) outputs

Ideal permutation model: all parties have oracle access to random Π,Π
−1
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malicious: a few more strategic RO calls (to help simulator extract)
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SSH client SSH server

should I authenticate

with pub key 6c6c6568...?

yes

problem: server can �ngerprint client:

I refuse all advertisements⇒ learn all keys

I can con�gure client to send only “correct” key

problem: client can probe server:

I o�er someone else’s pub key, observe response

I pre-emptive signatures possible (in principle)

problem: server sees which key was used:

I and can prove it! ⇒ authentication not deniable

I fundamental to protocol

problem: server can act as honeypot:

I accept any key, even ones never seen before

I fundamental to protocol
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goals of this work

1 server & client should learn minimal information

2 authenticate with respect to existing SSH keys

3 minimize reliance on per-site con�guration

https://github.blog/2021-09-01-improving-git-protocol-security-github/
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server has 6 keys,

including pk1 and pk4

client has 3 keys, including

at least one of {sk1, . . . , sk6}

I any mixture of existing RSA, ECDSA, EdDSA keys,

in a single authentication attempt

I does not depend on site-speci�c con�guration;

safe to use all keys in every authentication attempts

I client won’t connect unless server knows and explicitly

includes one of client’s keys
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(
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)
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EdDSA

add “proof of nonempty inter-

section” to [RosulekTrieu21] PSI

+ full UC security analysis
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# of keys RSA keys only {EC,Ed}DSA keys only

(worst case for us) (best case for us)

client server time comm time comm

5 10 60 ms 12 kB 9 ms 8 kB

20 100 320 ms 53 kB 28 ms 12 kB

20 1000 1200 ms 460 kB 214 ms 41 kB

github.com/osu-crypto/PSIPK-ssh 2 commodity desktop computers on LAN

https://github.com/osu-crypto/PSIPK-ssh
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# of server keys;

identity of authorized keys

# of client keys;

were any of them authorized?

X e�cient, practical

X mixture of existing RSA & EC keys

X safe without special per-site con�guration

github.com/osu-crypto/PSIPK-ssh ia.cr/2022/740

thanks!

https://github.com/osu-crypto/PSIPK-ssh
https://ia.cr/2022/740
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github over SSH:

client new.github.com

authenticate server

username = repositoryname

negotiate choice of pk

authenticate

commit

our
protocol X

I server must decide set of authorized keys

before running our protocol!

I server does not know repository name yet!

I use repository name as username
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encrypt (rC)
eC mod NC

interpolate poly P :

P (NA) = (rA)
eA

P (NB) = (rB)
eB

P (NC) = (rC)
eC
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address ciphertext to {pkj}j ;
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PSI with proof of nonempty intersection

each party has set of items;

client learns intersection;

server learns whether empty

2. private set intersection
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