NTNU | Norwegian University of Science and Technology

VERIFIABLE DECRYPTION FROM LEARNING WITH ROUNDING

Thomas Haines, **Emil August Hovd Olaisen**, Peter Browne Rønne, and Tjerand Silde

NIST WPEC — September 26, 2024

Abstract

- Briefly describe verifiable decryption.
- Define *n*-party distributed decryption, and how this can create verifiable decryption.
- ► Talk about how learning with rounding (LWR) can create a 2-party scheme.

Verifiable Decryption

- A system that enables a prover with the secret key sk in a Public Key Encryption (PKE) scheme to demonstrate that a ciphertext c decrypts to a given message m using that key.
- The protocol is a zero-knowledge proof of knowledge. It should not leak info about the secret key, nor be open to forgery.
- They play an important role in E-voting schemes and other privacy enhancing applications.

Our contributions

- We generalize the framework from Gjøsteen et al [GHM⁺22]. They only considered 2-party distributed decryption.
- Using learning with rounding we introduce a post-quantum verifiable decryption scheme which has smaller proof size than Lyubashevsky et al. [LNS21], assuming we are decrypting more than 155 ciphertexts.

n-Party Distributed Decryption

Given a PKE scheme with algorithms KGen, Enc, Dec we define the algorithms of *n*-party distributed decryption:

The dealer algorithm (Deal(pk, sk)) outputs the secret key shares $\{sk_i\}_{i=1}^n$ and additional auxiliary data aux

The verify algorithm (Verify(pk, aux, i, sk_i)) outputs either yes or no

The player algorithm (Play(sk_i, c)) outputs a decryption share ds_i

The reconstruction algorithm $(\text{Rec}(c, \{ds_i\}_{i=1}^n))$ outputs either an error \perp or a message m.

Correctness

A distributed decryption protocol is **correct** if on input message m and pk with c = Enc(pk, m), we have that all $(\{\text{sk}_i\}_{i=1}^n, \text{aux})$ generated by the dealer algorithm Deal satisfies $\text{Verify}(\text{pk}, \text{aux}, i, \text{sk}_i) = 1$ for $1 \le i \le n$, and that

 $\mathsf{Rec}(c, \{\mathsf{Play}(\mathsf{sk}_i, c)\}_{i=1}^n) = m.$

Verifiable Decryption from Distributed Decryption

How does verifiable decryption follow? Suppose we want to prove that m = Dec(c, sk).

- **1.** The prover runs $\text{Deal } \alpha$ times to create the key shares $\{\mathsf{sk}_{i,k}\}_{i=1}^{n}, \mathsf{aux}_{k}$ for $1 \le k \le \alpha$, they commit to these shares. They also generate $\mathsf{ds}_{i,k} = \mathsf{Play}(\mathsf{sk}_{i,k}, c)$ and send decryption share and auxiliary data.
- **2.** The verifier sends back a vector $\phi \in \{1, 2, \dots n\}^{\alpha}$.
- **3.** The prover sends back the secret key shares $sk_{i,k}$ unless $i \neq \phi[k]$.
- **4.** For all $1 \le i \le n, 1 \le k \le \alpha$ the verifier checks if $\text{Rec}(c, \{ds_{i,k}\}_{i=1}^n) = m$. They also check if $\text{Play}(sk_{i,k}, c) = ds_{i,k}$ and if $\text{Verify}(pk, aux_k, i, sk_{i,k})$ holds true whenever $i \ne \phi[k]$.

$\boxed{Prover(pk, \{c_j, m_j\}_{j=1}^{\tau}; sk)}$		$\underline{Verifier(pk,\{c_j,m_j\}_{j=1}^\tau)}$
For each round $k \in [lpha]$:		
Split sk in n shares {sk _{i,k} }		
Commit to each key share $sk_{i,k}$		
For each key share $i \in [n]$ and each ciphertext $j \in [\tau]$:		
Partially decrypt c_j using $sk_{i,k}$ to get decryption share $ds_{i,j,k}$		
$w \leftarrow Set$ of all commitments and decryption shares	\xrightarrow{w}	
	$\xleftarrow{\phi}$	$\phi \leftarrow \alpha$ challenges from $[n]$
$z \leftarrow All$ except challenged key shares $sk_{i,k}$ from ϕ	\xrightarrow{z}	
		For each round $k \in [lpha]$:
		For each $i \in [n]$ and $j \in [\tau]$:
		Verify that key share is correct
		Re-compute decryption share
		Verify reconstructed message

Figure: High-level overview of the verifiable decryption in the head protocol.

Benefits of the Framework

- Only the number of decryption shares increases as the number of ciphertexts increases.
- As a consequence the frameworks is well suited to applications with a large number of ciphertexts such as electronic voting.
- In addition; the framework is ideal for distributes decryption schemes with small decryption shares.
- ► We achieve this using Learning with Rounding.

Learning with Errors (LWE) and Learning with rounding (LWR)

Let q and n be positive integers, and let Φ be a distribution over \mathbb{Z}_q^n , the LWE_{n,q,Φ} problem is to distinguish the distributions with $A \leftrightarrow \mathbb{Z}_q^{n \times n}$ and $\mathbf{s}, \mathbf{e} \leftarrow \Phi$:

 $(A, A\mathbf{s} + \mathbf{e} \mod q)$ $(A, b), b \leftarrow \$ \mathbb{Z}_q^n$

Learning with Errors (LWE) and Learning with rounding (LWR)

Let p < q and n be positive integers, and let Φ be a distribution over \mathbb{Z}_q^n , the LWR_{n,p,q,Φ} problem is to distinguish the distributions with $A \leftarrow \mathbb{Z}_q^{n \times n}$ and $\mathbf{s} \leftarrow \Phi$:

 $\begin{array}{ll} (A, (A\mathbf{s} \mod q) \mod p) \\ (A, b), b \xleftarrow{} \mathbb{Z}_p^n \end{array}$

From Learning with Rounding to 2-party distributed decryption

- Let R_p, R_q be the respective rings $\mathbb{Z}[X]/(p, X^N + 1), \mathbb{Z}[X]/(q, X^N + 1)$
- Suppose we have a message $m \in R_p$ such that:

$$m = ((v - u_0 - u_1) \mod q) \mod p$$

with $v, u_0, u_1 \leftarrow R_q$ and $t_0 = u_0 \mod p, t_1 = u_1 \mod p$, we can use Lemma 1 [BKS19] to show that:

$$m = ((v - t_0 - t_1) \mod q) \mod p$$

with high probability.

• We may think of t_0, t_1 as decryption shares ds_0, ds_1 .

Contributions

Verifiable decryption scheme	Encryption scheme	Ciphertext size	Plaintext size	Amortized proof size
Gjøsteen et al. [GHM ⁺ 22]	BGV	28.2 KB	2048 bits	$(4883/\tau + 1.8) \text{ MB}$
Our protocol Π_2	BGV	28.2 KB	2048 bits	(2691/ au + 32.8) KB
Lyubashevsky et al. [LNS21]	Kyber-512	0.8 KB	256 bits	43.6 KB
Our protocol Π_2	M - LWE	19.9 KB	256 bits	(3181/ au + 4.1) KB

Table: Amortized comparison between verifiable decryption schemes for $\lambda = 128$.

References

- Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret sharing from lattices without FHE. pages 3–33, 2019.
- Kristian Gjøsteen, Thomas Haines, Johannes Müller, Peter B. Rønne, and Tjerand Silde.
 Verifiable decryption in the head.
 pages 355–374, 2022.
- Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter lattice-based zero-knowledge proofs via one-time commitments. pages 215–241, 2021.