
VERIFIABLE DECRYPTION FROM
LEARNING WITH ROUNDING

Thomas Haines, Emil August Hovd Olaisen,
Peter Browne Rønne, and Tjerand Silde

NIST WPEC — September 26, 2024



Abstract

▶ Briefly describe verifiable decryption.

▶ Define n-party distributed decryption, and how this can create verifiable
decryption.

▶ Talk about how learning with rounding (LWR) can create a 2-party scheme.

2



Verifiable Decryption

▶ A system that enables a prover with the secret key sk in a Public Key
Encryption (PKE) scheme to demonstrate that a ciphertext c decrypts to a
given messagem using that key.

▶ The protocol is a zero-knowledge proof of knowledge. It should not leak
info about the secret key, nor be open to forgery.

▶ They play an important role in E-voting schemes and other privacy
enhancing applications.

3



Our contributions

▶ We generalize the framework from Gjøsteen et al [GHM+22]. They only
considered 2-party distributed decryption.

▶ Using learning with rounding we introduce a post-quantum verifiable
decryption scheme which has smaller proof size than Lyubashevsky et
al. [LNS21], assuming we are decrypting more than 155 ciphertexts.

4



n-Party Distributed Decryption

Given a PKE scheme with algorithms KGen,Enc,Dec we define the algorithms
of n-party distributed decryption:

The dealer algorithm (Deal(pk, sk)) outputs the secret key shares {ski}ni=1 and
additional auxiliary data aux

The verify algorithm (Verify(pk, aux, i, ski)) outputs either yes or no

The player algorithm (Play(ski, c)) outputs a decryption share dsi

5



The reconstruction algorithm (Rec(c, {dsi}ni=1)) outputs either an error ⊥ or
a messagem.

Correctness
A distributed decryption protocol is correct if on input messagem and pk with
c = Enc(pk,m), we have that all ({ski}ni=1, aux) generated by the dealer
algorithm Deal satisfies Verify(pk, aux, i, ski) = 1 for 1 ≤ i ≤ n, and that

Rec(c, {Play(ski, c)}ni=1) = m.

6



Verifiable Decryption from Distributed Decryption
How does verifiable decryption follow? Suppose we want to prove that
m = Dec(c, sk).

1. The prover runs Deal α times to create the key shares {ski,k}ni=1, auxk for
1 ≤ k ≤ α, they commit to these shares. They also generate
dsi,k = Play(ski,k, c) and send decryption share and auxiliary data.

2. The verifier sends back a vector ϕ ∈ {1, 2, . . . n}α.

3. The prover sends back the secret key shares ski,k unless i ̸= ϕ[k].

4. For all 1 ≤ i ≤ n, 1 ≤ k ≤ α the verifier checks if Rec(c, {dsi,k}ni=1) = m. They
also check if Play(ski,k, c) = dsi,k and if Verify(pk, auxk, i, ski,k) holds true
whenever i ̸= ϕ[k].

7



Prover(pk, {cj ,mj}τj=1; sk) Verifier(pk, {cj ,mj}τj=1)

For each round k ∈ [α]:
Split sk in n shares {ski,k}
Commit to each key share ski,k

For each key share i ∈ [n] and each ciphertext j ∈ [τ ]:
Partially decrypt cj using ski,k to get decryption share dsi,j,k

w ← Set of all commitments and decryption shares w

ϕ ϕ← α challenges from [n]

z ← All except challenged key shares ski,k from ϕ z

For each round k ∈ [α]:
For each i ∈ [n] and j ∈ [τ ]:

Verify that key share is correct
Re-compute decryption share
Verify reconstructed message

Figure: High-level overview of the verifiable decryption in the head protocol.

8



Benefits of the Framework

▶ Only the number of decryption shares increases as the number of
ciphertexts increases.

▶ As a consequence the frameworks is well suited to applications with a
large number of ciphertexts such as electronic voting.

▶ In addition; the framework is ideal for distributes decryption schemes
with small decryption shares.

▶ We achieve this using Learning with Rounding.

9



Learning with Errors (LWE) and Learning with rounding (LWR)

Let q and n be positive integers, and let Φ be a distribution over Zn
q , the

LWEn,q,Φ problem is to distinguish the distributions with A←$ Zn×n
q and

s, e← Φ:

(A,As+ e mod q)

(A, b), b←$ Zn
q

10



Learning with Errors (LWE) and Learning with rounding (LWR)

Let p < q and n be positive integers, and let Φ be a distribution over Zn
q , the

LWRn,p,q,Φ problem is to distinguish the distributions with A←$ Zn×n
q and

s← Φ:

(A, (As mod q) mod p)

(A, b), b←$ Zn
p

11



From Learning with Rounding to 2-party distributed
decryption

▶ Let Rp, Rq be the respective rings Z[X]/(p,XN + 1),Z[X]/(q,XN + 1)

▶ Suppose we have a messagem ∈ Rp such that:

m = ((v − u0 − u1) mod q) mod p

with v, u0, u1 ←$ Rq and t0 = u0 mod p, t1 = u1 mod p, we can use Lemma
1 [BKS19] to show that:

m = ((v − t0 − t1) mod q) mod p

with high probability.

▶ We may think of t0, t1 as decryption shares ds0, ds1.

12



Contributions

Verifiable decryption scheme Encryption scheme Ciphertext size Plaintext size Amortized proof size
Gjøsteen et al. [GHM+22] BGV 28.2 KB 2048 bits (4883/τ + 1.8)MB

Our protocol Π2 BGV 28.2 KB 2048 bits (2691/τ + 32.8) KB
Lyubashevsky et al. [LNS21] Kyber-512 0.8 KB 256 bits 43.6 KB

Our protocol Π2 M− LWE 19.9 KB 256 bits (3181/τ + 4.1) KB

Table: Amortized comparison between verifiable decryption schemes for λ = 128.

13



References

Elette Boyle, Lisa Kohl, and Peter Scholl.
Homomorphic secret sharing from lattices without FHE.
pages 3–33, 2019.

Kristian Gjøsteen, Thomas Haines, Johannes Müller, Peter B. Rønne, and
Tjerand Silde.
Verifiable decryption in the head.
pages 355–374, 2022.

Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler.
Shorter lattice-based zero-knowledge proofs via one-time commitments.
pages 215–241, 2021.

14


