B NTNU | scnctanarecnnoieey

VERIFIABLE DECRYPTION FROM
LEARNING WITH ROUNDING

Thomas Haines, Emil August Hovd Olaisen,
Peter Browne Rgnne, and Tjerand Silde

NIST WPEC — September 26, 2024



Abstract

» Briefly describe verifiable decryption.

» Define n-party distributed decryption, and how this can create verifiable
decryption.

» Talk about how learning with rounding (LWR) can create a 2-party scheme.

@ NTNU | séonearremonsy



Verifiable Decryption

> A system that enables a prover with the secret key sk in a Public Key
Encryption (PKE) scheme to demonstrate that a ciphertext ¢ decrypts to a
given message m using that key.

» The protocol is a zero-knowledge proof of knowledge. It should not leak
info about the secret key, nor be open to forgery.

» They play an important role in E-voting schemes and other privacy
enhancing applications.

@ NTNU | séonearremonsy



Our contributions

» We generalize the framework from Gjgsteen et al [GHM*22]. They only
considered 2-party distributed decryption.

» Using learning with rounding we introduce a post-quantum verifiable

decryption scheme which has smaller proof size than Lyubashevsky et
al. [LNS21], assuming we are decrypting more than 155 ciphertexts.

@ NTNU | séonearremonsy



n-Party Distributed Decryption

Given a PKE scheme with algorithms KGen, Enc, Dec we define the algorithms
of n-party distributed decryption:

The dealer algorithm (Deal(pk, sk)) outputs the secret key shares {sk;}? ; and
additional auxiliary data aux

The verify algorithm (Verify(pk, aux, i, sk;)) outputs either yes or no

The player algorithm (Play(sk;,c)) outputs a decryption share ds;

@ NTNU | séonearremonsy



The reconstruction algorithm (Rec(c, {ds;}!" ;)) outputs either an error L or
a message m.

Correctness

A distributed decryption protocol is correct if on input message m and pk with
¢ = Enc(pk,m), we have that all ({sk;}?_,,aux) generated by the dealer
algorithm Deal satisfies Verify(pk, aux, i,sk;) = 1 for 1 <1i < n, and that

Rec(c, {Play(sk;, ) }i 1) = m.

@ NTNU | séonaniremons



Verifiable Decryption from Distributed Decryption

How does verifiable decryption follow? Suppose we want to prove that
m = Dec(c, sk).

1. The prover runs Deal o times to create the key shares {sk; . }i_,, aux;, for
1 < k <, they commit to these shares. They also generate
ds; ;. = Play(sk; x, c) and send decryption share and auxiliary data.
2. The verifier sends back a vector ¢ € {1,2,...n}“.
3. The prover sends back the secret key shares sk, , unless i # ¢[k].
4. Foralll <i<n,1 <k < athe verifier checks if Rec(c, {ds; 1 }-;) = m. They

also check if Play(sk; j, c) = ds; x and if Verify(pk, aux, 7, sk; ;) holds true
whenever i # ¢[k|.

@ NTNU | séonearremonsy



Prover(pk, {c;, m;}7_1;sk) Verifier(pk, {c;, m;}7_,)

For each round k € [a]:
Split sk in n shares {sk; , }
Commit to each key share sk,
For each key share i € [n] and each ciphertext j € [7]:
Partially decrypt ¢; using sk; , to get decryption share ds; ;

w <« Set of all commitments and decryption shares
¢ ¢ < a challenges from [n]

z + All except challenged key shares sk, ;, from ¢ z

For each round k € [a]:
Foreachi e [n]and j € [7]:
Verify that key share is correct
Re-compute decryption share
Verify reconstructed message

Figure: High-level overview of the verifiable decryption in the head protocol.

@ NTNU | séonearremonsy



Benefits of the Framework

» Only the number of decryption shares increases as the number of
ciphertexts increases.

» As a consequence the frameworks is well suited to applications with a
large number of ciphertexts such as electronic voting.

» |n addition; the framework is ideal for distributes decryption schemes
with small decryption shares.

» We achieve this using Learning with Rounding.

@ NTNU | séonearremonsy



Learning with Errors (LWE) and Learning with rounding (LWR)

Let ¢ and n be positive integers, and let @ be a distribution over Zg, the
LWE,, 4o problem is to distinguish the distributions with A «s Z;*" and
s, e < .

(A,As +e mod q)
(A,0),b <570

B NTNU | scaeinarecmoisy 10



Learning with Errors (LWE) and Learning with rounding (LWR)

Let p < ¢ and n be positive integers, and let ® be a distribution over Zj, the
LWR;, p.4,0 problem is to distinguish the distributions with A <s Z;*" and
s <+ O

(A,(As mod ¢) mod p)
(A,b),b <20

@ NTNU | séonearremonsy o



From Learning with Rounding to 2-party distributed

decryption
> Let Ry, R, be the respective rings Z[X]/(p, X~ + 1), Z[X]/(g, X + 1)

> Suppose we have a message m € R, such that:
m=((v—up—u;) modgqg) modp

with v, ug, u1 <% Ry and g = up mod p,t; = u; mod p, we can use Lemma
1 [BKS19] to show that:

m= ((v—1tg—t1) modgqg) modp
with high probability.

» We may think of ¢y, t; as decryption shares dsy, ds;.

@ NTNU | séonearremonsy



Contributions

Verifiable decryption scheme

Encryption scheme

Ciphertext size

Plaintext size

Amortized proof size

Gjosteen et al. [GHM " 22] BGV 28.2 KB 2048 bits (4883/7 4+ 1.8) MB
Our protocol II, BGV 28.2 KB 2048 bits (2691/7 + 32.8) KB

Lyubashevsky et al. [LNS21] Kyber-512 0.8 KB 256 bits 43.6 KB
Our protocol II, M — LWE 19.9 KB 256 bits (3181/7+4.1) KB

Table: Amortized comparison between verifiable decryption schemes for A = 128.

@ NTNU | séonearremonsy



References

[§ Elette Boyle, Lisa Kohl, and Peter Scholl.
Homomorphic secret sharing from lattices without FHE.
pages 3-33, 2019.

[§ Kristian Gja@steen, Thomas Haines, Johannes Miller, Peter B. Rgnne, and
Tjerand Silde.
Verifiable decryption in the head.
pages 355-374, 2022.

[§ Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler.
Shorter lattice-based zero-knowledge proofs via one-time commitments.
pages 215-241, 2021.

@ NTNU | séonearremonsy “



