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Abstract

▶ Briefly describe verifiable decryption.

▶ Define n-party distributed decryption, and how this can create verifiable
decryption.

▶ Talk about how learning with rounding (LWR) can create a 2-party scheme.
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Verifiable Decryption

▶ A system that enables a prover with the secret key sk in a Public Key
Encryption (PKE) scheme to demonstrate that a ciphertext c decrypts to a
given messagem using that key.

▶ The protocol is a zero-knowledge proof of knowledge. It should not leak
info about the secret key, nor be open to forgery.

▶ They play an important role in E-voting schemes and other privacy
enhancing applications.

3



Our contributions

▶ We generalize the framework from Gjøsteen et al [GHM+22]. They only
considered 2-party distributed decryption.

▶ Using learning with rounding we introduce a post-quantum verifiable
decryption scheme which has smaller proof size than Lyubashevsky et
al. [LNS21], assuming we are decrypting more than 155 ciphertexts.
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n-Party Distributed Decryption

Given a PKE scheme with algorithms KGen,Enc,Dec we define the algorithms
of n-party distributed decryption:

The dealer algorithm (Deal(pk, sk)) outputs the secret key shares {ski}ni=1 and
additional auxiliary data aux

The verify algorithm (Verify(pk, aux, i, ski)) outputs either yes or no

The player algorithm (Play(ski, c)) outputs a decryption share dsi
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The reconstruction algorithm (Rec(c, {dsi}ni=1)) outputs either an error ⊥ or
a messagem.

Correctness
A distributed decryption protocol is correct if on input messagem and pk with
c = Enc(pk,m), we have that all ({ski}ni=1, aux) generated by the dealer
algorithm Deal satisfies Verify(pk, aux, i, ski) = 1 for 1 ≤ i ≤ n, and that

Rec(c, {Play(ski, c)}ni=1) = m.
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Verifiable Decryption from Distributed Decryption
How does verifiable decryption follow? Suppose we want to prove that
m = Dec(c, sk).

1. The prover runs Deal α times to create the key shares {ski,k}ni=1, auxk for
1 ≤ k ≤ α, they commit to these shares. They also generate
dsi,k = Play(ski,k, c) and send decryption share and auxiliary data.

2. The verifier sends back a vector ϕ ∈ {1, 2, . . . n}α.

3. The prover sends back the secret key shares ski,k unless i ̸= ϕ[k].

4. For all 1 ≤ i ≤ n, 1 ≤ k ≤ α the verifier checks if Rec(c, {dsi,k}ni=1) = m. They
also check if Play(ski,k, c) = dsi,k and if Verify(pk, auxk, i, ski,k) holds true
whenever i ̸= ϕ[k].
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Prover(pk, {cj ,mj}τj=1; sk) Verifier(pk, {cj ,mj}τj=1)

For each round k ∈ [α]:
Split sk in n shares {ski,k}
Commit to each key share ski,k

For each key share i ∈ [n] and each ciphertext j ∈ [τ ]:
Partially decrypt cj using ski,k to get decryption share dsi,j,k

w ← Set of all commitments and decryption shares w

ϕ ϕ← α challenges from [n]

z ← All except challenged key shares ski,k from ϕ z

For each round k ∈ [α]:
For each i ∈ [n] and j ∈ [τ ]:

Verify that key share is correct
Re-compute decryption share
Verify reconstructed message

Figure: High-level overview of the verifiable decryption in the head protocol.
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Benefits of the Framework

▶ Only the number of decryption shares increases as the number of
ciphertexts increases.

▶ As a consequence the frameworks is well suited to applications with a
large number of ciphertexts such as electronic voting.

▶ In addition; the framework is ideal for distributes decryption schemes
with small decryption shares.

▶ We achieve this using Learning with Rounding.
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Learning with Errors (LWE) and Learning with rounding (LWR)

Let q and n be positive integers, and let Φ be a distribution over Zn
q , the

LWEn,q,Φ problem is to distinguish the distributions with A←$ Zn×n
q and

s, e← Φ:

(A,As+ e mod q)

(A, b), b←$ Zn
q
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Learning with Errors (LWE) and Learning with rounding (LWR)

Let p < q and n be positive integers, and let Φ be a distribution over Zn
q , the

LWRn,p,q,Φ problem is to distinguish the distributions with A←$ Zn×n
q and

s← Φ:

(A, (As mod q) mod p)

(A, b), b←$ Zn
p
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From Learning with Rounding to 2-party distributed
decryption

▶ Let Rp, Rq be the respective rings Z[X]/(p,XN + 1),Z[X]/(q,XN + 1)

▶ Suppose we have a messagem ∈ Rp such that:

m = ((v − u0 − u1) mod q) mod p

with v, u0, u1 ←$ Rq and t0 = u0 mod p, t1 = u1 mod p, we can use Lemma
1 [BKS19] to show that:

m = ((v − t0 − t1) mod q) mod p

with high probability.

▶ We may think of t0, t1 as decryption shares ds0, ds1.
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Contributions

Verifiable decryption scheme Encryption scheme Ciphertext size Plaintext size Amortized proof size
Gjøsteen et al. [GHM+22] BGV 28.2 KB 2048 bits (4883/τ + 1.8)MB

Our protocol Π2 BGV 28.2 KB 2048 bits (2691/τ + 32.8) KB
Lyubashevsky et al. [LNS21] Kyber-512 0.8 KB 256 bits 43.6 KB

Our protocol Π2 M− LWE 19.9 KB 256 bits (3181/τ + 4.1) KB

Table: Amortized comparison between verifiable decryption schemes for λ = 128.
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