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This talk

1) Introduction to Zero Knowledge Proof (Akira)

2) Technical Challenges (Akira)

3) Real-World Applications (Tjerand)

4) Insights from ZKP Workshop (Tjerand)

5) Resources and Standards (Tjerand)
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What is Zero Knowledge Proof?

• ZKP is a two-party protocol, consisting of 
Prover and Verifier

•With ZKP, Prover can convince Verifier that 
she has some secret information without 
disclosing the secret

• Example: “I know sk corresponding to pk”

• Long history of research starting from the 
‘80s [GMR85]. Lots of efficiency 
improvements during the last decade

• cf. ZK-SNARK (Succinct Non-
interactive Argument of Knowledge)

Basics

https://people.csail.mit.edu/silvio/Selected%20Scientific%20Papers/Proof%20Systems/The_Knowledge_Complexity_Of_Interactive_Proof_Systems.pdf
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Syntax of ZKP

• If Prover and Verifier honestly follow the 
protocol, then Verifier halts by outputting 

Completeness
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Security Goals of Zero Knowledge Proof

?

• Protecting against malicious verifier

• Verifier learns nothing about Prover’s secret

• Formally, ZK is guaranteed by showing the existence of 
“Simulator”

Zero Knowledge (ZK)
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Security Goals of Zero Knowledge Proof

• Protecting against malicious verifier

• Verifier learns nothing about Prover’s secret

• Formally, ZK is guaranteed by showing the existence of 
“Simulator”

Zero Knowledge (ZK)

Knowledge Soundness (KSND)

• Protecting against malicious prover

• If Prover uses an invalid secret, then Verifier catches it 
with high probability

• Formally, knowledge soundness is guaranteed by 
showing the existence of “Knowledge Extractor”
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Non-interactive Zero Knowledge Proof (NIZK)

• Structured Reference String (SRS)

• Hash function modeled as Random Oracle 

• Or both!

Types of Trusted Setup

Removing Interactions

• Ideally, Prover should create a one-shot 
proof string π

• Verifier checks π asynchronously

• Such π is reusable and can be checked 
by potentially many verifiers
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Non-interactive Zero Knowledge Proof (NIZK)

Types of Trusted Setup

Removing Interactions

• Ideally, Prover should create a one-shot 
proof string π

• Verifier checks π asynchronously

• Such π is reusable and can be checked 
by potentially many verifiers

• Structured Reference String (SRS)

• Hash function modeled as Random Oracle 

• Or both!
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• Step 1. Construct a “public-coin” interactive protocol
● Verifier does not require a secret state
● ZK against semi-honest Verifier (Honest-Verifier ZK)

• Step 2. NI Prover and Verifier obtain challenge by locally 
hashing a partial transcript so far

• Bonus: By hashing the message, FS-NIZK gives rise to a 
digital signature

• Example: Schnorr/EdDSA, CRYSTALS-Dilithium, PLONK 
family, Bulletproofs, etc. 

• Many modern SNARKs are constructed from (Polynomial) 
Interactive Oracle Proofs converted to NIZK via Fiat-Shamir 
[BCS16, CHMMVW19, BFS19, GWC19, CFFQR20,...]  

Modular Design of NIZK

Paradigm of NIZK I: Fiat-Shamir [FS87]

https://eprint.iacr.org/2016/116.pdf
https://eprint.iacr.org/2019/1047.pdf
https://eprint.iacr.org/2019/1229.pdf
https://eprint.iacr.org/2019/953.pdf
https://eprint.iacr.org/2020/1069.pdf
https://mit6875.github.io/PAPERS/Fiat-Shamir.pdf
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Paradigm of NIZK I: Fiat-Shamir [FS87]

Modular Design of NIZKInteractive Oracle Proof

Interactive Zero Knowledge Proof

Non-interactive Zero Knowledge Proof

(No computational assumption)

(Often only secure against computationally bounded adversaries)

+ Cryptographic Commitment

+ Fiat-Shamir

• Step 1. Construct a “public-coin” interactive protocol
● Verifier does not require a secret state
● ZK against semi-honest Verifier (Honest-Verifier ZK)

• Step 2. NI Prover and Verifier obtain challenge by locally 
hashing a partial transcript so far

• Bonus: By hashing the message, FS-NIZK gives rise to a 
digital signature

• Example: Schnorr/EdDSA, CRYSTALS-Dilithium, PLONK 
family, Bulletproofs, etc. 

• Many modern SNARKs are constructed from (Polynomial) 
Interactive Oracle Proofs converted to NIZK via Fiat-Shamir 
[BCS16, CHMMVW19, BFS19, GWC19, CFFQR20,...]  

https://mit6875.github.io/PAPERS/Fiat-Shamir.pdf
https://eprint.iacr.org/2016/116.pdf
https://eprint.iacr.org/2019/1047.pdf
https://eprint.iacr.org/2019/1229.pdf
https://eprint.iacr.org/2019/953.pdf
https://eprint.iacr.org/2020/1069.pdf
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Paradigm of NIZK II: Linear Interactive Proofs [GGPR13,BCI+13]

• Step 1. srs generator outputs a relation-dependent 
vector

• Step 2. NI Prover applies linear transformation to 
srs

• Step 3. NI Verifier derives a testing function, 
allowing to check whether correct linear 
transformation has been applied

• Example: [Groth16]

• Important: Prover and Verifier should never learn 
internal randomness of Gen; otherwise, malicious 
prover can easily prove a false statement

NIZK without Fiat-Shamir

https://eprint.iacr.org/2012/215.pdf
https://eprint.iacr.org/2012/718.pdf
https://eprint.iacr.org/2016/260.pdf
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Technical Challenges

1) Balancing Generality, Efficiency and Assumptions

2)Advanced Security
 

3)Interoperability
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Types of ZKP

General-Purpose ZKP

• Supports arbitrary NP relation R

• Relation is often described using an arithmetic circuit

• Pros: 
● Can prove correct execution of any program
● Suitable for verifiable and outsourced computation

• Cons: 
● circuit gets complex for certain non-linear computations
● E.g., elliptic curve arithmetic, comparison, table lookup, etc.

Specialized ZKP

• Designed for particular type of NP relation R

• Pros:

● Can prove and verify designated relations efficiently

● Sufficient for some useful applications, e.g., proof of 
correct encryption, distributed key generation, 
signatures, etc.

• Cons: 

● Requires careful integration with general-purpose ZKP 
to support more complex statements 
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Desiderata

Proof Size

• Smaller proof saves storage and communication 
bandwidth

• Groth16 requires only 3 group elements from pairing-
friendly curves

• State-of-the-art Polymath [Lip24] and PARI [DMS24] 
achieve even smaller proof sizes!

Assumptions

Setup, Prover and Verifier Cost Scalability

• To minimize a trust assumption, SRS should be avoided

• Better alternative: only trust the security of hash 
function modeled as RO (aka transparent setup), e.g., 
Bulletproofs, Brakedown, STARK, LaBRADOR, MPC/VOLE-
in-the-Head, etc.

• Middle-ground solution: allows different parties to 
update SRS (aka updatable SRS) [GKMMM18]

• Universal Setup: Setup outputs SRS once and for all 
for arbitrary circuits [GKMMM18]

• Verifier sub-linear in 

• Prover time linear in #non-linear gates

• Verifier sub-linear in 

• Prover time linear in #non-linear gates

• How can we prove a large statement efficiently?
● Proof Aggregation: aggregate many, 

asynchronously generated proofs, e.g., SnarkPack 
● Incrementally Verifiable Computation [Valiant08]: 

succinct proof of incremental computations via 
recursion or folding, e.g., Halo2, Nova, etc. 

https://eprint.iacr.org/2024/916.pdf
https://eprint.iacr.org/2024/1245.pdf
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• State-of-the-art Polymath [Lip24] and PARI [DMS24] 
achieve even smaller proof sizes!

Assumptions

Setup, Prover and Verifier Cost Scalability

• To minimize a trust assumption, SRS should be avoided

• Better alternative: only trust the security of hash 
function modeled as RO (aka transparent setup), e.g., 
Bulletproofs, Brakedown, STARK, LaBRADOR, MPC/VOLE-
in-the-Head, etc.

• Middle-ground solution: allows different parties to 
update SRS (aka updatable SRS) [GKMMM18]

• Universal Setup: Setup outputs SRS once and for all 
for arbitrary circuits [GKMMM18]

• Verifier sub-linear in 

• Prover time linear in #non-linear gates

• Verifier sub-linear in 

• Prover time linear in #non-linear gates

• How can we prove a large statement efficiently?
● Proof Aggregation: aggregate many, 

asynchronously generated proofs, e.g., SnarkPack 
● Incrementally Verifiable Computation [Valiant08]: 

succinct proof of incremental computations via 
recursion or folding, e.g., Halo2, Nova, etc. 

https://eprint.iacr.org/2018/280.pdf
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• State-of-the-art Polymath [Lip24] and PARI [DMS24] 
achieve even smaller proof sizes!

Assumptions

Setup, Prover and Verifier Cost Scalability

• To minimize a trust assumption, SRS should be avoided
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function modeled as RO (aka transparent setup), e.g., 
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• Universal Setup: Setup outputs SRS once and for all 
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• Verifier sub-linear in 

• Prover time linear in #non-linear gates

• Verifier sub-linear in 

• Prover time linear in #non-linear gates

• How can we prove a large statement efficiently?
● Proof Aggregation: aggregate many, 

asynchronously generated proofs, e.g., SnarkPack 
● Incrementally Verifiable Computation [Valiant08]: 

succinct proof of incremental computations via 
recursion or folding, e.g., Halo2, Nova, etc. 
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Desiderata

Proof Size

• Smaller proof saves storage and communication 
bandwidth

• Groth16 requires only 3 group elements from pairing-
friendly curves

• State-of-the-art Polymath [Lip24] and PARI [DMS24] 
achieve even smaller proof sizes!

Assumptions

Setup, Prover and Verifier Cost Scalability

• To minimize a trust assumption, SRS should be avoided

• Better alternative: only trust the security of hash 
function modeled as RO (aka transparent setup), e.g., 
Bulletproofs, Brakedown, STARK, LaBRADOR, MPC/VOLE-
in-the-Head, etc.

• Middle-ground solution: allows different parties to 
update SRS (aka updatable SRS) [GKMMM18]

• Universal Setup: Setup outputs SRS once and for all 
for arbitrary circuits [GKMMM18]

• Verifier sub-linear in 

• Prover time linear in #non-linear gates

• Verifier sub-linear in 

• Prover time linear in #non-linear gates

• How can we prove a large statement efficiently?
● Proof Aggregation: aggregate many, 

asynchronously generated proofs, e.g., SnarkPack 
● Incrementally Verifiable Computation [Valiant08]: 

succinct proof of incremental computations via 
recursion or folding, e.g., Halo2, Nova, etc. 

https://iacr.org/archive/tcc2008/49480001/49480001.pdf
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Technical Challenges

1) Balancing Generality, Efficiency and Assumptions

2)Advanced Security
 

3)Interoperability
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ZK and Knowledge Soundness are not Enough: Malleability Attacks
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Combined Notion: Simulation-Extractability [Sah99]

SIM-EXT Security

• Intuitively, SIM-EXT guarantees non-malleability: a 
cheating prover cannot maul existing proofs to create a 
new one, without knowing a valid witness

• Cf. (S)EUF-CMA for signature and IND-CCA for PKE

• Crucial property NIZK should satisfy if used as a 
subroutine of another protocol

• Many practical NIZK schemes turn out to be SIM-EXT [
GKKNZ22] [GOPTT22] [DG23] [FFKR23] [KPT23] [Lib24] [FFR24]

• Some schemes satisfy UC security [Canetti01] accepting 
some idealized setup  [CF24] [BFKT24]

http://www.ai.mit.edu/projects/ntt/projects/9807-12-26/documents/NMNIZK.pdf
https://eprint.iacr.org/2021/511.pdf
https://eprint.iacr.org/2023/147.pdf
https://eprint.iacr.org/2023/494
https://eprint.iacr.org/2023/569
https://eprint.iacr.org/2023/1067
https://eprint.iacr.org/2024/854
https://eprint.iacr.org/2024/721.pdf
https://eprint.iacr.org/2000/067.pdf
https://eprint.iacr.org/2024/724
https://eprint.iacr.org/2024/818
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Technical Challenges

1) Balancing Generality, Efficiency and Assumptions

2)Advanced Security
 

3)Interoperability
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Example: Anonymous Credentials (High Level)

• Issuer initially binds attributes and usk to secret credentials

• The owner of attributes produces a proof string in the form of 
ZKP

• By examining the proof string, Verifier gets convinced that User 
has valid attributes signed by Issuer

• Thanks to ZKP, the proof string only leaks minimum info about 
Prover’s identity

• E.g., Verifier learns “User is => 21 years old” but nothing else

Protocol
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Example: Anonymous Credentials (High Level)

• Central ZKP for AC: Proof-of-Knowledge of valid signature

• Verification algorithms of widely deployed signatures, e.g, RSA-
PSS, ECDSA, EdDSA, etc. are not ZK-friendly

• Two directions: 

● Design more specialized and efficient ZKP for existing 
standardized schemes to retain interoperability

● Design and standardize “ZK-friendly” primitives: Cf. BBS(+) 
signature

Interoperability

https://identity.foundation/bbs-signature/draft-irtf-cfrg-bbs-signatures.html
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Takeaways

•ZKP allows Prover to prove the knowledge of a secret, while Verifier learns nothing about the secret

•Basic Security Properties: Knowledge Soundness and Zero Knowledge

•What kind statement do you want to prove? 
● General-purpose ZKP, Specialized ZKP, Composition of both

•Which setup assumption is suitable for deployment?
● Trusted, Transparent, Updatable, … 

•What should you optimize? 
● Proof Size, Assumptions, Setup/Prover/Verifier Costs, Scalability.

•Advanced Security: Does the application need SIM-EXT or UC security? 

• Interoperability: Standardize ZK-friendly primitives, or design standardization-friendly ZK

Credits: icons have been retrieved from Flaticon.com

https://flaticon.com/
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Verifiable and Outsourced Computation

Ensure that computation 
is conducted properly
(server is the prover)

Might include secret data 
or algorithms, but does 
not have to do so

Use ZKP for compliance



Efficient (Post-Quantum) Digital Signatures

Quantum computers can 
break schemes based on 
factoring and DLOG

Can design signature 
schemes from zero-
knowledge proofs and the 
Fiat-Shamir transform



Efficient (Post-Quantum) Digital Signatures

Dilithium is a NIZK 

based on the quantum-

safe LWE/SIS-problems

Follows a similar 

structure as Schnorr-

signatures for DLOG
https://eprint.iacr.org/2024/1287.pdf



Proof Systems in Electronic Voting

Need to break the 

connection between votes 

and voters by shuffling

Ensure correct encryption 

and decryption of votes



Blockchain Rollup and Private Transactions

For privacy: encrypt to make 
transactions private, use 
ZKP to ensure correctness 
and compliance to bank laws

For efficiency: batch many 
transactions together and 
prove that all were correct 
without checking each
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ICMS Workshop on Foundations and 

Applications of Zero-Knowledge Proofs

A one-week workshop about ZKPs: going from the 
basics to some of the most advanced applications.

All the slides and recordings are available online.

Organized w/ Elizabeth Crites and Markulf Kolweiss.

icms.org.uk/ZeroKnowledgeProofs



Speakers

Jonathan Katz (UMD)

Michele Ciampi (UoE)

Carsten Baum (DTU)

Peter Scholl (AU)

Carla Rafols (UPF)

Arantxa Zapico (Ethereum)

Anca Nitulescu (IOG)

Lisa Kohl (CWI Amsterdam)

Ngoc Khanh Nguyen (KCL)

Dario Fiore (IMDEA)



Topics

➢ Introduction to ZKPs and their Security

➢ Sigma-Protocols and their Applications

➢ MPC-in-the-Head Techniques for ZKP and Signatures

➢ Group/pairing-based zkSNARK Constructions

➢ Polynomial Commitments for zkSNARKs

➢ Lattice-Based ZKPs and Polynomial Commitments

➢ ZKPs for Blockchain Applications

➢ ZKP for Machine Learning and Verifiable Computation



Lessons Learned
Recent advances in ZKP rely heavily on earlier works, and it is 
worthwhile to go in-depth on the foundations.

ZKP is a fast-moving field, and several invited speakers talked 
about new constructions published after we reached out.

ZKP has until recently been considered a theoretical field, but 
nowadays we see new and efficient implementations every week.

New constructions are quite complex, and it might be hard to 
keep up with the technical details and get a proper overview.
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Zero-Knowledge Proofs MOOC

zk-learning.org



ZKProof Standards

zkproof.org



Blog-posts by Matthew Green

blog.cryptographyengineering.com/2014/11/27/zero-knowledge-proofs-illustrated-primer



Zero-Knowledge Podcast

zeroknowledge.fm



Zero-Knowledge Summit

zksummit.com



DARPA-Funded ZKP Research

darpa.mil/news-events/2019-07-18



ZKP in EU Digital Identity Wallet

github.com/eu-digital-identity-wallet/eudi-doc-architecture-and-reference-framework/discussions/211



Least Authority

leastauthority.com/blog/building-the-zero-knowledge-community-engagement-events-and-advocacy



zkSecurity

zksecurity.xyz



Trail of Bits

blog.trailofbits.com/2021/02/19/serving-up-zero-knowledge-proofs



Workshop at Simons Institute

simons.berkeley.edu/programs/cryptography-10-years-later-obfuscation-proof-systems-secure-computation



Thank you! Questions?

NIST Workshop on Privacy-Enhancing Cryptography
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