
Optimizing ML MPC from
System & Theoretical

Perspective
Yongqin Wang

Ming Hsieh Department of Electrical and Computer Engineering

University of Southern California

Presented at NIST WPEC 2024 on September 26th

Talk overview

• Proprietary weights & sensitive data

• MPC can share weights and data securely

• MPC induces significant overheads
• Added computation

• Added communication

• This talk describes and calls for system & theoretical optimizations to
MPC ML

Outline

Secure MPC
Background

• General terms

• Secret sharing

• Multiplication

• Online/offline phase

01
System

• MPC-Pipe: an efficient
pipeline for n-party MPC

02
Theory

• CompactTag: minimized tag
computation for actively
secure MPC

03
Summary of the talk

04

Secure MPC: General terms

Multi-Party Computing is a secure protocol to address privacy issue in the cloud.

Secure MPC: General terms

Privacy can still be guaranteed even if a subset of parties is corrupted.

• MPC protocols allows secure computations among n parties

• No assumptions about underlying hardware

• Adversaries can corrupt up to n-1 parties

MPC Server #1 MPC Server #2 MPC Server #3 MPC Server # n-1 MPC Server # n

…….

Secure MPC: General terms

• Secure cloud computing protocol

• n servers to compute to perform computations

• Step #1: Distribute shares

• Step #2: MPC servers compute

• Step #3: Retrieve Results

MPC allows secure cloud computation

Secure MPC: Secret Sharing

• Additive Secrete Sharing

• Additions: adding local shares

• Beaver Triple Multiplications

• MPC server Communication is required

• Binary Secrete Sharing

• Bit extractions

• Bitwise manipulations

• Usually implemented as Fixed point

• In a numerical field

Additive is efficient for adding/multiplying, Binary is efficient for bitwise ops

Additive_Share(x, 2)
𝑥1 = 𝑥 − 𝑟, 𝑥2 = 𝑟

Binary_Share(x, 2)
˂𝑥1˃ = 𝑥 𝑋𝑂𝑅 𝑟, ˂𝑥2˃ = 𝑟

Beaver Triple Assisted Multiplications

A special algorithm to compute multiplications using additive shares.

Beaver Triple Assisted Multiplications

Initial state
Beaver triple: c = a * b

a and b are completely random

Party #2Party #1

[𝑥1] [𝑦1]

[𝑎1] [𝑏1] [𝑐1]

[𝑥2] [𝑦2]

[𝑎2] [𝑏2] [𝑐2]

Beaver Triple Assisted Multiplications

Party #2Party #1

[𝑥1] [𝑦1]

[𝑎1] [𝑏1] [𝑐1]

[𝑥2] [𝑦2]

[𝑎2] [𝑏2]

Δ1 = 𝑥1 − [𝑎1]

𝜖1 = 𝑦1 − [𝑏1]
Δ2 = 𝑥2 − [𝑎2]

𝜖2 = 𝑦2 − [𝑏2]

Compute local operands

[𝑐2]

Beaver Triple Assisted Multiplications

Party #2Party #1

[𝑥1] [𝑦1]

[𝑎1] [𝑏1] [𝑐1]

[𝑥2] [𝑦2]

[𝑎2] [𝑏2]

Δ1 = 𝑥1 − [𝑎1]

𝜖1 = 𝑦1 − [𝑏1]
Δ2 = 𝑥2 − [𝑎2]

𝜖2 = 𝑦2 − [𝑏2]

Broadcasting

[𝑐2]

Beaver Triple Assisted Multiplications

Party #2Party #1

[𝑥1] [𝑦1]

[𝑎1] [𝑏1] [𝑐1]

[𝑥2] [𝑦2]

[𝑎2] [𝑏2]

Compute global 𝚫 and 𝝐
Note that 𝚫 and 𝝐 do not leak information about 𝒙 and 𝒚 and

appear from Uniform distribution

Δ = 𝑥 − 𝑎

𝜖 = 𝑦 − 𝑏
Δ = 𝑥 − 𝑎

𝜖 = 𝑦 − 𝑏

[𝑐2]

Beaver Triple Assisted Multiplications

Party #2Party #1

[𝑥1] [𝑦1]

[𝑎1] [𝑏1] [𝑐1]

[𝑥2] [𝑦2]

[𝑎2] [𝑏2]

Compute the resulting shares.

Δ

𝜖

Δ

𝜖

[z1] = 𝑐1 + Δ 𝑏1 + 𝜖 𝑎1 + Δ𝜖 [z2] = 𝑐2 + Δ 𝑏2 + 𝜖 𝑎2

[𝑐2]

Beaver Triple Assisted Multiplications

• Verify the results

Hence, the result is correct.

𝒛 =

𝒊=𝟎

𝒏−𝟏

𝒛𝒊 = 𝒙𝒚

Challenges for ML Workloads

• Induced more computation

• [z] = 𝑐 + Δ 𝑏 + 𝜖 𝑎 + Δ𝜖 instead of just 𝑥𝑦

• Induced communications between parties

• Broadcasting of Δ and 𝜖

Address those challenges require optimization from joint systematic & theoretical efforts.

Outline

Secure MPC
Background

• General terms

• Secret sharing

• Multiplication

• Online/offline phase

01
System

• MPC-Pipe: an efficient
pipeline for n-party MPC

02
Theory

• CompactTag: minimized tag
computation for actively
secure MPC

03
Summary of the talk

04

MPC-Pipe: an efficient pipeline for ML

Better resource utilization & throughput

Key observation

Computation and communication are blocking in MPC
Resulting in poor resource utilization -> poor throughput

Compute ComputeCommunicate Communicate

an MPC server workflow

Depends Depends Depends

Time

Key observation

Time

Compute ComputeCommunicate Communicate

an MPC-Pipe server workflow

Depends Depends Depends

MPC-Pipe breaks data dependencies & overlaps computation and communication

Key observation

Time

Compute ComputeCommunicate Communicate

an MPC-Pipe server workflow

Depends

MPC-Pipe breaks data dependencies & overlaps computation and communication

Key observation

Time

MPC-Pipe breaks data dependencies & overlaps computation and communication

Compute Compute

Communicate Communicate

an MPC-Pipe server workflow

Depends

MPC-Pipe Pipeline Schemes

Three pipeline schemes for n-party MPC

• Inter-linear pipeline

• Optimizations with linear layers

• Conv2d

• Fully connected layers

• Inner-layer pipeline

• Inter-batch pipeline

MPC-Pipe: inter-linear pipeline

• Two metadata to transmit

• Δ = 𝑥 − 𝑎

• 𝜖 = 𝑦 − 𝑏

• What are 𝑥 and 𝑦 for linear layers

• Forward pass: 𝑥 is the input, 𝑦 is the weight

• Backward pass: 𝑥 is output gradients, 𝑦 is weight or activation feature

• Both weight and activations are available right before forward & backward pass.

Time

𝚫𝜀 𝚫𝜀 𝚫𝜀

Linear #0 Linear #1 Linear #2

Inter-linear pipeline hides all communication with computation

MPC-Pipe: inter-linear pipeline

• Epsilon can be available before the other input arrives

• Why in the critical path?

Time

Inter-linear pipeline hides all communication with computation

𝚫𝜀 𝚫𝜀 𝚫𝜀

Linear #0 Linear #1 Linear #2

𝜀 𝜀 𝜀

𝚫 𝚫 𝚫

Linear #0 Linear #1 Linear #2

MPC-Pipe: inter-linear pipeline

Transmission of delta can also be overlapped with Conv2d(epsilon, a)

𝜀 𝜀

𝚫 𝚫 𝚫

Linear #0 Linear #1 Linear #2

Time

𝜀

[zi] = 𝑐𝑖 + Δ 𝑏𝑖 + 𝜖 𝑎𝑖

MPC-Pipe: inter-linear pipeline

Transmission of delta can also be overlapped with Conv2d(epsilon, a)

Time

𝜀 𝜀𝚫 𝚫 𝚫

Linear #0 Linear #1 Linear #2

𝜀

MPC-Pipe: inter-linear pipeline

Transmission of delta can also be overlapped with Conv2d(epsilon, a)

Time

𝜀 𝜀𝚫 𝚫 𝚫

Linear #0 Linear #1 Linear #2

𝜀

MPC-Pipe Pipeline Schemes

Three pipeline schemes for n-party MPC

• Inter-linear pipeline

• Inner-layer pipeline

• Optimizes within non-linear layers

• ReLU, Maxpooling, Softmax (comparisons)

• Inter-batch pipeline

• Overlap computation and communication across different batches

MPC-Pipe implementation

• CrypTen library from Meta AI

• No hardware modification

• Free of additional overheads

MPC-Pipe Results: Throughput

MPC-Pipe on other frameworks

• We incorporated MPC-Pipe on PIGEON
• The fastest 3PC/4PC MPC inference framework

• ~50% speedups due to the techniques in MPC-Pipe

Outline

Secure MPC
Background

• General terms

• Secret sharing

• Multiplication

• Online/offline phase

01
System

• MPC-Pipe: an efficient
pipeline for n-party MPC

02
Theory

• CompactTag: minimized
tag computation for
actively secure MPC

03
Summary of the talk

04

CompactTag: minimized tag computation for

actively secure MPC

CompactTag overview

• Some protocols computes a tag for integrity
• For Matmul, requiring cubic complexity

• CompactTag asymptotically reduces tag computation complexity
• Using characteristics of matrix multiplicaiton

When The Parties are
Malicious

Let Us Look Back: In Malicious Setting

The broadcasted value is no longer correct because one of the party introduce
errors.

[z1] = 𝑐1 + 𝑥 − 𝑎 + 𝑒1 𝑏1
+ 𝑦 − 𝑏 + 𝑒2 𝑎1
+(𝑥 − 𝑎)(𝑦 − 𝑏)

[z2] = 𝑐2 + 𝑥 − 𝑎 + 𝑒1 𝑏2
+ 𝑦 − 𝑏 + 𝑒2 [𝑎2]

Check if the result is still correct

This result is no longer correct.

𝑖=1

𝑛

𝑧 =

𝑖=1

𝑛

𝑐𝑖 + 𝑥 − 𝑎 + 𝑒1 𝑏𝑖 + 𝑦 − 𝑏 + 𝑒2 𝑎𝑖 + (𝑥 − 𝑎 + 𝑒1)(𝑦 − 𝑏 + 𝑒2)

= {𝑐 + 𝑥 − 𝑎 𝑏 + 𝑦 − 𝑏 𝑎 + 𝑥 − 𝑎 𝑦 − 𝑏 } + 𝑒1(𝑦 + 𝑒2) + 𝑒2(𝑥 + 𝑒1)

= 𝑥𝑦 + 𝑒1 𝑦 + 𝑒2 + 𝑒2 𝑥 + 𝑒1 ≠ 𝑥𝑦

So What is the Solution?

Information theoretical MACs

• Each operand is attached with an IT MAC

• A global key 𝑘 is secretly shared to MPC parties
• Each party will have [𝑘𝑖]

• For any operand 𝑥, there is a tag
• 𝑇𝑥 = 𝑘 ⋅ 𝑥

• 𝑘, 𝑥, and 𝑇𝑥 are secretly shared

Party #1

Operands:

IT MACs:

[𝑥1] [𝑦1]

[𝑎1] [𝑏1] [𝑐1]

[𝑇𝑥1] [𝑇𝑦1]

[𝑇𝑎1] [𝑇𝑏1] [𝑇𝑐1]

[𝑘1]

Party #1

Operands:

IT MACs:

[𝑥1] [𝑦1]

[𝑎1] [𝑏1] [𝑐1]

[𝑇𝑥1] [𝑇𝑦1]

[𝑇𝑎1] [𝑇𝑏1] [𝑇𝑐1]

Party #2

Operands:

IT MACs:

[𝑥2] [𝑦2]

[𝑎2] [𝑏2] [𝑐2]

[𝑇𝑥2] [𝑇𝑦2]

[𝑇𝑎2] [𝑇𝑏2] [𝑇𝑐2]

Initial state

[𝑘1] [𝑘2]

Party #1

Operands:

IT MACs:

[𝑥1] [𝑦1]

[𝑎1] [𝑏1] [𝑐1]

[𝑇𝑥1] [𝑇𝑦1]

[𝑇𝑎1] [𝑇𝑏1] [𝑇𝑐1]

Party #2

Operands:

IT MACs:

[𝑥2] [𝑦2]

[𝑎2] [𝑏2] [𝑐2]

[𝑇𝑥2] [𝑇𝑦2]

[𝑇𝑎2] [𝑇𝑏2] [𝑇𝑐2]

Compute local delta and epsilon

Compute local tags

Δ1 = 𝑥1 − [𝑎1]

𝜖1 = 𝑦1 − [𝑏1]
Δ2 = 𝑥2 − [𝑎2]

𝜖2 = 𝑦2 − [𝑏2]

𝑇Δ1 = 𝑇𝑥1 − [𝑇𝑎1]

𝑇𝜖1 = 𝑇𝑦1 − [𝑇𝑏1] 𝑇𝜖2 = 𝑇𝑦2 − [𝑇𝑏2]

𝑇Δ2 = 𝑇𝑥2 − [𝑇𝑎2]

[𝑘1] [𝑘2]

Party #1

Operands:

IT MACs:

[𝑥1] [𝑦1]

[𝑎1] [𝑏1] [𝑐1]

[𝑇𝑥1] [𝑇𝑦1]

[𝑇𝑎1] [𝑇𝑏1] [𝑇𝑐1]

Party #2

Operands:

IT MACs:

[𝑥2] [𝑦2]

[𝑎2] [𝑏2] [𝑐2]

[𝑇𝑥2] [𝑇𝑦2]

[𝑇𝑎2] [𝑇𝑏2] [𝑇𝑐2]

Broadcasting

Δ1 = 𝑥1 − [𝑎1]

𝜖1 = 𝑦1 − [𝑏1]
Δ2 = 𝑥2 − [𝑎2]

𝜖2 = 𝑦2 − [𝑏2]

𝑇Δ1 = 𝑇𝑥1 − [𝑇𝑎1]

𝑇𝜖1 = 𝑇𝑦1 − [𝑇𝑏1] 𝑇𝜖2 = 𝑇𝑦2 − [𝑇𝑏2]

𝑇Δ2 = 𝑇𝑥2 − [𝑇𝑎2]

[𝑘1] [𝑘2]

Party #1

Operands:

IT MACs:

[𝑥1] [𝑦1]

[𝑎1] [𝑏1] [𝑐1]

[𝑇𝑥1] [𝑇𝑦1]

[𝑇𝑎1] [𝑇𝑏1] [𝑇𝑐1]

Party #2

Operands:

IT MACs:

[𝑥2] [𝑦2]

[𝑎2] [𝑏2] [𝑐2]

[𝑇𝑥2] [𝑇𝑦2]

[𝑇𝑎2] [𝑇𝑏2] [𝑇𝑐2]

Compute global Δ and 𝜖
No broadcasting of 𝑇Δ1 and 𝑇𝜖1

Note: 𝑻𝚫𝒊 and 𝑻𝝐𝒊are used to check correctness of the

broadcast

Δ = 𝑥 − 𝑎

𝜖 = 𝑦 − 𝑏

𝑇Δ1 = 𝑇𝑥1 − [𝑇𝑎1]

𝑇𝜖1 = 𝑇𝑦1 − [𝑇𝑏1] 𝑇𝜖2 = 𝑇𝑦2 − [𝑇𝑏2]

𝑇Δ2 = 𝑇𝑥2 − [𝑇𝑎2]

Δ = 𝑥 − 𝑎

𝜖 = 𝑦 − 𝑏

[𝑘1] [𝑘2]

Compute [z] and [𝑇𝑧]
Note : [𝑻𝒛𝟏] is computed entirely with “local tags” and the

globally computed 𝚫 and 𝝐

Party #1

Operands:

IT MACs:

[𝑥1] [𝑦1]

[𝑎1] [𝑏1] [𝑐1]

[𝑇𝑥1] [𝑇𝑦1]

[𝑇𝑎1] [𝑇𝑏1] [𝑇𝑐1]

Party #2

Operands:

IT MACs:

[𝑥2] [𝑦2]

[𝑎2] [𝑏2] [𝑐2]

[𝑇𝑥2] [𝑇𝑦2]

[𝑇𝑎2] [𝑇𝑏2] [𝑇𝑐2]

Δ 𝜖

𝑇Δ1 𝑇𝜖1

Δ 𝜖

𝑇Δ2 𝑇𝜖2

𝑧1 = 𝑐1 + Δ ⋅ 𝑏1 + 𝜖 ⋅ 𝑎1 + Δ ⋅ 𝜖 𝑧2 = 𝑐2 + Δ ⋅ 𝑏2 + 𝜖 ⋅ 𝑎2

𝑇𝑧1
, = 𝑇𝑐1 + Δ ⋅ 𝑇𝑏1 + 𝜖 ⋅ 𝑇𝑎1 + k1 ⋅ Δ ⋅ 𝜖 𝑇𝑧2

, = 𝑇𝑐2 + Δ ⋅ 𝑇𝑏2 + 𝜖 ⋅ 𝑇𝑎2 + k2 ⋅ Δ ⋅ 𝜖

[𝑘1] [𝑘2]

Check what is 𝑇𝑧

𝑖=1

𝑛

[𝑇𝑧] =

𝑖=1

𝑛

𝑇𝑐 + Δ ⋅ 𝑇𝑏 + 𝜖 ⋅ 𝑇𝑎 + 𝑘 ⋅ Δ ⋅ 𝜖

= 𝑇𝑐 + Δ ⋅ 𝑇𝑏 + 𝜖 ⋅ 𝑇𝑎 + 𝑘 ⋅ Δ ⋅ 𝜖

= 𝑘 ⋅ 𝑐 + (x − a) ⋅ 𝑇𝑏 + (𝑦 − 𝑏) ⋅ 𝑇𝑎 + 𝑘 ⋅ (x − a) ⋅ (𝑦 − 𝑏)

= 𝑘 ⋅ 𝑐 + x − a ⋅ 𝑘 ⋅ 𝑏 + 𝑦 − 𝑏 ⋅ (𝑘 ⋅ 𝑎) + 𝑘 ⋅ (x − a) ⋅ (𝑦 − 𝑏)

= 𝑘 ⋅ {𝑐 + 𝑥 − 𝑎 ⋅ 𝑏 + 𝑦 − 𝑏 ⋅ 𝑎 + x − a ⋅ 𝑦 − 𝑏 }

= 𝑘 ⋅ {𝑥 ⋅ 𝑦}

= 𝑘 ⋅ 𝑧

After computing 𝑧 , [𝑇𝑧]

• We need to verify z, Δ, 𝜖
• [𝑇𝑧]

• [𝑇Δ]

• [𝑇𝜖]

• There is a standard way to compute a single-element checksum
• To pass verification, the checksum needs to be zero

But This is Not Free Lunch

• In ML 𝑎 , 𝑏 and 𝑐 are matrix
• Δ and [𝑎] is MxN, size of intermediate value

• [b] and 𝜖 is NxO, size of the weight

Added Computation Costs of Tagged MPC

Party #1

Operands:

IT MACs:

[𝑥1] [𝑦1]

[𝑎1] [𝑏1] [𝑐1]

[𝑇𝑥1] [𝑇𝑦1]

[𝑇𝑎1] [𝑇𝑏1] [𝑇𝑐1]

Δ 𝜖

𝑇Δ1 𝑇𝜖1

𝑧1 = 𝑐1 + Δ ⋅ 𝑏1 + 𝜖 ⋅ 𝑎1 + Δ ⋅ 𝜖

𝑇𝑧1 = 𝑇𝑐1 + Δ ⋅ 𝑇𝑏1 + 𝑇𝑎1 ⋅ 𝜖 + k1 ⋅ Δ ⋅ 𝜖

[𝑘1]

… … … …

…

…

…

…

M

N

N

𝑂

Δ [T𝑏]

Tag computation for matrices has cubic complexity 𝑶 𝑴×𝑵× 𝑶 .
Takes 10% to 30% of total runtime.

CompactTag
• CompactTag computes a small tag for matrix multiplication

• Reduce tag computation from cubic to
• 𝑂(𝑀 × 𝑁 +𝑀 × 𝑂 +𝑁 × 𝑂)

• Asymptotic reduction

… … … … …M

O

[T𝑍]

…M

CompactTag [T𝑍
,]

1

CompactTag requires less computation has the same security level.

How [𝑧] and [𝑇𝑧] are used as matrices

• [𝑧] becomes inputs to next layer

• [𝑧] computes next layer’s 𝜃 = 𝑟 − 𝑧
• 𝑟 is an random matrix size of 𝑀 × 𝑂

• We need to verify correctness of 𝜃 using [𝑇𝑧]

Party #1

Operands:

IT MACs:

[𝑟1]

[𝑇𝑟1]

Party #2

Operands:

IT MACs:

[𝑟2]

[𝑇𝑟2]

𝑧1 𝑧2

𝑇𝑧1 𝑇𝑧2

[𝑘1] [𝑘2]

Now 𝑟, 𝑧 are 𝑀 × 𝑂 matrices.

Party #1

Operands:

IT MACs:

[𝑟1]

[𝑇𝑟1]

Party #2

Operands:

IT MACs:

[𝑟2]

[𝑇𝑟2]

𝑧1 𝑧2

𝑇𝑧1 𝑇𝑧2

[𝑘1] [𝑘2]

Compute and reconstruct matrix𝜃

𝜃1 = 𝑟1 − [𝑧1] 𝜃2 = 𝑟2 − [𝑧2]

𝑇𝜃1 = 𝑇𝑟1 − [𝑇𝑧1] 𝑇𝜃2 = 𝑇𝑟2 − [𝑇𝑧2]

Party #1

Operands:

IT MACs:

[𝑟1]

[𝑇𝑟1]

Party #2

Operands:

IT MACs:

[𝑟2]

[𝑇𝑟2]

𝑧1 𝑧2

𝑇𝑧1 𝑇𝑧2

[𝑘1] [𝑘2]

Compute and reconstruct matrix 𝜃.
We use computed T𝜃 to verify 𝜃.

𝜃 = 𝑟 − 𝑧 𝜃 = 𝑟 − 𝑧

𝑇𝜃1 𝑇𝜃2

CompactTag
a small tag for matrix products

CompactTag: 3 steps

1. Sample random numbers 𝜒𝑖
2. Compact operands

3. Compute the small tag

Skip 𝑇𝑧 for now.

Party #1

Operands:

IT MACs:

[𝑥1] [𝑦1]

[𝑎1] [𝑏1] [𝑐1]

[𝑇𝑥1] [𝑇𝑦1]

[𝑇𝑎1] [𝑇𝑏1] [𝑇𝑐1]

Party #2

Operands:

IT MACs:

[𝑥2] [𝑦2]

[𝑎2] [𝑏2] [𝑐2]

[𝑇𝑥2] [𝑇𝑦2]

[𝑇𝑎2] [𝑇𝑏2] [𝑇𝑐2]

Δ 𝜖

𝑇Δ1 𝑇𝜖1

Δ 𝜖

𝑇Δ2 𝑇𝜖2

𝑧1 = 𝑐1 + Δ ⋅ 𝑏1 + 𝜖 ⋅ 𝑎1 + Δ ⋅ 𝜖 𝑧2 = 𝑐2 + Δ ⋅ 𝑏2 + 𝜖 ⋅ 𝑎2

[𝑘1] [𝑘2]

Compute a Compact 𝑇𝑧 after broadcasting 𝑟 − 𝑧.
This is a key requirement for security

Party #1

Operands:

IT MACs:

[𝑟1]

[𝑇𝑟1]

Party #2

Operands:

IT MACs:

[𝑟2]

[𝑇𝑟2]

𝑧1 𝑧2[𝑘1] [𝑘2]

𝜃 = 𝑟 − 𝑧 𝜃 = 𝑟 − 𝑧

A remainder*
𝑇𝑧 = 𝑇𝑐 + Δ ⋅ 𝑇𝑏 + 𝜖 ⋅ 𝑇𝑎 + 𝑘 ⋅ Δ ⋅ 𝜖

𝑇𝑐1

Δ

𝑇𝑏1

𝜖

𝑇𝑎1 𝑇𝑐2𝑇𝑏2𝑇𝑎2

Δ 𝜖

1. Sample another public matrix 𝜒, whose dimension is 𝑂 × 1

Party #1

Operands:

IT MACs:

[𝑟1]

[𝑇𝑟1]

Party #2

Operands:

IT MACs:

[𝑟2]

[𝑇𝑟2]

𝑧1 𝑧2[𝑘1] [𝑘2]

𝜃 = 𝑟 − 𝑧 𝜃 = 𝑟 − 𝑧

A remainder*
𝑇𝑧 = 𝑇𝑐 + Δ ⋅ 𝑇𝑏 + 𝜖 ⋅ 𝑇𝑎 + 𝑘 ⋅ Δ ⋅ 𝜖

𝑇𝑐1

Δ

𝑇𝑏1

𝜖

𝑇𝑎1 𝑇𝑐2𝑇𝑏2𝑇𝑎2

Δ 𝜖
𝜒 𝜒

…

𝑂

𝜒1

𝜒2

𝜒𝑂−1

𝜒𝑂

1

𝜒

2. Compress operands using 𝜒

Party #1

Operands:

IT MACs:

[𝑟1]

[𝑇𝑟1]

Party #2

Operands:

IT MACs:

[𝑟2]

[𝑇𝑟2]

𝑧1 𝑧2[𝑘1] [𝑘2]

𝜃 = 𝑟 − 𝑧 𝜃 = 𝑟 − 𝑧

A remainder*
𝑇𝑧 = 𝑇𝑐 + Δ ⋅ 𝑇𝑏 + 𝜖 ⋅ 𝑇𝑎 + 𝑘 ⋅ Δ ⋅ 𝜖

𝑇𝑐1

Δ

𝑇𝑏1

𝜖

𝑇𝑎1 𝑇𝑐2𝑇𝑏2𝑇𝑎2

Δ 𝜖
𝜒 𝜒

𝑇𝑐1
, = 𝑇𝑐1 ⋅ 𝜒

𝑇𝑏1
, = 𝑇𝑏1 ⋅ 𝜒

𝜖 , = 𝜖 ⋅ 𝜒

𝑇𝑐2
, = 𝑇𝑐2 ⋅ 𝜒

𝑇𝑏2
, = 𝑇𝑏2 ⋅ 𝜒

𝜖 , = 𝜖 ⋅ 𝜒

2. Compress operands using 𝜒

Party #1

Operands:

IT MACs:

[𝑟1]

[𝑇𝑟1]

𝑧1[𝑘1]

𝜃 = 𝑟 − 𝑧

A remainder*
𝑇𝑧 = 𝑇𝑐 + Δ ⋅ 𝑇𝑏 + 𝜖 ⋅ 𝑇𝑎 + 𝑘 ⋅ Δ ⋅ 𝜖

𝑇𝑐1

Δ

𝑇𝑏1

𝜖

𝑇𝑎1

𝜒

𝑇𝑐1
, = 𝑇𝑐1 ⋅ 𝜒

𝑇𝑏1
, = 𝑇𝑏1 ⋅ 𝜒

𝜖 , = 𝜖 ⋅ 𝜒

…

…

…

…

𝑂

[T𝑏]

𝑁 …

𝑂

𝜒1

𝜒2

𝜒𝑂−1

𝜒𝑂

1

𝜒

matmul

Equivalent to linearly combine all columns using 𝜒.

Party #1

Operands:

IT MACs:

[𝑟1]

[𝑇𝑟1]

𝑧1[𝑘1]

𝜃 = 𝑟 − 𝑧

A remainder*
𝑇𝑧 = 𝑇𝑐 + Δ ⋅ 𝑇𝑏 + 𝜖 ⋅ 𝑇𝑎 + 𝑘 ⋅ Δ ⋅ 𝜖

𝑇𝑐1

Δ

𝑇𝑏1

𝜖

𝑇𝑎1

𝜒

𝑇𝑐1
, = 𝑇𝑐1 ⋅ 𝜒

𝑇𝑏1
, = 𝑇𝑏1 ⋅ 𝜒

𝜖 , = 𝜖 ⋅ 𝜒

…

…

…

…

[T𝑏]

𝑁 …

𝑂

𝜒1

𝜒2

𝜒𝑂−1

𝜒𝑂

1

𝜒

matmul

𝜒1 𝜒2 𝜒𝑜−2𝜒𝑜−1 𝜒𝑜

Equivalent to linearly combine all columns using 𝜒.

Party #1

Operands:

IT MACs:

[𝑟1]

[𝑇𝑟1]

𝑧1[𝑘1]

𝜃 = 𝑟 − 𝑧

A remainder*
𝑇𝑧 = 𝑇𝑐 + Δ ⋅ 𝑇𝑏 + 𝜖 ⋅ 𝑇𝑎 + 𝑘 ⋅ Δ ⋅ 𝜖

𝑇𝑐1

Δ

𝑇𝑏1

𝜖

𝑇𝑎1

𝜒

𝑇𝑐1
, = 𝑇𝑐1 ⋅ 𝜒

𝑇𝑏1
, = 𝑇𝑏1 ⋅ 𝜒

𝜖 , = 𝜖 ⋅ 𝜒

[T𝑏
,]

𝑁

1

3. Compute a CompactTag 𝑇𝑧
,

Party #1

Operands:

IT MACs:

[𝑟1]

[𝑇𝑟1]

Party #2

Operands:

IT MACs:

[𝑟2]

[𝑇𝑟2]

𝑧1 𝑧2[𝑘1] [𝑘2]

𝜃 = 𝑟 − 𝑧 𝜃 = 𝑟 − 𝑧

A remainder*
𝑇𝑧 = 𝑇𝑐 + Δ ⋅ 𝑇𝑏 + 𝜖 ⋅ 𝑇𝑎 + 𝑘 ⋅ Δ ⋅ 𝜖

𝑇𝑐1
,

Δ

𝑇𝑏1
,

𝜖 ,

𝑇𝑎1 𝑇𝑐2
,

𝑇𝑏2
,𝑇𝑎2

Δ 𝜖 ,
𝜒 𝜒

𝑇𝑧1 = 𝑇𝑐1
, + Δ ⋅ 𝑇𝑏1

, + 𝑇𝑎1 ⋅ 𝜖 , + k1 ⋅ Δ ⋅ 𝜖 , 𝑇𝑧2 = 𝑇𝑐2
, + Δ ⋅ 𝑇𝑏2

, + 𝑇𝑎2 ⋅ 𝜖 ,+ k2 ⋅ Δ ⋅ 𝜖 ,

Significant computation complexity reduction.
𝑂(𝑀 × 𝑁 +𝑀 × 𝑂 + 𝑁 × 𝑂)

Party #1

Operands:

IT MACs:

[𝑟1]

[𝑇𝑟1]

𝑧1[𝑘1]

𝜃 = 𝑟 − 𝑧

A remainder*
𝑇𝑧 = 𝑇𝑐 + Δ ⋅ 𝑇𝑏 + 𝜖 ⋅ 𝑇𝑎 + 𝑘 ⋅ Δ ⋅ 𝜖

𝑇𝑐1
,

Δ

𝑇𝑏1
,

𝜖 ,

𝑇𝑎1

𝜒

𝑇𝑧1 = 𝑇𝑐1
, + Δ ⋅ 𝑇𝑏1

, + 𝑇𝑎1 ⋅ 𝜖 , + k1 ⋅ Δ ⋅ 𝜖 ,

…

…

…

…

𝑁

Δ

𝑀 …

𝑁

𝜒1

𝜒2

𝜒𝑂−1

𝜒𝑂

1

[𝑇𝑏]

matmul

𝑂(𝑀
× 𝑁)

Have the same security level as the state-of-the-art with a
modified checksum computation.

CompactTag: 3 steps

1. Sample random numbers 𝜒𝑖
2. Compact operands

3. Compute the small tag

4. The same security level
1. modified checksum compuation

Results with CompactTag

• Significant tag computation reduction
• 3.44x for ResNet50

• 18.83x for xFormer

• 4.16x for VGG16

• Significant performance improvement on LAN/WAN

LAN WAN

Outline

Secure MPC
Background

• General terms

• Secret sharing

• Multiplication

• Online/offline phase

01
System

• MPC-Pipe: an efficient
pipeline for n-party MPC

02
Theory

• CompactTag: minimized tag
computation for actively
secure MPC

03
Summary of the talk

04

Summary of the talk

• MPC for needs optimization from both system & theory

• System:
• MPC-Pipe: an efficient pipeline for n-party MPC
• Faster computation engine: PIGEON
• Faster communication links: quantum teleportation

• Theory:
• CompactTag: minimized tag computation for actively secure MPC
• Modified protocol to accommodate heterogenous networks

• Modified integrity check
• Modified 3PC/4PC algorithm

• More contributions needed

Thank you!

	Slide 1: Optimizing ML MPC from System & Theoretical Perspective
	Slide 2: Talk overview
	Slide 3: Outline
	Slide 4: Secure MPC: General terms
	Slide 5: Secure MPC: General terms
	Slide 6: Secure MPC: General terms
	Slide 7: Secure MPC: Secret Sharing
	Slide 9: Beaver Triple Assisted Multiplications
	Slide 10: Beaver Triple Assisted Multiplications
	Slide 11: Beaver Triple Assisted Multiplications
	Slide 12: Beaver Triple Assisted Multiplications
	Slide 13: Beaver Triple Assisted Multiplications
	Slide 14: Beaver Triple Assisted Multiplications
	Slide 15: Beaver Triple Assisted Multiplications
	Slide 25: Challenges for ML Workloads
	Slide 26: Outline
	Slide 27
	Slide 28: Key observation
	Slide 29: Key observation
	Slide 30: Key observation
	Slide 31: Key observation
	Slide 32: MPC-Pipe Pipeline Schemes
	Slide 33: MPC-Pipe: inter-linear pipeline
	Slide 34: MPC-Pipe: inter-linear pipeline
	Slide 35: MPC-Pipe: inter-linear pipeline
	Slide 36: MPC-Pipe: inter-linear pipeline
	Slide 37: MPC-Pipe: inter-linear pipeline
	Slide 43: MPC-Pipe Pipeline Schemes
	Slide 44: MPC-Pipe implementation
	Slide 45: MPC-Pipe Results: Throughput
	Slide 46: MPC-Pipe on other frameworks
	Slide 48: Outline
	Slide 49
	Slide 50: CompactTag overview
	Slide 51: When The Parties are Malicious
	Slide 52
	Slide 53
	Slide 55: So What is the Solution?
	Slide 56: Information theoretical MACs
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62: Check what is open bracket cap T sub z , close bracket
	Slide 63: After computing open bracket z close bracket ,, open bracket cap T sub z close bracket
	Slide 68: But This is Not Free Lunch
	Slide 69: Added Computation Costs of Tagged MPC
	Slide 70: CompactTag
	Slide 71: How open bracket z close bracket and open bracket cap T sub z close bracket are used as matrices
	Slide 72
	Slide 73
	Slide 74
	Slide 79: CompactTag a small tag for matrix products
	Slide 80: CompactTag: 3 steps
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91: CompactTag: 3 steps
	Slide 92: Results with CompactTag
	Slide 93: Outline
	Slide 94: Summary of the talk
	Slide 95

