Security Guidelines for Implementing Homomorphic Encryption

Presenter: Erin Hales at NIST WPEC (25 September 2024) University of Edinburgh and Royal Holloway, University of London

In collaboration with: Jean-Philippe Bossuat, Rosario Cammarota, Jung Hee Cheon, Ilaria Chillotti, Benjamin R. Curtis, Wei Dai, Huijing Gong, Duhyeong Kim, Bryan Kumara, Changmin Lee, Xianhui Lu, Carsten Maple, Alberto Pedrouzo-Ulloa, Rachel Player, Yuriy Polyakov, Luis Antonio Ruiz Lopez, Yongsoo Song, Donggeon Yhee, Bahattin Yildiz

https://ia.cr/2024/463

Motivations to standardise FHE

FHE applications and commercialisation have been advancing rapidly in recent years.

Standardisation effort gives the opportunity to:

- Consider relevant security notions for FHE.
- Agree on recommended security levels for varying parameter sets.
- Offer FHE users and practitioners guidance on selecting parameters.
- Present relevant research on FHE security to practitioners.

FHE standardisation timeline

First FHE proposal		ISO/IEC standardis	ation process begins	
Gentry proposes the fir encryption scheme. Initial implementations bit operation.	rst fully homomorphic s were slow, 30 mins per	Study period follow item begins in 2020 The ISO/IEC standa is ongoing.	red by preliminary work). ardisation process for FHE	This talk!
•	2018	•	2021	
2009	•	2020	•	2024
	First Homomorphic Encryp (community) standard	tion	This work, Security Guide Implementing Homomorp	lines for hic Encryption
	Recommended LWE securit BGV/BFV and CKKS. Implementations of FHE sc improved significantly, 2 mi operation.	ty parameters for hemes have croseconds per bit	Update to first (community supporting the ISO/IEC stappocess.	y) standard, andardisation

More detail on this work

Security working group established Oct 2021, supporting ISO/IEC standardisation process, begun in Aug 2021.

20 collaborators in total from industry, academia, different libraries.

Initial goal: develop Annex to ISO/IEC documents on parameter selection.

Later goal: produce a separate white paper -- which became this work!

Parameter selection: the trade offs

Security, Correctness and Performance Tradeoffs

We need to maximise efficiency while ensuring security and correctness.

We use 'bits of security', which we obtain from brute force attack estimates.

Image from here:

https://csrc.nist.gov/csrc/media/presentations/2023/stppa6-fhe/images-media/20230725-stppa6-he-fhe--kurt-rohloff.pdf

Goals of this work

Outline of this work

Security Evaluation Methodology:

- Security analysis fixes a security notion and hardness assumptions.
- Target security levels.
- Security estimation tool.

Parameters:

- LWE parameter sets with target security levels.
- Scheme parameter sets as examples.
- Overview of parameter selection in open-sourced libraries and compilers.

[ACC+19]	This work
Dimensions 1024,,32768	Dimensions 1024,,131072
Uniform, ternary, Gaussian secrets No sparse secrets	Binary, ternary, Gaussian secrets No sparse secrets
Max log q for fixed σ	Max log q for fixed σ Min log σ for fixed q
Not easily reproducible Difficult to update	Code to reproduce all tables Can be rerun by users as needed
Only LWE parameters	Examples of full parameter sets
Describes various FHE schemes	Pointers to schemes and libraries
Describes various LWE algorithms	Pointers to cryptanalysis literature

[ACC+19] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, Shafi Goldwasser, Sergey Gorbunov, Shai Halevi, Jeffrey Hoffstein, Kim Laine, Kristin Lauter, Satya Lokam, Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod Vaikuntanathan. Homomorphic encryption standard. Cryptology ePrint Archive, Paper 2019/939, 2019. <u>https://eprint.iacr.org/2019/939</u>. Slide thanks to Rachel Player

9

Focus of security analysis

Security notion: IND-Chosen Plaintext Attack (IND-CPA).

Hardness Assumptions: Decision-Learning with Errors (LWE) and its variants, Ring-LWE (RLWE) and General-LWE* (GLWE).

Concrete security focus: parameters of the underlying LWE instances of HE. **Methodology**: every instance of RLWE and GLWE is interpreted as an LWE instance.

Target security levels

Category 128, 192, 256: any algorithm that solves the underlying LWE instance must require (classical) computational resources comparable to or greater than those required for key search on a block cipher with a 128-bit, 192-bit, 256-bit key respectively.

Our cost metric: (following the lattice-estimator) measure the workload in 'ring operations' (rop), which can be converted to CPU cycles for the classical computer setting if desired.

Concrete estimation: Lattice estimator

Security Estimates for Lattice Problems launch binder docs passing This Sage module provides functions for estimating the concrete security of Learning with Errors instances. The main purpose of this estimator is to give designers an easy way to choose parameters resisting known attacks and to enable cryptanalysts to compare their results and ideas with other techniques known in the literature. **Quick Start** We currently provide evaluators for the security of the LWE, NTRU, and SIS problems. Our estimator integrates

simulators for the best known attacks against these problems, and provides bit-security estimates relying on heuristics to predict the cost and shape of lattice reduction algorithms. The default models are configured in <u>conf.py</u>.

It is possible to evaluate attacks cost individually, or using the helper functions:

https://github.com/malb/lattice-estimator

Estimator output

sage: param_1024_ternary_classic_128 = LWE.Parameters(n = 1024, q = 2**26, Xs
= ND.UniformMod(3), Xe = ND.DiscreteGaussian(3.19), m = oo, tag =
"param_1024_ternary_classic_128")

sage: LWE.estimate(param_1024_ternary_classic_128)

{'arora-gb': rop: ≈2^inf, 'bkw': rop: ≈2^226.5, m: ≈2^212.3, mem: ≈2^213.3, b: 8, t1: 0, t2: 40, l: 7, #cod: 933, #top: 0, #test: 91, tag: coded-bkw, 'usvp': rop: ≈2^134.1, red: ≈2^134.1, δ: 1.004234, β: 366, d: 1938, tag: usvp, 'bdd': rop: ≈2^132.3, red: ≈2^131.9, svp: ≈2^130.2, β: 358, η: 390, d: 1934, tag: bdd, 'bdd_hybrid': rop: ≈2^132.5, red: ≈2^132.0, svp: ≈2^130.7, β: 358, η: 392, ζ: 0, |S|: 1, d: 2076, prob: 1, 0: 1, tag: hybrid, 'bdd_mitm_hybrid': rop: ≈2^190.7, red: ≈2^189.7, svp: ≈2^189.7, β: 367, η: 2, ζ: 142, |S|: ≈2^225.1, d: 1951, prob: ≈2^-53.1, 0: ≈2^55.3, tag: hybrid, 'dual': rop: ≈2^137.2, mem: ≈2^88.1, m: 999, β: 373, d: 2023, 0: 1, tag: dual, 'dual_hybrid': rop: ≈2^131.3, red: ≈2^131.3, guess: ≈2^125.2, β: 352, p: 3, ζ: 20, t: 40, β': 363, N: ≈2^74.1, m: 1024}

Search: Given an LWE sample (*a*,*b*), find s.

Decision: Decide if a pair (*a*,*b*) is from the LWE distribution, or uniformly random.

Slide thanks to Alberto Pedrouzo-Ulloa

Parameters

Parameter	Description
λ	Security level of the parameter set
n	Dimension of the (R)LWE instance
q	LWE modulus
σ	Standard deviation of LWE error distribution

Secure parameter sets

n	$\log_2(q)$						
	Ternary	Gaussian					
$\lambda = 128$							
1024	26	28					
2048	53	55					
4096	106	108					
8192	214	216					
16384	430	432					
32768	868	870					
65536	1747	1749					
131072	3523	3525					

n	$\log_2(q)$	$\log_2(\sigma)$						
9		Binary	Ternary	Gaussian				
N	$\lambda = 128$							
630		18.5	17.2	14.6				
1024	32	8.3	7.1	4.6				
≥ 2048		2.0	2.0	2.0				
630		50.5	49.2	46.6				
750		47.4	46.2	43.5				
870	64	44.3	43.1	40.3				
1024	04	40.3	39.1	36.4				
2048		13.7	12.4	10.0				
≥ 4096		2.0	2.0	2.0				

Maximal log of modulus q that can be used to achieve security level 128.

Minimal log of standard deviation σ that can be used to achieve security level 128.

Example parameter sets

λ	128	192	256
χ_{s}	Ternary	Ternary	Ternary
$\sigma~(\chi_{\mathbf{e}})$	3.19	3.19	3.19
t	65537	65537	786433
$\log_2(n)$	14	15	16
	BFV para	imeters	
L^{26}	10	15	18
$\log_2(Q)$	360	531	720
$\log_2(P)$	60	60	180
$\log_2(PQ)$	420	591	900
d_{num}	6	9	4
	BGV para	ameters	
L^{27}	8	13	16
$\log_2(Q)$	337	532	686
$\log_2(P)$	60	60	240
$\log_2(PQ)$	397	592	926
d_{num}	10	15	4

Table 5.5: Sample OpenFHE parameters for BFV/BGV without bootstrapping.

Example parameter sets

λ	128	128	128	128	128	128	128	128
Scheme	CGGI	CGGI	CGGI	CGGI	CGGI	CGGI	DM	DM
Library	TFHE-rs	TFHE-rs	Concrete	Concrete	OpenFHE	OpenFHE	OpenFHE	OpenFHE
\overline{n}	841	785	805	687	503	556	447	556
$\log_2(N)$	11	9	11	9	10	10	10	10
${m k}$	1	4	1	3	1	1	1	1
q	2^{64}	2^{64}	2^{64}	2^{64}	$pprox 2^{27}$	$pprox 2^{27}$	$pprox 2^{28}$	$pprox 2^{27}$
q_{ks}	2^{64}	2^{64}	2^{64}	2^{64}	$pprox 2^{14}$	$pprox 2^{15}$	$pprox 2^{14}$	$pprox 2^{15}$
t	2^4	2	2^4	2	2	2	2	2
χ_{LWE}	Binary	Binary	Binary	Binary	Ternary	Ternary	Gaussian	Ternary
χ_{GLWE}	Binary	Binary	Binary	Binary	Ternary	Ternary	Gaussian	Ternary
eta_{ks}	2^3	2^4	2^3	2^4	2^5	2^5	2^5	2^5
ℓ_{ks}	5	3	5	3	3	3	3	3
eta_{pbs}	2^{22}	2^{23}	2^{15}	2^{18}	2^9	2^7	2^{10}	2^9
$\ell_{\sf pbs}$	1	1	2	1	3	4	3	3
σ_{LWE}	$2^{45.72}$	$2^{47.22}$	$2^{15.68}$	$2^{45.99}$	3.19	3.19	3.19	3.19
σ_{GLWE}	$2^{15.68}$	$2^{14.05}$	$2^{14.05}$	$2^{49.02}$	3.19	3.19	3.19	3.19
p_{error}	2^{-64}	2^{-64}	2^{-64}	2^{-64}	2^{-40}	2^{-220}	2^{-55}	2^{-120}

Table 5.6: Sample parameters for CGGI and DM. The first two parameter sets for CGGI (with n =

λ	128	192	256
$\log_2(n)$	14	15	16
$\log_2(q)$	424	585	920
$\log_2(t)$	20	20	20
$\chi_{\mathbf{s}}$	Ternary	Ternary	Ternary
$\sigma~(\chi_{\mathbf{e}})$	3.2	3.2	3.2
L (BFV)	10	14	23
L (BGV)	8	12	19

Table 5.4: Sample SEAL parameters for $\mathsf{BFV}/\mathsf{BGV}$ without bootstrapping.

λ	128	192	256
$\log_2(N)$	14	15	15
$\chi_{\mathbf{s}}$	Ternary	Ternary	Ternary
$\sigma~(\chi_{f e})$	3.19	3.19	3.19
Base Prime Size	40	43	40
L	7	9	7
$\log_2(PQ)$	427	592	434
$\log_2(Q)$	307	412	314
$\log_2(P)$	120	180	120
\log_2 (Scaling Factor)	38	41	39
Precision Bit	22.3	24.0	22.2

Table	5.7:	Sample	parameters	for	RNS-C	KKS	with	out	boots	trapp	ing
					-	-	-				

	Set I	Set II
λ	128	128
$\log_2(N)$	16	16
Number of $Slots^{32}$	32768	32768
$\chi_{\mathbf{s}}$	Ternary	Ternary
$\sigma~(\chi_{f e})$	3.19	3.19
Base Prime Size	45	60
L (after bootstrapping)	10	6
$\log_2(\text{Scaling Factor})$	35^{-33}	58
$\log_2(PQ)$	1734	1691
$\log_2(Q)$	1464	1511
$\log_2(P)$	305	180
Level cost of ${\sf SlotsToCoeffs}$	4	3
Level cost of EvalMod	12	13
$\log_2(\Pr[I(X) > K])^{34}$	-37.65	-37.65
K	512	512
Level cost of CoeffsToSlots	3	3
$\rm Iterations^{35}$	1	1
Precision Bits ³⁶	15.9	12.0^{37}

Table 5.8: Sample parameters for RNS-CKKS with bootstrapping.

Cryptanalytic advances: how to update?

Predicting future cryptanalytic progress is challenging. Instead of fixing a security margin t for the next x years, we offer scripts* which:

- can be **rerun to update parameters** if lattice-estimator is updated in the future.
- offer **flexible adjustments** if users wish to adopt a different cost model or include a new attack.

*Scripts for reproducing and verifying tables can be found at https://github.com/gong-cr/FHE-Security-Guidelines

Looking forward

Expand the scope: as FHE matures, include,

- more schemes
- diverse distributions
- broader attack scenarios

Parameter selection: develop advanced automated frameworks for systematic parameter selection that balance security, functionality, and efficiency.

Key Takeaways

Parameters can, and do, change as a result of advances in cryptanalysis.

For implementers, following up-to-date security guidelines is essential.

This work includes:

- Parameter set examples for major FHE schemes/libraries.
- New tools enabling users to independently update parameters.

Thank you!

For more details, see eprint: <u>https://ia.cr/2024/463</u> Scripts for reproducing and verifying tables can be found at <u>https://github.com/gong-cr/FHE-Security-Guidelines</u> There will be a breakout session on FHE security at the 7th HES meeting, affiliated with CCS in Salt Lake City on October 13 <u>https://homomorphicencryption.org/7th-homomorphicencryption-org-standardsmeeting/</u>