PRACTICAL PERFORMANCE OF CKKS AND ENCRYPTED TRAINING AND INFERENCE FOR CLASSIFICATION

Damien Stehlé & Junbum Shin

{DAMIEN.STEHLE, JUNBUM.SHIN}@CRYPTOLAB.CO.KR

NIST WPEC24 - ONLINE - SEPTEMBER 25, 2024

REMINDERS

CKKS is a fully homomorphic encryption scheme:

$$\forall f, m_1, \dots, m_k :$$
 Dec $($ Eval $(f;$ Enc $(m_1), \dots,$ Enc $(m_k))) \approx f(m_1, \dots, m_k)$

Plaintext space: vectors of $\mathbb{C}^{N/2}$

(up to some precision)

- add in //
- multiply in //
- conjugate in //
- rotate the coordinates

CKKS is level-based

- mult
- add, conj & rot
- consumes 1 level consume 0 level
- bootstrapping (BTS) regains level

IND-CPA security from

RingLWE & a circular security assumption

(closely related to NIST choices for pq-crypto standardization)

BOOTSTRAPPING IS FAST

<i>N</i> = 2 ¹⁶ Precision ≈ 22 bits Remaining levels: 10	CPU Single-thread, AVX512 Intel Xeon Gold 6342 @2.8GHz
Real-BTS (N/2 real numbers)	5.3 s
Complex-BTS (N/2 complex numbers or N real numbers)	6.9 s

HEaaN library, binaries available at heaan.it

[JKACL21] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee. Over 100x faster bootstrapping in fully homomorphic encryption through memory-centric optimization with GPUs. TCHES, 2021.

BOOTSTRAPPING IS FAST

<i>N</i> = 2 ¹⁶ Precision ≈ 22 bits Remaining levels: 10	CPU Single-thread, AVX512 Intel Xeon Gold 6342 @2.8GHz	GPU NVIDIA GeForce RTX 4090 (based on [JKACL21])
Real-BTS (N/2 real numbers)	5.3 s	49 ms
Complex-BTS (N/2 complex numbers or N real numbers)	6.9 s	61 ms

HEaaN library, binaries available at heaan.it

AMORTIZED MULTIPLICATION COST

Cost of a ct-ct multiplication, amortized over:

- slots
- a full BTS loop iteration
- several ciphertexts

(GPU, NVIDIA GeForce RTX 4090)

BINARY CIRCUITS

[DMPS24] N. Drucker, G. Moshkowich, T. Pelleg, and H. Shaul.
BLEACH: Cleaning errors in discrete computations over CKKS.
J. Cryptol., 2024
[BCKS24] Y. Bae, J. H. Cheon, J. Kim, and D. Stehlé. Bootstrapping bits with CKKS. Eurocrypt 2024.
[BKSS24] Y. Bae, J. Kim, D. Stehlé, and E. Suvanto. Bootstrapping

integers with CKKS. Asiacrypt 2024.

CKKS is usually thought of as designed for **real/complex numbers** But it can be used for **binary** computations! [DMPS24]

Bootstrapping can be optimized for such plaintext formats [BCKS24,BKSS24]

	CGGI	[DMPS24] (naive, our code)	[DMPS24] (optimized, our code)	[BCKS24]	[BKSS24]
Throughput (amortized time / binary gate) single-thread CPU	~10ms	92.6µs	27.7µs	17.6µs	7.39µs

One of Meta's transformer-based LLMs (with 2⁷ tokens)

One of Meta's transformer-based LLMs (with 2⁷ tokens)

RMSNorm	$\dim = 2^7$	2 ¹² in //
pt-ct matrix mult ct-ct matrix mult Softmax ct-ct matrix mult pt-ct matrix mult	$2^{12} \times 2^{12} \times 2^{7}$ $2^{7} \times 2^{7} \times 2^{7}$ $\dim = 2^{7}$ $2^{7} \times 2^{7} \times 2^{7}$ $2^{12} \times 2^{12} \times 2^{7}$	3 in // 2 ⁵ in // 2 ¹² in // 2 ⁵ in // once
RMSNorm	dim = 2 ⁷	2 ¹² in //
pt-ct matrix mult SILU pt-ct matrix mult	$2^{13.4} \times 2^{12} \times 2^{7}$ $2^{12} \times 2^{13.4} \times 2^{7}$	2 in // 2 ^{20.4} in // once

One of Meta's transformer-based LLMs (with 2⁷ tokens)

RMSNorm	dim = 2 ⁷	2 ¹² in //
pt-ct matrix mult ct-ct matrix mult Softmax ct-ct matrix mult pt-ct matrix mult	$2^{12} \times 2^{12} \times 2^{7}$ $2^{7} \times 2^{7} \times 2^{7}$ $\dim = 2^{7}$ $2^{7} \times 2^{7} \times 2^{7}$ $2^{12} \times 2^{12} \times 2^{7}$	3 in // 2 ⁵ in // 2 ¹² in // 2 ⁵ in // once
RMSNorm	dim = 2 ⁷	2 ¹² in //
pt-ct matrix mult SILU pt-ct matrix mult	$2^{13.4} \times 2^{12} \times 2^{7}$ $2^{12} \times 2^{13.4} \times 2^{7}$	2 in // 2 ^{20.4} in // once

Repeat 32 times (!#?!!) This gives the first output token

1 st token	$\approx 2^{42}$	bit ops
For the sake	e of com	parison:
AES	$\approx 2^{14}$	bit ops

One of Meta's transformer-based LLMs (with 2⁷ tokens)

RMSNorm	$\dim = 2^7$	2 ¹² in //
pt-ct matrix mult ct-ct matrix mult Softmax ct-ct matrix mult pt-ct matrix mult	$2^{12} \times 2^{12} \times 2^{7}$ $2^{7} \times 2^{7} \times 2^{7}$ $\dim = 2^{7}$ $2^{7} \times 2^{7} \times 2^{7}$ $2^{12} \times 2^{12} \times 2^{7}$	3 in // 2 ⁵ in // 2 ¹² in // 2 ⁵ in // once
RMSNorm	dim = 2^7	2 ¹² in //
pt-ct matrix mult SILU pt-ct matrix mult	$2^{13.4} \times 2^{12} \times 2^{7}$ $2^{12} \times 2^{13.4} \times 2^{7}$	2 in // 2 ^{20.4} in // once

Repeat 32 times (!#?!!) This gives the first output token

One of Meta's transformer-based LLMs (with 2⁷ tokens)

RMSNorm	$\dim = 2^7$	2 ¹² in //
pt-ct matrix mult ct-ct matrix mult Softmax ct-ct matrix mult pt-ct matrix mult	$2^{12} \times 2^{12} \times 2^{7}$ $2^{7} \times 2^{7} \times 2^{7}$ $\dim = 2^{7}$ $2^{7} \times 2^{7} \times 2^{7}$ $2^{12} \times 2^{12} \times 2^{7}$	3 in // 2 ⁵ in // 2 ¹² in // 2 ⁵ in // once
RMSNorm	dim = 2 ⁷	2 ¹² in //
pt-ct matrix mult SILU pt-ct matrix mult	$2^{13.4} \times 2^{12} \times 2^{7}$ $2^{12} \times 2^{13.4} \times 2^{7}$	2 in // 2 ^{20.4} in // once

Repeat 32 times (!#?!!) This gives the first output token

APPLICATION - PRIVACY PRESERVING CLASSIFICATION

Cloud service providers (e.g. AWS, Azure, GCP) provide automated machine learning for Classification

HOW TO SHARE DATA SECURELY?

Encrypted Classification

- To send data after encrypting it using homomorphic encryption
 - Typical use case of homomorphic encryption.
- Too slow?
 - 0.2 sec. / Encrypted inference
 - * GCP g2-standart-16 Intel® Xeon® Platinum 8273CL

AUTOFHE – PRACTICAL ENCRYPTED CLASSIFICATION

AutoFHE supports Image/Text Classification (https://www.autofhe.com/)

- Image classification: classifying military/medical photos
- Text CLASSIFICATION: sentiment/intent analysis

Demo: Training (Image) Model training to detect military vehicle

* Vision transformer / Custom dataset

Demo: Inference (text) Model Inference for sentiment analysis

Positive Negative* E5 / Amazon PoPolarity dataset (5000)

[ICML23] S. Lee, G. Lee, J. Kim, J. Shin, M. Lee, HETAL: Efficient Privacy-preserving Transfer Learning with Homomorphic Encryption, ICML 2023

AUTOFHE: FHE + TRANSFORMER ENCODER

- Image: Vision Transformer
- Text: BERT, MPNET, E5

Public transformer encoder runs on client

- \rightarrow Encrypt the encoder output @ client
- → MLP runs on the server / without decryption (No attack surface on server)

Hub&Spoke Model from Statistics Korea

OTHER APPLICATION – ENCRYPTED STATISTICS

• Performance

- 1M data < 2 seconds
- 10M data < 5 seconds

CPU: INTEL® XEON® GOLD 6248 CPU @ 2.50GHz, CPU: Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz, GPU: NVIDIA A40

CONCLUSION

CKKS will be even faster soon!

- Algorithmic improvements (arithmetic, bootstrapping, HE-softmax, hom. linear algebra)
- Exploit parallelism more
- Towards dedicated chips

=> Even more privacy-preserving applications

QUESTIONS?

D. Stehlé & J. Shin --- NIST WPEC24 --- Practical performance of CKKS and encrypted training and inference for classification